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Abstract

We present three results related to dynamic convex hulls:

• A fully dynamic data structure for maintaining a set of n points in the plane so that we
can find the edges of the convex hull intersecting a query line, with expected query and
amortized update time O(log1+ε n) for an arbitrarily small constant ε > 0. This improves
the previous bound of O(log3/2 n).

• A fully dynamic data structure for maintaining a set of n points in the plane to support
halfplane range reporting queries in O(log n+k) time with O(polylog n) expected amortized
update time. A similar result holds for 3-dimensional orthogonal range reporting. For
3-dimensional halfspace range reporting, the query time increases to O(log2 n/ log log n+k).

• A semi-online dynamic data structure for maintaining a set of n line segments in the plane,
so that we can decide whether a query line segment lies completely above the lower envelope,
with query time O(log n) and amortized update time O(nε). As a corollary, we can solve
the following problem in O(n1+ε) time: given a triangulated terrain in 3-d of size n, identify
all faces that are partially visible from a fixed viewpoint.

1 Introduction

1.1 Problem 1: Dynamic planar convex hulls with line intersection and related
queries

Dynamic planar convex hull has long been a favorite topic in classical computational geometry. The

problem is to design a data structure that can maintain a set S of n points in the plane under

insertions and deletions and that can answer queries about the convex hull CH(S). Typical kinds of

queries include:

(a) find the most extreme vertex in CH(S) (i.e., the most extreme point in S) along a query

direction;

(b) decide whether a query line intersects CH(S) (a special case of (a));

(c) find the two vertices of CH(S) that form tangents with a query point outside the hull;

∗A preliminary version of this paper has appeared in Proc. 27th ACM Sympos. Comput. Geom., 2011.
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Figure 1: (Left) Two convex hulls and an illustration of a type-(h) query. (Right) The lower envelope

of a set of segments and an illustration of type-(v) and type-(vi) queries.

(d) find the two vertices adjacent to a given vertex of CH(S) (a special case of (c)).

The first polylogarithmic method was discovered by Overmars and van Leeuwen [33] in 1981: their

hull tree data structure can answer queries in O(log n) time and support updates in O(log2 n) time.

For a long time this O(log2 n) bound had remained unsurpassed, until the author [11] in 2001

proposed a new line of attack and obtained a method with O(log1+ε n) amortized update time

that can answer the above queries (a)–(d) in O(log n) time for any fixed constant ε > 0. (By

balancing, one can also get 2O(
√

log logn) log n query and amortized update time with this approach.)

Shortly afterwards, Brodal and Jacob [7] improved the amortized update time to O(log n log logn) for

insertions and O(log n log log log n) for deletions, by following the same approach and incorporating

some additional ideas. Brodal and Jacob continued much further with the approach and in 2002 [8]

eventually achieved the coveted O(log n) bound for both query and amortized update time. The

result is optimal in standard decision tree models. The final method is quite complicated—the current

draft of the full paper exceeds 100 pages—but aside from this “minor” drawback, the dynamic planar

convex hull problem would appear to be fully solved, at least for queries of types (a)–(d).

However, there is a second group of queries for which optimal O(log n) bounds are not yet known:

(e) find the intersection of CH(S) with a vertical query line;

(f) decide whether a query point lies inside CH(S) (a special case of (e));

(g) find the intersection of CH(S) with an arbitrary query line;

(h) find the two outer common tangents (called the bridges) and the two separating common

tangents for two disjoint convex hulls CH(S1) and CH(S2) of given point sets S1 and S2. (See

Figure 1(left).)

All these queries arise naturally in many applications. For example, answering linear programming

queries in a dynamic set of halfplanes in 2-d can be reduced to the above kinds of queries by

duality [6]. (In fact, queries (e)–(h) are all related to linear programming.)

What distinguishes the first group of queries (a)–(d) from the second group (e)–(h) is that the

former is decomposable [5], i.e., if S is partitioned into subsets S1 and S2, the answer to a query

for S can be obtained from the answers to the query for S1 and the query for S2 in constant time.

Queries (e)–(h) do not directly satisfy the decomposability property: Overmars and van Leeuwen’s

result still holds, but the author’s approach currently only gives a solution with O(log3/2 n) query
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and amortized update time [11], while Brodal and Jacob’s subsequent papers do not address this

group of queries at all.

Since Brodal and Jacob’s papers, no further progress has been reported. (Demaine and

Pǎtraşcu [20] had results on the word RAM model for integer input, but the present paper will

focus on results on the real RAM.) In this paper we will revisit the problem:

Problem 1 Design a data structure to maintain a set of points in the plane under insertions and

deletions so that queries of types (e)–(h) above can be answered efficiently.

New result. We describe a solution with query and amortized update time O(log1+ε n) for any

fixed ε > 0 (for the inquisitive readers, the precise bound is actually 2O(
√

log logn log log logn) log n).

Although the solution follows the same approach as in the author’s paper [11], using exactly the

same data structure, and requires only one major new idea in the query algorithm, we believe the

result is still interesting because of the fundamental nature of the problem.

1.2 Problem 2: Dynamic halfplane range reporting

Next, we turn to another related fundamental problem: dynamic halfplane range reporting. The goal

here is to maintain a set S of n points in the plane under insertions and deletions so that we can

efficiently report all points inside a query halfplane. We let k denote the number of reported points,

i.e., the output size.

This problem can be solved using a dynamic convex hull data structure, by repeatedly finding an

extreme point along the direction defined by the query halfplane, deleting it, and re-inserting it back

later. This gives O(log n+ k log2 n) query time with Overmars and van Leeuwen’s data structure, or

O((1+k) log n) with Brodal and Jacob’s. With Overmars and van Leeuwen’s structure, one can more

directly obtain O((1 + k) log n) query time. However, neither approach achieves linear dependency

in the output size k, which is much desirable in practice:

Problem 2 Design a data structure to maintain a set of points in the plane under insertions and

deletions so that halfplane range reporting queries can be answered in O(polylog n+ k) time.

Static data structures achieving O(log n + k) query time are known with optimal O(n log n)

preprocessing time [10, 17], but the best dynamic data structure with O(log n + k) query time

currently requires O(nε) amortized update time [4].

New result. We show that O(log n + k) query time is possible with polylogarithmic amortized

expected update time; the precise update bound is O(log6+ε n). The expectation is with respect

to internal randomization in the update algorithm; the result holds for worst-case point sets and

worst-case update sequences. Our idea is to move away from both the approach by Overmars and

van Leeuwen [33] and the 2-d dynamic convex hull approach initiated by the author [11], but instead

adapt an approach from a different paper of the author on 3-d convex hulls [14]. That paper presented

the first data structure for dynamic 3-d convex hull queries that achieves polylogarithmic query and

update time, namely, O(log2 n) query time and O(log6 n) amortized expected update time. It was

already noted that 3-d halfspace range reporting queries can be answered in O(log2 n+ k log n) time

with that data structure [14]. We use additional (simple) ideas to bring the query time down to

O(log n+ k) in 2-d.
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Extensions to 3-d dynamic halfspace range reporting and orthogonal range reporting.

Our ideas imply a weaker O(log2 n/ log logn + k) query bound for dynamic 3-d halfspace range re-

porting, which has applications to 2-d circular range reporting and 2-d k-nearest-neighbors queries

[2, 10]. Note that the O(log2 n/ log log n) query bound is currently the best known even in the

insertion-only case for k = 1. Perhaps more interestingly, our ideas imply the first data structure

for dynamic 3-d orthogonal range reporting (reporting all points inside a query axis-aligned box)

with O(log n + k) query time and polylogarithmic amortized expected update time, by exploiting

the similarity between 3-d halfspace range reporting and 3-d dominance range reporting. Conse-

quently, we obtain the current-record query time for dynamic orthogonal range reporting in any

constant dimension d ≥ 3 with polylogarithmic update time: O((log n/ log logn)d−3 log n+ k) query

time with O(logd+6+ε n) amortized expected update time. Compare this to Mortensen’s previous

result [30], which has query time worse by almost a log factor, though with a better update bound:

O((log n/ log log n)d−1 + k) query time with O(logd−1−1/8+ε n) update time. (See also [31] and refer-

ences therein for more on dynamic orthogonal range reporting; see [16] for recent developments on

static orthogonal range reporting.)

1.3 Problem 3: Semi-dynamic lower envelopes of line segments

Lastly, we explore a generalization of dynamic planar convex hulls: dynamic lower envelopes of line

segments. The goal is to maintain a set S of n possibly intersecting line segments in the plane under

insertions and deletions so that we can efficiently answer queries about the lower envelope LE(S).

The lower envelope is defined as the boundary of the region of all points q that lie above at least

one segment of S. This boundary is x-monotone and consists of pieces of segments of S and extra

connecting vertical edges. (See Figure 1(right).) Some natural types of queries include:

(i) compute the intersection of LE(S) with a vertical query line;

(ii) decide whether a point is above or below LE(S) (a special case of (i));

(iii) decide whether a query line segment is completely below LE(S);

(iv) given a query ray originating from below LE(S), compute the first point on LE(S) that is hit

by the ray;

(v) decide whether a query line segment q is completely above LE(S) (i.e., whether LE(S ∪{q}) =

LE(S));

(vi) given a query ray originating from above LE(S), compute the first point on LE(S) that is hit

by the ray.

The problem generalizes dynamic convex hulls in more ways than one. For example, if all the

segments degenerate to points, then query (iii) for lines reduces to an extreme point query. On the

other hand, if all the segments are lines, then the lower envelope is dual to the upper hull [6], and

query (v) for lines reduces to testing whether a point lies inside a convex hull.

It is already known that queries (i)–(ii) can be solved efficiently in polylogarithmic amortized time

for lower envelopes of arbitrary x-monotone curves (of constant description complexity) by adapting

the author’s technique for dynamic 3-d convex hulls [14]. For line segments in the insertion-only

case, queries (iii)–(iv) can still be solved in polylogarithmic time easily by the so-called logarithmic
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method [5], because such queries are decomposable (a segment is completely below LE(S1 ∪ S2)

iff it is completely below both LE(S1) and LE(S2)). For line segments with both insertions and

deletions, one can also obtain a polylogarithmic solution for (iii)–(iv) using a dynamic segment tree

approach [18, 34] (details are left as an exercise to the reader). However, despite superficial likeness,

queries (v)–(vi) are nondecomposable and appear markedly more difficult even in the insertion-only

case—which is all the more reason why we will study them in this paper:

Problem 3 Design a data structure to maintain a set of line segments in the plane under insertions

only so that queries of types (v)–(vi) can be answered efficiently.

Several approaches can get sublinear O(
√
n polylog n) query and update time. For example, as

suggested by Pankaj Agarwal (personal communication, 2002), we can divide the plane into
√
n slabs

and maintain a dynamic lower envelope of lines and a static lower envelope of segments in each slab;

this approach works in the fully dynamic setting. Alternatively, in the insertion-only case, following

a strategy from [12], we can maintain one single static lower envelope which is rebuilt after every
√
n

insertions.

New result. We break the
√
n barrier by presenting a new data structure with O(log n) query

time for (v), O(log2 n) query time for (vi), and O(nε) amortized update time for any fixed ε > 0. (By

balancing, we can also get 2O(
√

logn) query and update time.) The result extends to the semi-online

update setting [12, 21], where during each insertion, we know the position of the matching deletion

operation in the update sequence. In particular, the semi-online case includes the offline case where

the entire update sequence is known in advance.

Application to partial visibility in terrains. Problem 3 has at least one interesting algorithmic

application: given a triangulated terrain of size n in 3-d (i.e., a polyhedron such that each vertical

line intersects the polyhedron once and all faces are triangles), and given a viewpoint or viewing

direction q, classify each face as either “partially visible” or “totally hidden” with respect to q. This

problem has obvious connections to hidden surface removal and occlusion culling: it provides a useful

preprocessing step to speed up hidden-surface-removal algorithms. An advantage in studying this

problem is that the output size, i.e., the number of partially visible faces, is obviously at most n,

even if the entire visibility map may have quadratic combinatorial complexity. Grove, Murali, and

Vitter [24] (see also [27]) for example have studied the similar problem of identifying partially visible

faces among n disjoint axis-aligned rectangles in 3-d and gave an O(n log n) algorithm. The partial

visibility problem for the terrain case was explicitly mentioned in a paper by Kitsios et al. [27], who

noted an O(n3/2α(n) log n) algorithm (or more precisely, O(n
√
kα(k) log n) if there are k partially

visible faces). We show in Section 4 that the terrain problem can be reduced to Problem 3 for an

(offline) sequence of insertions and type-(v) queries and thus can be solved in time O(n1+ε) (or more

precisely, n2O(
√

logn)) by our new data structure, improving Kitsios et al.’s previous result.

Note that the superficially similar problem of classifying each face as “partially hidden” vs.

“totally visible” is easier, again due to decomposability: a set S1 ∪ S2 of objects partially hides an

object q iff S1 partially hides q or S2 partially hides q. (For the terrain case, it is possible to solve

this version of the problem in O(n polylog n) time using a 2-d lower envelope data structure with

insertions and type-(iii) queries.)
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1.4 Organization

The three problems are solved in the three sections to follow, which are independent of one another

and can be read in any order one wishes. The solutions to Problems 1 and 2 are more technical, being

reliant on methods from previous papers [11, 14]; the solution to Problem 3 is the most original, and

arguably the most interesting—it involves a clever new variant of the segment tree. By the end of

this paper, all of the three current dynamic convex hull techniques—Overmars and van Leeuwen’s

hull trees [33] and the author’s approaches to dynamic 2-d convex hulls [11] and dynamic 3-d convex

hulls [14]—will have been encountered.

2 Dynamic Planar Convex Hulls with Line Intersection Queries

In this section, we solve Problem 1. We focus on one representative type of queries (which we call

type-(e) queries in the Introduction): computing the intersection of the convex hull with a vertical

query line. It suffices to consider the upper hull. If the input points are (ai, bi) and the query line is

x = m, then the problem is equivalent to finding a line y = ξx − η such that bi ≤ ξai − η for all i,

while minimizing ξm− η. We work in dual space [6] and the input points are transformed into lines

{(ξ, η) : η = aiξ − bi}. The problem then reduces to linear programming (LP) queries: maintain a

set S of lines in IR2 under n insertions and deletions so that given a query direction q, we can find a

point on the lower envelope LE(S) that is extreme along q. Denote the desired point by ans(S, q).

We will actually solve a slight generalization of LP queries for two lower envelopes: for any two

sets S and S′ currently maintained, find ans(S ∪ S′, q) for a query direction q. As a subroutine, we

will include a solution of the previously solved problem of lowest line queries: given a query vertical

line q, find LE(S) ∩ q. (In primal space, these correspond to extreme point queries.)

The previous data structure. The data structure we use is identical to one from the author’s

previous paper [11]; the innovation lies in the query algorithm. We summarize all the properties

we need about the data structure in the theorem below. Given this theorem as a black box, our

solution will be self-contained. The theorem itself was obtained by a combination of a base-b version

of the logarithmic method [5, 11], a known deletion-only data structure [26], and a dynamic bO(1)-ary

version of the interval tree [6, 11].

Theorem 2.1 ([11]) Let b ≥ log n be any fixed value. For a dynamic set S of lines in IR2 that is

initially empty and undergoes n insertions and deletions, we can maintain a tree T (S) of bO(1) degree

and O(logb n) height in O(logb n log n) amortized time with the following properties (see Figure 2):

1. Each node v stores a vertical slab σv. At each internal node v, the bO(1) children’s slabs partition

the slab at v and are maintained in a standard search tree. At a leaf v, the slab does not contain

any vertex of LE(S).

2. Each node v stores a list Sv of bO(1) lines of S. The lists undergo a total of O(n logb n) updates

over time.

3. If v1, . . . , vi is a path from the root (i ≥ 2), then LE(S) ∩ ∂σvi coincides with LE(Sv1 ∪ · · · ∪
Svi−1) ∩ ∂σvi;1 in other words, the lowest line at either boundary of σvi must be in the list Svj

1Throughout this paper, ∂X denotes the boundary of a set X; for example, in the case that X is a two-dimensional
vertical slab, ∂X is the union of two vertical lines.
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LE(Sv3)

σv3

σv2
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σv

Figure 2: (Left) The data structure consists of a degree-bO(1) tree of slabs, where each node v

stores a list Sv of bO(1) lines. (Right) A path v1, v2, v3, . . . in the tree and the lower envelopes of

Sv1 , Sv2 , Sv3 , . . .; property 3 of Theorem 2.1 is satisfied in this example.

of some proper ancestor vj of vi.

We store each list Sv in an auxiliary data structure that supports updates in U0(bO(1)) amortized

time, lowest line queries in Qlow0(bO(1)) time, and LP queries (over two sets) in Qlp0(bO(1)) time. By

property 2 of Theorem 2.1, each insertion/deletion causes an amortized O(logb n) number of updates

to the lists Sv, and thus the amortized update time of the whole data structure is

U(n) = O(logb n log n+ U0(bO(1)) logb n). (1)

Answering lowest line queries with this data structure is relatively straightforward: We find the

root-to-leaf path consisting of all nodes v1, . . . , v` whose slabs contain the query vertical line q. The

answer is the line defining LE(S) ∩ ∂σv` , which by property 3 of Theorem 2.1 is the lowest among

the lowest lines of LE(Svi) ∩ ∂σv` over the O(logb n) nodes vi. Thus, we get query time

Qlow(n) = O(Qlow0(bO(1)) logb n). (2)

The new query algorithm. For LP queries, we need the following locality property. This property

is implicitly used in known binary search algorithms for solving LP over the intersection of two convex

polygons, and related problems such as computing common tangents between linearly separated

convex polygons [33, 34].

Lemma 2.2 Let S and S′ be two sets of lines in IR2. Given two vertical lines ` and `′, and a query

direction q, knowing the lowest line of S at ` and the lowest line of S′ at `′ only (but not knowing S

and S′ themselves), we can deduce in O(1) time which side of ` contains the ans(S ∪ S′, q) or which

side of `′ contains the ans(S ∪ S′, q) (but not necessarily both).

Proof: By applying a linear transformation (x, y) 7→ (x, y −mx) for a suitable value m, we can

make q the vertical upward direction. Let v = LE(S) ∩ ` and v′ = LE(S′) ∩ `′. W.l.o.g., suppose `

is to the left of `′ and v is higher than v′. If the lowest line of S′ at `′ has positive slope, then the
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Figure 3: Deciding which side to prune when computing the highest point of LE(S ∪ S′).

answer must be to the right of ` (see Figure 3(left)). Otherwise, the answer must be to the left of `′

(see Figure 3(right)). 2

By applying the above lemma a constant number of times, we immediately obtain this slight

generalization:

Corollary 2.3 Let S and S′ be two sets of lines in IR2. Given two partitions Σ and Σ′ of IR2 into

O(1) disjoint vertical slabs, and a query direction q, knowing the lowest lines of S at all dividing

vertical lines in Σ and the lowest lines of S′ at all dividing vertical lines in Σ′, we can deduce in

O(1) time which slab of Σ contains ans(S ∪ S′, q) or which slab of Σ′ contains ans(S ∪ S′, q) (but

not necessarily both).

We now describe how to answer an LP query, i.e., find ans(S ∪ S′, q) given a data structure for

S and a data structure for S′. We maintain a sequence of nodes v1, v2, . . . in T (S) and v′1, v
′
2, . . . in

T (S′) whose slabs contain ans(S ∪ S′, q). We start with the root v1 of T (S) and v′1 of T (S′) and

initialize i = i′ = 1. In each iteration, let

Z = Sv1 ∪ · · · ∪ Svi , Z ′ = S′v′1
∪ · · · ∪ S′v′

i′
, and z = ans(Z ∪ Z ′, q).

We will explain how to compute z later. In O(log b) time, locate the child slab σ of σvi and the

child slab σ′ of σv′
i′

containing z.2 Compute the lowest lines of Z at ∂σ and the lowest lines of Z ′ at

∂σ′, by querying the O(logb n) subsets Sv1 , . . . , Svi , S
′
v′1
, . . . , S′v′

i′
in O(Qlow0(bO(1)) logb n) time. By

property 3 of Theorem 2.1, these coincide with the lowest lines of S at ∂σ and the lowest lines of

S′ at ∂σ′. Apply Corollary 2.3 for the partition formed by ∂σ (2 vertical lines, 3 vertical slabs) and

the partition formed by ∂σ′; the outcome of the corollary for S, S′ must be the same as the outcome

for Z,Z ′. Recall that σ and σ′ both contain z = ans(Z ∪ Z ′, q). Therefore, in O(1) time, we can

deduce one of the following: that σ contains ans(S ∪S′, q) or that σ′ contains ans(S ∪S′, q). In the

former case, we set vi+1 to the child of vi with slab σ and increment i; in the latter, we set v′i′+1 to

the child of v′i′ with slab σ′ and increment i′. When both vi and v′i′ are leaves, we can stop, as the

answer is defined by the lowest lines at ∂σvi and ∂σv′
i′

. The number of iterations is at most twice

the tree height, i.e., O(logb n).

It remains to provide a method to compute z in each iteration. The key idea is to view the

` = O(logb n) lower envelopes LE(Sv1), . . . ,LE(Svi),LE(S′v′1
), . . . ,LE(S′v′

i′
) as constraints in a convex

programming problem where the constraints are not given explicitly but are accessible only through

2In this sentence, the two unbounded slabs from the complement of σvi (resp. σv′
i′
) are considered possible child

slabs.
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certain oracles or primitive operations. (This idea was used in some previous papers, e.g., in a

geometric optimization technique by the author [13].) We first recall some facts about convex pro-

gramming in a constant dimension d: Given a set of N convex objects in IRd, suppose we want to

minimize a convex function over the intersection of these objects. Existing randomized algorithms

for LP-type problems [19, 35] can solve this problem using an expected linear number of primitive

operations. Only two types of primitive operations are required:

• violation test : decide whether a given point lies outside a given object; and

• basis evaluation: find the optimum over the intersection of d given objects.

It is known that an expected O(N) number of violation tests and an expected O(logN) number of

basis evaluations are sufficient.

In our setting, the objective function is linear, the convex objects are the polygons formed by

the lower envelopes of Sv1 , . . . , Svi , S
′
v′1
, . . . , S′v′

i′
, and N = i+ i′ = O(`). A violation test corresponds

to testing whether a given point lies above a lower envelope, which reduces to a lowest line query,

requiring Qlow0(bO(1)) time. A basis evaluation corresponds to an LP query over two subsets, requir-

ing Qlp0(bO(1)) time. We conclude that z can be computed in O(` ·Qlow0(bO(1)) + log ` ·Qlp0(bO(1)))

expected time. The total expected time over all iterations is

Qlp(n) = O(logb n · [Qlow0(bO(1)) logb n+Qlp0(bO(1)) log logb n]). (3)

Analysis. We can now obtain a near-logarithmic solution by bootstrapping. Assume the

availability of a solution with U0(n) ≤ ck(log n)1+1/k, Qlow0(n) ≤ ck log n, and Qlp0(n) ≤
ck(log n)1+1/k(log log n)k. We can use Overmars and van Leeuwen’s method for the base case k = 1

(alternatively we can use a more trivial base case with some extra bootstrapping steps). Substituting

into (1), (2), and (3) gives

U(n) = O(logb n log n+ ck(log b)1+1/k logb n) = O(log2 n/ log b+ ck log n(log b)1/k)

Qlow(n) = O(ck log b logb n) = O(ck log n)

Qlp(n) = O(logb n · [ck log b logb n+ ck(log b)1+1/k(log log b)k log logb n])

= O(ck log2 n/ log b+ ck log n(log b)1/k(log log n)k+1).

Choosing b with log b = (log n)k/(k+1) yields the improved bounds U(n) = O(ck(log n)1+1/(k+1))

and Qlp(n) = O(ck(log n)1+1/(k+1)(log log n)k+1). Thus, induction can be carried out if we set

ck+1 = O(ck), i.e., ck = 2O(k). We obtain update and query time 2O(k)(log n)1+1/k(log log n)k.

Setting k to an arbitrarily large constant is sufficient to give O(log1+ε n). Better still, setting

k =
√

log log n/ log log log n gives:

Theorem 2.4 There is a dynamic data structure for 2-d LP queries in the lower envelope of n lines

with 2O(
√

log logn log log logn) log n amortized update time and expected query time.

Remarks. For the above theorem, a naive upper bound on the space complexity is

2O(
√

log logn log log logn)n. The version of the data structure with O(log1+ε n) time can guarantee

O(n) space.

It is not important whether n denotes the number of updates or the size of S, since we can apply

the following standard trick: we maintain a counter for the number of updates, and whenever the

9



counter exceeds twice the current size of S, we rebuild by performing |S| insertions on an empty

data structure and reset the counter to |S|. Since a linear number of updates must occur between

two rebuilds, the amortized update time remains the same up to constant factors.

We can slightly simplify the algorithm to compute z by observing that in each iteration, Z differs

by the insertion of one constraint. If z does not violate the new constraint, then z does not change.

Otherwise, we know that the new z lies on the boundary of this new constraint, and it suffices to

solve a 1-d LP-type problem on this boundary. (In 1-d, LP reduces to finding the minimum of a set

of numbers, and the method becomes similar to the randomized optimization technique in [9].)

Extension to other queries. The problem of finding the intersection of the convex hull with an

arbitrary query line (type-(g) queries) dualizes to the following kind of queries: given a query point

q, find a point v on LE(S) to the right of q such that the line qv has the largest slope. This problem

is LP-type and Lemma 2.2 is still satisfied (we can first make q the origin by translation, and then

apply a projective transformation (x, y) 7→ (−1/x, y/x) to reduce the problem to the LP case with

the vertical upward direction). So the same method works.

The same applies to finding the intersection of the convex hull of P ∪P ′ with an arbitrary query

line for two dynamic point sets P and P ′. In particular, we can compute the two bridges (i.e., the

two outer common tangents) between two disjoint convex hulls if a separating line (e.g., a separating

common tangent) is given.

The problem of finding the two separating common tangents between two disjoint convex hulls

(to complete the solution of type-(h) queries) dualizes to computing the two intersections between

a lower envelope of a set S of lines and an upper envelope of a set S′ of lines. It suffices to find

the left intersection. An analog of Lemma 2.2 (where concerning S′, we replace “lower/lowest” with

“upper/highest”) is still satisfied, and we obtain the same result.

The same applies to LP queries over an intersection of arbitrary (lower and upper) halfplanes,

i.e., the region between the lower envelope of a set S of lines and the upper envelope of a set S′ of

lines. Here, the answer can be one of four possibilities: the optimum for the lower envelope alone or

for the upper envelope alone, or one of the two intersections between the two envelopes.

The approach here is not applicable to certain types of convex hull queries, for example, maintain-

ing the area or the perimeter of the convex hull, where currently only Overmars and van Leeuwen’s

technique is applicable.

3 Dynamic Halfplane Range Reporting

In this section, we solve Problem 2, dynamic halfplane range reporting in IR2. It suffices to consider

upper halfplanes. If the input points are (ai, bi) and the query halfspace is y ≥ ξx − η, then the

problem is equivalent to finding all i with bi ≥ ξai − η. We work in terms of the dual input lines

{(ξ, η) : η = aiξ− bi}, where the problem becomes the following: maintain a set of lines in IR2 under

insertions and deletions so that we can report all lines below a query point (ξ, η). We work with

the following related query problem called k-lowest-lines queries: given a query vertical line q and

an integer k, report the k lowest lines at q, in arbitrary order. (In primal space, this corresponds to

k-extreme-points queries.) Halfplane range reporting reduces to this problem by “guessing” k (e.g.,

see [10]): we use an increasing sequence of values for k and stop when an output line lies above the

query point. If k-lowest-lines queries can be answered in O(log n+ k) time, we can use the sequence
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Figure 4: (Left) A cutting T
(j)
i . One cell ∆ is shaded, for which we store a list L∆ of lines. The

data structure consists of O(log n logb n) such cuttings, one for each i = 1, . . . , dlog ne and j =

1, . . . , O(logb n)). (Right) The x-projection of several cuttings T
(j)
i ; a query requires searching among

these projected intervals over all j for a fixed i.

k = 2i log n, i = 0, 1, 2 . . . and obtain O(log n + k) time for a halfplane range reporting query with

output size k.

The previous data structure. The data structure we use is an adaptation of a previous one by

the author, originally for dynamic 3-d convex hulls [14]. We encapsulate all the properties we need

about the data structure in the theorem below. The theorem itself was obtained from a new deletion-

only “partial” data structure involving a hierarchy of shallow cuttings, which is then combined using

a variation of the logarithmic method. For the details, see the paper [14] along with the small changes

noted in the appendix.

Theorem 3.1 ([14]) Let b ≥ 2 be any fixed value. For a dynamic set S of lines in IR2 that is initially

empty and undergoes n insertions and deletions, in O(bO(1) log6 n) expected amortized time, we can

maintain a collection of cuttings T
(j)
i , i = 1, . . . , dlog ne, j = 1, . . . , O(logb n) with the following

properties (see Figure 4(left)):

1. Each cutting T
(j)
i is a set of O(2i) interior-disjoint cells, where each cell is a trapezoid con-

taining the point (0,−∞). Each cutting is static, i.e., does not change, although a cutting T
(j)
i

may on occasion be replaced with a new one created from scratch. The total size of all cuttings

created over time is O(bO(1)n log4 n).

2. Each cell ∆ ∈ T (j)
i is associated with a list L∆ of O(n/2i) lines of S. Each list L∆ undergoes

deletions only after its creation. The total size of all lists created is O(bO(1)n log5 n).

3. Let ik := dlog(n/Ck))e for a sufficiently large constant C. If a line h is among the k lowest lines

at a vertical line q, then for some j, h is in the list L∆(j) of the cell ∆(j) ∈ T (j)
ik

intersecting q.

The above theorem immediately gives a dynamic method for k-lowest-lines queries: according to

property 3, given a query vertical line q, we can simply find the cell ∆(j) ∈ T (j)
ik

intersecting q for

each j, search for the k lowest lines in each list L∆(j) by “brute force”, and return the k lowest among

all the lines found. The x-projection of each cutting T
(j)
i is a 1-d subdivision, and so we can locate

the cell ∆(j) for each j in O(log n) by binary search. Since |L∆(j) | = O(n/2ik) = O(k), the total

query time is O((log n + k) logb n). Setting b = 2, we obtain O(log6 n) amortized expected update

time and O(log2 n+ k log n) query time.
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The refined data structure and query algorithm. To improve the query time, we propose a

simple idea: store the lists L∆ in auxiliary data structures. Specifically, we store each L∆ in a data

structure that supports k-lowest-lines queries in O(Q0(|L∆|) + k) query time and U0(|L∆|) update

time. By property 2 of Theorem 3.1, each insertion/deletion causes an O(bO(1) log5 n) amortized

number of updates to the lists L∆, and thus the amortized expected update time becomes

U(n) = O(bO(1) log6 n+ max
m≤n

U0(m) · bO(1) log5 n). (4)

Brute force search in L∆(j) can be replaced by a query in an auxiliary structure. The query time

becomes

Q(n) = O([log n+Q0(O(k))] logb n+ k).

The log n logb n term in the Q(n) expression is a bottleneck that prevents us from getting optimal

query time (b must be at most polylogarithmic if we are aiming for polylogarithmic update time).

The log n logb n term arises from O(logb n) binary searches to locate the cells ∆(j) for all j.

We need a second idea to speed up these binary searches. We can use dynamic fractional cascading

here, but we suggest a simpler alternative: dynamic interval trees [6, 29]. For each i = 1, . . . , dlog ne,
we store the intervals of the x-projection of the cuttings T

(j)
i over all j’s (see Figure 4(right)) in an

interval tree Ti. With interval trees, we can support insertions and deletions of intervals in O(log n)

time and report all K intervals containing a query point in O(log n+K) time. We can thus maintain

all the Ti’s in additional amortized update time O(log n ·bO(1) log4 n), and locate the cells ∆(j) ∈ T (j)
ik

over all j = 1, . . . , dlogb ne in O(log n+ logb n) time. The overall query time is

Q(n) = O(log n+Q0(O(k)) logb n+ k). (5)

Analysis. For m ≥ log1/ε n, we use a known method [4, 28] with Q0(m) = O(m1−ε) and U0(m) =

O(logm). For m < log1/ε n, we switch to a static method [10, 17] with Q0(m) = O(logm) and

U0(m) = mO(1). Substituting into (4) and (5) and setting b = logε n give U(n) = O(polylog n) and

Q(n) =

{
O(log n+ k1−ε log n+ k) if k ≥ log1/ε n

O(log n+ log k log n/ log log n+ k) if k < log1/ε n

}
= O(log n+ k). (6)

The update time can be improved by another bootstrapping step. For m ≥ log1/ε n, as before we

use Q0(m) = O(m1−ε) and U0(m) = O(logm). For m < log1/ε n, this time we use Q0(m) = O(logm)

and U0(m) = O(polylogm). Again we set b = logε n. Then Q(n) = O(log n + k) as in (6), but (4)

now gives U(n) = O(log6+O(ε) n).

Theorem 3.2 There is a dynamic data structure for 2-d halfplane range reporting with O(log6+ε n)

amortized expected update time and O(log n+ k) query time.

The space usage is proportional to the total current size of all the lists L∆, which is O(n log n) [14].

Perhaps additional ideas could lower the O(n log n) space bound; we leave this as an open problem.
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Extensions to 3-d and dominance/orthogonal range reporting. For 3-d halfspace range

reporting, finding the cell ∆(j) reduces to 2-d point location in the xy-projection of the cutting T
(j)
i .

This time, we do not know how to improve the log n logb n term arising from the O(logb n) planar

point location queries. For b = logε n, the query time is now O(log2 n/ log log n+ k).

The 3-d dominance range reporting problem can be solved by the same techniques as 3-d halfspace

range reporting, due to similarity of lower envelopes of planes and lower envelopes of dominance

ranges (orthants); e.g., see [1]. Cells are now axis-aligned boxes, and the required planar point

location queries are for orthogonal subdivisions. By a recent result of the author [15], 2-d orthogonal

point location can be solved in O(log log n) time with O(n) preprocessing, if we are given the x-

and y-ranks of the query point with respect to the given subdivision. We can again use dynamic

interval trees (for x and y) to search for the x- and y-ranks of the query point with respect to

T
(j)
ik

over all j = 1, . . . , dlogb ne in O(log n + logb n) time. So, the log n logb n term reduces to

O([log n+ logb n] + log log n logb n). For b = logε n, the query time is thus O(log n+ k).

The 3-d j-sided orthogonal range reporting problem reduces to 3-d (j − 1)-sided range reporting

by standard binary divide-and-conquer (e.g., see [30]), where the update time (but not the query

time) increases by a logarithmic factor. Thus, 3-d general (6-sided) orthogonal range reporting

reduces to 3-d dominance range reporting, where the update time increases by a log3 n factor.

In higher dimensions, general orthogonal range reporting reduces to range reporting in one di-

mension lower by a dynamic b-ary range tree [6, 29], where the update time increases by a factor

of bO(1) logb n and the query time increases by a factor of logb n. We can set b = logε n to keep the

update time polylogarithmic.

Theorem 3.3 There is a dynamic data structure for 3-d halfspace range reporting with O(log6+ε n)

amortized expected update time and O(log2 n/ log log n + k) query time. There is a dynamic data

structure for 3-d dominance range reporting with O(log6+ε n) amortized expected update time and

O(log n+k) query time. There is a dynamic data structure for d-d orthogonal range reporting for any

constant d ≥ 3 with O(logd+6+ε n) amortized expected update time and O((log n/ log log n)d−3 log n+

k) query time.

4 Semi-Dynamic Lower Envelopes of Line Segments

In this section, we solve Problem 3. The problem is to maintain a set S of n line segments under

insertions to answer the following types of queries (which we call type-(v) and type-(vi) queries in

the Introduction):

• segment query : decide whether a query line segment is completely above the lower envelope

LE(S); and

• ray shooting query : given a query ray originating from a point above LE(S), find the first point

on LE(S) that is hit by the ray.

Segment queries can be viewed as a decision version of ray shooting queries. Interestingly, our update

algorithm will rely on our query algorithm in a crucial way.
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Preliminaries. To develop intuition, it is helpful to keep in mind the special case of a segment

query where the segment is a line. Here, the query is equivalent to deciding whether a line is com-

pletely above the upper hull of LE(S), denoted UH(LE(S)). Although LE(S) can change drastically

in an insertion, we will show that UH(LE(S)) is easier to update.

One ingredient we use is Overmars and van Leeuwen’s hull tree structure [33]. A hull tree for a

point set consists of a pointer to a hull tree for the subset of points to the left of a dividing vertical

line `, a pointer to a hull tree for the subset of points to the right of `, and a pointer to the bridge

at ` (the common tangent of the two subhulls). Standard operations such as intersecting a hull with

a line and merging two vertically separated hulls can be performed by binary search in logarithmic

time if the heights of the hull trees are logarithmically bounded [33, 34].

Another tool we need is a standard data structure for storing a set of line segments—the segment

tree [34]. Our data structure will involve an unusual adaptation of the segment tree. Recall the

following standard definitions: given a segment s that intersects a vertical slab σ, s is short in σ

if at least one endpoint of s is inside σ; s is long otherwise (i.e., if s completely cuts across σ). A

traditional segment tree can be recursively described as follows: given a set S of line segments and a

vertical slab σ (at the root, σ is the entire plane), we store the set Slong of all long segments of S at

the current tree node, divide σ into two subslabs σ1 and σ2, and recursively build the data structure

for the set Si of all short segments of S intersecting the subslab σi for each i ∈ {1, 2}. Our data

structure will be more intricate: first, we need to use a tree of degree b higher than 2 and maintain

auxiliary data structures concerning Slong; second, and more intriguingly, because we are unable to

handle all the long segments directly, we need to pass a certain (hopefully small) number of long

segments to the sets Si to be handled recursively.

The data structure. Let b be a fixed value to be set later. Let P be a given set of points (possible

endpoints of line segments). Given a set S of line segments whose endpoints are from P and a vertical

slab σ with at most m points of P inside, we describe our data structure for S and σ recursively as

follows (at the root, σ is the entire plane):

• Let Sshort = {s ∈ S | s is short in σ} and Slong = {s ∈ S | s is long in σ}.

• Store the concave chain L = LE(Slong)∩σ in a standard search tree. For each s ∈ Slong, define

its reduced segment s̃ to be the segment delimited by the leftmost point and the rightmost

point on s lying on LE(S) ∩ σ, if such points exist. Observe that the reduced segments all lie

on L. See Figure 5(left).

• If m > 0, divide σ into O(b) subslabs σ1, σ2, . . . (indexed from left to right), each with at most

m/b points of P inside. For each σi:

– Recursively store a data structure for a subset Si ⊆ S and the subslab σi, where we

maintain the invariant

Si ⊇ {s ∈ Sshort | s intersects σi} ∪ {s ∈ Slong | s̃ is short in σi}.

– Observe that there is at most one segment s ∈ Slong such that s̃ is long in σi. If such an

s exists, call s the special segment of σi and mark σi as special. See Figure 5(middle).

Clearly, Si includes all segments that participate in LE(S) ∩ σi, except possibly for the one

special segment. In particular, if σi is not special, then LE(S)∩σi = LE(Si)∩σi. On the other
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* * *

Figure 5: (Left) The long segments are shown as solid lines cutting across a vertical slab. The lower

envelope of the short segments are drawn “abstractly” in dotted lines. The reduced segment of each

long segment is highlighted in bold. (Middle) Another example showing just the lower envelope L of

the long segments, together with the reduced segments all lying on L; subslabs marked * are special.

(Right) Inserting a new segment causes the recomputation of two existing reduced segments.

hand, if σi is special, then no vertices inside σi can participate in UH(LE(S) ∩ σ), since the

reduced special segment is an edge of this upper hull and has endpoints outside σi.

• Store U = UH(LE(S) ∩ σ) in a hull tree of logarithmic height. By the above observations,

special slabs do not affect U and we have the key identity

U = UH

 ⋃
σi not special

UH(LE(Si) ∩ σi)

 . (7)

• Finally, store the subhulls Uj,k = UH(
⋃k
i=j UH(LE(Si)∩σi)) in a hull tree of logarithmic height

for each index pair j, k.

Let n denote the maximum number of segments overall.

Segment queries. We can decide whether a query segment s is completely above LE(S) ∩ σ as

follows:

1. Compute the intersection of s with the region underneath L; the result is a clipped segment

which we denote by s′.

It suffices to decide whether s′ is completely above LE(Sshort)∩σ. This is equivalent to deciding

whether s′ is completely above LE(Si) ∩ σi for every subslab σi intersected by s′; this will be

described in the next step. (If m = 0, the answer is yes iff s′ = ∅.)

2. Suppose that s′ is short in two subslabs, say, σj and σk. (The case where s′ is short in just

one subslab is similar.) Directly decide whether s′ is above Uj+1,k−1, and recursively decide

whether s′ is completely above LE(Sj) ∩ σ and LE(Sk) ∩ σ. Then the answer to the original

query is yes iff the answers to these queries are all yes.

For the analysis, note that computing s′ (intersecting a concave chain with a line) and querying

Uj+1,k−1 (intersecting a hull with a line) can be handled by binary search in logarithmic time [33, 34].

Letting Qseg(m) denote the query time for a slab σ with at most m points of P , we obtain the

recurrence

Qseg(m) = 2Qseg(bm/bc) +O(log n),

with Qseg(0) = O(log n). This recurrence solves to Qseg(m) = O(2logbm log n).
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Ray shooting queries. Given a query ray originating from above LE(S)∩σ, we can find the first

point on the ray that lies on or LE(S) ∩ σ as follows (we could use parametric search [3] but the

following is simpler):

Use binary search and the segment query algorithm to identify the subslab σi containing the

desired point. Then recursively answer the query in σi. (If m = 0, the answer can be found

directly by a ray shooting query on L.)

The query time Qray(m) then obeys the recurrence

Qray(m) = Qray(bm/bc) +O(log b)Qseg(m),

with Qray(0) = O(log n). This yields Qray(m) = O(2logbm log b log n).

Segment insertion. The insertion of a new segment s proceeds in two stages: first, the two

endpoints of s are inserted to P ; second, the segment s are inserted to S under the assumption

that the two endpoints of s are already in P . Below is the algorithm for the second stage (segment

insertion to S); we will describe the algorithm for the first stage (endpoint insertion to P ) later.

For a given segment s and slab σ:

1. Compute the (at most two) intersections of L with ∂τ , where τ denotes the region above s (an

unbounded trapezoid). See Figure 5(right).

2. For each s′ ∈ Slong defining an intersection found in step 1, recompute the reduced segment s̃′

and recursively insert s′ to Si for each subslab σi where s̃′ is short. Observe that other reduced

segments need not be updated, as those completely inside τ are now non-existent and those

completely outside τ are unchanged.

3. If s is long in σ, compute the reduced segment s̃ and recursively insert s to Si for each subslab

σi where s̃ is short. Update L.

4. If s is short in σ, recursively insert s to Si for each subslab σi intersected by s.

5. Update the specialness marks of the subslabs.

6. Update U by repeated merging according to (7). Similarly update the Uj,k’s.

We now analyze the cost of this algorithm. Step 1 takes logarithmic time by binary search on

a concave chain. There are at most two candidates for s′ and thus at most four3 recursive calls

in step 2; there are at most two recursive calls in step 3. The computation of a reduced segment

(steps 2 and 3) corresponds precisely to answering a ray shooting query in LE(S) ∩ σ from each

of the two endpoints, a problem which we have conveniently solved. The concave chain L can be

updated in logarithmic (worst-case) time by splitting at the (at most two) intersections of L with

s (as in a standard insertion-only algorithm for convex hulls [34] when dualized). Step 4 requires

O(b) recursive calls, but the inserted segment is short in at most two of the subslabs in these calls.

Step 5 can be done in O(b) time. In step 6, each hull tree U or Uj,k can be computed naively by O(b)

merges of existing hull trees at the subslabs, in O(b log n) time. (Note that these O(b2) trees may

3Actually, at most two of the four endpoints of the reduced segments can change, so the number of recursive calls
here can be reduced to two.
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share common subtrees, so the entire data structure is not a tree but a dag; this does not affect the

query algorithms.) We can indeed guarantee that the maximum height of the hull trees is O(log n)

if the O(b) merges are done in a balanced fashion, so that the height increase is O(log b) at each of

the O(logbm) levels of the recursion.

Letting Ulong(m) (resp. Ushort(m)) denote the insertion time when the given segment s is long

(resp. short) in σ, we obtain the following pair of recurrences:

Ulong(m) = 6Ulong(bm/bc) +O(Qray(m) + b3 log n)

Ushort(m) = 2Ushort(bm/bc) +O(r)Ulong(bm/bc) +O(Qray(m) + b3 log n),

with Ulong(0), Ushort(0) = O(log n). The first recurrence solves to Ulong(m) ≤ 2O(logbm)bO(1) log n.

The second recurrence then gives Ushort(m) ≤ 2O(logbm)bO(1) log n. We conclude that a segment

can be inserted in Useg(m) ≤ 2O(logbm)bO(1) log n time assuming that endpoints have already been

inserted.

Endpoint insertion. To complete the description of the insertion algorithm, we now describe

how to insert a new endpoint p to the set P (the first stage). We use a standard partial-rebuilding

technique [29, 32]. For a given point p in a slab σ:

1. Recursively insert p in the subslab σi containing p.

2. If the number of points of P inside σi exceeds m/r, then rebuild the data structure at σ in a

manner where each slab is divided into 2r subslabs with equal number of points of P inside,

and all segments in S are then reinserted from scratch.

Note that the rebuilding step requires O(m) segment insertions but can occur only after at least

bm/2bc endpoint insertions. The amortized cost of each endpoint insertion, Uendpt(m), thus satisfies

Uendpt(m) = Uendpt(bm/bc) +O((b/m) ·mUseg(m)),

which solves to Uendpt(m) ≤ 2O(logbm)bO(1) log n.

Finally, setting b = nε gives Qseg(m) = O(log n), Qray(m) = O(log2 n), and Useg(m), Uendpt(m) =

O(nO(ε)). Alternatively, setting r = 2
√

logn gives Qseg(m), Qray(m), Useg(m), Uendpt(m) = 2O(
√

logn).

Theorem 4.1 There is an insertion-only data structure for Problem 3 with O(log n) time for seg-

ment queries, O(log2 n) time for ray shooting queries, and O(nε) amortized insertion time. Alterna-

tively, we can obtain 2O(
√

logn) query and amortized insertion time.

The space usage is 2O(logbm)n, which is O(n) in the first structure and 2O(
√

logn)n in the second

structure of the above theorem.

Extension to the semi-online dynamic case. Our data structure does not seem to cope with

arbitrary deletions well, because a single deletion may reveal a large number of new reduced segments

in unpredictable ways. However, we can extend the insertion-only result to the semi-online dynamic

setting, where both insertions and deletions are allowed but during each insertion, we are told the

position of the corresponding deletion in the update sequence. This extension follows from a general

simple transformation, using a segment tree of time intervals. The segment tree idea has been
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used before for offline [22] and semi-online [21, 23] dynamic data structures for decomposable search

problems, but the formulation in the lemma below for general non-decomposable problems has not

been explicitly stated before, to the author’s knowledge:

Lemma 4.2 Given a data structure for a problem that supports insertions and the undo operation

(i.e., deletion of the most recent element in the current set) in O(U(n)) time, there is a semi-online

dynamic data structure with O(U(n) log n) amortized update time.

Proof: We first consider the design of an offline data structure. Given an offline sequence of n

updates, build a segment tree [34] over the time intervals of the elements (the left/right endpoint

correspond to the insertion/deletion time of an element), where the i-th leaf vi (in left-to-right order)

correspond to the i-th update in the sequence. Each time interval is stored in O(log n) nodes in the

tree. Let Sv denote the subset of elements whose time intervals are stored at node v of the tree. The

current set at the time of the i-th update is equal to the (disjoint) union of Sv over all nodes v from

the root to the leaf vi.

At the i-th update, let u be the lowest common ancestor between vi−1 and vi. We can execute

the update simply by undoing the insertions of the elements in Sv over all nodes v from vi−1 up to

u’s left child, then inserting the elements in Sv over all nodes from u’s right child down to vi. The

total number of insertions/undos is equal to the total size of all the Sv’s, which is O(n log n). This

implies the O(U(n) log n) amortized bound.

The same reduction works in the semi-online case, by building the segment tree online. At the

time of the i-th update, we know Sv for all nodes v from the root to vi, because deletion times are

given for all the elements inserted so far. 2

The above lemma is applicable to our data structure, because it supports undos. The main

observation is that our insertion time bound is worst-case, not amortized, if we ignore endpoint

insertion. Thus, by keeping a transcript of the changes made during each insertion, we can undo an

insertion with the same cost. We do not need to undo endpoint insertions in P , since extra endpoints

in P do not affect the correctness of the query algorithm. (Besides, the endpoint insertion part can

be de-amortized by standard techniques [29, 32].) The extra log factor is absorbed by the nε or

2O(
√

logn) bound.

Application to partial visibility in terrains. Given a triangulated terrain T in IR3 of size n

and a viewpoint q, we consider the problem of identifying all faces of T which are partially visible

from q.

First, we observe that it suffices to address the case where q = (−∞, 0, 0). To see this, first we

can make q the origin by translation. It suffices to consider the part of the terrain inside {(x, y, z) :

x > 0}, since the other part can be handled symmetrically. Apply a projective transformation

(x, y, z) 7→ (−1/x, y/x, z/x). Vertical lines are mapped to vertical lines, so the terrain remains a

terrain. Lines through the origin are mapped to lines parallel to the x-axis, i.e., lines through the

point (−∞, 0, 0).

Let f1, . . . , fn be the faces of the terrain and let f̂i denote the projection of fi onto the xy-plane.

First find an ordering of f1, . . . , fn such that whenever f̂i is to the left of f̂j along some horizontal

line, we have i < j. Since the f̂i’s are disjoint 2-d convex sets (triangles), such a permutation, called

a depth order, is known to exist and can be computed in O(n log n) time [25].
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To test the partial visibility of fi from q = (−∞, 0, 0), we only need to consider obstructions

caused by f1, . . . , fi−1. More precisely, let f ′i be the region below fi (an unbounded tetrahedron) and

let f ′′i be the projection of f ′i onto the yz-plane (a union of at most two unbounded trapezoids). Then

fi is partially visible iff f ′′i is not completely contained in f ′′1 ∪ · · · ∪ f ′′i−1, i.e., ∂f ′′i is not completely

below the upper envelope of ∂f ′′1 , . . . , ∂f
′′
i−1. Thus, we can determine whether fi is partially visible

for all i by inserting the O(n) segments ∂f ′′1 , . . . , ∂f
′′
n in that order to a dynamic 2-d upper envelope

data structure, and answering O(n) segment queries. By Theorem 4.1, the problem can be solved in

n2O(
√

logn) time.
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A Appendix: On Theorem 3.1

The constant b case of Theorem 3.1 follows directly from the the dynamic 3-d convex hull method

in [14], after specialization to 2-d, as we now explain. We assume that the reader has the paper [14]

handy. The cuttings T
(j)
i are just the Ti’s from the paper, taken over each of the O(log n) partial

data structures S. The list L∆ corresponds to (Slive)∆.

The proof of [14, Lemma 6.1] shows that in a partial data structure, if h is among the k lowest

lines of S at a vertical line q and h ∈ Slive, then h ∩ q lies inside the cell ∆ ∈ Tdlog(|S|/8ck)e that

intersects q; in particular, h ∈ (Slive)∆ for this cell ∆. Hence, property 3 of Theorem 3.1 follows.

(Minor note: for |S| � n, indices i of the Ti’s technically should be shifted to match the setup in

Theorem 3.1.)

The generalization for nonconstant b requires only a few adjustments of parameters. In line 4

of construct(S) from [14, Section 3], we replace 4c′dlog ne with (2c′/α)dlog ne for an appropriate

parameter α. This would guarantee that construct(S) puts at least (1− α)n planes in Slive. In [14,

Section 4], we change the definition of depth from blog |Slive|c to blogb |Slive|c, to ensure that the

number of partial data structures at any time is O(logb n). We merge whenever there are 2 (rather

than 16) subsets of the same depth. (Note the different meaning of b in the paper.) In the proof

of [14, Theorem 4.1(a)], the potential increase caused by an insertion is now given by the following

expression, where p = |S(1)
live|+|S

(2)
live| and bk ≤ |S(1)

live|, |S
(2)
live| < bk+1 (which imply |S(1)

live|, |S
(2)
live| ≤

b
b+1p):

∞∑
j=0

(1− α)αjp log[(1− α)αjp] −
2∑
i=1

|S(i)
live| log |S(i)

live|

≥ (1− α)p log[(1− α)p]
∞∑
j=0

αj − (1− α)p log(1/α)
∞∑
j=0

jαj − p log[bp/(b+ 1)]

= p log[(1− α)p] − [αp log(1/α)]/(1− α) − p log[bp/(b+ 1)] = Ω(p/b),

by setting α = 1/b1+ε, for example. The rest of the amortized analysis thus goes through after

readjusting bounds by polynomial factors in b.

21


