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Abstract
Introduced by Agarwal, Har-Peled, and Varadarajan [J. ACM, 2004], an ε-kernel of a point
set is a coreset that can be used to approximate the width, minimum enclosing cylinder, mini-
mum bounding box, and solve various related geometric optimization problems. Such coresets
form one of the most important tools in the design of linear-time approximation algorithms in
computational geometry, as well as efficient insertion-only streaming algorithms and dynamic
(non-streaming) data structures. In this paper, we continue the theme and explore dynamic
streaming algorithms (in the so-called turnstile model).

Andoni and Nguyen [SODA 2012] described a dynamic streaming algorithm for maintaining
a (1+ε)-approximation of the width using O(polylogU) space and update time for a point set in
[U ]d for any constant dimension d and any constant ε > 0. Their sketch, based on a polynomial
method, does not explicitly maintain an ε-kernel. We extend their method to maintain an ε-
kernel, and at the same time reduce some of logarithmic factors. As an application, we obtain
the first randomized dynamic streaming algorithm for the width problem (and related geometric
optimization problems) that supports k outliers, using poly(k, logU) space and time.
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1 Introduction

Given a set S of n points in a constant dimension d, define the width (or extent) of S along
a given vector ξ to be w(S, ξ) = maxs∈S sT ξ −mins∈S sT ξ. The width of S is the minimum
width over all unit vectors ξ.

The seminal paper by Agarwal, Har-Peled, and Varadarajan [1] introduced the concept
of ε-kernels, which are coresets for the width along all directions simultaneously: an ε-kernel
of S is a subset Q ⊂ S such that w(Q, ξ) ≥ (1− ε)w(S, ξ) for all vectors ξ. Agarwal et al.
showed that an ε-kernel of constant O((1/ε)(d−1)/2) size always exists and can be constructed
efficiently in O(n) time for any constant ε > 0 (the hidden dependency of the running time on
ε was subsequently improved by the author [9]). Using ε-kernels, we can immediately obtain
efficient (1 + ε)-factor approximation algorithms not only for computing the width of a point
set, but for numerous other geometric optimization problems, such as convex hull volume,
minimum enclosing cylinder, minimum-volume bounding box, minimum-volume enclosing
ellipsoid, minimum-width enclosing annulus, and minimum-width cylindrical shell, as well
as variants of all these problems for moving points; see [1, 2]. For this reason, ε-kernels
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have been recognized as one of the most powerful techniques in geometric approximation
algorithms.

Using ε-kernels, Agarwal et al. [1] also obtained one-pass streaming algorithms for all
these problems with O(polylogn) space and O(polylogn) time per insertion of a new point.
This was later improved to O(1) space and time for any constant ε > 0 by the author [9] in
the real-RAM model (the hidden ε-dependencies were further improved by Zarrabi-Zadeh [16]
and by Arya and the author [6]).

Agarwal et al. [1] also used ε-kernels to design dynamic data structures for all these
problems to support both insertions and deletions in O(polylogn) time, using O(n) space.
The update time was later improved to O(logn) by the author [10] (the ε-dependencies were
further improved by Agarwal, Phillips, and Yu [4]).

These results naturally led to the question of whether these fully dynamic data structures
can be made to use small space, as in those insertion-only streaming algorithms. The typical
model for dynamic streaming algorithms in geometry is the turnstile model [15]: points are
assumed to have integer coordinates in [U ] = {0, . . . , U − 1} (with n ≤ UO(1)); the update
sequence is given as a stream; during both insertion and deletion of a point s, we are given its
d coordinate values. We allow insertions of multiple copies of a point, but a point cannot be
deleted more times than it is inserted (otherwise, the algorithm is not guaranteed to produce
meaningful output). Several geometric results in this model were known, for example, on
k-medians and Euclidean minimum spanning tree weight [12, 11].

However, finding a dynamic streaming algorithm for approximating the width of a point
set, even in the two-dimensional case, turned out to be a challenge, and was posed by
Agarwal and Indyk in an open problem list.1 The difficulty is that unlike other problems
such as k-medians whose objective function involves sums, the width function along a fixed
direction involves maximums/minimums; for example, it is unclear if sampling techniques help.
Furthermore, standard techniques for insertion-only streaming such as “merge-and-reduce”
fail in the dynamic setting.

Andoni and Nguyen’s method. This open problem was eventually resolved by Andoni and
Nguyen [5] in SODA’12, who presented a method with O(polylogU) space and update time
for width of a point set in any constant dimension d with approximation factor 1 + ε for any
constant ε > 0.

The basic idea is remarkably simple: approximate the maximum with a sum of p-th
powers, for a small integer p = O(logn). In order to apply this idea to the width function
for all directions simultaneously, we treat the sum as a polynomial function; the sketch then
consists of the coefficients of a degree-O(p) polynomial in d variables. However, the number of
logarithmic factors is large: the space/time bound is O(logCd U) for some unspecified absolute
constant C. This constant C comes from the use of a “hammer”—namely, a solver for a
system of polynomial inequalities over multiple real variables [8]—needed in the last step to
minimize the width function over all possible directions. (Andoni and Nguyen showed how to
avoid the polynomial-inequality solver using randomization, but only in the two-dimensional
case.)

Though not claimed by Andoni and Nguyen, their dynamic streaming method can likely
solve many of the other applications of ε-kernels, such as minimum-volume bounding box.
This is because the polynomial maintained by Andoni and Nguyen encodes an approximation
of the width along all directions simultaneously, and thus “acts” like an ε-kernel. The

1 http://sublinear.info/23
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invocation of the polynomial-inequality solver gets more complex for other problems such as
minimum-volume bounding box, but in theory should still work.

Our method. The question of maintaining explicitly an ε-kernel in the dynamic streaming
setting still remains. In some applications, it is desirable to find not only the value approxi-
mating the optimum, but an actual subset of the point set that realizes the approximate
optimum (i.e., a coreset). With deterministic algorithms, this is impossible to do with
sublinear space, since an adversary could delete the elements of the coreset and repeat to
retrieve the entire point set.

Our main result is a randomized (Monte Carlo) dynamic streaming algorithm to maintain
an ε-kernel with O(polylogU) space and update time for any constant ε > 0. Thus, we can
now obtain coresets for the width, the minimum-volume bounding box, and all the other
applications. The key is an oracle to find not just an approximation of the width along a
given direction, but approximate extreme points that realize this width. We follow Andoni
and Nguyen’s idea of approximating the maximum by a sum of p-th powers, but extend it to
find a witness for an approximate maximum: in Section 2.1, we describe an interesting, simple
randomized method to isolate such a witness via sampling. The parameter p is increased by
a second logarithmic factor, and O(logn) polynomials are maintained, but at the end we get
fewer logarithmic factors: the space and update bound is about O(log2d+3 U) (see Theorems
4 and 6). The reason for the improvement is that with explicit maintenance of an ε-kernel,
we no longer need the polynomial-inequality solver. The avoidance of the “hammer” is also
an advantage from the practical perspective.

More broadly speaking, although the “polynomial method” has seen wide-ranging ap-
plications in theoretical computer science and has been used in streaming algorithms even
before Andoni and Nguyen’s paper,2 its occurrence in computational geometry is rarer (not
counting a different “polynomial method” or the use of algebraic geometry in combinatorial
geometry, advocated by Sharir and others in recent years). It is therefore worthy of more
exposure in the SoCG community, in the author’s opinion.

An alternative method. If an ε-kernel need not be reported after every update time, it is
desirable to distinguish between update time (time to do an insertion/deletion) and query
time (time to report an ε-kernel). For example, although Andoni and Nguyen’s method
has O(logCd U) query time, it has a better update time of about O(logd+1 U). We give an
alternative method with an even better update time of about O(log3 U), and with a query
time of about O(log3d+4 U) (see Theorems 5 and 6).

In this method, we do not even need to store the polynomials explicitly. Instead, the
sketch consists of just a few counters, namely, the number of data points (in various samples)
that lie at each possible coordinate values modulo q, for each q in a family of small primes.
As it turns out, such counters contain as much information as an ε-kernel! (This alternative
method is an instance of a linear sketch [13].) The Chinese remainder theorem is invoked
during the query algorithm.

Although the use of the Chinese remainder theorem is hardly original in the context of
streaming algorithms, its occurrence in computational geometry is rarer, and noteworthy.

Outliers. One major application where explicit maintenance of an ε-kernel appears critical
is in solving variants of geometric optimization problems that tolerate a certain number

2 For example, just see Puzzle 1 in Muthukrishnan’s survey [15].
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k of outliers. For example, instead of the width of S, we may want to find the smallest
width of S \ T over all subsets T of size k. Such variants are well-motivated, since objective
functions involving maximums/minimums rather than sums are particularly sensitive to
outliers. The new problems can be solved by an extension of ε-kernels [3]: let wa,b(S, ξ) =
(a-th largest of {sT ξ}s∈S)−(b-th smallest of {sT ξ}s∈S); a (k, ε)-kernel of S is a subsetQ ⊂ S
such that wa,b(Q, ξ) ≥ (1− ε)wa,b(S, ξ) for every vector ξ and every a, b ≤ k.

Agarwal, Har-Peled, and Yu [3] showed that a (k, ε)-kernel of O((1/ε)(d−1)/2k) size exists
and can be constructed in O(n + k2) time for any constant ε > 0; the running time was
improved by the author [10] to O(n+ k logn) (ignoring ε-dependencies). Their algorithm is
simple and is by repeated peeling: compute a standard ε-kernel, delete its points, and repeat
O(k) times.

Andoni and Nguyen’s dynamic streaming algorithm cannot be used to solve the problem
with k outliers. The key oracle concerns not just the maximum but the top k values, but the
power-sum approach does not seem immediately applicable, at least without witness finding.
With witness finding and repeated deletions though, the task becomes straightforward:
since our method explicitly maintains an ε-kernel and supports deletions, Agarwal, Har-
Peled, and Yu’s peeling algorithm can be directly implemented, and we obtain the first
dynamic streaming method for (k, ε)-kernels, with O(k polylogU) space and update time
and O(k2 polylogU) query time for any constant ε > 0 (see Corollary 7).

2 An Oracle for Approximate Extreme Points

The key to constructing ε-kernels is an oracle for answering approximate extreme-point
queries:

I Problem 1. Let f(s1, . . . , sd, x1, . . . , xd+1) = s1x1 + · · ·+ sdxd + xd+1. Maintain a small-
space sketch for a set S ⊂ [U ]d that supports insertions and deletions in S and can answer
queries of the following kind: for any query vector x ∈ (±[U ])d+1, find an element m̃ ∈ S
with |f(m̃, x)| ≥ (1− ε) maxs∈S |f(s, x)|.

Andoni and Nguyen [5] suggested a simple way to approximate maxs∈S |f(s, x)|, namely,
by
(∑

s∈S f(s, x)p
)1/p for an even integer p. The approximation factor is at least ( 1

n )1/p,
which can be made at least 1− ε by setting p = 2dlog1/(1−ε) ne = O((1/ε) logn). The main
observation is that

∑
s∈S f(s, x)p is a low-degree polynomial in x; we can maintain the

coefficients of this polynomial easily in the dynamic streaming model. However, this solution
gives only the value of an approximate maximum, not a “witness” m̃ ∈ S that attains such
an approximate maximum value.

2.1 Witness for Approximate Maximum
We start with a more basic version of the problem in one dimension:

I Problem 2. Maintain a small-space sketch for a set S ⊂ [U ] of at most n elements, where
each element s has a nonnegative value ys, that supports insertions and deletions in S and
can answer queries of the following kind: find an element m̃ ∈ S with y

m̃
≥ (1− ε) maxs∈S ys.

In what follows, we let m ∈ S denote the element with the true maximum value ym =
maxs∈S ys, which we may assume is nonzero.

There are different ways to solve Problem 2, but not all methods can be generalized to
solve Problem 1 later when we replace the ys’s with functions in x (for example, one solution
involves bucketing with exponential spacing, but it is unclear how one would assign functions
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to buckets). We will propose a solution based purely on maintaining power sums, akin to
Andoni and Nguyen’s, that can be generalized.

We warm up with a special case of Problem 2 where the maximum is known to have
a much larger value than all other elements. Formally, we say that a set is α-separated if
the ratio of the second largest to the largest in the set is at most α. Consider the following
simple algorithm:

Algorithm 1: (preliminary version)
1. let A =

∑
s∈S ys and C =

∑
s∈S sys

2. if {ys}s∈S is α-separated then return bC/Ae

Here, bxe denotes bx + 1/2c (the nearest integer to x). Both sums A and C are easy
to maintain dynamically. Intuitively, as α approaches 0, either sum will be dominated by
its maximum term and the algorithm would solve the problem exactly. An issue remains
though: the α-separation condition is not easy to certify dynamically. We will replace it with
a condition involving one more sum:

Algorithm 2: (second version)
1. let A =

∑
s∈S ys, B =

∑
s∈S y

2
s , and C =

∑
s∈S sys

2. if A2 < (1 + 3nα)B then return bC/Ae

Intuitively, as α approaches 0, the condition that the largest value is much larger than
all other values roughly aligns with the condition that the square of the sum is close to the
sum of the squares—this little trick is the key. We formally verify correctness for a concrete
choice of α below:

I Lemma 1. Let α = 1
3n2U .

(a) If Algorithm 2 returns a number, then the returned number is exactly m.
(b) If {ys}s∈S is α-separated, then Algorithm 2 returns a number.

Proof. The proof involves just straightforward algebra. Let A′ =
∑
s∈S\{m} ys. Then(∑

s∈S
ys

)2

≥
∑
s∈S

y2
s + 2

∑
s∈S\{m}

ymys =⇒ A2 ≥ B + 2ymA′.

If A2 < (1 + 3nα)B, we then have

A′ <
3nαB
2ym

≤ 3nα · ny2
m

2ym
= 1

2U ym

and thus

C

A
≤ mym + UA′

ym
< m+ 1

2
C

A
≥ mym

ym +A′
>

m

1 + 1
2U
≥ m

(
1− 1

2U

)
≥ m− 1

2 .

This proves (a). For (b), just note that α-separation implies

A2 ≤ (ym + nαym)2 < (1 + 3nα)y2
m ≤ (1 + 3nα)B. J
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ym

S`S`+1 \ S`

α`+1ym α`ym

Figure 1 If exactly one element of S` is chosen and none of S`+1 \ S` is chosen, then the subset
is α-separated.

In general, an arbitrary input would not satisfy the α-separation property. The next
lemma shows that a random sample of a certain size can guarantee separation and at the
same time contains an approximate maximum with good probability. The idea of sampling to
isolate a unique solution is of course standard [14], but to adapt the idea in the approximate
setting, we combine sampling with exponentially spaced bucketing in a nontrivial way—this
is arguably the most interesting part of the entire section:

I Lemma 2. Let Rj be a random sample of S where each element is selected independently
with probability 1/2j . Fix any α > 0. With probability Ω(1), for some j ≤ dlogne+ 3 the set
{ys}s∈Rj

is α-separated and has maximum at least αdlogneym.

Proof. Let S` = {s ∈ S : ys ≥ α`ym}. Pick an index ` ≤ dlogne with |S`+1| ≤ 2|S`|. Such
an index exists: if not, |Sdlogne| > 2dlogne|S0| ≥ n, which would be a contradiction. Set
j = dlog |S`|e+ 3, so that 2j−3 ≤ |S`| < 2j−2.

Let E be the event that exactly one element of S` is chosen in Rj and none of the elements
of S`+1 \ S` is chosen in Rj (see Figure 1). If E is true, then {ys}s∈Rj is α-separated, and
furthermore has maximum at least α`ym.

Let Es denote the event that s is chosen in Rj . We can write E =
⋃
s∈S`

(Es ∩⋃
s′∈S`+1−{s}Es′), which holds with probability at least

|S`| ·
1
2j ·

(
1− |S`+1| − 1

2j

)
>
|S`|
2j ·

(
1− 2|S`|

2j

)
>

1
16 . J

Note that we use exponentially spaced bucketing only in the proof above, not in the
algorithm itself.

There is still one complaint: the approximation factor αdlogne in Lemma 2 appears very
weak, especially as the parameter α in Lemma 1 is very small. This can be fixed with one
last trick: we can refine the approximation factor by simply replacing each ys with its p-th
power yps for a sufficiently large even integer p. An approximation of maxs∈S yps to within
factor αdlogne yields an approximation of maxs∈S ys to within factor αdlogne/p, which can be
made at least 1− ε by setting p = 2 dlogne dlog1/(1−ε)(1/α)e.

Putting everything together, we obtain our final algorithm to solve Problem 2:

Algorithm 3: (final version)
1. for j = 0 to dlogne+ 3 do
2. let Rj be a random sample of S where each element is selected independently

with probability 1/2j
3. let Aj =

∑
s∈Rj

yps , Bj =
∑
s∈Rj

y2p
s , and Cj =

∑
s∈Rj

syps
4. if A2

j < (1 + 3nα)Bj and (m̃ is undefined or ybCj/Aje > y
m̃
) then m̃ = bCj/Aje

I Theorem 3. Let α = 1
3n2U and p = 2 dlogne dlog1/(1−ε)(1/α)e = O((1/ε) log2 U). With

probability Ω(1), Algorithm 3 finds an element m̃ with y
m̃
≥ (1 − ε)ym. Furthermore, we

always have m̃ ∈ S whenever m̃ is not undefined.

Proof. The theorem follows immediately by combining Lemmas 1 and 2. J
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2.2 First Solution via Polynomials
We are now ready to design a dynamic streaming algorithm to implement the oracle in
Problem 1:

I Theorem 4. For any constant d, we can solve Problem 1 with
O((1/ε)d+1+o(1)(logU)2d+3+o(1) log(1/δ)) words of space and update/query time,

with error probability at most δ.

Proof. Our sketch consists of the coefficients of the following polynomials for each j =
0, . . . , dlogne+ 3:

Aj(x) =
∑
s∈Rj

f(s, x)p, Bj(x) =
∑
s∈Rj

f(s, x)2p, and Cj(x) =
∑
s∈Rj

λ(s)f(s, x)p,

where λ is a bijection from [U ]d to [Ud], e.g., λ(s1, . . . , sd) = s1U
d−1 + s2U

d−2 + · · · + sd.
Each such polynomial has degree O(p) and consists of O(pd) monomials (since there are O(p)
choices for the degree of each of the d+ 1 variables, and the sum of these degrees is fixed).
Each of the O(pd) coefficients of each of these O(logn) polynomials requires O(p logU) bits;
the total space usage in words is O(pd+1 logn), where p = O((1/ε) log2 U) (which remains
true even after replacing U with Ud).

Insertion/deletion of an element s requires adding/subtracting a term to/from these
polynomials. Each of the O(pd) coefficients of each of the O(logn) polynomials can be
updated using O(1) arithmetic operations on O(p logU)-bit numbers; the total time is
O(pd+1+o(1) logn) in the (logU)-bit word RAM model.

A query for a given vector x can be answered by evaluating these polynomials at x, via
Algorithm 3 and Theorem 3. Each of the O(logn) evaluations requires O(pd) arithmetic
operations on O(p logU)-bit numbers; the total time is O(pd+1+o(1) logn).

One technical issue concerns how the samples Rj are generated and stored. We can
pick a random hash function h : [N ]→ [N ] from a pairwise independent family3 for some
N ∈ [Ud, 2Ud], and set Rj = {s ∈ S : h(λ(s)) ≤

⌊
N/2j

⌋
}. The proof of Lemma 2 only

requires pairwise independence of the events Es. Such a hash function h can be encoded in
O(logU) bits and evaluated in constant time.

To lower the error probability from constant to δ, we can use O(log(1/δ)) independent
versions of the data structure, increasing all bounds by an O(log(1/δ)) factor. J

2.3 Alternative Solution via Chinese Remainders
We also propose an alternative dynamic streaming algorithm for Problem 1 which does not
require explicitly storing the polynomials Aj(x), Bj(x), Cj(x) but instead uses the Chinese
remainder theorem. The new version has better update time (which is desirable when there
are more updates than queries).

I Theorem 5. For any constant d, we can solve Problem 1 with
O((1/ε)d+1(logU)3d+4 log(1/δ)/ log logU) words of space and query time, and
O((1/ε)(logU)3 log(1/δ)/ log logU) expected update time,

with error probability at most δ.

3 For example, h(i) = (r1 + r2i) mod N for two random numbers r1, r2 ∈ [N ], assuming that N is prime.

SoCG 2016
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Proof. Let W = max{n(dU2 + U)2p, nUd(dU2 + U)p}. Find a set Π of O(logW/ log logW )
primes, each at most O(logW ), whose product exceeds 2W . Our sketch simply consists of a
counter

nj,q,(σ1,...,σd) = |{(s1, . . . , sd0) ∈ Rj : s1 ≡ σ1, . . . , sd ≡ σd (mod q)}|

for each j = 0, . . . , dlogne+ 3, each q ∈ Π, and each (σ1, . . . , σd) ∈ [q]d; the total space usage
in words is O(logn ·(logW/ log logW ) · logdW ), where logW = O(p logU) = O((1/ε) log3 U).

Insertion/deletion of a point s affects an expected O(1) number of samples Rj ,
each requiring increments/decrements of O(logW/ log logW ) counters of O(logn) bits
and O(logW/ log logW ) divisions on O(logU)-bit numbers; the total expected time is
O(logW/ log logW ) in the (logU)-bit word RAM model.

A query for a given point x can be answered by computing Aj(x), Bj(x), Cj(x) as in the
proof of Theorem 4, for each j = 0, . . . , dlogne+ 3. To this end, we compute, for each q ∈ Π,

Aj(x) ≡
∑
σ∈[q]d

nj,q,σf(σ, x)p (mod q).

From these values, we can then reconstruct Aj(x) by the Chinese remainder theorem,
since |Aj(x)| < W . Similarly, we can compute Bj(x) and Cj(x). For each of the O(logn)
indices j and each of the O(logW/ log logW ) primes q, the computation requires O(logdW )
evaluations of f and O(logdW ) arithmetic operations on O(logU)-bit numbers; the total
time is O(logn · (logW/ log logW ) · logdW ).

The technical issue of storing the samples Rj can be addressed as before. The error
probability can be lowered to δ by increasing the bounds by an O(log(1/δ)) factor as
before. J

3 Applications

3.1 ε-Kernels
We now apply the oracle from the previous section to compute an ε-kernel for a point set
S ⊂ [U ]d in a constant dimension d. This part is where geometry finally comes into play,
although as it turns out, not much originality is required here. We adopt the following
variant of one of Agarwal, Har-Peled, and Varadarajan’s ε-kernel algorithms [1]:

0. s0 = any point in S
1. for i = 1 to d do
2. si = a point s ∈ S that approximately maximizes the distance to the

(i− 1)-flat through s0, . . . , si−1, with constant approximation factor 1/c
3. φ = the affine transformation that maps s0, s1, . . . , sd to

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1)
4. for each grid point ξ of a grid over ∂[−1, 1]d of side length ε do
5. sξ = a point s ∈ S that approximately maximizes φ(s) · ξ

with additive error O(ε)
6. return an ε-kernel of O((1/ε)(d−1)/2) size for all these sξ’s

Correctness. Because the algorithm is not original, we will only outline the correctness
proof and point to references for the details. The algorithm consists of two phases. In the first
phase (lines 0–3), we compute a transformation φ that makes φ(S) fat, by a simple iterative
procedure with d steps (based on an idea of Barequet and Har-Peled [7]). Specifically, φ(S)
satisfies the following properties:
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φ(S) ⊂ [−c, c]d. A proof can be found, for example, in [10, Lemma 2.2].
w(φ(S), ξ) ≥ 1/

√
d for all unit vectors ξ. This follows since φ(S) contains {e0, . . . , ed} by

line 3.

In the second phase (lines 4–6), we compute an O(ε)-kernel of this fat point set φ(S),
simply by finding extreme points along O((1/ε)d−1) roughly equally spaced directions. A
correctness proof can be found, for example, in [9, Theorem 2.5].

As noted in previous papers [1], an O(ε)-kernel of φ(S) yields an O(ε)-kernel of S for any
invertible affine transformation φ, and an ε-kernel of an O(ε)-kernel is an O(ε)-kernel, and
so the final output is an O(ε)-kernel of S.

Analysis. A naive implementation of lines 2 and 5 would require linear time. To achieve
sublinear query time, we observe how both lines can be implemented using the extreme-point
oracle for Problem 1.

For line 2, let Ai−1 be the d× (i− 1) matrix with column vectors s1 − s0, . . . , si−1 − s0.
Define the projection matrix Pi−1 = Ai−1(ATi−1Ai−1)−1ATi−1 and let P ′i−1 = I − Pi−1. The
subproblem is equivalent to finding an s ∈ S that approximately maximizes the expression
‖P ′i−1(s− s0)‖. It suffices to approximately maximize the expression |P ′i−1(s− s0) · ej | for
each j = 1, . . . , d and take the maximum of the results; the approximation worsens by a

√
d

factor. Since
P ′i−1(s− s0) · ej = sT (P ′i−1)T ej − sT0 (P ′i−1)T ej ,

we can consult the oracle for the query vector x = ((P ′i−1)T ej ,−sT0 (P ′i−1)T ej) ∈ Rd+1 (using
a constant ε).

One issue is that this choice of x involves rational rather than integer coordinates, but we
can convert the coordinates to integers by multiplying by the lowest common denominator.
It can be checked that all integers involved are bounded by UO(d) (for example, by using the
standard formula for matrix inverse in terms of determinants and co-factors); replacing U
with UO(d) will not affect the space/time bounds.

For line 5, first note that φ(s) = A−1
d (s− s0). Since fatness implies that |φ(s) · ξ| ≤ dc, it

suffices to maximize φ(s) · ξ + dc (which is nonnegative) with approximation factor 1 − ε.
Since

φ(s) · ξ + dc = sT (A−1
d )T ξ − sT0 (A−1

d )T ξ + dc,

we can consult the oracle for the query vector x = ((A−1
d )T ξ,−sT0 (A−1

d )T ξ + dc) ∈ Rd+1.
Again, we can make the coordinates of x integers, bounded by UO(d).

Line 0 is easy (we can just query the oracle with an arbitrary x). Line 6 can be done by
invoking a standard ε-kernel algorithm [1, 9] on O((1/ε)d−1) points.

The total query time is thus dominated by the O((1/ε)d−1) oracle calls in line 5. The
error probability δ needs to be adjusted by an O((1/ε)d−1) factor. Note that in Theorem 4
or 5, the query vectors should be independent of the random choices made by the data
structure. This can be ensured by creating d+ 1 independent versions of the data structure,
and using the i-th version for the i-th iteration in line 2, and the (d+ 1)-th version for line 5.

I Theorem 6. For any constant dimension d, we can maintain an ε-kernel with
O((1/ε)d+1+o(1)(logU)2d+3+o(1) log(1/δε)) words of space and update time, and
O((1/ε)2d+1+o(1)(logU)2d+3+o(1) log(1/δε)) query time,

or alternatively,
O((1/ε)d+1(logU)3d+4 log(1/δε)/ log logU) words of space,
O((1/ε)(logU)3 log(1/δε)/ log logU) expected update time, and
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O((1/ε)2d(logU)3d+4 log(1/δε)/ log logU) query time,
with error probability at most δ.

3.2 . . . with Outliers
For the variant of ε-kernels with k outliers, we invoke the peeling algorithm by Agarwal,
Har-Peled, and Yu [3]: we compute an ε-kernel of O((1/ε)(d−1)/2) size, delete its points, and
repeat for 2k + 2 iterations; we output all the O((1/ε)(d−1)/2k) points deleted and reinsert
them back.

Note that in Theorem 4 or 5, the update sequence for the data structure should be
independent of the random choices made by the data structure. This can be ensured by
creating 2k + 2 independent versions of the data structure, and using the i-th version for the
i-th iteration. The space and update time bounds are increased by an O(k) factor. The query
time is O(k) times the query time bound of our ε-kernel data structure, plus O((1/ε)(d−1)/2k)
times the update time bound. The error probability needs to be adjusted by another O(k)
factor.

I Corollary 7. For any constant dimension d, we can maintain a (k, ε)-kernel with
O((1/ε)d+1+o(1)k(logU)2d+3+o(1) log(k/δε)) words of space and update time, and
O((1/ε)2d+o(1)k(logU)2d+3+o(1) log(k/δε) + (1/ε)(3d+1)/2k2(logU)2d+3 log(k/δε)) query
time,

or alternatively,
O((1/ε)d+1k(logU)3d+4 log(k/δε)/ log logU) words of space,
O((1/ε)k(logU)3 log(k/δε)/ log logU) expected update time, and
O((1/ε)2dk(logU)3d+4 log(k/δε)/ log logU + (1/ε)(d+1)/2k2(logU)3 log(k/δε)/ log logU)
query time,

with error probability at most δ.
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