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Abstract

We revisit one of the most fundamental classes of data structure problems in computational
geometry: range searching. Matoušek [Discrete Comput. Geom., 10:157–182, 1993] gave a parti-
tion tree method for d-dimensional simplex range searching achieving O(n) space and O(n1−1/d)
query time. Although this method is generally believed to be optimal, it is complicated and re-
quires O(n1+ε) preprocessing time for any fixed ε > 0. An earlier method by Matoušek [Discrete
Comput. Geom., 8:315–334, 1992] requires O(n log n) preprocessing time but O(n1−1/d logO(1) n)
query time. We give a new method that achieves simultaneously O(n log n) preprocessing time,
O(n) space, and O(n1−1/d) query time with high probability. Our method has several advantages:

• It is conceptually simpler than Matoušek’s O(n1−1/d)-time method. Our partition trees
satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all
layers, and disjointness of the children’s cells at each node).

• It leads to more efficient multilevel partition trees, which are needed in many data structuring
applications (each level adds at most one logarithmic factor to the space and query bounds,
better than in all previous methods).

• A similar improvement applies to a shallow version of partition trees, yielding O(n log n)
time, O(n) space, and O(n1−1/bd/2c) query time for halfspace range emptiness in even di-
mensions d ≥ 4.

Numerous consequences follow (e.g., improved results for computing spanning trees with low
crossing number, ray shooting among line segments, intersection searching, exact nearest neighbor
search, linear programming queries, finding extreme points, . . . ).

Keywords. Simplex range searching; Halfspace range searching; Geometric data structures

1 Introduction

Data structures for range searching [4, 8, 43, 47] are among the most important and most often

used results within the computational geometry literature—countless papers applied such results

and techniques to obtain the best theoretical computational bounds for a wide variety of geometric

problems. However, to this day, some questions remain even concerning the most basic version of

nonorthogonal range searching, simplex range searching. The purpose of this paper is to provide

a (hopefully) final resolution to some of these lingering questions, by nailing down the best precise

upper bounds.
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History. Formally, in simplex range searching , we want to preprocess n (weighted) points in IRd

so that we can quickly find (the sum of the weights of) all points inside a given query simplex. The

dimension d is assumed to be a small constant. The problem not only is fundamental but has a

remarkably rich history. We will confine the discussion of previous work to linear- or near-linear

space data structures (otherwise, the number of results would multiply). The first published method

was by Willard [53] in 1982, who gave a simple O(n)-space partition tree achieving O(n0.792) query

time for d = 2. This prompted researchers to look for data structures with the best exponent in the

query time. Many subsequent results appeared; for example, for d = 2, Willard himself improved

the exponent to about 0.774, which was further reduced to 0.695 by Edelsbrunner and Welzl [34]; for

d = 3, F. Yao [55] obtained 0.936, Dobkin and Edelsbrunner [31] 0.916, Edelsbrunner and Huber [33]

0.909, and Yao et al. [56] 0.899; in higher dimensions, Yao and Yao [54] obtained 1−
⌈
lg(2d − 1)

⌉
/d;

and so on. A significant advance was made in Haussler and Welzl’s seminal paper [35], which

introduced probabilistic techniques to computational geometry; they presented a partition tree with

O(n1−1/[d(d−1)+1]+ε) query time for any fixed ε > 0, greatly improving all results that came before,

in all dimensions.

The right exponent turned out to be 1 − 1/d. Four major papers described (near-)linear-space

methods achieving the final near-O(n1−1/d) query time:

1. In 1988,1 Chazelle and Welzl [27, 52] devised the key technique of iterative reweighting2 to

compute spanning trees with low crossing number. They obtained an elegant O(n)-space data

structure where the answer to any query can be expressed using O(n1−1/d log n) arithmetic

(semigroup) operations on the weights (if subtractions on weights are allowed, the number of

operations can be reduced to O(n1−1/dα(n))). Unfortunately, this combinatorial bound on the

number of arithmetic operations does not bound the actual query time. Chazelle and Welzl

obtained true “algorithmic” results only for d = 2, with O(n) space and O(
√
n log n) query time,

and for d = 3, with O(n logn) space and O(n2/3 log2 n) query time. The preprocessing time of

these data structures is also poor; for d = 2, one can get O(n3/2 log1/2 n) preprocessing time

by a randomized algorithm [52], but improvement to a near-linear bound requires further ideas

from subsequent papers. Despite these issues, their approach was a remarkable breakthrough

and set up the right direction for subsequent methods to follow.

2. Next, in 1990, Chazelle, Sharir, and Welzl [26] applied cuttings [24, 30] to get efficient data

structures for simplex range searching. In the O(n)-space case, their method has query time

O(n1−1/d+ε) with O(n1+ε) preprocessing time for any fixed ε > 0. Although this brings us

closer to the ideal bounds in any dimension, the method seems inherently suboptimal by at

least a logarithmic factor (the data structure requires multiple separate cuttings, so as to

guarantee that for every query, at least one of the cuttings is “good”).

3. In 1991, Matoušek [39] combined the iterative reweighting technique with the use of cuttings

to prove a new simplicial partition theorem. Applying the theorem in a recursive fashion gives

an O(n)-space partition tree with O(n1−1/d logO(1) n) query time and O(n logn) preprocessing

time.

1For better historical accuracy, we use dates of the earlier conference proceedings versions of papers.
2Also called the “multiplicative weights update method” [12] in some circles. In computational geometry, other

favorite examples of the technique include one of Clarkson’s linear programming algorithm [29] and Brönnimann and
Goodrich’s geometric set cover algorithm [16].
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The same paper also gives an alternative O(n)-space structure with query time

O(n1−1/d(log log n)O(1))—or better still O(n1−1/d2O(log
∗ n)) if subtractions of weights are

allowed—but the preprocessing time increases to O(n1+ε). This result is subsumed by the

next result, so will be ignored here.

4. Finally, in 1992, Matoušek [42] combined iterative reweighting with the hierarchical cuttings

of Chazelle [22] to obtain an O(n)-space partition tree with O(n1−1/d) query time. The pre-

processing time is O(n1+ε). This method is considerably more complicated than Matoušek’s

previous partition-theorem-based method.

Among data structures that are ordinary (unaugmented) partition trees, it is not difficult to show

that the query cost must be Ω(n1−1/d) in the worst case [27]. More generally, Chazelle [21] proved a

lower bound of Ω(
√
n) in for d = 2 and Ω(n1−1/d/ log n) in higher dimensions, for any simplex range

searching data structure under the semigroup arithmetic model (see [25, 13] for more lower bound

results); the log n factor in the denominator could likely be an artifact of the proof.

Matoušek’s final method thus seems to achieve asymptotically optimal query time. However, the

story is not as neatly resolved as one would like. The main issue is preprocessing time: Matoušek’s

final method is suboptimal by an nε factor. This explains why in actual algorithmic applications of

range searching results, where we care about preprocessing and query times combined, researchers

usually abandon his final method and resort to his earlier partition-theorem method. Unfortunately,

this is the reason why in algorithmic applications, we frequently see appearances of extra logO(1) n

factors in time bounds, with unspecified numbers of log factors.

Even for d = 2, no ideal data structure with O(n logn) preprocessing time, O(n) space, and

O(
√
n) query time has been found.

New results. In this paper, we give a new method that rederives Matoušek’s final result of O(n)

space and O(n1−1/d) query time for simplex range searching. Our new method is much simpler

and easier to explain than Matoušek’s final method; it is a little more involved than the partition-

theorem method, but not considerably so. The partition tree satisfies many desirable properties not

achieved by Matoušek’s and, for example, eliminates essentially all the disadvantages mentioned in

the next-to-last paragraph of his paper [42] (we use a single tree and have complete control over the

crossing number at almost all layers of the tree). Our tree also satisfies properties not achieved by

the partition-theorem method [39] (we use a constant-degree tree and cells do not overlap). In the

d = 2 case, we can even make our partition tree a BSP tree, like Willard’s original partition tree.

These properties in themselves are already interesting, in the author’s opinion, but the approach has

further major implications:

• Our method immediately yields improved results on multilevel versions of partition trees [8, 43],

which are needed in applications that demand more sophisticated kinds of queries. With our

method, each level costs at most one more logarithmic factor in space and at most one more

logarithmic factor in the query time—this behavior is exactly what we want and, for example,

is analogous to what we see in the classical multilevel data structure, the range tree [8, 48],

which can be viewed as a d-level 1-dimensional partition tree.

In contrast, Matoušek’s final method is not applicable at all, precisely because of the disad-

vantages mentioned. Matoušek’s paper [42] did explore multilevel results in detail but had

to switch to a different method based on Chazelle, Sharir, and Welzl’s cutting approach [26],
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now with hierarchical cuttings. This method costs two logarithmic factors in space and one

logarithmic factor in the query time per level; see [42, Theorem 5.2]. Furthermore, the pre-

processing time is huge. An alternative version [42, Corollary 5.2] has O(n1+ε) preprocessing

time, but space and query time increase by an unspecified number of extra logarithmic factors.

Matoušek’s partition-theorem method in the multilevel setting is worse, giving extra O(nε) (or

more precisely 2O(
√
logn)) factors in space and query time per level [39].

For concrete applications, consider the problems of preprocessing n simplices in IRd so that

we can (i) report all simplices containing a query point, or (ii) report all simplices contained

inside a query simplex. These problems can be solved by a (d + 1)-level partition tree. The

previous method from [42] requires O(n log2d n) space and O(n1−1/d logd n) query time. Our

result reduces the space bound to O(n logd n).

We get improved data structures for many other problems, even some traditional 2-dimensional

problems, e.g., counting the number of intersections of line segments with a query line segment,

and performing ray shooting among a collection of line segments.

Our new partition tree also leads to a new combinatorial theorem: any n-point set in IR2

admits a Steiner triangulation of size O(n) so that the maximum number of edges crossed by

any line is O(
√
n). This crossing number bound is tight and improves previous upper bounds

by a logarithmic factor [6].

• That our method is simpler allows us to examine the preprocessing time more carefully. We

show that with some extra effort, a variant of our method indeed accomplishes what we set out

to find: a simplex range searching structure with O(n logn) preprocessing time, O(n) space,

and O(n1−1/d) query time with high probability (i.e., probability at least 1 − 1/nc0 for an

arbitarily large constant c0). The approach works in the multilevel setting as well, with one

more logarithmic factor in the preprocessing time per level.

The improved preprocessing time should immediately lead to improved time bounds for a whole

array of algorithmic applications.

• We can also obtain new bounds for the halfspace range emptiness/reporting problem. Here,

we want to decide whether a query halfspace contains any data point, or report all points

inside a query halfspace. Matoušek [40] described a shallow version of his partition theo-

rem to obtain a data structure with O(n logn) preprocessing time, O(n log log n) space, and

O(n1−1/bd/2c logO(1) n + k) query time for any d ≥ 4, where k denotes the output size in the

reporting case. The space was reduced to O(n) by Ramos [49] for even d; see also [1] for d = 3.

The same paper by Matoušek also gave an alternative data structure with O(n1+ε) preprocess-

ing time, O(n) space, and O(n1−1/bd/2c2O(log
∗ n)) query time for halfspace range emptiness for

any d ≥ 4. Although it is conceivable that Matoušek’s final method for simplex range searching

with hierarchical cuttings could similarly be adapted to halfspace range emptiness for even d,

to the best of the author’s knowledge, no one has attempted to find out, perhaps daunted by

the amount of technical details in the paper [42]. It is generally believed that the exponent

1− 1/bd/2c is tight, although a matching lower bound is currently not known.

With our simpler method, we can derive the following, likely optimal result for even dimensions

without too much extra trouble: there is a data structure for halfspace range emptiness with

O(n logn) preprocessing time, O(n) space, O(n1−1/bd/2c) query time with high probability for
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any even d ≥ 4. The same bounds hold for halfspace range reporting when the output size k

is small (o(n1−1/bd/2c/ logω(1) n)).

Halfspace range emptiness/reporting has its own long list of applications [18, 41, 45]. As

a consequence, we get improved results for ray shooting and linear programming queries in

intersections of halfspaces in even dimensions, exact nearest neighbor search in odd dimensions,

and the computation of extreme points and convex hulls in even dimensions, to name just a

few.

Organization. The highlight of the paper is to be found in Section 3—in particular, the proof

of Theorem 3.1—which describes the basic version of our new partition tree with O(n) space and

O(n1−1/d) query time. This part is meant to be self-contained (except for the side remarks at the end),

assuming only the background provided by Section 2. The rest of the paper—particularly Section 5

on getting O(n logn) preprocessing time, Section 6 on halfspace range searching, and Section 7 on

applications—will get a bit more technical and incorporate additional known techniques, but mostly

involves working out consequences of the basic new approach.

2 Background

Let P be the given set of n points in IRd, which we assume to be in general position by standard

perturbation techniques. A partition tree is a hierarchical data structure formed by recursively

partitioning a point set into subsets. Formally, in this paper, we define a partition tree to be a tree T

where each leaf stores at most a constant number of points, each point of P is stored in exactly one

leaf, and each node v stores a cell ∆(v) which encloses the subset P (v) of all points stored at the

leaves underneath v. Throughout the paper, we take “cell” to mean a polyhedron of O(1) size, or

to be more specific, a simplex. In general, the degree of a node is allowed to be nonconstant and

the cells of the children of a node are allowed to overlap (although in our new basic method, we

can guarantee constant degree and no overlaps of the cells). At each node v, we do not store any

auxiliary information about P (v), other than the sum of the weights in P (v). Therefore, a partition

tree is by our definition always an O(n)-space data structure.

We can answer a query for a simplex q by proceeding recursively, starting at the root. When

visiting a node, we only have to recurse in children whose cells cross the boundary ∂q, since each

cell completely outside q can be ignored, and each cell completely inside q can be dealt with directly

using the information stored at the node (or, in the case of the reporting problem, directly reporting

all points underneath the node). We can identify the children cells crossing ∂q trivially in time linear

in the number of children (the degree). The total query time is then bounded from above by the

expression ∑

v∈T : ∆(v)∩∂q 6=∅

deg(v), (1)

which we call the query cost of ∂q. (In the case of the reporting problem, we add an O(k) term to

the query time where k is the output size.) Since the boundary ∂q has O(1) facets contained in O(1)

hyperplanes, it suffices to asymptotically bound the maximum query cost of an arbitrary hyperplane,

which we refer to as the query cost of the tree T .

It is known [27] that there are point sets where the query cost is Ω(n1−1/d) for any partition tree

under the above definitions. We want to devise a worst-case optimal method to construct partition
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trees matching this lower bound.

We begin by mentioning Matoušek’s simplicial partition theorem [39], to set the context. We will

not use this theorem anywhere, but will prove something stronger in Section 3.

Theorem 2.1 (Matoušek’s Partition Theorem) Let P be a set of n points in IRd. Then for any t,

we can partition P into t subsets Pi and find t cells ∆i, with ∆i ⊃ Pi, such that each subset contains

Θ(n/t) points and each hyperplane crosses at most O(t1−1/d) cells.

A recursive application of the above theorem immediately gives a partition tree where the query

cost satisfies the recurrence Q(n) ≤ O(t1−1/d)Q(n/t) + O(t). If we set t to an arbitrarily large

constant, the recurrence has solution Q(n) ≤ O(n1−1/d+ε) for an arbitrarily small constant ε > 0.

If instead we set t = nδ for a sufficiently small constant δ > 0, the solution becomes Q(n) ≤
O(n1−1/d logO(1) n). To avoid the extra nε or logO(1) n factors, we need a more refined method, since

each time we recurse using Theorem 2.1, the hidden constant in the crossing number bound “blows

up”.

Our new method is described in the next section, and is self-contained except for the use of

two tools: a minor observation and an important lemma, both well-known and stated here without

proofs.

First, we observe that in proving statements like Theorem 2.1, instead of considering an infinite

number of possible hyperplanes, it suffices to work with a finite set of “test” hyperplanes. This type

of observations was made in many of the previous papers [26, 27]; the particular version we need is

a special case of one from [39]:

Observation 2.2 (Test Set) Given a set P of n points in IRd, we can construct a set H of nO(1)

hyperplanes with the following property: For any collection of disjoint cells each containing at least

one point of P , if the maximum number of cells crossed by a hyperplane in H is `, then the maximum

number of cells crossed by an arbitrary hyperplane is O(`).

For this version of the test-set observation, the proof is quite simple (briefly, we can just take H

to be the O(nd) hyperplanes passing through d-tuples of points of P ).

For the next lemma, we need a definition first. For a given setH ofm hyperplanes, a (1/r)-cutting

[23, 44, 47] is a collection of disjoint cells such that each cell ∆ is crossed by at mostm/r hyperplanes.

Let A(H) denote the arrangement of H. We let H∆ denote the subset of all hyperplanes of H that

cross ∆.

Lemma 2.3 (Cutting Lemma) Let H be a set of m hyperplanes and ∆ be any simplex in IRd. For

any r, we can find a (1/r)-cutting of H into O(rd) disjoint cells whose union is ∆.

If the number of vertices in A(H) inside ∆ is X, then the number of cells can be reduced to

O(X(r/m)d + rd−1).

The first part of the lemma is standard and was first shown by Chazelle and Friedman [24]. The

X-sensitive variant is also known; e.g., see [15, 22]. The proof is by random sampling.3

3Rough Proof Sketch: We draw a sample R of size r and take the cells of a canonical triangulation T of A(R) [28]
restricted inside ∆. For a cell σ ∈ T that is crossed by aσm/r hyperplanes with aσ > 1, we further subdivide the cell

by taking a (1/aσ)-cutting of Hσ using any weaker method with, say, a
O(1)
σ subcells (e.g., we can again use random

sampling). To see why this procedure works, note that the size of the canonical triangulation is proportional to the
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To understand the intuitive significance of the cutting lemma, letH be a set ofm test hyperplanes,

∆ = IRd, and r = t1/d. Then we get O(t) cells each crossed by O(m/t1/d) hyperplanes. The average

number of points per cell is O(n/t), and the average number of cells crossed by a test hyperplane

is O((t ·m/t1/d)/m) = O(t1−1/d). Thus, the cutting lemma “almost” implies the partition theorem.

The challenge is to turn these average bounds into maximum bounds. For this purpose, Matoušek’s

proof of his partition theorem adopts an iterative reweighting strategy by Welzl [27, 52] (roughly, in

each iteration, we apply the cutting lemma to a multiset of hyperplanes in H to find one good cell,

then increase the multiplicities of the hyperplanes crossing the cell, and repeat).

3 The Basic Method

We now present our new method for simplex range searching with O(n) space and O(n1−1/d) query

time. To keep the presentation simple, we defer discussion of preprocessing time to Section 5.

The key lies in the following theorem, where instead of constructing one partition of the point

set from scratch as in Matoušek’s partition theorem, we consider the problem of refining a given

partition. As we will see, the main result will follow just by repeated applications of our theorem in

a straightforward manner.

Theorem 3.1 (Partition Refinement Theorem) Let P be a set of at most n points and H be a set of

m hyperplanes in IRd. Suppose we are given t disjoint cells covering P , such that each cell contains

at most 2n/t points of P and each hyperplane in H crosses at most ` cells. Then for any b, we can

subdivide every cell into O(b) disjoint subcells, for a total of at most bt subcells, such that each subcell

contains at most 2n/(bt) points of P , and each hyperplane in H crosses at most the following total

number of subcells:

O((bt)1−1/d + b1−1/(d−1)`+ b log t logm). (2)

Note that the first term matches the bound from Matoušek’s partition theorem for a partition into

O(bt) parts. In the second term, it is crucial that the coefficient b1−1/(d−1) is asymptotically smaller

than b1−1/d; this will ensure that repeated applications of the theorem do not cause a constant-factor

blow-up, if we pick b to be sufficiently large. The third term will not matter much in the end, and

is purposely not written in the tightest manner. The proof of the theorem, like Matoušek’s, uses the

cutting lemma repeatedly in conjunction with an iterated reweighting strategy as detailed below.

The basic algorithm is simple:

Proof: We maintain a multiset Ĥ, initially containing C copies of each hyperplane in H. The

value of C is not important (for conceptual purposes, we can set C to be a sufficiently large power

of b, which will ensure that future multiplicities are always integers). The size |Ĥ| of a multiset H

always refers to the sum of the multiplicities (the “weights”) of the elements. Let X∆(Ĥ) denote the

number of vertices inside ∆ defined by the hyperplanes in Ĥ; here, the multiplicity of a vertex is the

product of the multiplicities of its defining hyperplanes.

The algorithm. Let ∆t, . . . ,∆1 be the given cells in a random order. For i = t, . . . , 1 do:

size of A(R) restricted inside ∆, which is at most O(X(r/m)d + rd−1), since each vertex in A(H) shows up in A(R)
with probability O(r/m)d, and there are O(rd−1) vertices in the intersection of A(R) with each (d − 1)-dimensional
boundary facet of ∆. On the other hand, analysis by Clarkson and Shor [30] or Chazelle and Friedman [24] tells us
that the parameter aσ is O(1) “on average” over all cells σ ∈ T .
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1. Subdivide ∆i into disjoint subcells by building a (1/ri)-cutting of Ĥ∆i inside ∆i with

ri := c min



|Ĥ∆i |

(
b

X∆i(Ĥ)

)1/d
, b1/(d−1)





for some constant c. By Lemma 2.3, the number of subcells inside ∆i is O(X∆i(Ĥ)(ri/|Ĥ∆i |)d+
rd−1i ), which can be made at most b/4 for c sufficiently small.

2. Further subdivide each subcell, e.g., by using vertical cuts, to ensure that each subcell contains

at most 2n/(bt) points. The number of extra cuts required is O(b) per cell ∆i, and at most

bt/2 + o(bt) in total over all ∆i. So, the number of subcells is O(b) per cell, and at most

3bt/4 + o(bt)¿ bt in total.

3. For each hyperplane h, multiply the multiplicity of h in Ĥ by (1+1/b)λi(h) where λi(h) denotes

the number of subcells inside ∆i crossed by h.

Analysis. For a fixed hyperplane h ∈ H, let `i(h) be the number of cells in {∆i, . . . ,∆1} crossed by

h. Since {∆i, . . . ,∆1} is a random subset of size i from a set of size t, we have `i(h) ≤ O(`i/t +

log(mt)) w.h.p.(mt)4 by a Chernoff bound (a version for sampling without replacement, as noted in

Appendix A). So, defining `i := maxh∈H `i(h), we have `i ≤ O(`i/t+ log(mt)) w.h.p.(t).

In step 3,
∑

h∈Ĥ
λi(h) ≤ O(b|Ĥ∆i |/ri), since each of the O(b) subcells is crossed by at most

|Ĥ∆i |/ri hyperplanes of Ĥ∆i . As λi(h) ≤ O(b), step 3 increases |Ĥ| by

∑

h∈Ĥ

[(1 + 1/b)λi(h) − 1] ≤ O


∑

h∈Ĥ

λi(h)/b


 ≤ O(|Ĥ∆i |/ri) = O(αi)|Ĥ|

where αi :=
|Ĥ∆i |
ri|Ĥ|

= O


 1

|Ĥ|
·
(
X∆i(Ĥ)

b

)1/d
+

|Ĥ∆i |
b1/(d−1)|Ĥ|


 .

Note that
∑i

j=1 |Ĥ∆j | ≤ |Ĥ|`i and
∑n

j=1X∆j (Ĥ) ≤ |Ĥ|d by disjointness of the cells. When

conditioned to a fixed choice of ∆t, . . . ,∆i+1, the subset {∆i, . . . ,∆1} is fixed and ∆i is a random

element among this subset of size i, and so we have E[|Ĥ∆i |] ≤ |Ĥ|`i/i and E[X∆i(Ĥ)] ≤ |Ĥ|d/i; in
particular, by Jensen’s inequality, E[X∆i(Ĥ)1/d] ≤ |Ĥ|/i1/d. Thus,

E[αi | ∆t, . . . ,∆i+1] ≤ O

(
1

(bi)1/d
+

`i
b1/(d−1)i

)
.

Since E[`i] ≤ O(`i/t+ log(mt)),

E[αi] ≤ O

(
1

(bi)1/d
+

`

b1/(d−1)t
+

log(mt)

b1/(d−1)i

)
.

At the end, |Ĥ| ≤ Cm
∏t
i=1(1 +O(αi)) ≤ Cm exp

(
O
(∑t

i=1 αi
))

, where

E

[
t∑

i=1

αi

]
≤ O

(
t1−1/d

b1/d
+

`

b1/(d−1)
+

log(mt) log t

b1/(d−1)

)
.

4Throughout the paper, the notation “w.h.p.(n)” (or “w.h.p.” for short, if n is understood) means “with probability
at least 1− 1/nc0” for an arbitrarily large constant c0.
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Let λ(h) be the total number of subcells crossed by h. Since the final multiplicity of h in Ĥ is

equal to C(1 + 1/b)λ(h) ≤ |Ĥ|, it follows that maxh∈H λ(h) ≤ log1+1/b(|Ĥ|/C) ≤ O(b log(|Ĥ|/C)),

which has expected value at most O(b logm+(bt)1−1/d+b1−1/(d−1)`+b1−1/(d−1) log(mt) log t), which

is bounded from above by (2). 2

Theorem 3.2 Given n points in IRd, we can build a partition tree with query cost O(n1−1/d).

Proof: Let H be the test set from Observation 2.2 of size m ≤ nO(1). We construct a hierarchy of

sets Πt of cells for t = 1, b, b2 . . ., where Π1 consists of just a root cell containing all n points, and

Πbt is obtained by applying Theorem 3.1 to Πt. The cells generated forms a partition tree of degree

O(b). Let `(t) denote the maximum number of cells of Πt crossed by an arbitrary hyperplane. By

Theorem 3.1 and Observation 2.2,

`(bt) ≤ O((bt)1−1/d + b1−1/(d−1)`(t) + b log t logn).

Fix an arbitrarily small constant δ > 0. Set b to be a sufficiently large constant depending on δ.

It is straightforward to verify, by induction over u, that

`(u) ≤ c[u1−1/d + u1−1/(d−1)+δ logn] (3)

for some constant c depending on δ and b. This follows since for a suitable absolute constant c0,

c0
[
(bt)1−1/d + cb1−1/(d−1)[t1−1/d + t1−1/(d−1)+δ log n] + b log t logn

]

≤ c0

[
1 +

c

b1/(d−1)−1/d

]
(bt)1−1/d + c0

[
c

bδ
+ b

]
(bt)1−1/(d−1)+δ logn,

so the induction carries through by choosing c sufficiently large to satisfy c0[1 + c/b1/(d−1)−1/d] ≤ c

and c0[c/b
δ + b] ≤ c.

Note that the first term of (3) dominates when u exceeds logc
′

n for some constant c′, so we

can write `(u) ≤ O(u1−1/d + logO(1) n). We conclude that the query cost is O
(∑

t≤n b `(t)
)
≤

O
(∑

t≤n[t
1−1/d + logO(1) n]

)
= O(n1−1/d), where the sums are over all t that are powers of b. 2

Remarks. To readers familar with the proof of Matoušek’s partition theorem [39], we point out

some differences with our proof of the partition refinement theorem. First, to ensure
∑

j X∆j (Ĥ) ≤
|Ĥ|d, we need disjointness of cells, which forces us to choose multiple subcells from a cutting instead

of one subcell per iteration. This in turn forces us to use a different multiplier (1 + 1/b) instead of

doubling. Unlike Theorem 2.1, Theorem 3.1 guarantees an upper but not a lower bound on size of

each subset (certain versions of the test set observation, e.g., Observation 5.1, require such a lower

bound), though this is not an issue in our proof of Theorem 3.2.

To those familiar with Matoušek’s final method based on hierarchical cuttings [42], we note that

our method share certain common ideas. Both apply iterative reweighting more “globally” to refine

multiple cells simultaneously, as a way to avoid constant-factor blow-up in the partition-theorem

method; and hierarchical cuttings originate from the same X-sensitive version of the cutting lemma.

However, Matoušek’s method uses a far more complicated weight/multiplicity function, because it

tries to deal with different layers of the tree all at once; in contrast, our partition refinement theorem

works with one layer at a time and leads to a simpler, more modular design. Matoušek’s method

9



also requires a special root of O(n1/d logn) degree (whose children cells may overlap), and does not

guarantee optimality for `(t) except at the bottommost layer, whereas our method ensures optimality

for almost all layers (except near the very top for very small t, which is not important). This will

make a difference in the next section and in subsequent applications to multilevel data structures.

Random ordering is convenient but is not the most crucial part of the proof of Theorem 3.1: We

can easily deterministically find a good cell ∆i in each iteration if we do not care about the bound on

`i. The naive bound `i ≤ ` can still lead to a weaker version of Theorem 3.1 with an extra logarithmic

factor in the second term of (2), and Theorem 3.2 can still be derived but with some extra effort.

(Alternatively, we can derandomize, by considering a potential function of the form
∑

h∈Ĥ
2c`i(h)t/i.)

In the d = 2 case, our partition tree can be made into a BSP tree, since the cuttings produced by

taking canonical triangulations of the arrangements of samples are easily realizable as binary plane

partitions (our algorithm computes such cuttings for r ≤ bO(1) bounded by a constant).

4 Additional Properties

We point out some implications that follow from our method. Define the order-γ query cost of ∂q

to be
∑

v∈T : ∆(v)∩∂q 6=∅

∑
w child of v |P (w)|γ . Define the order-γ query cost of T to be the maximum

order-γ query cost of an arbitrary hyperplane. Our previous definition coincides with the case γ = 0.

This extended definition is relevant in multilevel data structures where secondary data structures for

P (v) are stored at each node v; see Section 7 for more details. We have the following new result:

Theorem 4.1 Given n points in IRd, we can build a partition tree with

(i) height O(logn) and order-(1− 1/d) query cost O(n1−1/d log n);

(ii) height O(log log n) and order-γ query cost O(n1−1/d) for any fixed γ < 1− 1/d.

Proof:

(i) The same partition tree in the proof of Theorem 3.2 has order-(1 − 1/d) query cost bounded

by the following, where the sums are over all t that are powers of b:

O


∑

t≤n

b

(
n

bt

)1−1/d
`(t)


 ≤ O


∑

t≤n

(n/t)1−1/d · [t1−1/d + t1−1/(d−1)+δ log n]




= O


∑

t≤n

[
n1−1/d +

n1−1/d log n

t1/(d−1)−1/d+δ

]
 = O(n1−1/d log n).

(ii) To lower the height, we modify our partition tree T . Fix a sufficiently small constant ε > 0.

We examine each node v of T in a top-down order, and whenever a child w of a node v has

|P (w)| > |P (v)|1−ε, we remove w by making w’s children v’s children. In the new tree T ′,

every child w of a node v has |P (w)| ≤ |P (v)|1−ε, so the height is O(log logn). For each child

w of v in T ′, w’s parent in T has size at least |P (v)|1−ε, so the degree of v in T ′ is at most

b|P (v)|ε ≤ O((n/t)ε) if |P (v)| = O(n/t). Summing over all t that are powers of b, we obtain

10



order-γ query cost

O


∑

t≤n

(n/t)ε
(
(n/t)1−ε

)γ
`(t)


 ≤ O


∑

t≤n

(n/t)γ+ε · [t1−1/d + logO(1) n]




= O


∑

t≤n

[
n1−1/d

(n/t)1−1/d−γ−ε
+ (n/t)γ+ε logO(1) n

]
 = O(n1−1/d).

2

We have omitted the case γ > 1 − 1/d, because a simple recursive application of Matoušek’s

partition theorem already gives optimal order-γ query cost O(nγ) with height O(log log n) in this

case.

Next, define a B-partial partition tree for a point set P to be the same as in our earlier definition

of a partition tree, except that a leaf now may contain up to B points. Define the query cost in the

same manner, as in (1). Note the query cost of a partial partition tree upper-bounds the number

of internal and leaf cells crossed by a hyperplane, but does not account for the cost of any auxiliary

data structures we plan to store at the leaves. The following theorem is useful in applications that

need space/time tradeoffs, where we can switch to a larger-space data structure with small query

time at the leaves; see Section 7 for more details. The theorem is also self-evidently useful in the

external memory model (hence, the choice of name “B”): we get improved external-memory (even

cache-oblivious) range searching data structures [5] immediately as a byproduct.

Theorem 4.2 Given n points in IRd and B < n/ logω(1) n, we can build a B-partial partition tree

with size O(n/B) and query cost O(n/B)1−1/d.

Proof: Stop the construction in the proof of Theorem 3.2 when t reaches n/B. Summing over all

t that are powers of b, we obtain query cost O(b
∑

t≤n/B `(t)) = O(n/B)1−1/d. 2

5 Preprocessing Time

In this section, we examine the issue of preprocessing time. Obtaining polynomial time is not difficult

with our method, and it might be possible to lower the bound to O(n1+ε) by using recursion, as was

done in Matoušek’s final method [42]. Instead of recursion, we show how to directly speed up the

algorithm in Section 3. We first aim for O(n logO(1) n) preprocessing time, and later improve it to

O(n logn).

First, we need a better version of Observation 2.2 with fewer test hyperplanes. The following

observation was shown by Matoušek [39] (see also [47]).

Observation 5.1 (Test Set) Given a set P of n points and any t, we can construct a set Ht of

O(t logO(1)N) test hyperplanes, in O(t logO(1)N) time, satisfying the following property w.h.p.(N)

for any N ≥ n: For any collection of disjoint cells each containing at least n/t points of P , if the

maximum number of cells crossed by a hyperplane in Ht is `, then the maximum number of cells

crossed by an arbitrary hyperplane is at most O(`+ t1−1/d).

(Roughly interpreted, the proof involves drawing a random sample of t1/d logN points and taking

the O(t logdN) hyperplanes through d-tuples of points in the sample; the time bound is clearly as

stated. The logN factors can be removed with more work, using cuttings, but will not matter.)
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Regarding Lemma 2.3, we can use known cutting algorithms [22, 24, 39] to get running time

O(mrO(1)) (randomized or deterministic).

To get a good time bound for Theorem 3.1, we need to modify the algorithm. The details become

more involved, but there are two new main ideas:

• in step 1, we work with a sparser subset of Ĥ, by considering a random sample of Ĥ;

• more crucially, in step 3, we update the multiplicities less frequently, by considering a random

sample of the subcells.

To prepare for the proof of the theorem below, we make two definitions, the first of which is

standard: Given a (multi)set S, let a p-sample be a subset R generated by taking each (occurrence

of an) element of S, and independently choosing to put the element in R with probability p. (Note

that we can generate a p-sample in time linear in the output size rather than the size of S, by using

a sequence of exponentially distributed random variables rather than 0-1 random variables.)

For a list S = 〈s1, . . . , sK〉 and a sublist R of S, where S itself (the elements si and the size K)

may be random, we say that R is a generalized p-sample of S if the events Ei = {si ∈ R} are all

independent, each occurring with probability p. Note the subtle difference with the earlier definition

(where S was thought of as fixed before R is chosen): it is acceptable for si to be dependent on

E1, . . . , Ei−1, as long as we decide to choose whether to put si to R independently of E1, . . . , Ei−1

and si.

Properties enjoyed by standard random samples may not necessarily hold for generalized p-

samples. However, the Chernoff bound (see Appendix A) is still applicable to show that |R ∩
{s1, . . . , sk}| ≤ O(pk + logN) and k ≤ O(1/p)(|R ∩ {s1, . . . , sk}| + logN) for all k ≤ N w.h.p.(N).

In particular, assuming K ≤ N , we have |R| ≤ O(p|S| + logN) and |S| ≤ O(1/p)(|R| + logN)

w.h.p.(N).

We now present a near-linear-time algorithm for the partition refinement theorem:

Theorem 5.2 In Theorem 3.1, given the subset of points inside each cell, we can construct a sub-

division into subcells, together with the subset of points inside each subcell, in time

O(bn+ bO(1)(m+ t) logO(1)N),

such that the stated properties are satisfied, except that the crossing number bound is now

O((bt)1−1/d + b1−1/(d−1)`+ b log t logN) w.h.p.(N) for any N ≥ mt.

Proof: The algorithm. Let ∆t, . . . ,∆1 be the given cells in a random order. For i = t, . . . , 1 do:

0. Let q be a power of 2 (with a negative integer exponent) closest to

min{ (bi)1/d logN
|Ĥ|

, b1/(d−1)t logN

|Ĥ|`
, b1/(d−1)i

|Ĥ|
}. If q is different from its value in the previous

iteration, then create a new q-sample R̂ of Ĥ.

1. Subdivide ∆i into disjoint subcells by building a (1/ri)-cutting of R̂∆i inside ∆i with

ri := c min



|R̂∆i |

(
b

X∆i(R̂)

)1/d
, b1/(d−1)



 .

By Lemma 2.3, the number of subcells inside ∆i is at most b/4 for a sufficiently small constant c.
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2. Further subdivide each subcell by using extra cuts to ensure that each subcell contains at most

2n/(bt) points. The number of subcells remains O(b) per cell ∆i, and at most bt in total.

3. Take a p-sample ρi of the subcells of ∆i with p := min{ b1/d logN
t1−1/d , b1/(d−1) logN

` , b1/(d−1)

log t , 1}. If

ρi 6= ∅, then

(a) for each h ∈ H∆i , add new copies of h to Ĥ so that the multiplicity of h in Ĥ gets

multiplied by (1 + 1/b)|ρi(h)|, where ρi(h) denotes the set of subcells in ρi crossed by h;

(b) insert a q-sample of the newly added hyperplanes of Ĥ to R̂.

During the algorithm, we also check for the validity of certain conditions, which will be delineated

in the analysis below, and which are guaranteed to hold w.h.p. If one of these conditions fail, we

declare failure and the algorithm may be re-run from scratch.

Analysis of the crossing number. Fix a value q and let R̂(q) denote the (dynamic) set R̂ during the

time interval when the power of 2 closest to min{ (bi)1/d logN
|Ĥ|

, b1/(d−1)t logN

|Ĥ|`
, b1/(d−1)i

|Ĥ|
} is equal to q.

In step 1, R̂(q) starts off as a q-sample of Ĥ, and in step 3(b), we add q-samples of new hyperplanes

in Ĥ to R̂(q). Thus, at any moment during its time interval, R̂(q) is a generalized q-sample of Ĥ, if

we view the multiset Ĥ as a list where the hyperplanes are listed in the order they are added to Ĥ.

Similarly, for any fixed simplex σ, R̂
(q)
σ is a generalized q-sample of Ĥσ. Call two simplices σ1 and

σ2 equivalent if Hσ1 = Hσ2 . The number of equivalence classes is polynomially bounded in N . Since

|Ĥ| is loosely bounded by Cm(1+1/b)O(bt) at all times, the total number of different q’s encountered

is polynomially bounded in N . By the Chernoff bound, we can thus guarantee that the following

holds at all times for all simplices σ and all q w.h.p.(N):

|Ĥσ| ≤ O(1/q)(|R̂(q)σ |+ logN) and |R̂| ≤ O(q|Ĥ|+ logN).

After step 1, w.h.p., for each subcell σ, we have |Ĥσ| ≤ O(1/q)(|R̂σ|+logN) ≤ O(1/q)(|R̂∆i |/ri+
logN), implying that

∑
h∈Ĥ
|ρi(h)| ≤ |ρi| ·O(1/q)(|R̂∆i |/ri+ logN). W.h.p., step 3(a) increases |Ĥ|

by the following amount:

∑

h∈Ĥ

[(1 + 1/b)|ρi(h)| − 1] ≤ O


∑

h∈Ĥ

|ρi(h)|/b

 ≤ |ρi|

bq
·O(|R̂∆i |/ri + logN)

≤ |ρi|
bq
·O(αi|R̂|+ logN) where αi :=

|R̂∆i |
ri|R̂|

= O


 1

|R̂|
·
(
X∆i(R̂)

b

)1/d
+

|R̂∆i |
b1/(d−1)|R̂|




≤ |ρi|
bq
·O(αiq|Ĥ|+ logN) ≤ O(βi)|Ĥ| where βi :=

|ρi|
b

(
αi +

logN

q|Ĥ|

)
.

Let `i be as before. When conditioned to a fixed choice of ∆t, . . . ,∆i+1 and R̂, we have E[|R̂∆i |] ≤
|R̂|`i/i and E[X∆i(R̂)] ≤ |R̂|d/i, so E[αi] ≤ O(1/(bi)1/d + `i/(b

1/(d−1)i)). Furthermore, E[|ρi|] ≤
O(bp) conditioned to any fixed value of αi. Thus,

E[βi | ∆t, . . . ,∆i+1, R̂] ≤ p ·O((1/(bi)1/d + `i/(b
1/(d−1)i) + (logN)/(q|Ĥ|)).

Since E[`i] ≤ O(`i/t+ logN),

E[βi] ≤ p ·O
(

1

(bi)1/d
+

`

b1/(d−1)t
+

logN

b1/(d−1)i
+

logN

q|Ĥ|

)
.
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The last term disappears for our choice of q.

At the end, w.h.p., we can upper-bound |Ĥ| by Cm
∏t
i=1(1 + O(βi)) ≤ Cm exp

(
O
(∑t

i=1 βi
))

,

where

E

[
t∑

i=1

βi

]
≤ p ·O

(
t1−1/d

b1/d
+

`

b1/(d−1)
+

logN log t

b1/(d−1)

)
≤ O(logN)

for our choice of p. By Markov’s inequality, with probability Ω(1), we have
∑t

i=1 βi ≤ O(logN) and

|Ĥ| ≤ CNO(1). If not, we declare failure.

Let ρ(h) =
⋃
i ρi(h). Since the multiplicity of h in Ĥ is C(1 + 1/b)|ρ(h)| ≤ |Ĥ|, it follows that

maxh∈H |ρ(h)| ≤ log1+1/b(|Ĥ|/C) ≤ O(b logN) if algorithm does not fail. Observe that ρ(h) is a

generalized p-sample of the list λ(h) of all subcells crossed by h, where the subcells are listed in

the order they are created. Thus, w.h.p., we have maxh∈H |λ(h)| ≤ O((1/p)(|ρ(h)| + logN)) ≤
O((b/p) logN) ≤ O((bt)1−1/d+ b1−1/(d−1)`+ b1−1/(d−1) log t logN + b logN) if the algorithm does not

fail.

Analysis of running time. Conditioned to a fixed choice of ∆t, . . . ,∆i+1 and R̂, we have E[|R̂∆i |] ≤
|R̂|`i/i. Thus, E[|R̂∆i |] ≤ (q|Ĥ| + logN) · O(`i/t + logN)/i ≤ (b logN)O(1) for our choice of q.

Assuming that R̂∆i is available, step 1 takes time |R̂∆i |r
O(1)
i , which has expected value (b logN)O(1).

We don’t need to compute X∆i(R̂), but rather we try different values of ri (powers of 2) until we

find a cutting with the right number of subcells. Thus, the expected cost over all iterations is

O(t)(b logN)O(1). By Markov’s inequality, with probability Ω(1), this bound holds; if not, we declare

failure.

In step 2, we can check the number of points per subcell by assigning points to subcells in O(b)

time per point, for a total cost of O(bn). We can actually make the cost sublinear in n—namely,

O(t)(b logN)O(1)—by replacing P by a bt logN
n -sample Q of P . W.h.p., |Q| = O(bt logN), and for

any simplex σ, |Q ∩ σ| ≤ |Q|/(bt) implies |P ∩ σ| ≤ O(n/(bt)) by a Chernoff bound.

For step 3(a), we first need to compute the set H∆i , i.e., report all hyperplanes of H intersecting

a query cell ∆i. In the dual, H becomes an m-point set and ∆i becomes an O(1)-size polyhedron,

and this subproblem reduces to simplex range searching. We can use existing data structures,

e.g., [39], to get O(m logm) preprocessing time and O(m1−1/d logO(1)m+ |H∆i |) query time. Since∑
i |H∆i | ≤ m` and the probability that ρi 6= ∅ is at most O(bp), the total expected query time is

bp · O(tm1−1/d logO(1)m +m`) ≤ O(t1/dm1−1/d +m)(b logN)O(1) ≤ O(t +m)(b logN)O(1). Again,

by Markov’s inequality, with probability Ω(1), this bound holds; if not, we declare failure. We can

compute |ρi(h)| for each h ∈ H∆i naively in time O(b), which can be absorbed in the bO(1) factor.

Finally, we account for the total cost of all operations done to R̂(q): initialization in step 0,

insertions in step 3(b), and computing R̂
(q)
∆i

in step 1. Fix q. We continue inserting to R̂(q) only

if q ≤ 2 (bt)
1/d logN

|Ĥ|
. Thus, w.h.p., at all times, |R̂(q)| ≤ O(q|Ĥ| + logN) ≤ O(t1/d)(b logN)O(1).

Computing R̂
(q)
∆i

reduces to simplex range searching again. This time, we use an existing data

structure that has larger space but supports faster querying, with preprocessing time and total

insertion time O(|R̂(q)|d logO(1) |R̂(q)|) = O(t)(b logN)O(1) w.h.p., and query time O(logO(1) |R̂(q)| +
|R̂(q)∆i |). (Insertions are supported by standard amortization techniques [14].) Since |Ĥ| ≤ CNO(1),

the total number of different q’s is O(logN), which can be absorbed in the logO(1)N factor.

To summarize, our algorithm succeeds with probability Ω(1), and w.h.p. the stated bound holds

if the algorithm does not fail. We can re-run the algorithm until success, with O(logN) number of

trials w.h.p. The running time remains O(m + t)(b logN)O(1). At the end, we can assign all the
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input points to subcells in O(bn) additional time (this term can actually be reduced to O(n log b)

with point location data structures). 2

Theorem 5.3 We can build data structures in O(n logn) time achieving the bounds stated in The-

orems 3.2, 4.1, and 4.2 w.h.p.(n).

Proof: Let H be the union of the test sets Ht from Observation 5.1 over all t that are powers of

2; the total size is m = O(n logO(1)N). From now on, summations involving the variable t are over

all powers of 2 (instead of b).

Because Observation 5.1 requires a lower bound on the number of points per cell, we need to

use a more careful, alternative construction in the proof of Theorem 3.2. Initially, our partition tree

consists of just a root cell containing all n points. For t = 2, 4, 8, . . . do:

Let Πt be the set of all current leaf cells ∆ such that the number of points inside ∆ is between

n/t and 2n/t; the number of such cells is at most t. Apply Theorem 3.1 to Πt to get a set Π′t
of subcells where the number of points inside each subcell is at most 2n/(bt). Make the O(b)

subcells of each cell ∆ ∈ Πt the children of ∆ in the partition tree (∆ is no longer a leaf but

its children now are).

Let `(t) denote the maximum number of cells of Πt crossed by an arbitrary hyperplane. Let `′(t)

denote the maximum number of cells of Π′t crossed by a hyperplane in H, which is bounded by (2).

The maximum number of cells of Πu crossed by a hyperplane in H is at most
∑

t≤2u/b `
′(t). By

Observation 2.2, `(u) is asymptotically bounded by the same expression plus u1−1/d. We obtain the

following recurrence:

`(u) ≤ O


 ∑

t≤2u/b

[(bt)1−1/d + b1−1/(d−1)`(t) + b log t log n] + u1−1/d


 . (4)

For a sufficiently large constant b, we can again verify by induction that

`(u) ≤ O(u1−1/d + u1−1/(d−1)+δ log n) ≤ O(u1−1/d + logO(1) n).

The query cost remains O
(∑

t≤n b `(t)
)
≤ O(n1−1/d).

Note that the above construction works just as well in the proofs of Theorems 4.1 and 4.2.

In the proof of Theorem 4.2, the maximum number of internal node cells crossed by an arbitrary

hyperplane is at most O(
∑

t≤n/B `(t)) = O(n/B)1−1/d. The maximum number of leaf cells crossed

by an arbitrary hyperplane is at most b times this number, so the query cost remains O(n/B)1−1/d.

By Theorem 5.3, we immediately get O(n logO(1) n) preprocessing time w.h.p.(n). We now de-

scribe how to reduce the preprocessing time of Theorem 3.2 to O(n logn), by “bootstrapping”.

Build a B0-partial partition tree with O(n/B0) size and O(n/B0)
1−1/d query cost, by The-

orem 4.2, with B0 = logc n for some constant c. Here, we can take H to be the union of

Ht for all t ≤ n/B0, of total size m = O((n/B0) log
O(1) n), and the time bound drops to

O(
∑

t≤n/B0
[n+ (n/B0) log

O(1) n]) = O(n logn) for c sufficiently large. Using the preceding partition

tree method with P (B0) = O(B0 log
O(1)B0) and Q(B0) = O(B

1−1/d
0 ) to handle the subproblems at

the leaf cells, we then get a new partition tree with preprocessing time O(n/B0)P (B0)+O(n logn) =

O(n logn) and query time O(n/B0)
1−1/dQ(B0) = O(n1−1/d).
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The query bound is expected but can be made to hold w.h.p.(n): For a fixed query hyperplane,

we are bounding a sum Z of independent random variables lying between 0 and O(B0) with E[Z] ≤
O(n1−1/d); by a Chernoff bound (see Appendix A), w.h.p.(n), we have Z ≤ O(n1−1/d + B0 logn) =

O(n1−1/d). Observe that every cell in our construction are defined by a constant number of input

points, so the number of possible cells, and hence the number of combinatorially different query

hyperplanes, is polynomially bounded in n. Thus, the maximum query cost is indeed O(n1−1/d)

w.h.p.(n).

The same idea also reduces the preprocessing time of Theorems 4.1 and 4.2 to O(n logn). 2

Note that the above result is Las Vegas, since the random choices made in the preprocessing

algorithm only affect the query time, not the correctness of the query algorithm.

6 Shallow Version

In this section, we modify our method to solve the halfspace range reporting problem in an even

dimension d ≥ 4. It suffices to consider upper halfspaces, i.e., we want to report all points above a

query hyperplane. We say that a hyperplane h is k-shallow if the number of points of P above h is

at most k.

It can be checked that Observation 2.2 remains true for k-shallow hyperplanes, i.e., with the same

test set H, for every k, if the maximum number of cells crossed by a k-shallow hyperplane in H is `,

then the maximum number of cells crossed by an arbitrary k-shallow hyperplane is at most O(`).

Matoušek [40] gave a “shallow version” of the cutting lemma. Actually, a weaker version of

the lemma suffices to derive a “shallow version” of the partition theorem e.g., as noted in [47] (the

original shallow cutting lemma wants to cover all points in the (≤ k)-level, whereas it suffices to

cover a large number of points at low levels). We use this weaker cutting lemma, which has a simpler

proof, because it makes an X-sensitive variant of the lemma easier to verify. Our version also has a

nice new feature: all cells are vertical, i.e., they contain (0, . . . , 0,−∞).

Stating the right analog of “X” requires more care. Define X∆(H, p) to be the expected number

of vertices of the lower envelope of a p-sample of H inside ∆. Define X∆(H, p) =
∑

p′≤pX∆(H, p)

where the sum is over powers p′ of 2. Note that although X∆(·, ·) may not be monotone increasing

in p, X∆(·, ·) is, so it is more convenient to work with the latter quantity.

In order to state how many points ought to be covered, define µ∆(H) (the “measure” of H) to

be the total number of pairs (p, h) with p ∈ P ∩∆ and h ∈ H such that p is above h.

Lemma 6.1 (Shallow Cutting Lemma, weak version) Let H be a set of m hyperplanes, P be a

set of points, and ∆ be a vertical cell in IRd. For any r, we can find an O(1/r)-cutting of H into

O(rbd/2c) disjoint vertical cells inside ∆ that cover all but O(µ∆(H)r/m) points of P .

In terms of X(·, ·), the number of cells can be reduced to O(X∆(H, r/m) + rb(d−1)/2c).

Proof: Draw an (r/m)-sample R of H. Take the canonical triangulation T of the lower envelope

of R restricted inside ∆. The expected number of cells is O(X∆(H, r/m) + rb(d−1)/2c), since there

are O(rb(d−1)/2c) vertices in the lower envelope inside each (d− 1)-dimensional boundary facet of ∆.

For each cell σ ∈ T with |Hσ| = aσm/r (aσ > 1), further subdivide σ as follows: pick a (1/(2aσ))-

approximation Aσ of Hσ with |Aσ| = O(a2σ log aσ) (ε-approximations [35, 44, 47] can be found by

random sampling); return any triangulation of the (≤ |Aσ|/aσ)-level Lσ of Aσ into |Aσ|O(1) ≤ a
O(1)
σ
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vertical subcells intersected with σ. The total number of subcells is
∑

σ∈T (r|Hσ|/m)O(1), which

has expected value O(X∆(H, r/m) + rb(d−1)/2c) by Clarkson and Shor’s or Chazelle and Friedman’s

technique [24, 30].

Each vertex of Lσ has level at most O(|Hσ|/aσ) ≤ O(m/r) in H by the approximation property

of Aσ, so each subcell is indeed crossed by at most O(m/r) hyperplanes (since a hyperplane crossing

the subcell must lie below one of the d vertices of the subcell). Inside a cell σ ∈ T , any uncovered

point has level at least |Aσ|/aσ in Aσ and thus lies above at least Ω(|Hσ|/aσ) ≥ Ω(m/r) hyperplanes

in H again by the approximation property. So, the number of uncovered points in T is at most

O(µ∆(H)r/m). On the other hand, the number of uncovered points outside T is at most µ∆(R),

which has expected value µ∆(H)r/m. By Markov’s inequality, the bounds on the number of cells

and uncovered points hold simultaneously to within constant factors with probability Ω(1). 2

Equipped with the shallow cutting lemma, we can adopt the same approach from Section 3

to solve the halfspace range reporting problem, with d replaced by bd/2c in the exponents. The

assumption that d is even is critical, to ensure that b(d− 1)/2c is strictly less than bd/2c.

Theorem 6.2 (Shallow Partition Refinement Theorem) Let P be a set of at most n points and H

be a set of m k-shallow hyperplanes in IRd with d > 2. Suppose we are given t disjoint vertical cells

covering P , such that each cell contains at most 2n/t points of P and each hyperplane in H crosses

at most ` cells. Then for any b, we can find O(b) disjoint vertical subcells inside every cell, for a total

of at most bt cells, such that all but O((bt)1/bd/2ck) points are covered by the subcells, each subcell

contains at most 2n/(bt) points of P , and each hyperplane in H crosses at most the following total

number of subcells:

O((bt)1−1/bd/2c + b1−1/b(d−1)/2c`+ b log t logm).

Proof: We apply the same algorithm as in the proof of Theorem 3.1, except that in step 1 we apply

Lemma 6.1 to Ĥ∆i with

ri ≈ min
{
p∗|Ĥ∆i |, cb1/b(d−1)/2c

}
,

where p∗ is the largest value at most p0 := (bi)1/bd/2c/|Ĥ| such that X∆i(Ĥ, ri/|Ĥ∆i |) ≤
X∆i(Ĥ, p∗) ≤ cb and thus the number of subcells in the cutting is b/2 for a sufficiently small

constant c. (As a technicality, we should make ri/|Ĥ∆i | a power of 2.)

Note that
∑n

j=1X∆j (Ĥ, p) ≤ O(
∑

p′≤p(p
′|Ĥ|)bd/2c) = O((p|Ĥ|)bd/2c), where the sum is over

powers p′ of 2. Conditioned to a fixed choice of ∆t, . . . ,∆i+1, we then have E[X∆i(Ĥ, p)] ≤
O((p|Ĥ|)bd/2c/i). By Markov’s inequality, Pr[p∗ < p] ≤ Pr[X∆i(Ĥ, p) > cb] ≤ O((p|Ĥ|)bd/2c/(bi))
for any p ≤ p0. So,

E[1/p∗] ≤ O


1/p0 +

∑

p≤p0

1/p · (p|Ĥ|)
bd/2c

bi


 = O

(
|Ĥ|

(bi)1/bd/2c

)
,

where the sum is over powers p of 2. Now,

αi :=
|Ĥ∆i |
ri|Ĥ|

≤ O

(
1

p∗|Ĥ|
+
b1/b(d−1)/2c|Ĥ∆i |

|Ĥ|

)
.

The first term has expected value O(1/(bi)1/bd/2c) by the above argument. The rest of the analysis

for E[αi] and the expected crossing number then carries through as before, with d and d−1 replaced

by bd/2c and b(d− 1)/2c.
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Lastly, we bound the number of points not covered by the subcells. Note that
∑n

j=1 µ∆j (Ĥ) ≤
O(|Ĥ|k). Conditioned to a fixed choice of ∆t, . . . ,∆i+1, we have E[µ∆i(Ĥ)] ≤ O(|Ĥ|k/i), so

the expected number of uncovered points in ∆i is O(|Ĥ|k/i · ri/|Ĥ∆i |) ≤ O(p0|Ĥ|k/i) ≤
O(b1/bd/2ck/i1−1/bd/2c). Summing over i = 1, . . . , t gives the desired O((bt)1/bd/2ck) bound. By

Markov’s inequality, the bounds on crossing number and the number of uncovered points simultane-

ously hold to within constant factors with probability Ω(1). 2

Theorem 6.3 Given n points in IRd for an even d ≥ 4, we can build a partition tree that has query

cost O(n1−1/bd/2c + k logO(1) n) for any k-shallow query hyperplane.

Proof: Let kt := n/(ct1/bd/2c logn) for a constant c. We follow the partition tree construction

from the proof of Theorem 5.3, where Π′t is now obtained by applying Theorem 6.2 to Πt and the

kbt-shallow hyperplanes in the test set H from Observation 2.2. We remove the points not covered.

The total number of points removed is at most O(
∑

t(bt)
1/bd/2ckbt) = O(n/c), which can be made at

most n/2 for a sufficiently large c. We ignore the removed points for the time being.

In the analysis, we redefine `(t) to be the maximum number of cells of Πt crossed by an arbitrary

kt-shallow hyperplane. The same recurrence holds, with d and d−1 replaced by bd/2c and b(d− 1)/2c.
Since d is even, b(d− 1)/2c = bd/2c − 1. We get `(u) ≤ O(u1−1/bd/2c + logO(1) n).

More generally, define `(t, n, k) to be the maximum number of cells of Πt crossed by a k-shallow

hyperplane h. We now show that

`(u, n, k) ≤ O(u1−1/bd/2c + (1 + ku/n) logO(1) n).

If k < ku or k > k1, then the claim follows from the `(u) bound or the trivial O(u) bound. Otherwise,

let 1 ≤ t∗ ≤ u be such that k ≈ kt∗ . There are O(
∑

t≤t∗ `(t)) cells crossed by h containing at least

n/t∗ points. For each cell ∆ crossed by h which contains less than n/t∗ points but whose parent

contains at least n/t∗ points, the cell ∆ can contain at most O((n/t∗)/(n/u)) = O(u/t∗) cells of Πu.

Thus, `(u, n, k) ≤ O(b
∑

t≤t∗ `(t) · u/t∗) = O((t
1−1/bd/2c
∗ + logO(1) n) · (u/t∗)) = O((uk/n) logO(1) n).

The at most n/2 removed points can be handled recursively. We can join the O(logn) partition

trees into one by creating a new root of degree O(logn). Define `(u, n, k) to be the maximum overall

number of cells containing between n/u and 2n/u points that are crossed by a k-shallow hyperplane.

Then `(u, n, k) ≤ `(u, n, k) + `(u/2, n/2, k) + · · · ≤ O(u1−1/bd/2c + (1 + ku/n) logO(1) n).

We conclude that the query cost is O
(∑

t≤n b `(t, n, k)
)
≤ O(n1−1/bd/2c + k logO(1) n). 2

Theorem 6.4 Given n points in IRd for an even d ≥ 4 and B < n/ logω(1) n, we can build a B-

partial partition tree with size O(n/B) and query cost O((n/B)1−1/bd/2c + (k/B) logO(1) n) for any

k-shallow query hyperplane.

Proof: As in the proof of Theorems 4.2 and 5.3, the query cost is O
(∑

t≤n/B `(t, n, k)
)
≤

O((n/B)1−1/bd/2c + (1 + k/B) logO(1) n). 2

Remarks. Because of the recursive handling of removed points, we lose the property that the

children cells are disjoint, but only at the root.

The above method is simpler than many of halfspace range reporting methods from Matoušek’s

paper [40], in that we do not need auxiliary data structures. We bound the overall crossing number

of a k-shallow hyperplane directly as a function of n and k.
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We have purposely been sloppy about the second O(k logO(1) n) term in Theorem 6.3, since our

main interest is in the case when k is small. (For large k > n1−1/bd/2c logω(1) n, we already know

how to get O(k) time [40].) By bootstrapping as in the proof of Theorem 5.3 for j rounds, the

polylogarithmic factor can be reduced to the j-th iterated logarithm log(j) n for any constant j.

Preprocessing time. We now examine the preprocessing time of this method. First we need a

more economical shallow version of the test set observation. This time, we cannot quote Matoušek’s

paper [40] directly, since he did not state a sufficiently general version of the observation (he only

considered (n/t)-shallow hyperplanes rather than near-(n/t1/bd/2c)-shallow hyperplanes, so the test

set size became larger). We thus include a proof of the version we need (as it turns out, the

dependence on t disappears in the case of vertical cells):

Observation 6.5 (Shallow Test Set) Given a set P of n points in IRd and any k ≥ logN , we can

construct a set Hk of O((n/k)bd/2c logO(1)N) O(k)-shallow hyperplanes, in O((n/k)bd/2c logO(1)N)

time, satisfying the following property w.h.p.(N) for any N ≥ n: For any collection of vertical cells,

if the maximum number of cells crossed by a hyperplane in H is `, then the maximum number of

cells crossed by an arbitrary k-shallow hyperplane is O(`).

Proof: In what follows, the dual of an object q is denoted by q∗. Draw a random sample R

of P of size (n/k) logN and return the set Hk of all hyperplanes through d-tuples of points in R

that are (c logN)-shallow with respect to R for a constant c. Note that in the dual, H ∗
k corre-

sponds to the vertices of the (≤ c logN)-level L of R∗ and thus has size O(|R̂|bd/2c logO(1)N) =

O((n/k)bd/2c logO(1)N) [30].

To prove correctness, first note that every hyperplane in Hk is O(k)-shallow with respect to P

w.h.p.(N) by a Chernoff bound (the number of combinatorially different hyperplanes is polynomially

bounded). Let h be a k-shallow hyperplane with respect to P . Then by a Chernoff bound, w.h.p.(N),

h is (c logN)-shallow with respect to R for a sufficiently large c, i.e., the point h∗ is in L. Thus, h∗

lies below a facet ∆∗ of L, defined by d vertices h∗1, . . . , h
∗
d ∈ H∗

k . Suppose h crosses a vertical cell σ.

Then some point q ∈ σ lies above h, i.e., the hyperplane q∗ lies below h∗. Then q∗ must lie below

one of the points h∗1, . . . , h
∗
d, i.e., q must lie above one of the hyperplanes h1, . . . , hd ∈ Hk. So, σ is

crossed by one of h1, . . . , hd. 2

In the proof of Theorem 6.3, we can take H to be the union of the the test sets Hkt over all t;

the total size is m = O(
∑

t(n/kt)
bd/2c logO(1)N) = O(

∑
t t log

O(1)N) = O(n logO(1)N).

Lemma 6.1 requires O(mrO(1)) time; we can repeat for O(logN) trials and return best result

found to ensure correctness w.h.p.(N).

We can then proceed as in the proof of Theorem 5.2 to get a near-linear-time algorithm for

Theorem 6.2. Since cells are vertical, the computation ofH∆i and R∆i now reduces to halfspace range

reporting in the dual (reporting hyperplanes crossing a vertical cell reduces to reporting hyperplanes

lying below each of the d vertices of the cell).

It can be checked that the bootstrapping step in the proof of Theorem 5.3 carries through as

well, yielding the final result:

Theorem 6.6 We can build a partition tree in O(n logn) time achieving the bound stated in Theo-

rems 6.3 and 6.4 w.h.p.(n).
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7 Some Applications

Although we dare not go through all papers in the literature that have used simplex or halfspace

range searching data structures as subroutines, it is illustrative to at least briefly mention a few

sample applications.

Spanning trees (and triangulations) with low crossing number. A series of papers [2, 10,

32, 38, 52] addressed the construction of spanning trees such that the maximum number of edges

crossed by a hyperplane is small. This problem has direct applications to a number of geometric

problems [3, 52]. We obtain the first O(n logn)-time algorithm that attains asymptotically optimal

worst-case crossing number.

Corollary 7.1 Given n points in IRd, there is an O(n logn)-time Monte Carlo algorithm to compute

a spanning tree with the property that any hyperplane crosses at most O(n1−1/d) tree edges w.h.p.(n).

For d = 2, we can ensure that the spanning tree is planar.

Proof: The result follows directly from Theorems 3.2 and 5.3: for each cell in the partition tree,

we just select a constant (O(b)) number of edges to connect the subsets at the children.

In the d = 2 case, we can ensure that the spanning tree has no self-intersection, because our

partition tree guarantees the disjointness of the children’s cells: At each node v, we select connecting

edges that lie outside the convex hulls of the children’s subsets. For example, this can be done naively

by triangulating the region between the convex hull of P (v) and the convex hull of the children’s

subsets, and then picking out appropriate edges; the required time is linear in |P (v)|. The convex

hulls themselves can be computed by merging bottom-up. The total time is O(n logn). 2

A related combinatorial problem is to find a Steiner triangulation with low crossing number for

a 2-dimensional point set. The best upper bound known is O(
√
n logn) [6], which is obtained by

combining spanning trees with low crossing number and a result of Hershberger and Suri [36] for

simple polygons. We obtain the following new theorem:

Corollary 7.2 Given a set P of n points in IR2, there exists a triangulation of O(n) points which

include P , with the property that any line crosses at most O(
√
n) edges.

Proof: The result follows directly from Theorem 3.2, using again the property that our partition

tree guarantees disjointness of the children’s cells: We introduce Steiner points at each vertex of

every cell in the tree. At each node v, we shrink the children’s cells slightly and triangulate the

“gap” between the cell at v and the children’s cells, which has constant (O(b)) complexity. 2

Multilevel data structures. Many query problems are solved using multilevel partition trees,

where we build secondary data structures for each canonical subset and answer a query by identify

relevant canonical subsets and querying their corresponding secondary structures. The corollary

below encapsulates the main property of our partition tree for multilevel applications, and is a direct

consequence of Theorems 4.1 and 5.3:

Corollary 7.3 Given n points in IRd,
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(i) we can form O(n) canonical subsets of total size O(n logn) in O(n logn) time, such that the

subset of all points inside any query simplex can be reported as a union of disjoint canonical

subsets Ci with
∑

i |Ci|1−1/d ≤ O(n1−1/d log n) in time O(n1−1/d log n) w.h.p.(n);

(ii) for any fixed γ < 1 − 1/d, we can form O(n) canonical subsets of total size O(n log log n) in

O(n logn) time, such that the subset of all points inside any query simplex can be reported as a

union of disjoint canonical subsets Ci with
∑

i |Ci|γ ≤ O(n1−1/d) in time O(n1−1/d) w.h.p.(n).

For example, we can get the following results:

Corollary 7.4 Given n line segments in the plane, there is a data structure with

(a) O(n log2 n) preprocessing time and O(n logn) space such that we can report the k intersections

with a query line in O(
√
n logn+ k) expected time;5

(b) O(n log3 n) preprocessing time and O(n log2 n) space such that we can report the k intersections

with a query line segment in O(
√
n log2 n+ k) expected time;

(c) O(n log3 n) preprocessing time and O(n log2 n) space such that we can find the first intersection

by a query ray in O(
√
n log2 n) expected time.

Specifically, (a) follows by applying Corollary 7.3(i) twice; (b) follows by applying Corollary 7.3(i)

once more; and (c) follows from (b) by a simple randomized reduction (e.g., [17]). For (c), the

previous result by Agarwal [3] had O(nα(n) log4 n) space and O(
√
nα(n) log2 n) query time (for

nonintersecting segments, his bounds of O(n log3 n) space and O(
√
n log2 n) query time are still

worse than ours).

For another example, we get the following result by applying Corollary 7.3(i) d+ 1 times:

Corollary 7.5 Given n simplices in IRd, there is a data structure with O(n logd+1 n) preprocess-

ing time and O(n logd n) space, such that we can find all simplices containing a query point in

O(n1−1/d logd n) expected time; and we can find all simplices contained inside a query simplex in

O(n1−1/d logd n) expected time.

In contrast, previous methods [39, 42] had nO(1) preprocessing time, O(n log2d n) space,

and O(n1−1/d logd n) query time; or O(n1+ε) preprocessing time, O(n logO(1) n) space,

and O(n1−1/d logO(1) n) query time; or O(n2O(
√
logn)) preprocessing time and space, and

O(n1−1/d2O(
√
logn)) query time.

Other problems can be solved in a similar way, e.g., intersection searching among simplices in

IRd.

Applications of the shallow case. Halfspace range emptiness dualizes to membership queries

for an intersection P of n halfspaces: decide whether a query point lies in P. The problem is a

special case of ray shooting in a convex polytope: find the intersection of a query ray with P. In

turn, ray shooting queries are special cases of j-dimensional linear programming queries: find a point

5For simplicity, we state expected time bounds rather than high-probability bounds in this section, although some
can be made high-probability bounds with more care. In the expected bounds, we assume that the query objects are
independent of the random choices made by the preprocessing algorithm.
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in P that is extreme along a query direction and lies inside a query j-flat. The author [17] (see also

[50]) has given a randomized reduction of linear programming queries to halfspace range reporting

queries in the case when the output size k is small (O(logn)). This reduction does not increase the

asymptotic time and space bounds w.h.p. if the query time bound grows faster than nε for some

fixed ε > 0. Exact nearest neighbor search (finding the closest point in a given point set to a query

point under the Euclidean metric) reduces to ray shooting in one higher dimension by the standard

lifting map. Theorems 6.3 and 6.6 thus imply:

Corollary 7.6 For d ≥ 4 even, there are data structures for halfspace range emptiness queries for n

points in IRd, for ray shooting and linear programming queries inside the intersection of n halfspaces

in IRd, and exact nearest neighbor queries of n points in IRd−1, with O(n logn) preprocessing time,

O(n) space, and O(n1−1/bd/2c) expected query time.

Trade-offs. Thus far, we have focused exclusively on linear-space data structures. By combining

with a large-space data structure with logarithmic query time, one can usually obtain a continuous

trade-off between space and query time. Specifically, such a trade-off for halfspace range counting,

for example, can be obtained through the following corollary:

Corollary 7.7 Suppose there is a d-dimensional halfspace range counting data structure for point

sets of size at most B with P (B) preprocessing time, S(B) space, and Q(B) (expected) query time.

Then there is a d-dimensional halfspace range counting data structure for point sets of size at most

n with

(i) O(n/B)P (B) + O(n logn) preprocessing time, O(n/B)S(B) + O(n) space, and

O(n/B)1−1/dQ(B) +O(n/B)1−1/d expected query time, assuming B < n/ logω(1) n.

(ii) O(n/B)dP (B)+(n/B)dB) preprocessing time, O(n/B)dS(B)+O((n/B)dB) space, and Q(B)+

O(log(n/B)) (expected) query time.

Proof: Part (i) is an immediate consequence of Theorems 4.2 and 5.3. Part (ii) is known and

follows from a direct application of hierarchical cuttings [22] (in particular, see [42, Theorem 5.1]).

2

As space/query-time tradeoffs are already known [42], we look instead at preprocessing-

time/query-time trade-offs, which are more important in algorithmic applications and where we

get new results. We explain how such a trade-off can be obtained through the above corollary.

Interesting, iterated logarithm arises:

Corollary 7.8 There is a d-dimensional halfspace range counting data structure with O(m2O(log
∗ n))

preprocessing time and O((n/m1/d)2O(log
∗ n)) expected query time for any given m ∈

[n logn, nd/ logd n].

Proof: We first consider the extreme cases when m is Θ(n log n) or Θ(nd/ logd n). Assume induc-

tively that there is a data structure for problem size ni with preprocessing and query time

P (ni) ≤ cini logni, Q(ni) ≤ cin
1−1/d
i / log1/d ni.
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Set ni+1 so that log ni+1 = n
1−1/d
i / log1/d ni. Apply Corollary 7.7(ii) to get a data structure for

problem size ni+1, with preprocessing and query time

P (ni+1) ≤ O((ni+1/ni)
dcini log ni) = O(cin

d
i+1/ log

d ni+1),

Q(ni+1) ≤ cin
1−1/d
i / log1/d ni +O(log ni+1) = O(logni+1).

Next, set ni+2 so that logni+2 = nd−1i+1 / log
d ni+1. Apply Corollary 7.7(i) to get a data structure for

problem size ni+2, with preprocessing and query time

P (ni+2) ≤ O((ni+2/ni+1)cin
d
i+1/ log

d ni+1 + ni+2 log ni+2) = O(cini+2 logni+2),

Q(ni+2) ≤ O((ni+2/ni+1)
1−1/dci logni+1) = O(cin

1−1/d
i+2 / log1/d ni+2).

Thus, the induction carries through with ci+2 ≤ O(1)ci, implying ci ≤ 2O(i). Since ni ≤ logO(1) ni+1,

the number of iterations to reach problem size n is O(log∗ n), so we conclude that there is a data

structure with preprocessing time O(2O(log
∗ n)n logn) and query time O(2O(log

∗ n)n1−1/d/ log1/d n).

To obtain the full trade-off, we use one final application of Corollary 7.7(ii), choosing B so that

Bd−1/ logB = nd/m, to get preprocessing time O(2O(log
∗ n)(n/B)dB logB) = O(2O(log

∗ n)m) and

query time O(2O(log
∗ n)B1−1/d/ log1/dB + log n) = O(2O(log

∗ n)n/m1/d). 2

The above result is reminiscent of Matoušek’s O(n4/32O(log
∗ n))-time algorithm [42] for Hopcroft’s

problem in 2-d: given n points and n lines in the plane, find a point-line incidence (or similarly count

the number of point-above-line pairs). Matoušek’s solution required only cuttings and managed

to avoid partition trees because the problem is off-line, i.e., the queries are known in advance.

Corollary 7.8 can be viewed as an extension to on-line queries.

(Incidentally, we pick the example of halfspace range counting in the above, because for simplex

range counting, the current best large-space data structure needed in Corollary 7.8(ii) has extra

logarithmic factors [42], so our new method can eliminate some but not all logarithmic factors.)

We can obtain similar results for halfspace range emptiness:

Corollary 7.9 Let d ≥ 4 be even. Suppose there is a d-dimensional halfspace range emptiness data

structure for point sets of size at most B with P (B) (expected) preprocessing time, S(B) (expected)

space, and Q(B) (expected) query time. Then there is a d-dimensional halfspace range emptiness

data structure for point sets of at most size n with

(i) O(n/B)P (B)+O(n log n) (expected) preprocessing time, O(n/B)S(B)+O(n) (expected) space,

and O(n/B)1−1/bd/2cQ(B) +O(n/B)1−1/bd/2c expected query time, assuming B < n/ logω(1) n.

(ii) O(n/B)dP (B) + O((n/B)dB) expected preprocessing time, O(n/B)dS(B) + O((n/B)dB) ex-

pected space, and Q(B) +O(log(n/B)) expected query time.

Proof: Part (i) is a consequence of Theorems 6.4 and 6.6. However, one technical issue arises: for

emptiness queries, we could purport that the range is nonempty if the query cost exceeds the stated

limit, but this would only yield a Monte Carlo algorithm. We describe a Las Vegas alternative.

Store a random sample R of size r in any halfspace range emptiness data structure with O(r log r)

preprocessing time, O(r) space, and O(r1−δ) query time for some fixed δ > 0. If the query halfspace

h is not empty with respect to R, we are done. Otherwise, h is O((n/r) logn)-shallow w.h.p.(n) by
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a Chernoff bound (or the ε-net property of random samples [35, 44, 47]). Then w.h.p.(n), the query

cost from Theorem 6.4 is O((n/B)1−1/bd/2c + (n/(rB)) logO(1) n). Setting r = (n/B)1/bd/2c logc n for

a sufficiently large constant c yields the desired bound. (Note that for d ≥ 6, the auxiliary data

structure for R is unnecessary as δ = 0 still works.)

Part (ii) follows from a direct application of hierarchical cuttings in the shallow context where

we only need to cover a lower envelope of n halfspaces (although we are not aware of any references

explicitly stating the result, see [11, 49] for the general idea, which involves just repeated applications

of an X-sensitive shallow cutting lemma as in Lemma 6.1). 2

We can proceed as in the proof of Corollary 7.8 to get a preprocessing/query-time trade-off for

halfspace range emptiness. The author [19] has given another randomized reduction from linear

programming queries to halfspace range emptiness. This reduction does not increase the asymptotic

expected query time if it grows faster than nε, and does not increase the asymptotic preprocessing

time if it grows faster than n1+ε. Therefore:

Corollary 7.10 For d ≥ 4 even, there is a d-dimensional halfspace range emptiness data structure

with O(m2O(log
∗ n)) preprocessing time and O((n/m1/bd/2c)2O(log

∗ n)) expected query time for any

given m ∈ [n logn, nbd/2c/ logbd/2c n]. The same result holds for ray shooting and linear programming

queries inside the intersection of n halfspaces in IRd, and exact nearest neighbor queries of n points

in IRd−1, assuming m ∈ [n1+δ, nbd/2c−δ] for some fixed δ > 0.

One algorithmic application. Improved data structures often lead to improved algorithms for

off-line problems. We close with just one such example: Given n points, we can find the extreme

points (the vertices of the convex hull) by answering n linear programming queries. By choosing

m = n2−2/(bd/2c+1), we get the following corollary, improving the best previous worst-case time

bound of O(n2−2/(bd/2c+1) logO(1) n) [18, 41].

Corollary 7.11 For d ≥ 4 even, we can compute the extreme points of a given set of n points in

IRd in O(n2−2/(bd/2c+1)2O(log
∗ n)) expected time.

By Seidel’s algorithm [51], we can construct the convex hull itself in additional O(f log n) time

where f denotes the output size. (For f < n, we could also slightly speed up the convex hull

algorithm in [18] for d ≥ 6 even, but an algorithm in [20, Theorem 6.3] is faster in this case.)

8 Conclusions

The new results of this paper completely subsume most of the results from Matoušek’s previous

paper [42], at least if randomized algorithms are acceptable (which are to most researchers nowadays).

Although we have resolved some of the main open questions concerning upper bounds, there are still

a few minor issues. For example, is it possible to eliminate the iterated logarithmic factor in the

preprocessing-time/query-time tradeoffs (see Corollary 7.8)? For halfspace range reporting for even

d, can one get O(n) space and O(n1−1/bd/2c + k) query time, without any extra iterated logarithmic

factors in either term (see the remarks after Theorem 6.4)? More importantly, for halfspace emptiness

for odd d, can one get O(n) space and O(n1−1/bd/2c) query time?

In the other direction, for simplex range searching, can one prove a tight Ω(n1−1/d) lower bound

on the query time for linear-space data structures in, say, the semigroup model [21], without any
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extra logarithmic factor? Can one prove lower bounds showing in some sense that logarithmic-factor

increase is necessary for multilevel partition trees (see Corollary 7.3), or that extra logarithmic factors

are necessary in the query time in the case of large near-O(nbd/2c) space [42]? More importantly, can

one prove near optimal lower bounds for halfspace range emptiness?

It seems plausible that our approach could be adapted to other kinds of partition trees for

semialgebraic sets [9, 7] in some cases (where the complexity of arrangements or lower envelopes in

d − 1 dimensions is strictly less than in d dimensions). We do not know yet if our approach could

lead to new results for dynamic partition trees that support insertions and deletions.
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A On Chernoff Bounds

We briefly mention the form of Chernoff bounds that we use. In our applications, we want high-

probability bounds but do not need sharp concentrations (constant factor approximations suffice),

so simplified versions of the bounds will do. One of the more commonly seen versions of the Chernoff

bound (e.g., see [46, pages 68–70]) appears as follows: If X is the sum of independent 0-1 variables,

e.g., it is binomially distributed, with E[X] = µ, then

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ
for any δ > 0;

Pr[X < (1− δ)µ] < e−µδ
2/2 for any 0 < δ ≤ 1.

The first probability is at most 2−(1+δ)µ if δ > 2e − 1 (e.g., see [46, page 72]). Thus, Pr[X >

2eµ+ c0 logN ] < 1/N c0 , and we can write X ≤ O(µ+ logN) w.h.p.(N).

The second probability for δ = 1/2 is at most e−µ/8 < 1/N c0 if µ > 8c0 logN . Otherwise,

µ/2 − 4c0 logN ≤ 0. In any case, Pr[X < µ/2 − 4c0 logN ] < 1/N c0 , and we can write µ ≤
O(X + logN) w.h.p.(N).

The first bound holds more generally when X is the sum of independent variables Xi where each

Xi is bounded between 0 and 1. (If the variables are bounded by some other value, we can re-scale

before applying.) The first bound also holds when X is hypergeometrically distributed, i.e., it is the

number of elements of R in {1, . . . , `} where R is a random subset of size i from {1, . . . , t} chosen by

sampling without replacement for a given i, `, t (e.g., see [37]).
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