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Abstract

We show how to maintain the width of a set of n planar points subject to insertions and

deletions of points in O(
√
n log3 n) amortized time per update. Previously, no fully dynamic

algorithm with a guaranteed sublinear time bound was known.

1 Introduction

The width of a set in the two-dimensional plane is the smallest distance between a pair of parallel

lines that enclose the set. Clearly, the width of the set coincides with the width of its convex hull,

and since the width of a convex polygon can be determined by a simple linear scan, the width of n

planar points can be computed in O(n logn) time [14, 19].

Since the early 1990s, a number of researchers raised the question of how to compute this ba-

sic geometric quantity dynamically as points are inserted and deleted from the set. Agarwal and

Sharir [2] appeared to be the first to study the dynamic width problem (motivated by consideration

of a static problem known as “two-line center”). They were able to obtain an efficient data structure

for the decision problem (deciding whether the width is less than a fixed value) in the off-line case

only, where the complete sequence of insertions and deletions is given in advance. Each update

costs O(log3 n) time. Janardan, Rote, Schwarz, and Snoeyink [15, 20] solved the weaker approximate

problem (finding a value within a factor 1 + δ of the width for a fixed δ > 0) in O(log2 n) time per

update, using known data structures for dynamic convex hulls [18] (see also [5, 6]). Eppstein [11]

studied the exact problem in the case of a random sequence of insertions and deletions and obtained

an O(log n) expected update time bound.

Recently, Eppstein [12] gave another solution to the exact problem that given any fixed ε > 0,

requires O(nε) amortized time per update for the incremental case, where only insertions are allowed,

as well as the decremental case, where only deletions are allowed after preprocessing. In fact, in the

general case, this algorithm takes O(knε) amortized time to process an update, where k is the amount

of change to the convex hull. In some situations, k is small on average, but for an arbitrary sequence

of insertions and deletions, unfortunately k may be as large as Θ(n) for every update.

In the general case, a nontrivial worst-case result for the original dynamic width problem has

remained open: does there exist a fully dynamic method that is guaranteed to beat (asymptotically)
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the naive linear-time method that simply recomputes the width of the convex hull from scratch? We

answer the question in the affirmative in this paper. More precisely, we present an algorithm that

maintains the exact width over an arbitrary (on-line) sequence of insertions and deletions, with an

amortized update time of O(
√
n log3 n).

Admittedly, the new algorithm is not as fast as Eppstein’s algorithms in the various special cases.

However, unlike Eppstein’s O(nε)-time algorithm, which uses Agarwal and Matoušek’s advanced

dynamic data structure for 3-d polytopes [1], our algorithm is elementary and requires only static

data structures for 3-d polytopes (specifically, point location in the medial axis of a convex polygon).

Implementation of our algorithm is feasible.

We first attempt to explain why so far there has been no successful attack on the general dynamic

width problem. We then proceed to describe our new plan of action.

1.1 Why a sublinear bound was thought to be hard. . .

For some dynamic problems in geometric optimization, a sublinear algorithm is easily derivable

from standard tricks. Take for example the problem of answering farthest neighbor queries on a

planar point set [19]. We can simply divide the points into
√
n groups each with O(

√
n) points

and construct the farthest-point Voronoi diagram of each group. An update can be handled by

rebuilding the Voronoi diagram of the affected group in O(
√
n log n) time, and a query can be

performed in O(
√
n log n) time by querying each group separately (by point location) and combining

the answers [4].

By a similar approach, near-O(
√
n)-time dynamic algorithms can also be obtained for the diam-

eter and the smallest enclosing circle of a planar point set [19]: although the task of “combining

the answers” is not as self-evident (the technical term for the required property is decomposability),

both problems actually reduce to the farthest neighbor problem (which is decomposable)—the for-

mer by a technique of Eppstein [10], and the latter by parametric or randomized search [9, 16]. (An

O(nε) bound is now known for these problems through Agarwal and Matoušek’s data structures [1],

but historically, this
√
n approach had indeed been suggested for both diameter [21] and smallest

enclosing circle [9].)

Why can’t the same approach be applied to maintain the width? The smallest enclosing circle

enjoys properties associated with convex programming, but the width is essentially a nonconvex

optimization problem. It is not clear how one can divide the points into groups and build a data

structure for each group in such a way that the width can be determined by querying these separate

structures. It seems that one has to maintain features of the convex hull of the entire point set

globally, but then, one faces the problem encountered by Eppstein’s recent algorithm [12]: an update

may cause many changes to the hull in the worst case.

1.2 Why a sublinear bound isn’t that hard after all. . .

The way we bypass the above-mentioned problem is simple. We know how to deal effectively with

the decremental case by Eppstein’s result (mainly because an entire deletion sequence causes only

O(n) changes to the convex hull, since a vertex can be created and destroyed only once). The idea is

to forbid insertions to change the data structure (and in particular, the hull), but simulate the effect

of the insertions when we answer a query; when many insertions have accumulated, we rebuild the

structure.
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Specifically, we will establish the following theorem—which, incidentally, also improves Eppstein’s

result for the decremental case from O(nε) to O(log3 n).

Theorem 1.1 We can design a data structure for a planar n-point set P that supports deletions of

points from P and queries of the following kind: given a point set Q, determine the width of P ∪Q.
The total preprocessing and deletion time is O(n log3 n), and the query time is O(|Q| log3(n+ |Q|)).

To maintain the width of a point set in the general fully dynamic case, we divide our point set

into two subsets P and Q. Deletions of points from P are handled by the above theorem. Deletions

in Q are done directly. We insert only to Q. After
√
n insertions, we reset P to the entire point set

and Q to ∅; the cost of this reconstruction is O(n log3 n) time. At any time, we can determine the

width of the entire point set in O(|Q| log3 n) = O(
√
n log3 n) time. So, the amortized cost for each

update is O(
√
n log3 n), as claimed.

2 The Solution

All that remains is for us to prove Theorem 1.1. In other words, we will modify Eppstein’s decremental

data structure [12] to support our strengthened form of queries. First, we recall some known data

structuring tools.

The problem in the following lemma reduces to point location [19] in the medial axis [3] (i.e.,

Voronoi diagram of the edges) of the lower envelope of n lines (a convex polygon): the medial axis

of a convex polygon lifts to a three-dimensional halfspace intersection by a standard transformation,

and the result follows from known algorithms on 3-d polytope construction and planar point location.

Lemma 2.1 We can design a data structure for a set of n lines in the plane that supports queries

of the following kind: given a point q below all the lines, find the closest line to q. The preprocessing

time is O(n logn), and the query time is O(logn). 2

Formally, a query problem is decomposable if the answer on a set S1∪S2 can be computed from the

answer on S1 and the answer on S2 in constant time. Bentley and Saxe [4] observed a simple “binary

counting” method that in general turns any static data structure for a decomposable problem into

an incremental data structure that supports insertions with the cost of an extra logarithmic factor.

Lemma 2.2 Consider a decomposable query problem. Suppose we can preprocess any set of size n

in nT (n) time such that queries can be answered in Q(n) time, where T (n) and Q(n) are monotone

increasing functions. Then we can design a data structure for a set of size n that supports insertions

in O(T (n) log n) amortized time and queries in O(Q(n) log n) time. 2

Another general transformation can turn a static data structure for a decomposable problem into

a structure that supports queries on any contiguous subsequence, also at the expense of a logarithmic

factor: this well-known method simply builds a complete binary tree and stores a data structure at

each node for the leaves underneath.

Lemma 2.3 Consider a decomposable query problem. Suppose we can preprocess any set of size n

in nT (n) time such that queries can be answered in Q(n) time, where T (n) and Q(n) are monotone

increasing functions. Then we can preprocess a sequence S of size n in O(nT (n) logn) time such

that a query on any contiguous subsequence of S can be answered in O(Q(n) log n) time. 2
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Finally, the following specific data structure for a list of numbers can be designed by augmenting

a standard balanced search tree (technically called a “priority search tree”):

Lemma 2.4 We can design a data structure for a sequence S of n numbers that supports insertions,

deletions, and queries of the following kind: find the minimum of a contiguous subsequence of S. All

operations take O(logn) time. 2

2.1 Notation

We find it more convenient to study the width problem in the dual setting [19]. Map a line ` with

equation y = mx+ b to the dual point `∗ = (m, b). Given n-point set P , let set A consist of the dual

of all lines above the (upper) convex hull of P , and let set B consist of the dual of all lines below the

(lower) convex hull of P . Here, A and B are disjoint convex polygons (one unbounded from above,

the other unbounded from below), as shown in Figure 1. Define the following “dualized distance

function” d : IR2 × IR2 → IR:

d(`∗1, `
∗
2) =

{

the distance between `1 and `2 if `1 and `2 have the same slope

∞ otherwise.

Note that d(s, t) is finite only if the two points s and t lie on the same vertical line. Given two sets

S and T , let d(S, T ) = min{d(s, t) : s ∈ S, t ∈ T}.
The width of P is just d(A,B). It can be verified [14] that the value is attained by d(s, t) either

for some vertex s of A and a point t on some edge of B, or for some vertex t of B and a point s on

some edge of A.

B

A

e

d(V, e)

Figure 1: The dual polygons A and B.

2.2 The data structure

Since the vertices/edges of the dual polygons A and B correspond to the edges/vertices of the convex

hull of P , we can maintain A and B by a known dynamic convex hull structure; in the decremental

case, the required time bound is O(n logn) [8, 13].

In addition, we need structures for the vertices of A and for the edges of B:

1. We maintain a set V ⊂ A of O(n) points that contains all vertices of polygon A. (We permit

extra non-vertex points in the set, as long as they are inside A.)
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Lemma 2.1, when translated to the dual, allows us to preprocess the set V in O(n logn) time

so that given a query line ` below A, we can compute d(V, `) in O(logn) time. By ordering

points from left to right and applying Lemma 2.3, we can extend the data structure, with an

O(log n)-factor increase in the time bounds, so that given any query line segment e below A,

we can compute d(V, e) (by querying on those points restricted to the vertical slab spanned

by e). Finally, by applying Lemma 2.2 with another logarithmic-factor increase, we have a data

structure SA that supports insertions to V in O(log3 n) amortized time and can find d(V, e) for

any segment e below A in O(log3 n) time.

2. We maintain the value d(V, e) for each edge e of polygon B.

By ordering edges from left to right and applying Lemma 2.4, we can extend this list of numbers

into a data structure SB that supports insertions and deletions to the list in O(logn) time, and

finds d(V, γ) for any chain γ (union of consecutive edges) of the polygon B in O(logn) time.1

We similarly keep a “reverse” data structure, with the roles of the polygons A and B interchanged.

Preprocessing takes O(n log3 n) time: initially, we determine the vertices V of A, and for each

edge e of B, compute d(V, e) by querying structure SA (or directly by performing a linear scan).

Whenever a vertex v is created in polygon A, we insert v to V and update structure SA. We

locate the edge e of polygon B that intersects the vertical line at v by binary search, and update the

value d(V, e) (if d(v, e) is smaller) in structure SB.

Whenever a vertex v is destroyed in A, we have to retain v in V , as SA does not support dele-

tions (otherwise, we would need Agarwal and Matoušek’s complicated dynamic data structures [1]).

Fortunately, v always stays inside A, since A can only expand during a deletion sequence.

Whenever an edge e is created in polygon B, we query structure SA to determine d(V, e) and

insert this value to structure SB.

Whenever an edge e is destroyed in B, we simply delete the value d(V, e) from structure SB.

The reverse data structure can similarly be maintained.

Thus, our data structure can be updated in O(log3 n) time per change in the polygons A and B.

As the total change over a deletion sequence is O(n), the total update time is O(n log3 n).

2.3 The query algorithm

Given point set Q, let polygon A′ consist of the dual of all lines above the convex hull of Q, and

polygon B′ consist of the dual of all lines below the convex hull of Q. We can compute these dual

polygons by a convex hull algorithm in O(|Q| log |Q|) time.

The width of P ∪ Q is just d(A ∩ A′, B ∩ B′). Since we can intersect a convex polygon with a

line in logarithmic time by binary search [19], we can intersect ∂A with ∂A′ and ∂B with ∂B′ in

O(|Q| logn) time. Draw vertical lines at these intersection points. In addition, draw vertical lines at

those vertices of A′ and B′ that are inside A and B, respectively.

As a result, these O(|Q|) vertical lines divide the plane into O(|Q|) slabs (computable by a linear

scan), and it suffices to find d(A ∩ A′, B ∩ B′ ∩ σ) for each of these slabs σ and take the minimum.

Within a slab σ, ∂(A ∩ A′) either coincides with ∂A or is a single line segment f from ∂A′, as

illustrated by Figure 2(a). Similarly, ∂(B ∩ B ′) either coincides with ∂B or is a single segment e

1For those familiar with Eppstein’s paper [12], this extension is essentially the only addition to his data structure

(with the exception that his data structure was described in the primal setting).
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(a)

B ∩B′

A ∩A′
∂A

∂A′

∂B∂B′

(b)

within slab σ

B

A

γ

d(V, γ)

d(v1, e1)

v1

e1

d(V, e1)

e2

d(V, e2)

v2

d(v2, e2)

Figure 2: (a) The polygons A ∩A′ and B ∩B′. (b) Computing d(A,B ∩ σ).

from ∂B′. (We can tell which case by a local test.) Therefore, d(A ∩ A′, B ∩ B′ ∩ σ) can be one of

four possible quantities:

1. d(f, e).

2. d(A, e): This value is attained by a vertex of A∩ σ. Let v1 and v2 be the intersection points of

∂A with ∂σ (computable by binary search). Then d(A, e) = min{d(V, e), d(v1, e), d(v2, e)} can

be computed by one query to structure SA.

3. d(f,B): We can similarly compute this value by querying the reverse structure.

4. d(A,B ∩σ): This value is attained by a vertex of A∩σ or by a vertex of B ∩σ. Say the former

case is true. Let v1 and v2 be as before. Write ∂B ∩ σ as a union of a chain γ of polygon B

with two segments e1 and e2 (computable by binary search), as shown in Figure 2(b). Then

d(A,B ∩ σ) = min{d(V, γ), d(V, e1), d(V, e2), d(v1, e1), d(v2, e2)} can be computed by one query

to structure SB and two queries to structure SA. We can similarly handle the latter case by

querying the reverse structures and take the smaller of the two candidate values.

Thus, d(A ∩ A′, B ∩ B′ ∩ σ) can be found in O(log3 n) time, so d(A ∩ A′, B ∩ B′) can be found in

O(|Q| log3 n) time. Theorem 1.1 is proved. 2

3 Conclusion

We have extended Eppstein’s decremental algorithm [12] to obtain the first sublinear time bound for

the general dynamic width problem in the plane. Only relatively simple techniques are required.

A slight improvement on the time bound is possible by experimenting with non-binary variants

of Lemmas 2.2 and 2.3, but the savings appear to be insignificant (a log2 log n factor only). The

main open problem is whether the width can be maintained in o(
√
n) amortized time.

In the off-line case where we know when each point is to be deleted from the set, a static version

of Theorem 1.1 is sufficient and our update time bound reduces by at least a logarithmic factor.
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However, we believe that there is a more efficient solution in this case (as demonstrated by Agarwal

and Sharir [2] for the decision problem).

In the incremental case, a static version of Theorem 1.1 is again sufficient, and although Eppstein’s

bound is better, our near-O(
√
n) update time bound can be made worst-case instead of amortized,

by a standard trick of spreading the rebuilding work over time [17]. It is interesting to see whether

a faster “real-time” algorithm for width is possible.

In the decremental case, can our O(log3 n) amortized time bound be reduced to near-logarithmic?

The planar width problem lifts to a nonconvex optimization problem over a 3-d halfspace in-

tersection. Both of Agarwal and Matoušek’s 3-d data structures [1] did not actually maintain the

polytope explicitly but exploited decomposability. Is there a sublinear dynamic algorithm for 3-d

halfspace intersection that can maintain the minimum of an arbitrary objective function, or other

global parameters like volume or the number of vertices? (Overmars and van Leeuwen [18] answered

the question in the affirmative for the planar case, but we suspect that the answer could be negative

in the 3-d fully dynamic setting.)

Other challenging open problems include the maintenance of the smallest area/perimeter rectan-

gle (or the smallest square) enclosing a planar point set, and the width of a point set in 3-d. Some

progress concerning the smallest enclosing rectangle and other geometric optimization problems in

the incremental and off-line cases has been reported in a follow-up paper [7].
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