
On Enumerating and Selecting Distances

�

Timothy M. Chan

y

Department of Mathematics and Computer Science

University of Miami, Coral Gables, FL 33124{4250, USA

June 17, 1999

Abstract

Given an n-point set, the problems of enumerating the k closest pairs and selecting the k-th

smallest distance are revisited. For the enumeration problem, we give simpler randomized and

deterministic algorithms with O(n logn + k) running time in any �xed-dimensional Euclidean

space. For the selection problem, we give a randomized algorithm with running time O(n logn+

n

2=3

k

1=3

log

5=3

n). We also describe output-sensitive results for halfspace range counting that are

of use in more general distance selection problems. None of our algorithms requires parametric

search.

Keywords: distance enumeration, distance selection, closest pairs, range counting, randomized

algorithms.

1 Introduction

Finding the closest pair of an n-point set has a long history in computational geometry (see [34]

for a nice survey). In the plane, the problem can be solved in O(n logn) time using the Delaunay

triangulation. In an arbitrary �xed dimension d, the �rst O(n log n) algorithm, based on divide-and-

conquer, was described by Bentley and Shamos [5]. Another O(n log n) algorithm of Vaidya [35] can

actually �nd the nearest neighbor to each of the given points. In 1976, Rabin [32] suggested a random

sampling method that requires only O(n) expected time assuming a RAM model of computation that

supports the
oor function and constant-time hashing (see also [15, 18, 23]). Under the algebraic

decision tree model, linear randomized complexity is still attainable when the points have been

pre-sorted along each of the d coordinates.

The more general problem of enumerating the k closest pairs (or enumerating the �rst k smallest

distances) has also received much attention. One of the earliest reported algorithms is by Dickerson et

al. [12], who used the Delaunay triangulation to enumerate the k closest pairs in O((n+k) log n) time

in two dimensions. (Their algorithm actually enumerates the distances in sorted order.) Salowe [33]

was the �rst to give an O(n log n+ k) algorithm for any �xed dimension. His algorithm employs the

�

A preliminary version of this work appeared in Proc. 14th ACM Sympos. Comput. Geom., pages 279{286, 1998.

y

New address: Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada,

e-mail: tmchan@math.uwaterloo.ca

1

parametric searching technique [29] and Vaidya's all-nearest-neighbor method, making implementa-

tion di�cult. Lenhof and Smid [24] subsequently pointed out a much simpli�ed algorithm|the only

geometric structure needed is a grid. Alternatives that apply more advanced geometric structures

have been proposed by Dickerson and Eppstein [13] (higher-dimensional Delaunay triangulations)

and Arya and Smid [4] (spanners).

In this paper, we add two more distance enumeration algorithms to the list:

� A further simpli�cation of Lenhof and Smid's algorithm, running in O(n logn+k) time. In their

algorithm, parametric search is avoided by using instead an implicit binary search on a matrix

with sorted rows and columns. This binary search is carried out in the style of Frederickson

and Johnson [20] and requires repeated calls to a linear-time subroutine for weighted medians.

We replace these median computations with a simpler \approximate-and-re�ne" scheme. A

description of the new algorithm can be found in the proof of Theorem 3.5.

� An even simpler algorithm based on random sampling. This can be regarded as an extension

of Rabin's closest pair algorithm. The expected running time is O(n log n + k) and can be

brought down to O(n+ k) for pre-sorted point sets (Theorem 3.3). The approach follows from

a general result from Section 2.1, which also has an application to enumerating the k farthest

pairs (see Section 4).

Our algorithms work under the algebraic decision tree model and are thus optimal in this model.

Distances are not enumerated in sorted order.

A related problem is how to select the k-th smallest distance. In the plane (under the Euclidean

metric), Agarwal et al. [1] solved a decision version of the problem in O(n

4=3

log

2=3

n) expected

time. Applying parametric search, they then showed that the k-th smallest distance can be se-

lected in O(n

4=3

log

8=3

n) expected time in dimension 2. Deterministic variants were considered by

Goodrich [19] and Katz and Sharir [22]. Improvements in the logarithmic factors were noted brie
y

by Matou�sek [25]; more importantly, he showed how parametric search can be avoided to obtain

simpler algorithms that are randomized.

Our contributions to the distance selection problem can be summarized as follows:

� A randomized reduction to the decision problem without parametric search. Matou�sek only

described in detail his randomized technique for the slope selection problem. We state and

prove the result under a general setting in Section 2.2.

� A way to obtain running time sensitive to k. Agarwal et al.'s bound is worse than the O(n logn+

k) bound for the enumeration problem when k � n

4=3

. We show that a hybrid approach in the

planar case yields an expected running time of O(n logn + n

2=3

k

1=3

log

5=3

n), improving both

results for most values of k between 1 and �(n

2

). Any improvement to the k-insensitive bound

automatically implies an improvement to the k-sensitive bound (see Theorem 3.6).

In passing, we note that de Berg and Schwarzkopf [6] and Pellegrini [31] have obtained similar

bounds|near O(n+ n

2=3

k

1=3

)|for the problem of counting the k intersecting pairs of n given line

segments. It is plausible that their techniques could lead to the same result for distance selection.

However, our approach exploits special properties of distances and thus avoids \intersection-sensitive

cuttings;" furthermore, our approach extends to higher dimensions.

2

Finally, Section 4 mentions connection of more general distance selection problems to halfspace

range counting : how to preprocess a given n-point set so that one can quickly count the num-

ber k of points inside a given query halfspace. The problem has been studied by a number of

researchers; see [2, 28] for surveys. In the planar case, O(n

1=2

polylogn) query time is attainable

after O(n logn) preprocessing time [26]. On the other hand, results on halfspace range reporting

imply an output-sensitive query time of O(logn + k) with the same preprocessing time [9]. We

point out that combining previous approaches properly yields a query time bound of O(k

1=2

n

"

) for

any constant " > 0 in this planar case. The precise output-sensitive bounds in higher dimensions,

including preprocessing/query-time tradeo�s, are given by Theorem 4.1. Although the proof of these

output-sensitive bounds requires no new ideas (the main ingredients being Matou�sek's \shallow cut-

ting lemma" and \partition theorem for shallow hyperplanes" [27]), they are worth noting due to

the fundamental nature of range searching.

2 General Randomized Reductions

In this section, we study the distance enumeration and selection problems in an abstract setting and

describe general reductions that will be of use in some of the concrete algorithms of the next section.

Let U represent the object space and d : U � U ! IR represent the distance function, where

d(p; q) = d(q; p) for any p; q 2 U .

Notation. Given sets P;Q � U , de�ne the multiset d(P;Q) = fd(p; q) : (p; q) 2 P � Qg. For any

integer 1 � k � jP j � jQj, let R(P;Q; k) be the k-th smallest element in d(P;Q). For any r 2 IR,

let K(P;Q; r) = jd(P;Q) \ (�1; r]j. Observe that R(P;Q; k) � r i� K(P;Q; r) � k. For

notational convenience, set d(P) = d(P; P), R(P; k) = R(P; P; k), and K(P; r) = K(P; P; r).

Given as input a set P � U of size n, an integer k, and a number r 2 IR, we study the following

problems:

Enumeration. Return the elements R(P; 1), R(P; 2), . . . , R(P; k) in any order.

Reporting. Return the elements in d(P) \ (�1; r] in any order.

Selection. Return the element R(P; k).

Counting. Return the number K(P; r).

The reporting problem is also known as \�xed-radius nearest neighbor search." The counting problem

is the same as determining the \rank" of a given distance.

The above formulation of the problems di�ers slightly from usual convention. For example,

the standard selection problem asks for the k-th smallest element d(p; q) over all unordered pair

fp; qg � P . The two versions are basically equivalent. Indeed, in most applications, all distances

are nonnegative and d(p; p) = 0. So, the k-th smallest distance of all unordered pairs is identical

to the (n+ 2k)-th smallest distance of all ordered pairs; in the time bounds, we just replace k with

�(n+ k).

3

2.1 From Enumeration to Reporting

It is a straightforward exercise to exhibit an e�cient reduction from the reporting problem to the

enumeration problem. In this subsection, we show that a general reduction in the reverse direction

is possible via random sampling.

Lemma 2.1 In O(n) time, we can select an r such that R(P; k) � r � R(P; k

0

) with a positive-

constant probability, where k

0

= 6(n+ k).

Proof: Choose n elements r

1

; : : : ; r

n

randomly from d(P) and select the m-th smallest element r

in the multiset fr

1

; : : : ; r

n

g with m = 3dk=ne. It su�ces to show that sum of the two probabilities

Prfr < R(P; k)g and Prfr > R(P; k

0

)g is bounded by a constant strictly less than 1.

If r < R(P; k), then N = jfi : r

i

< R(P; k)gj is at least m. The random variable N satis�es

a binomial distribution with n trials, where each trial has success probability less than k=n

2

. The

mean � = E[N] is less than k=n. Therefore, by Markov's inequality,

Prfr < R(P; k)g � PrfN � mg � PrfN > 3�g � 1=3:

If r > R(P; k

0

), then N

0

= jfi : r

i

� R(P; k

0

)gj is less than m. The random variable N

0

satis�es

a binomial distribution with n trials, where each trial has success probability at least k

0

=n

2

. The

mean �

0

= E[N

0

] is at least k

0

=n = 6(k=n+ 1). Therefore,

Prfr > R(P; k

0

)g � PrfN

0

< mg � PrfN

0

< �

0

=2g < e

��

0

=8

< e

�3=4

< 1=2;

by a standard Cherno� bound (e.g., [30, p. 70]). 2

The above idea of taking a random sample of size n to approximate a set of size O(n

2

) is hardly

new. A similar approach was taken by Matou�sek [25] in the context of slope selection and was named

\randomized interpolating search." One of the earliest uses of the idea was actually by Rabin when

discussing the closest pair problem in his seminal paper on randomized algorithms [32].

Suppose that an algorithm for the reporting problem is available and runs in T

R

(n;K(P; r)) time.

Assume that T

R

(an; b(n+ k)) = O(T

R

(n; k)) for any constants a; b. We now apply the above lemma

to get a simple randomized algorithm for the enumeration problem.

The possibility of degeneracy (i.e., duplicate distances) creates some technical complications,

which we will overcome by introducing an in�nitesimal �: its value is assumed to be arbitrarily small

but positive. For example, applying the reporting algorithm on r � � should produce all distances

in the open interval (�1; r). (In practice, we can usually avoid treating � as a variable during the

simulation of the algorithm but instead modify the algorithm directly.)

Theorem 2.2 The enumeration problem can be solved in O(T

R

(n; k)) expected time.

Proof: Construct r by Lemma 2.1. Verify that R(P; k) � r � R(P; k

0

). If not, repeat for a

di�erent r; the expected number of trials is bounded by a constant. To verify that r � R(P; k),

simulate the reporting algorithm on r for T

R

(n; k) time steps; the computation should either fail or

return a list of k or more distances. To verify that r � R(P; k

0

), simulate the reporting algorithm on

r � � for T

R

(n; k

0

) time steps; the computation should succeed with a list of fewer than k

0

elements.

Now, report all elements in � = d(P) \ (�1; r) and select the �rst k smallest elements. In case

that r is precisely equal to R(P; k), add maxfk � j�j; 0g copies of r to the output. As j�j < k

0

, the

running time is O(T

R

(n; k

0

)). 2

4

2.2 From Selection to Counting

An ordinary binary search reduces the counting problem to the selection problem. In this subsection,

we explore the reverse direction. As Agarwal et al. [1] noted, a fairly general reduction of selection

to counting is possible by parametric search. We point out a simpler approach by randomization.

Our approach is similar to a scheme that Matou�sek [25] called \randomized halving" (see

also [16]). The idea is a binary search that repeatedly cuts the search interval using a random

element in the interval. We describe a recursive procedure to produce such a random element e�-

ciently in general. (Matou�sek's procedure is speci�cally designed for the slope selection problem.)

Suppose that an algorithm is available for the counting problem and runs in time T

C

(n;K(P; r)).

Assume that T

C

(n; k)=n

"

is an increasing function in both n and k for some constant " > 0. Assume

also that T

C

(an; b(n + k)) = O(T

C

(n; k)) for constants a; b. As before, degeneracy is handled by

using an in�nitesimal �. Note that we can compute K(P;Q; r) using the counting algorithm by the

identity

K(P;Q; r) = (K(P 4Q; r) +K(P; r) +K(Q; r))=2 �K(P nQ; r)�K(Q n P; r); (1)

where P 4Q = (P nQ) [(Q n P) denotes the symmetric di�erence.

Lemma 2.3 Given A < B, one can select an element uniformly at random from d(P;Q) \ (A;B)

in O(T

C

(n; k)) time, where n = jP j = jQj and k = K(P [Q;B � �).

Proof: De�ne N(P;Q) = jd(P;Q)\(A;B)j = K(P;Q;B��)�K(P;Q;A), which can be computed

in O(T

C

(n; k)) time by (1). Partition P = P

1

[P

2

and Q = Q

1

[Q

2

, with jP

1

j; jP

2

j; jQ

1

j; jQ

2

j � dn=2e.

Compute N(P

i

; Q

j

) for each i; j. Generate a random pair (i; j) 2 f1; 2g � f1; 2g such that (i; j) is

chosen with probability N(P

i

; Q

j

)=N(P;Q). Now, recursively select an element uniformly at random

from d(P

i

; Q

j

)\ (A;B). The running time of this process is O(T

C

(n; k) + T

C

(n=2; k) + T

C

(n=4; k) +

� � �) = O(T

C

(n; k)). 2

Theorem 2.4 The selection problem can be solved in O(T

C

(n; k) log n) expected time.

Proof: We will maintain an interval (A;B] containing R(P; k). Initially, we can set A = 0 and B

with the value r from Lemma 2.1. As in the proof of Theorem 2.2, we can verify that R(P; k) � r �

R(P; k

0

) (this time, by simulating the counting algorithm). If this is not true, repeat for an expected

constant number of trials.

Now pick a random element r 2 d(P) \ (A;B) by Lemma 2.3. If no such element exists, then

return B. Compute K(P; r) in T

C

(n; k

0

) time. If K(P; r) < k, then replace A with r. Otherwise,

replace B with r.

It su�ces to show that the expected number of iterations is logarithmic. Let N = jd(P)\(A;B)j.

Since r is equally likely to be any element in d(P)\(A;B), the probability that jd(P)\(A; r)j � 2N=3

and the probability that jd(P) \ (r;B)j � 2N=3 are both at most 1=3. The expected number of

iterations to reduce N by a factor of 2=3 is thus bounded by 3, and consequently, the expected

number of iterations to reduce N to 0 is O(log n). 2

Removing the extra logn factor seems to require stronger oracles than just the counting algorithm.

5

3 Algorithms for Natural Distances

In this section, we give speci�c enumeration and selection algorithms for the following kind of distance

functions, where objects are points from a �xed-dimensional space U = IR

d

:

De�nition. A distance function d : IR

d

� IR

d

! IR is natural if k p � q k

1

� d(p; q) � c k p � q k

1

for some constant c. Here, k � k

1

denotes the L

1

norm.

Obviously, all L

p

distance functions|in particular, the Euclidean metric|are natural under this

de�nition. The following combinatorial property of Salowe will be important. (The original proof

was for the L

1

metric only, but readjusting constants immediately imply the statement for any

natural distance function.)

Proposition 3.1 (Salowe [33]) If the distance function is natural, then K(P; ar) = O(jP j +

K(P; r)) for any constant a.

The enumeration algorithms of Salowe [33] and Lenhof and Smid [24] are based on a lemma

similar to the below; a proof is included for completeness. We will use this in our solutions to both

the enumeration and the selection problem. (Pre-sorting here refers to the computation of the sorted

order of the points of P in each of the d coordinates, which can be done in O(n log n) time.)

Lemma 3.2 Suppose the distance function is natural. Let r > 0 and P � IR

d

be a given pre-sorted

n-point set. In linear time, one can construct subsets fP

i

g and fQ

i

g of total size O(n), such that

(i) the P

i

's are disjoint;

(ii) any pair (p; q) 2 P � P with d(p; q) � r belongs to some P

i

�Q

i

;

(iii) any pair (p; q) 2 P

i

�Q

i

has d(p; q) < 2cr for a constant c.

Proof: We follow the approach of Lenhof and Smid [24] to build a \degraded grid." For each

j 2 f1; : : : ; dg, let X

j

denote the set of j-th coordinates of the n points. Cover X

j

by � n disjoint

open intervals of length r which we call j-intervals. This can be accomplished easily in linear time

by scanning the coordinates in sorted order. De�ne the neighborhood of an interval I = (A;B) to

be

b

I = (A� r;B + r). Observe that a coordinate can belong to the neighborhoods of at most three

j-intervals.

De�ne a grid cell to be a box of the form h = I

1

� � � � � I

d

where each I

j

is a j-interval. Its

neighborhood is

b

h =

b

I

1

� � � � �

b

I

d

. A point can belong to the neighborhoods of at most 3

d

grid cells.

For each nonempty grid cell h, construct corresponding subsets P

i

= P \ h and Q

i

= P \

b

h. One

can verify properties (i){(iii) easily: if a pair (p; q) has L

1

-distance � r, then it is in some P

i

�Q

i

;

conversely, any pair in P

i

�Q

i

has L

1

-distance < 2r.

Regarding the construction time, we can label the j-intervals by integers from f1; : : : ; ng and

grid cells by d-tuples from f1; : : : ; ng

d

. For each j-th coordinate x, �nd the label of the j-interval

containing x as well as the labels of the j-intervals whose neighborhoods contain x. This can be done

by a linear scan. For each point p, we thus have the label of the grid cell containing p and the labels

of the grid cells whose neighborhoods contain p. A radix sort then generates the collection of points

inside each nonempty grid cell and the collection of points inside its neighborhood. 2

6

3.1 Enumeration

One immediate corollary from Lemma 3.2 is an algorithm for the reporting problem: simply list

all the elements in � =

S

i

d(P

i

; Q

i

) and return � \ (�1; r]. The running time after pre-sorting is

O(n+ j�j) = O(n+K(P; 2cr)) = O(n+K(P; r)) by Proposition 3.1.

By Theorem 2.2, we have immediately a randomized enumeration algorithm:

Theorem 3.3 For a pre-sorted n-point set with a natural distance function, the enumeration problem

can be solved in O(n+ k) expected time.

Including the time to pre-sort, the expected running time is therefore O(n logn + k). We now

propose a deterministic alternative.

Because of the reporting algorithm, all we need to solve the enumeration problem is a good

approximation r to R(P; k). We will obtain such an r by an approximate binary search.

Lemma 3.4 Under the same setup as in Lemma 3.2, one can reach one of the two conclusions in

O(n) time: (a) R(P; k) > r, or (b) R(P; k) < 2cr.

Proof: Compute S = �

i

jP

i

j � jQ

i

j. If S < k, then (a) is true. If S � k, then (b) is true. 2

Lenhof and Smid [24] observed that an approximation of R(P; k) can be found by searching among

all O(n

2

) L

1

-distances. To avoid generating the entire search space of quadratic size, one performs

an implicit binary search, using repeated weighted-median computations like in the techniques of

Frederickson and Johnson [20] and Cole [11].

We suggest a simpler approach by observing that an approximation can be found in a reduced

search space of linear size. The approximation factor is quite high (O(n)), but can be re�ned easily

afterwards. As a result, we bypass the use of a linear-time median-�nding subroutine (except at the

very end).

Theorem 3.5 The enumeration problem for a natural distance function can be solved in O(n logn+

k) time.

Proof: Fix j 2 f1; : : : ; dg. Let x

1

� � � � � x

n

be the j-th coordinates of the points in sorted order.

De�ne

�

j

= fx

2

� x

1

; x

3

� x

2

; : : : ; x

n

� x

n�1

g:

Construct the set � = �

1

[� � � [�

d

. Let �

1

� � � � � �

N

be its elements in sorted order (N = O(n)).

We keep indices ` and h while maintaining the following invariant:

�

`

=2c < R(P; k) < �

h

:

Initially, we can set ` = 0 and h = N + 1 with �

0

= 0 and �

N+1

=1. By applying Lemma 3.4 with

r = �

b(`+h)=2c

=2c, we can cut h�` by half in O(n) time. Consequently, in O(n logn) time, we obtain:

�

`

=2c < R(P; k) < �

`+1

:

We know that � � R(P; k) � c� for some L

1

-distance �. Since � is a sum of at most n elements

of �, there must exist some �

i

with �

i

� � � n�

i

. It follows that �

i

� R(P; k) < �

`+1

and thus i � `.

It also follows that R(P; k) � cn�

i

� cn�

`

.

7

Next we keep numbers A and B while maintaining the following invariant:

A=2c < R(P; k) � B:

Initially, we can set A = �

`

and B = cn�

`

. By applying Lemma 3.4 with r �

p

AB=2c, we can reduce

B=A to approximately

p

B=A in O(n) time. Consequently, in O(n log logn) time, we obtain:

A=2c < R(P; k) � 2A:

Now, we can solve the enumeration problem by reporting all elements in d(P) \ [0; 2A] and select-

ing the �rst k smallest elements, in time O(n + K(P; 2A)) = O(n + K(P;A=2c)) = O(n + k) by

Proposition 3.1. 2

The above idea also simpli�es the parallel version of Lenhof and Smid's enumeration algo-

rithm [24].

We leave as an open problem whether deterministically we can achieve O(n + k) running time

for the enumeration problem when the point set is pre-sorted. We do not know, for that matter,

a linear-time deterministic algorithm to �nd the closest pair of a pre-sorted point set; Fortune and

Hopcroft [17] showed that O(n log log n) time is possible.

3.2 k-Sensitive Selection

We now describe a general strategy to derive k-sensitive bounds for the selection problem when the

distance function is natural. We �rst solve the counting problem and then apply Theorem 2.4.

Theorem 3.6 Suppose we have an O(nf(n))-time algorithm for the counting problem, where f is a

concave nondecreasing function. For a natural distance function, we can solve the selection problem

in O(n logn+ nf(k=n) logn) expected time.

Proof: First note that K(P;Q; r) can be evaluated in O(nf(n)) time by (1) if jP j; jQj � n. For

uneven sizes jP j = n and jQj = m, we can partition Q into subsets Q

1

; : : : ; Q

dm=ne

each of size � n.

Then K(P;Q; r) =

P

i

K(P;Q

i

; r) can be evaluated in O(dm=ne � nf(n)) = O((m+ n)f(n)) time.

A k-sensitive algorithm to compute k = K(P; r) can be obtained from Lemma 3.2:

K(P; r) =

X

i

K(P

i

; Q

i

; r);

where the sizes n

i

= jP

i

j and m

i

= jQ

i

j satisfy the bounds

X

i

(m

i

+ n

i

) = O(n); and

X

i

m

i

n

i

� K(P; 2cr) = O(n+ k);

by Proposition 3.1. Without loss of generality, assumem

i

� n

i

. Then we can calculate allK(P

i

; Q

i

; r)

in time of the order of

X

i

m

i

f(n

i

) �

X

i

m

i

!

� f

�

P

i

m

i

n

i

P

i

m

i

�

= O(nf((n+ k)=n));

by Jensen's inequality (since f is concave).

8

Thus, the counting problem can be solved in O(n(1+ f(K(P; r)=n))) time after pre-sorting. The

selection problem can then be solved by Theorem 2.4 in O(n(1+f(k=n)) log n) expected time. (Note

that the subproblems that occur in the proof of Lemma 2.3 are already pre-sorted.) 2

Agarwal et al. [1] showed that the counting problem for Euclidean distances in the plane can be

solved in O(n

4=3

log

2=3

n) expected time. Applying the above theorem, we have:

Corollary 3.7 The selection problem for the Euclidean distance function in the plane can be solved

in O(n logn+ n

2=3

k

1=3

log

5=3

n) expected time.

4 Halfspace Range Counting

Enumerating the k farthest pairs (or the k largest distances) �ts into the framework of Section 2

if we simply negate all the distances. Unfortunately, the resulting distance function is no longer

natural and the algorithms of Section 3 cannot be applied. The same can be said for variations of

the enumeration/selection problem in the bichromatic case (where we take the distance of two points

of the same color to be in�nite), and in the weighted case (where the actual distance is multiplied

by or added to the weight of a point). Therefore, these problems have to be solved by other means.

Take for an example the k farthest pairs problem in the plane under the Euclidean metric. A

point (�; �) has distance r away from (a; b) if and only if the halfspace f(x; y; z) : �

2

+�

2

�2�x�2�y+

z � r

2

g contains the lifted point (a; b; a

2

+b

2

). Thus, the distance reporting problem for a given r > 0

can be solved using data structures for halfspace range reporting queries in IR

3

. By known range

searching results [8], we can report the k distances � r in O(n log n+ k) time, and by Theorem 2.2,

we can enumerate the k farthest pairs in O(n logn + k) expected time. (For this enumeration

problem, Katoh and Iwano [21] described a less e�cient algorithm with an O(n log n + k

4=3

) time

bound, and Dickerson and Shugart [14] gave an algorithm for uniformly distributed points with an

O(n log n+ k log

2

n= log log n) expected time bound.)

The above approach can also enumerate the k bichromatic closest pairs in the plane. More

generally, distance enumeration reduces to halfspace range reporting if it is possible to \linearize"

the region fq 2 U : d(p; q) � rg using a �xed number of variables for a given p 2 U and r 2 IR.

Similarly, distance selection reduces to halfspace range counting under the same condition using

Theorem 2.4.

We now point out a new output-sensitive result for the halfspace range counting problem.

Notation. f = O

�

(g) if f = O(g � n

"

) for an arbitrarily small constant " > 0.

Theorem 4.1 Given a parameter m � n, we can preprocess an n-point set P � IR

d

in O

�

(m) time

and space such that the number k of points inside a query halfspace can be determined in time

O

�

0

@

1 +

n

m

1=bd=2c

+

n

bd=2c

k

dd=2e

m

!

1=d

1

A

:

The previous query bounds are O

�

(1 + n=m

1=d

) [10, 26] and O

�

(1 + n=m

1=bd=2c

+ k) [27]. The proof

of this theorem is deferred to the appendix. In particular, it implies the following result:

9

Corollary 4.2 An online sequence of n halfspace range counting queries on a given n-point set in

IR

d

require time

O

�

(n

2�2=(bd=2c+1)

+ (n

2bd=2c

k

dd=2e

)

1=(d+1)

);

where k is the sum of the counts returned by the queries (k � n

2

).

Proof: The total cost of answering n queries with counts k

1

; : : : ; k

n

is asymptotically

m +

n

X

i=1

0

@

n

m

1=bd=2c

+

n

bd=2c

k

dd=2e

i

m

!

1=d

1

A

� m +

n

2

m

1=bd=2c

+

n

2bd=2c

k

dd=2e

m

!

1=d

;

because

P

i

k

dd=2e=d

i

� k

dd=2e=d

n

bd=2c=d

by H�older's inequality. To balance the various terms in the

above bound, we set the tradeo� parameter to

m = n

2�2=(bd=2c+1)

+ (n

2bd=2c

k

dd=2e

)

1=(d+1)

;

and the result follows. The value of k is not known in advance though, but a standard trick of

\guessing the output size" (e.g., [7]) can easily �x the problem. 2

If we want to select the k-th largest distance among n points in the Euclidean plane, then the

above result implies an O

�

(n+

p

nk) expected time algorithm, since the lifted points have dimension

d = 3. Improvements could be possible as the actual dimension of the problem is smaller than this

\linearization dimension" [3]. We will not go further in this direction here: the main point is that

k-sensitive results are obtainable if we just re-examine previous range searching techniques more

carefully.

A Appendix: Proof of Theorem 4.1

We describe how halfspace range counting can be solved within the bounds stated in Theorem 4.1.

The details are technical and are only sketched here. Basically, the underlying data structures are

the same as those of Matou�sek [27] for halfspace range reporting. To make query bounds output-

sensitive, these are combined with known results on simplex range counting. We �rst examine the

near-linear space case and then consider tradeo�s between space and query time.

Near-Linear Space. Given an n-point set P � IR

d

, a simplicial partition of size s is a collection

f(P

1

;�

1

); : : : ; (P

s

;�

s

)g such that (i) the P

i

's are disjoint subsets whose union is P , (ii) the �

i

's are

relatively open simplices, and (iii) P

i

� �

i

for each i. The class size refers to the maximum of the

sizes of fP

i

g. The crossing number of a halfspace
 refers to the number of simplices from f�

i

g that

the bounding hyperplane @
 crosses. (A hyperplane h crosses � if h \� 6= ; and � 6� h.) We say

that
 is `-shallow if jP \
j � `.

Lemma A.1 (Matou�sek's Partition Theorem for Shallow Hyperplanes [27]) Given any

1 � r � n, one can �nd a simplicial partition of size O(r) such that the class size is O(n=r) and the

crossing number of any (n=r)-shallow halfspace is O(r

1�1=bd=2c

+ log r). The running time is O(n) if

r is a constant.

10

A near-linear-space data structure for P can be obtained as follows. Store the cardinality of

P and build a linear-space data structure for simplex range counting [10, 26]. Then construct a

simplicial partition f(P

i

;�

i

)g using an arbitrarily large constant for r and recursively build data

structures for the subsets fP

i

g. The preprocessing time and space of the data structure satisfy the

recurrence

T (n) = O(r)T (n=r) + O

�

(n);

which solves to T (n) = O

�

(n).

To count k = jP \
j for a query halfspace
, we determine the simplices f�

i

g that are crossed

by @
. If the number of such simplices exceeds C(r

1�1=bd=2c

+ log r) for an appropriate constant C

(independent of r), then
 is not (n=r)-shallow, and therefore, k > n=r. In this case, we will answer

the query directly by simplex range counting [10, 26] in time O

�

(n

1�1=d

) = O

�

((rk)

1�1=d

). Otherwise,

we recursively count jP

i

\
j for each subset P

i

such that �

i

is crossed by @
. We can trivially count

jP

i

\
j for each subset P

i

with �

i

�
. The total count is k.

To analyze the query time, we examine its recursion tree. Let k

�

be the count returned at leaf �

of the tree. We can bound the sum

P

�

k

1�1=bd=2c

�

by O

�

(n

1�1=bd=2c

), since the recurrence

t(n) = O(r

1�1=bd=2c

+ log r) t(n=r) + n

1�1=bd=2c

solves to t(n) = O

�

(n

1�1=bd=2c

). Now, the actual cost of a query is asymptotically bounded by the

number of nodes in the recursion tree plus the sum

P

�

k

1�1=d

�

. The �rst term is O

�

(n

1�1=bd=2c

),

whereas the second term is bounded by the following using H�older's inequality:

X

�

k

1�1=d

�

�

X

�

k

1�1=bd=2c

�

!

bd=2c=d

X

�

k

�

!

dd=2e=d

= O

�

((n

1�1=bd=2c

)

bd=2c=d

k

dd=2e=d

):

We conclude that the halfspace range counting problem can be solved using O

�

(n) preprocessing

time and O

�

(n

1�1=bd=2c

+ (n

bd=2c�1

k

dd=2e

)

1=d

) query time.

Tradeo�s. Let H be a set of n hyperplanes in IR

d

. The level of a point refers to the number

of hyperplanes below it. The con
ict list H(�) of a simplex � consists of all hyperplanes that

intersect the interior of �. We say that a collection of simplices f�

1

; : : : ;�

s

g is a (1=r)-cutting for

the (� `)-level of size s if (i) the �

i

's cover all points of level � `, and (ii) jH(�

i

)j � n=r for each �

i

.

Lemma A.2 (Matou�sek's Shallow Cutting Lemma [27]) Given any 1 � r � n, one can �nd

a (1=r)-cutting for the (� `)-level of size O(r

bd=2c

q

dd=2e

), where q = `(r=n) + 1. The running time is

O(n) if r is a constant.

Dualization reduces the halfspace range counting problem to the following: preprocess a set H

of n hyperplanes so that given a query point, one can quickly compute its level k. A data structure

for processing such queries on H can be obtained as follows. First �x a parameter p > 0. If

n � p, build the above primal near-linear-space structure. Otherwise, construct a (1=r)-cutting

f�

i

g for the (� n=r)-level of size O(r

bd=2c

) using an arbitrarily large constant r. Store the number of

hyperplanes strictly below each �

i

, and build a data structure for simplex range counting [10, 26] with

11

m(n) = (n=p)

bd=2c

p space. Then recursively build data structures for each H(�

i

). The preprocessing

time and space satisfy the recurrence

T (n) =

(

O

�

(n) if n � p

O(r

bd=2c

)T (n=r) + O

�

((n=p)

bd=2c

p) if n > p

which solves to T (n) = O

�

(n+ (n=p)

bd=2c

p).

We determine the level k of a query point q as follows. If n � p, then use our primal data

structure to answer the query in time O

�

(1 + p

1�1=bd=2c

+ (p

bd=2c�1

k

dd=2e

)

1=d

). Otherwise, �nd a

simplex �

i

that contains q. If none exists, then k > n=r, and the query can be answered directly

by simplex range counting [10, 26] in time O

�

(1 + n=m(n)

1=d

) = O

�

(1 + (n

dd=2e

p

bd=2c�1

)

1=d

) =

O

�

(1+((rk)

dd=2e

p

bd=2c�1

)

1=d

). If we succeed in �nding �

i

, then we recursively compute the level of q

with respect to H(�

i

). Adding to this the number of hyperplanes strictly below �

i

, we get k. Since

the depth of the recursion is logarithmic, we conclude that the halfspace range counting problem can

be solved using O

�

(n+ (n=p)

bd=2c

p) preprocessing time and

O

�

(1 + p

1�1=bd=2c

+ (p

bd=2c�1

k

dd=2e

)

1=d

)

query time. Finally setting p

bd=2c�1

= n

bd=2c

=m yields the bounds stated in Theorem 4.1.

References

[1] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in the plane. Algorithmica,

9:495{514, 1993.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. To appear in Discrete and

Computational Geometry: Ten Years Later (B. Chazelle, J. E. Goodman, and R. Pollack, ed.), AMS

Press.

[3] P. K. Agarwal and J. Matou�sek. On range searching with semialgebraic sets. Discrete Comput. Geom.,

11:393{418, 1994.

[4] S. Arya and M. Smid. E�cient construction of a bounded-degree spanner with low weight. Algorithmica,

17:33{54, 1997.

[5] J. L. Bentley and M.I. Shamos. Divide-and-conquer in multidimensional space. In Proc. 8th ACM

Sympos. Theory Comput., pages 220{230, 1976.

[6] M. de Berg and O. Schwarzkopf. Cuttings and applications. Int. J. Comput. Geom. Appl., 5:343{355,

1995.

[7] T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete

Comput. Geom., 16:369{387, 1996.

[8] T. M. Chan. Random sampling, halfspace range reporting, and construction of (� k)-levels in three

dimensions. In Proc. 39th IEEE Sympos. Found. Comput. Sci., pages 586{595, 1998.

[9] B. Chazelle, L. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25:76{90, 1985.

[10] B. Chazelle, M. Sharir, and E. Welzl. Quasi-optimal upper bounds for simplex range searching and new

zone theorems. Algorithmica, 8:407{429, 1992.

12

[11] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34:200{208, 1987.

[12] M. T. Dickerson, R. L. S. Drysdale, and J.-R. Sack. Simple algorithms for enumerating interpoint

distances and �nding k nearest neighbors. Int. J. Comput. Geom. Appl., 2:221{239, 1992.

[13] M. T. Dickerson and D. Eppstein. Algorithms for proximity problems in higher dimensions. Comput.

Geom. Theory Appl., 5:277{291, 1996.

[14] M. T. Dickerson and J. Shugart. A simple algorithm for enumerating longest distances in the plane.

Inform. Process. Lett., 45:269{274, 1993.

[15] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A reliable randomized algorithm for

the closest-pair problem. J. Algorithms, 25:19{51, 1997.

[16] M. Dillencourt, D. Mount, and N. Netanyahu. A randomized algorithm for slope selection. Int. J.

Comput. Geom. Appl., 2:1{27, 1992.

[17] S. J. Fortune and J. E. Hopcroft. A note on Rabin's nearest-neighbor algorithm. Inform. Process. Lett.,

8:20{23, 1979.

[18] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest pair problems.

Nordic J. Comput., 2:3{27, 1995.

[19] M. T. Goodrich. Geometric partitioning made easier, even in parallel. In Proc. 9th ACM Sympos.

Comput. Geom., pages 73{82, 1993.

[20] G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X + Y and matrices

with sorted rows and columns. J. Comput. Sys. Sci., 24:197{208, 1982.

[21] N. Katoh and K. Iwano. Finding k farthest pairs and k closest/farthest bichromatic pairs for points in

the plane. Int. J. Comput. Geom. Appl., 5:37{51, 1995.

[22] M. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM J. Comput.,

26:1384{1408, 1997.

[23] S. Khuller and Y. Matias. A simple randomized sieve algorithm for the closest-pair problem. Inform.

Comput., 118:34{37, 1995.

[24] H.-P. Lenhof and M. Smid. Sequential and parallel algorithms for the k closest pairs problem. Int. J.

Comput. Geom. Appl., 5:273{288, 1995.

[25] J. Matou�sek. Randomized optimal algorithm for slope selection. Inform. Process. Lett., 39:183{187, 1991.

[26] J. Matou�sek. E�cient partition trees. Discrete Comput. Geom., 8:315{334, 1992.

[27] J. Matou�sek. Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169{186, 1992.

[28] J. Matou�sek. Geometric range searching. ACM Comput. Surveys, 26:421{461, 1994.

[29] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM,

30:852{865, 1983.

[30] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, 1995.

[31] M. Pellegrini. On counting pairs of intersecting segments and o�-line triangle range searching. Algorith-

mica, 17:380{398, 1997.

13

[32] M. O. Rabin. Probabilistic algorithms. In Algorithms and Complexity (J. F. Traub, ed.), pages 21{30,

Academic Press, New York, 1976.

[33] J. S. Salowe. Enumerating interdistances in space. Int. J. Comput. Geom. Appl., 2:49{59, 1992.

[34] M. Smid. Closest-point problems in computational geometry. To appear in Handbook of Computational

Geometry (J. Urrutia and J. Sack, ed.), North-Holland.

[35] P. M. Vaidya. An O(n logn) algorithm for the all-nearest-neighbors problem. Discrete Comput. Geom.,

4:101{115, 1989.

14

