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Abstract

In the conflict-free coloring problem, for a given range space, we want to bound the minimum
value F (n) such that every set P of n points can be colored with F (n) colors with the property
that every nonempty range contains a unique color. We prove a new upper bound O(n0.368)
with respect to orthogonal ranges in two dimensions (i.e., axis-parallel rectangles), which is the
first improvement over the previous bound O(n0.382) by Ajwani, Elbassioni, Govindarajan, and

Ray [SPAA’07]. This result leads to an O(n1−0.632/2d−2

) upper bound with respect to orthogonal

ranges (boxes) in dimension d, and also an O(n1−0.632/(2d−3−0.368)) upper bound with respect to
dominance ranges (orthants) in dimension d ≥ 4.

We also observe that combinatorial results on conflict-free coloring can be applied to the
analysis of approximation algorithms for discrete versions of geometric independent set problems.
Here, given a set P of (weighted) points and a set S of ranges, we want to select the largest(-
weight) subset Q ⊂ P with the property that every range of S contains at most one point of Q.
We obtain, for example, a randomized O(n0.368)-approximation algorithm for this problem with
respect to orthogonal ranges in the plane.

1 Introduction

The main topic of this paper concerns three inter-related problems in combinatorial geometry:

Definition 1.1 (CF-coloring of elements w.r.t. ranges) Let S be a range space (or set system) [22,

23]. A conflict-free (or CF-)coloring of a set P of elements is a coloring χ of P such that for

every range s in S with P ∩ s 6= ∅, the multiset {χ(p) | p ∈ P ∩ s} contains a unique color. Let

cf-color(n,S) be the minimum number f such that every set of n elements in S has a CF-coloring

with f colors.

Definition 1.2 (DGk-independent set of elements w.r.t. ranges) Given a set P of elements in a

range space S and a value k, define the “order-k” Delaunay graph DGk(P,S) to be the graph where

the vertices are the elements of P , and pq is an edge iff there exists a range s in S such that

p, q ∈ s and |P ∩ s| ≤ k. A DGk-independent set of P refers to an independent set of the graph

DGk(P,S). Let dg-indepk(n,S) be the maximum number g such that every set of n elements in S
has a DGk-independent set of size g.
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Definition 1.3 (DGk-coloring of elements w.r.t. ranges) A DGk-coloring of a set P of elements

refers to a vertex coloring of the graph DGk(P,S). Let dg-colork(n,S) be the minimum number

f such that every set of n elements has a DGk-coloring with f colors.

Of the above three, CF-coloring has garnered the most fame (hence, we use the term in the

title); see [25] for a recent survey. Frequency assignment in radio networks is often mentioned as one

possible application; another application will be described in Section 1.3.

The standard Delaunay graph corresponds to the k = 2 case; for simplicity, we drop the subscript

in the above definitions when k = 2, e.g., dg-indep(n,S) = dg-indep2(n,S). In the case of

orthogonal ranges, i.e., boxes,1 the concept is further simplified because for every two points p, q,

there is a unique minimal enclosing box, which we denote by B(p, q). We get similar definitions

for CF-coloring/DGk-independent set/DGk-coloring of ranges w.r.t. elements when we dualize the

range space.

As explained below, the problems of bounding cf-color(n,S), dg-indep(n,S), and

dg-color(n,S) are known to be equivalent up to logarithmic factors:

Proposition 1.4 Let α, c be constants. Assume the following monotonicity property (which holds

for all range spaces considered in this paper): for every set P of elements and every range s in S
with |P ∩ s| > 2, there exists a range s′ in S with P ∩ s′ ⊂ P ∩ s and |P ∩ s′| = 2. Then2

(i) dg-indepk(n,S) = Ω̃(nα/kc) iff dg-colork(n,S) = Õ(n1−αkc);

(ii) dg-indep(n,S) = Ω̃(nα) iff cf-color(n,S) = Õ(n1−α).

Proposition 1.4(i) is easy to see, due to connection between independent set and coloring in graphs

(since our graph family DGk is hereditary). Proposition 1.4(ii) follows from a simple algorithm which

appeared in Even et al.’s original paper [16] on CF-coloring and was re-explained in Har-Peled and

Smorodinsky’s paper [19]. For completeness, a short proof is included in Appendix A.

1.1 Main Result on Points w.r.t. Rectangles in Two Dimensions

Many results on CF-coloring are known in the literature [25]. For example, there is an O(log n) upper

bound in the dual for disks w.r.t. points in two dimensions (or more generally, for planar objects

with linear union complexity w.r.t. points), and polylogarithmic upper bounds for two-dimensional

rectangles and three-dimensional boxes w.r.t. points [16, 19]. Perhaps the most perplexing open

problem in the area—the simplest case for which no polylogarithmic upper bound is currently known

and yet a sublinear bound is possible—is CF-coloring of points w.r.t. rectangles in the plane. Let Bd
be the range space where the elements are all points in IRd and the ranges are all boxes in IRd. We

provide a brief history of the problem of bounding cf-color(n,B2):

There are at least two different proofs that cf-color(n,B2) = O(
√
n), i.e., dg-indep(n,B2) =

Ω(
√
n). One proof [19] uses the Erdős–Szekeres theorem to find a chain of Ω(

√
n) points which is

monotone in x and y simultaneously; then an independent set can be obtained by taking, say, all

the even-indexed points in the chain. Another proof is divided into two cases: every graph with

maximum degree at most
√
n has independence number Ω(

√
n); on the other hand, if some vertex in

the Delaunay graph has degree exceeding
√
n, then its neighborhood would contain a monotone chain

1All rectangles and boxes are axis-parallel in this paper.
2The Õ or Ω̃ notation hides logO(1) n and logO(1)m factors in this paper.

2



of size Ω(
√
n), from which an independent set of size Ω(

√
n) can again be obtained. This second

proof can be refined to yield a slight improvement cf-color(n,B2) = O(
√
n/ log n) by using better

bounds on the independence number of graphs with sparse neighborhoods [2], as several researchers

have independently observed [19, 24].

The square-root barrier was finally broken in a more substantial way by Ajwani et al. [1], by

building on ideas from a previous paper of Elbassioni and Mustafa [13]. Ajwani et al. showed

that cf-color(n,B2) = O(n2−φ+ε) = O(n0.382), where φ is the golden ratio (1 +
√

5)/2 and ε is an

arbitrarily small constant. Consequently, dg-indep(n,B2) = Ω(nφ−1−ε) = Ω(n0.618). In the opposite

direction, Chen et al. [10] proved that dg-indep(n,B2) = O(n log2 log n/ log n).

In Section 2, we refine Ajwani et al.’s proof approach [1] to obtain the following result:

Theorem 1.5 dg-indep(n,B2) = Ω̃(nα) for some α > 0.632.

This implies that cf-color(n,B2) = Õ(n1−α) = O(n0.368). Although the improvement is not

huge, it represents the first progress in several years, and deepens the mystery surrounding the true

value of the exponent. Our value of 0.632 or 0.368 originates from an interesting recurrence relation,

and is a result of a computer-assisted search (alas, not a nice number like the golden ratio).

1.2 Implications for Larger k and Higher Dimensions

We next examine consequences of our result, extending Theorem 1.5 to larger k > 2 as well as to

boxes in higher dimensions. We also consider the case of dominance ranges, i.e., orthants. Let Od
be the range space where the elements are points in IRd and the ranges are orthants of the form

(−∞, x1]× · · · × (−∞, xd]. In Section 3, we prove the following:

Theorem 1.6 Suppose that dg-indep(n,B2) = Ω̃(nα). Then

(i) dg-indepk(n,B2) = Ω̃([n/k]α), and more generally, dg-indepk(n,Bd) = Ω̃([n/k]α/2
d−2

) for

any fixed d ≥ 2;

(ii) dg-indepk(n,Od) = Ω̃([n/k]α/(2
d−3−1+α)) for any fixed d ≥ 4.

In the two-dimensional case, the extension to larger k in Theorem 1.6(i) is not supposed to

be trivial and exploits ideas specific to the range space B2. In higher dimenisons, Har-Peled

and Smorodinksy [19] previously stated a weaker bound cf-color(n,Bd) = O(n1−1/2d−1
), i.e.,

dg-indep(n,Bd) = Ω(n1/2d−1
). The proof of Theorem 1.6(ii) requires further ideas, and in par-

ticular, the consideration of an intermediate case of points w.r.t. 3-dimensional 4-sided boxes. The

bounds deteriorate quickly as the dimension increases, but the bounds for small d are still interesting,

e.g., we have dg-indep(n,O4) = Ω̃(nα/(1+α)) = Ω(n0.387).

The dual (Bd)∗ of the range space Bd may be viewed as a special case of O2d by mapping a box

[a1, b1]×· · ·×[ad, bd] to the point (a1,−b1, . . . , ad,−bd) ∈ IR2d. Thus, as a corollary of Theorem 1.6(ii),

dg-indepk(n, (Bd)∗) = Ω̃([n/k]α/(2
2d−3−1+α)).

1.3 Application to Discrete Independent Set

We also point out an application to approximation algorithms for the following optimization problem,

which is actually the original motivation of this paper:
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Problem 1.7 (Discrete independent set of elements w.r.t. ranges) Given a set P of n (weighted)

elements and a set S of m ranges in a range space S, find the largest(-weight) subset Q ⊆ P such

that each range s ∈ S contains at most one element of Q.

We obtain a similar optimization problem of discrete independent set of ranges w.r.t. elements

when we dualize the range space: namely, given a set P of m elements and a set S of n (weighted)

ranges in a range space S, find the largest(-weight) subset Q ⊆ S such that each element p ∈ P is

contained in at most one range of Q. When P is taken as the entire universe, this dual problem is

equivalent to finding maximum independent sets in intersection graphs—this “continuous” version

of geometric independent set has been studied extensively (e.g., see [6, 7, 9, 18]). The unweighted

discrete independent set problem can be viewed as the LP-dual of geometric set cover and geometric

hitting set, both of which have also received considerable attention (e.g., see [5, 8, 12]).

In contrast, the discrete version of geometric independent set has not been studied as often.

We are aware of only two papers: Chan and Har-Peled’s work [9] has a short section showing that

their O(1)-approximation algorithm for independent set of pseudo-disks can be extended to discrete

independent set of pseudo-disks w.r.t. points. Ene, Har-Peled, and Raichel’s work [14] contains

multiple results on a problem that generalizes discrete independent set (namely, replacing the “at

most one element/range” with “at most the capacity of the element/range” in the constraints).

For example, they gave polylogarithmic-approximation algorithms for discrete independent set of

two-dimensional rectangles and three-dimensional boxes w.r.t. points.

We observe the following connection:

Theorem 1.8 Consider the following linear program (LP) for Problem 1.7:

maximize
∑
p∈P wpxp

subject to
∑
p∈s xp ≤ 1 ∀s ∈ S

0 ≤ xp ≤ 1 ∀p ∈ P,

where wp > 0 denotes the weight of p. Let opt be the optimal value of the LP and OPT be the optimal

value of the original problem. Suppose dg-indepk(n,S) = Ω̃(nα/kO(1)). Then OPT ≥ Ω̃(optα) ≥
Ω̃(OPTα) in the unweighted case, and OPT ≥ Ω̃(opt/n1−α) ≥ Ω̃(OPT/n1−α) in the weighted case.

The proof, given in Section 4, uses random sampling as in [9] and is straightforward (especially

since we are not too concerned with optimizing logarithmic factors here, unlike in [9]). For this LP,

there are unweighted instances where OPT ≤ dg-indep(n,S) but opt ≥ n/2: just let S consist of

all (combinatorially different) ranges in S that contain exactly two points in the set P that realizes

dg-indep(n,S), and set all xp’s to 1/2. Thus, the above theorem is in some sense tight (ignoring

logarithmic factors).

From the bound on dg-indepk(n,B2) implied by Theorems 1.5 and 1.6(i), we immediately obtain

an O(n0.368)-approximation algorithm for weighted discrete independent set of points w.r.t. rectan-

gles in two dimensions, or an Õ(OPT0.368)-approximation algorithm in the unweighted case; to the

author’s knowledge, no previous approximation algorithms were given for this particular problem.

From the bound on dg-indepk(n, (Bd)∗) implied by Theorems 1.5 and 1.6(ii), we obtain the first

sublinear approximation algorithm for discrete independent set of boxes w.r.t. points in dimensions

d ≥ 4; Ene et al. [14] previously stated the d = 4 case as an open problem. Since the proofs of all the

theorems are constructive (using randomization in some places), it can be verified that the resulting

approximation algorithms run in Las Vegas polynomial time.
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We remark that our linking of LP-based approximation algorithms to combinatorial geometry

problems continues an existing trend. For example, bounding the integrality gap of the standard LP

for unweighted geometric set cover and hitting set problems is equivalent (up to constant factors)

to the ε-net problem [17, 21]. For (continuous or discrete) independent set of planar objects w.r.t.

points, Chan and Har-Peled [9] have shown previously that an upper bound on the integrality gap

can be obtained from the union complexity (but unfortunately boxes may have high union complexity

even in two dimensions).

2 Points w.r.t. Rectangles in Two Dimensions (Proof of Theo-

rem 1.5)

In this section, we prove that dg-color(n,B2) = Õ(n1−α) for some α > 0.632, thereby showing that

dg-indep(n,B2) = Ω̃(nα). Our proof heavily builds on Ajwani et al.’s grid-based approach [1], but

our description will be kept self-contained. We will solve a generalization of the problem, introducing

two additional parameters v and h:

Problem 2.1 Given a set P of ≤ n points in the plane and a set V of < v vertical lines and a set H

of < h horizontal lines, define a “generalized Delaunay graph” DG(P, V,H,B2) where the vertices are

the points in P , and pq is an edge iff B(p, q)∩P = {p, q}, and p and q are separated by both a vertical

line in V and a horizontal line in H. We want to find a coloring of the graph DG(P, V,H,B2), which

in this section will be referred simply as a coloring of P relative to V and H.

Let F (n, v, h) be the minimum number of colors needed to solve this problem. It will be more

convenient to work with the function G(n, v, h) = n/F (n, v, h).

Initially, we can set V to consist of n− 1 vertical lines separating all the points and H to consist

of n − 1 horizontal lines separating all the points; then a coloring of P relative to V and H would

be a DG-coloring of P . Thus, our goal is to bound G(n, n, n).

For “base cases” of our recursive algorithm, we can start with a weak bound F (n, v, h) = O(
√
n)

by one of the known methods [19]. Another upper bound is F (n, v, h) ≤ v, which follows from the

trivial method of assigning the same color to all points between two consecutive vertical lines of V .

Rewriting in terms of the function G, we have

G(n, v, h) ≥ Ω(
√
n) (1)

G(n, v, h) ≥ n/v. (2)

Symmetry gives the following additional relationship:

G(n, v, h) = G(n, h, v). (3)

It turns out a further generalization involving a fourth parameter r0 will be useful for our recursive

algorithm:

Definition 2.2 We say that (x1, y1) (++)-dominates (x2, y2) if x1 > x2 and y1 > y2. Similarly,

(x1, y1) (+−)-dominates (x2, y2) if x1 > x2 and y1 < y2. For any sign sequence σ, we say that a

point p is σ-maximal in a set P if p ∈ P and p is σ-dominated by no other point in P .

Given a grid G0 formed by a set of vertical and horizontal lines, we say that a point set P respects

G0 if for every grid cell τ in G0, every point in P ∩ τ is (++)-maximal or (+−)-maximal in P ∩ τ .
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B(p, q)p

q

Figure 1: (Left) The (++)-maximal points in the cells of one diagonal of a grid G0. (Right) Two

unmarked points p and q lying in different columns and different rows of a grid G.

Let Fr0(n, v, h) be the minimum number of colors needed to solve Problem 2.1, under the knowl-

edge that the point set P respects an r0 × r0 grid G0. Let Gr0(n, v, h) = n/Fr0(n, v, h). (Of course,

every point set P respects a sufficiently fine, n× n grid G0, so G(n, v, h) = Gn(n, v, h).)

For base case, we have the upper bound Fr0(n, v, h) = O(r0): This follows by observing that the

(++)-maxima (resp. (+−)-maxima) in each grid cell in G0 form a monotone chain, i.e., a downward

(resp. upward) “staircase”. Since the grid cells of G0 can be partitioned into O(r0) northwest-to-

southeast or southwest-to-northeast diagonals (see Figure 1(left) for one such diagonal), the whole

point set P can be decomposed into O(r0) monotone chains. In each chain, we can easily color the

points alternately with two colors. The claim follows. In terms of the function G,

Gr0(n, v, h) ≥ Ω(n/r0). (4)

2.1 The Main Algorithm

We now present our main recursive algorithm to solve Problem 2.1. Let r ∈ [1,min{v, h}] be a

parameter. The algorithm consists of the five simple steps:

1. Form a grid G such that each column contains ≤ n/r points of P and < v/r vertical lines of

V , and each row contains ≤ n/r points of P and < h/r horizontal lines of H. At most O(r)

vertical and horizontal grid lines suffice.

2. For each grid cell τ of G, mark the (++)-maxima and (+−)-maxima of P ∩ τ . Find a coloring

of all the marked points in P . Let C0 be the palette used.

3. For each column ξ of G, recursively find a coloring of the unmarked points in P ∩ ξ relative to

the vertical lines of V inside ξ and the horizontal grid lines of G. Use a common palette C in

all the columns. Make sure that each coloring is “distributed fairly”—see details below.

4. For each row η of G and each i ∈ C, recursively find a coloring of the unmarked points in P ∩ η
that have received color i in Step 3, relative to all the vertical lines of V and the horizontal

lines of H inside η. Use a common palette C ′ in all the columns.

5. An unmarked point that has received color i in Step 3 and color j in Step 4 is given a final

color (i, j) in the palette C × C ′ (assumed to be disjoint from C0).
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Correctness. We now verify that the result is a valid coloring of DG(P, V,H,B2). Consider two

points p, q ∈ P such that B(p, q) ∩ P = {p, q} and p and q are separated by a vertical line of V and

a horizontal line of H. If both p and q are marked, they must have different colors by Step 2. If one

is marked and the other is unmarked, they obviously have different colors. From now on, we may

assume that p and q are both unmarked. Three cases may arise:

• p and q lie in different columns and different rows of G. If p is to the left of and below q

as in Figure 1(right) (all other cases are similar), then B(p, q) must contain a (++)-maximal

point inside the grid cell containing p; this point must be different from p and q since p is

unmarked—a contradiction.

• p and q lie in the same column but in different rows of G. Then p and q are separated by a

horizontal grid line of G. They must receive different colors in Step 3, and thus different final

colors.

• p and q lie in the same row of G. If they receive the same color in Step 3, they will receive

different colors in Step 4. Thus, they must have different final colors.

Details. Step 2 can be done using a palette C0 of Fcr(n, v, h) colors for some constant c, since the

marked points respect the cr × cr grid G.

Step 3 can be done using a palette C of f = F (n/r, v/r, cr) colors. We ensure that the coloring of

the unmarked points in P ∩ ξ for each column ξ is distributed fairly, i.e., satisfies the following prop-

erties: (a) the maximum size of the color classes is O(|P ∩ ξ|/f), and (b) each point has probability

O(1/f) of receiving any fixed color.

To ensure (a), when a color class contains more than 2|P ∩ ξ|/f points, we can just subdivide it

into color subclasses of size Θ(|P ∩ ξ|/f). The number of colors remains O(f). To ensure (b), we

can just pick a random permutation πξ of the color palette and rename color i as color πξ(i).

Let Pi denote the subset of all unmarked points that have received color i after Step 3. Consider

a row η and a color i. We analyze the random variable |Pi ∩ η|. Since each point has probability

O(1/f) of receiving color i by (b), |Pi∩η| has expected value µ = O(n/(rf)). Furthermore, |Pi∩η| =∑
ξ |Pi ∩ ξ ∩ η|, where the sum is over all columns ξ. The terms in the sum are independent random

variables, since the permutations πξ’s are independent. Because |Pi∩ ξ| ≤ O(|P ∩ ξ|/f) = O(n/(rf))

by (a), each term in the sum is upper-bounded by M = O(n/(rf)). By the Chernoff–Hoeffding

inequality [20] for sums of bounded random variables (after rescaling the variables and the mean by

a factor of 1/M),

Pr[|Pi ∩ η| > (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ/M
for any δ > 0 (possibly large). Choosing δ = Θ((1+M/µ) log n), we have |Pi∩η| ≤ O((n/(rf)) log n)

with high probability (e.g., probability 1− o(1/n2)). So, by repeating for an expected O(1) number

of trials, we can find a choice of random permutations that ensure |Pi ∩ η| ≤ Õ(n/(rf)) for all rows

η and all colors i at the same time.

Step 4 can therefore be done using a palette C ′ of F (c′n/(rf), v, h/r) colors for some c′ = Õ(1).
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The recurrence. The final palette C0 ∪ (C × C ′) has size Fcr(n, v, h) + O(f)F (c′n/(rf), v, h/r),

where f = F (n/r, v/r, cr). We conclude that for any r ∈ [1,min{v, h}],

F (n, v, h) ≤ Fcr(n, v, h) + O(F (n/r, v/r, cr))F

(
c′n/r

F (n/r, v/r, cr)
, v, h/r

)
.

When expressed in terms of the function G(n, v, h) = n/F (n, v, h), this peculiar recurrence is

simplified somewhat. Make the following definition: x ⊕ y = z iff 1/x + 1/y = 1/z. Then for any

r ∈ [1,min{v, h}],

G(n, v, h) ≥ Gcr(n, v, h) ⊕ Ω̃(r)G

(
c′G

(
n

r
,
v

r
, cr

)
, v,

h

r

)
. (5)

Note that one can think of the operator ⊕ as a shorthand for min, since they have the same

behavior asymptotically when the number of terms is small: more precisely, (1/k) min{x1, . . . , xk} ≤
x1 ⊕ · · · ⊕ xk ≤ min{x1, . . . , xk} for all x1, . . . , xk > 0.

2.2 First Analysis of the Recurrence

We now analyze the recurrence (5) (in conjunction with (1)–(4)). First, we ignore the effects of the

parameters v and h. Assume that a bound G(n, v, h) = Ω̃(nα) is known. Then (5) together with (4)

implies that

G(n, v, h) ≥ Ω̃
(
n/r ⊕ r[n/r]α

2
)
.

By setting r = n(1−α2)/(2−α2) to balance the two terms, we obtain a new bound G(n, v, h) =

Ω̃(n1/(2−α2)).

We can apply this process a constant number of times, starting with the base case (1). It is

straightforward to verify that the sequence α0 = 1/2, αi+1 = 1/(2 − α2
i ) converges to a root of the

equation α = 1/(2 − α2), namely, φ − 1 = (
√

5 − 1)/2 > 0.618. For any arbitrarily small constant

ε > 0, we thus get G(n, n, n) = Ω̃(nφ−1−ε) = Ω(n0.618) and F (n, n, n) = O(n0.382), recovering the

previous result by Ajwani et al. [1].

Although our explanation might be somewhat cleaner, our algorithm is identical to Ajwani et al.’s

when V and H are absent. Our main innovation is in considering colorings relative to the horizontal

grid lines during Step 3. Because Ajwani et al. did not do this, the case when unmarked points p

and q lie in both the same column and the same row is “handled” twice—our idea eliminates this

redundancy.

It may not be immediately obvious that taking into account v and h can indeed lead to an

improvement, however. One needs more than one level of recursion to see an effect. The following

is a shortest chain of applications of (5) that yield a new result. In each instance, we use (4) for the

first term Gr(n, r, h) and the bound G(n, v, h) = Ω(n0.618) for the outer G in the second term of the

right-hand side of (5):

G(n, n, n) ≥ Ω̃
(
n0.622 ⊕ n0.378[G(n0.622, n0.622, cn0.378)]0.618

)
G(n0.622, n0.622, cn0.378) = G(n0.622, cn0.378, n0.622)

≥ Ω̃
(
n0.395 ⊕ n0.227[G(n0.395, cn0.151, cn0.227)]0.618

)
G(n0.395, cn0.151, cn0.227) ≥ Ω̃

(
n0.272 ⊕ n0.123[G(n0.272, cn0.028, cn0.123)]0.618

)
G(n0.272, cn0.028, cn0.123) ≥ Ω(n0.272−0.028) = Ω(n0.244) by (2).
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Substituting in reverse, we conclude that G(n, n, n) = Ω̃(n0.622), i.e., F (n, n, n) = Ω̃(n0.378).

The recurrence appears hard to solve exactly, but clearly further improvements should be possible

with more iterations. Later in Section 2.4, we will describe a way to make the setting of r and the

verification process more systematic. However, we will not explore the best bound achievable by

(5) at this point, since a different version of the algorithm and recurrence turns out to be more

effective. . .

2.3 Variants of the Algorithm

For example, a similar algorithm gives the following alternative recurrence for any r ∈ [1,min{v, h}]:

G(n, v, h) ≥ Gcr(n, v, h) ⊕ Ω̃(r)G

(
c′G

(
n

r
,
v

r
, h

)
, cr,

h

r

)
. (6)

This is obtained by modifying the algorithm so that the colorings in Step 3 are now relative to the

vertical lines of V inside ξ and all the horizontal lines of H and the colorings in Step 4 are now

relative to the vertical grid line of G and the horizontal lines of H inside η. In the correctness proof,

Step 3 takes care of the case when p and q lie in the same column, and Step 4 takes care of the case

when p and q lie in the same row but in different columns.

Better still, we can prove the following for any r ∈ [1,min{r0, v, h}]:

Gr0(n, v, h) ≥ Gcr(n, v, h) ⊕ Ω̃(r · (r/r0))G

(
c′G

(
n

r
,
v

r
, cr

)
, cr,

h

r

)
. (7)

Here, we need several modifications to the algorithm, knowing that the given point set P respects

an r0 × r0 grid G0: First, in step 1, by adding O(r) vertical and horizontal grid lines to G, we can

ensure that each column of G contains < r0/r vertical grid lines of G0, and each row of G contains

< r0/r horizontal grid lines of G0. As before, the colorings in Step 3 are relative to the vertical lines

of V inside ξ and the horizontal grid lines of G, but the colorings in step 4 are now relative to the

vertical grid line of G and the horizontal lines of H inside η. We perform an extra step: inside each

grid cell τ of G, we compute a coloring of the unmarked points in P ∩ τ using a common palette C ′′;

since P ∩ τ respects an br0/rc × br0/rc grid, C ′′ requires O(r0/r) colors by (4) (which accounts for

the extra r/r0 factor in (7)). In Step 5, an unmarked point that has received color i in Step 3, color

j in Step 4, color ` in the extra step is given a final color (i, j, `) in the palette C × C ′ × C ′′.
In the correctness proof, Step 3 takes care of the case when p and q lie in the same column but

in different rows of G, and Step 4 takes care of the case when p and q lie in the same row but in

different columns of G. The extra step takes of the case when p and q lie in both the same row and

the same column of G. This establishes (7).

Using (7) to bound G(n, v, h) requires some preparation, since we need to keep the ratio r0/r

small in each application. We first start with the following: for r∗ = min{v, h},

G(n, v, h) ≥ Gcr∗(n, v, h) ⊕ Ω̃(r∗)G

(
c′G

(
n

r∗
,
v

r∗
, cr∗

)
, cr∗,

h

r∗

)
.

If h ≤ v, then r∗ = h and the above inequality follows from (5) since by (2), G(x, v, 1) = x =

G(x, cr∗, 1). If v ≤ h, then r∗ = v and the above inequality follows from (6) since by (2), G(x, 1, h) =

x = G(x, 1, cr∗).
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Next, by applying (7) with r0 = cr∗/2i and r = r∗/2i+1 repeatedly for logarithmically many

iterations and terminating with the base case (4) with r = r∗, we obtain

G(n, v, h) ≥ Ω(n/r∗) ⊕ min
r∗≤r≤min{h,v}

Ω̃(r)G

(
c′G

(
n

r
,
v

r
, cr

)
, cr,

h

r

)
(8)

for any r∗ ∈ [1,min{v, h}]. (Remember that ⊕ behaves like min, since the number of terms is

O(log n) = Õ(1).)

We will see that the min in the above formula tends to be attained by the term for r = r∗, and if

so, (8) indeed subsumes both (5) and (6) simultaneously in some sense. From now on, we work with

(8) in place of (5)–(7).

2.4 Better Analysis of the Alternative Recurrence

We now obtain bounds on G(n, v, h) using the recurrence (8) together with (1)–(3). Specifically, we

show how to derive a new bound from two known bounds.

Assume that G(n, v, h) = Ω̃(nα1vβ1hγ1) and G(n, v, h) = Ω̃(nα2vβ2hγ2), with α1, α2 ∈ [0, 1] and

β1, β2, γ1, γ2 ≤ 0. Then by (8),

G(n, v, h) ≥ Ω̃

(
n/r∗ ⊕ min

r∗≤r≤min{v,h}
r
[
(n/r)α1(v/r)β1rγ1

]α2
rβ2 [h/r]γ2

)

≥ Ω̃

(
n/r∗ ⊕ min

r∗≤r≤min{v,h}
nα1α2vβ1α2hγ2r1−(α1+β1−γ1)α2+β2−γ2

)
.

Assuming 1 − (α1 + β1 − γ1)α2 + β2 − γ2 ≥ 0, we see that the minimum above is attained when

r = r∗. By setting r∗ = [nα1α2−1vβ1α2hγ2 ]−1/(2−(α1+β1−γ1)α2+β2−γ2) to balance the two terms,3 we

conclude that G(n, v, h) ≥ Ω̃(nαvβhγ), where

(α, β, γ) = g((α1, β1, γ1), (α2, β2, γ2)) = (1, 0, 0) + 1
2−(α1+β1−γ1)α2+β2−γ2 (α1α2 − 1, β1α2, γ2). (9)

If 1− (α1 + β1 − γ1)α2 + β2 − γ2 < 0, we make g undefined.

We can apply the above process in conjunction with (3) a constant number of times, in any order,

starting with the base case (2) and the known bound G(n, v, h) = Ω(n0.618). In other words, letting

s(α, β, γ) = (α, γ, β), u = (1,−1, 0), v0 = (0.618, 0, 0), (10)

we have G(n, v, h) = Ω̃(nαvβhγ) for any vector (α, β, γ) that can be generated by a constant number

of applications of the mappings g and s to the initial vectors u and v0.

Numerical calculations. For example, the specific chain of inequality used in Section 2.2 is

analogous to taking the expression

g(s(g(g(u,v0),v0)),v0),

which indeed evaluates to a vector exceeding (0.622, 0, 0). We can immediately do better by iterating:

vi+1 = g(s(g(g(u,vi),vi)),vi)

3It is easy to check that r∗ ≥ 1. The bound remains true for r∗ > min{v, h}, since (2) gives G(n, v, h) ≥
Ω(n/min{v, h}) ≥ Ω(n/r∗).
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gives a vector ≥ (0.624, 0, 0) for a sufficiently large constant i. (Of course, at this stage, the evalua-

tions are best done on a computer than a hand calculator.) Modifying the expression to

vi+1 = g(s(g(g(u, s(g(u, s(u)))),vi)),vi)

gives ≥ (0.627, 0, 0). Expanding and further tweaking the expression, we find that letting w0 = s(u),

wi+1 = g(u,wi), and

vi+1 = g(s(g(g(w5, s(g(w3, s(g(w6, s(g(w2,w0))))))),vi)),vi)

gives ≥ (0.629, 0, 0). With more ad hoc experimentation, we discover that

vi+1 = g(s(g(g(g(w7,g(w7,w2)), s(g(g(w3,g(w2,w0)), s(g(w6, s(g(w2,w0))))))),vi)),vi)

gives ≥ (0.630, 0, 0). Continuing still further and letting z0 = s(w1), zi+1 = g(u, zi), and

vi+1 = g(s(g(g(g(g(u,g(u,g(w3,g(w2, s(z1))))),g(g(u,g(w3,g(w2, s(z1)))), s(g(g(z2,

s(g(w2, z0))), s(g(w3,g(w2, s(z1)))))))), s(g(g(g(z3,g(z2, s(g(u, s(z1))))),g(g(z2,

s(g(z2, s(z1)))), s(g(w3,g(z2, s(z1)))))), s(g(g(w4,g(w3,g(z2, s(z1)))), s(g(g(z2,

s(g(w2, s(z1)))), s(g(w3,g(z2, s(z1))))))))))),vi)),vi)

give ≥ (0.631, 0, 0).

This last expression is not generated by hand (as the reader might guess), but automatically by

a C program which employs a simple greedy expansion strategy. Roughly speaking, in each round,

the program evaluates the arguments (n, v, h) at all nodes of the current expression tree; then at

each leaf, it decides whether to apply the s map first before applying g, based on whether v > h, to

produce the next level of the tree.

The same program finds an expression that gives a vector exceeding (0.632, 0, 0), although the

expression is just a bit more complicated to write down—the curious reader can see the whole thing

in Appendix B. (We have an even longer expression giving (0.6322, 0, 0), but decide not to waste

more paper.) We conclude that G(n, n, n) = Ω̃(nα) and F (n, n, n) = Õ(n1−α) for some α > 0.632.

This proves Theorem 1.5.

Remarks. Although there is no guarantee the exponent obtained by our greedy heuristics should

converge to the optimal value for our recurrence, new ideas are probably required to get a more

substantial improvement.

In fact, our recurrence cannot yield a bound for α greater than 2/3 ≈ 0.667. For example, the

function G(n, v, h) = max{n2/3, n/
√
v, n/

√
h} (which has G(n, n, n) = n2/3) obeys (8) and (1)–(3),

as one can verify by hand with a tedious case analysis. One could try to find worse examples by using

another computer search, experimenting with more complicated functions of the form G(n, v, h) =

max(α,β,γ)∈S n
αvβhγ for some finite sets S.

3 Implications

In this section, we consider the case of boxes in higher dimensions. Given d ≤ j ≤ 2d, let Bd,j be the

range space where the elements are all points in IRd and the ranges are all j-sided boxes of the form

[x1, x
′
1]× [xj−d, x

′
j−d]× (−∞, xj−d+1]× · · · × (−∞, xd]. For example, Bd,2d = Bd and Bd,d = Od.
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3.1 Points w.r.t. 3-Dimensional 4-Sided Boxes

For the case of points w.r.t. 3-dimensional orthants in O3 (3-sided boxes), which is equivalent to or-

thants in O3 w.r.t. points by self-duality, good bounds can be obtained because the union complexity

is low, which generally implies that the order-k Delaunay graph is sparse. Aloupis et al. [4] observed

this fact specifically for the case of pseudo-disks w.r.t. points; they used a sampling-based proof.

Chan and Har-Peled [9] gave a different sampling-based proof in the style of “shallow cuttings.”

In Appendix A, we include for completeness an adaptation of the latter proof to the 3-dimensional

orthant case.

Proposition 3.1

(i) The graph DGk(P,O3) has O(nk) edges.

(ii) dg-indepk(P,O3) = Ω(n/k).

We are thus led to the next nontrivial case of 3-dimensional 4-sided boxes in B3,4; this case turns

out to be useful later in Section 3.3.

First the concept of dominance and maximality in Definition 2.2 can be extended to three di-

mensions in the obvious way: for example, (x1, y1, z1) (+−−)-dominates (x2, y2, z2) if x1 > x2 and

y1 < y2 and z1 < z2. The σ-orthant of a point q is the region of all points that σ-dominate q.

We reduce the case of 3-dimensional 4-sided boxes to the 2-dimensional rectangular case in a

series of three stages:

Lemma 3.2 Suppose that dg-indep(n,B2) = Ω̃(nα).

(i) Let P be an n-point set in IR3 such that every point in P is both (−−−)-maximal and (+−−)-

maximal. Then we can find an independent set of DG(P,B3,4) of size Ω̃(nα).

(ii) Let P be an n-point set in IR3 such that every point in P is (−−−)-maximal. Then we can

find an independent set of DG(P,B3,4) of size Ω̃(nα).

(iii) dg-indep(n,B3,4) = Ω̃(nα).

Proof:

(i) Consider the yz-projection P̂ of P . All points in P̂ are (−−)-maximal, i.e., they form a

descending staircase. Thus, for any value z, the range IR × (−∞, z] contains the same points

of P̂ as the range [y,∞)× IR for some y. Consequently, the 3-dimensional 4-sided box [x, x′]×
(−∞, y′]× (−∞, z] contains the same points of P as the range [x, x′]× [y, y′]× IR. We can find

a DG-independent set of P w.r.t. B3,4 by finding a DG-independent set of the xy-projection of

P w.r.t. B2.

(ii) We describe a simple divide-and-conquer algorithm to color DG(P,B3,4) with Õ(n1−α) colors.

Use a vertical line to divide P into a left point set PL and a right point set PR, each of

size n/2. Mark the (+−−)-maximal points of PL. Color the marked points by applying (i),

which requires a palette of Õ(n1−α) colors. Recursively color the unmarked points in PL and

recursively color the points in PR, using a common new palette. The number of colors satisfies

the recurrence G(n) = G(n/2) + Õ(n1−α), which gives Õ(n1−α) as desired.
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To prove correctness of this coloring, consider a 4-sided range s in B3,4 that contains exactly

two points p, q of P . If both p and q are marked, they must have different colors. If one is

marked and the other is unmarked, they obviously have different colors. So, assume both are

unmarked. If p, q ∈ PL or p, q ∈ PR, they would have different colors by induction. If p ∈ PL
and q ∈ PR, then s must contain a (+−−)-maximal point of PL; this point must be different

from p and q since p is unmarked—a contradiction.

(iii) We describe a similar simple divide-and-conquer algorithm to color DG(P,B3,4) with O(n1−α)

colors. Use a vertical line to divide P into a left point set PL and a right point set PR, each of

size n/2. Mark the (−−−)-maximal points of PR. Color the marked points by applying (ii),

which requires a palette of Õ(n1−α) colors. Recursively color the points in PL and recursively

color the unmarked points in PR, using a common new palette. The number of colors satisfies

the recurrence G′(n) = G′(n/2) + Õ(n1−α), which gives Õ(n1−α) again. Correctness follows by

the same argument as in (ii). 2

Lemma 3.2 addresses only the k = 2 case. We next show that the k > 2 case can be directly

reduced to the k = 2 case for 3-dimensional 4-sided boxes, which implies the same for 2-dimensional

rectangles as well. The key is the following proposition. Essentially the same proof as below was

given by Ene, Har-Peled, and Raichel [14] in the special case of 2-dimensional rectangles.

Proposition 3.3 Let P be any n-point set in IR3 and k be a given value. Then we can find a subset

Q with Ω(n/(k log n)) points such that every range s ∈ B3,4 with |P ∩s| ≤ k contains at most 2 points

of Q.

Proof: We describe a divide-and-conquer algorithm to construct a graph G(P ) over vertex set P :

Use a vertical line to divide P into a left point set PL and a right point set PR, each of size n/2.

Recursively add edges from G(PL) and G(PR). Also add edges from the order-k Delaunay graph of

PL w.r.t. (+−−)-orthants, and the order-k Delaunay graph of PR w.r.t. (−−−)-orthants. Note that

these two Delaunay graphs have O(nk) edges by Proposition 3.1(i). The total number of edges thus

satisfies E(n) = 2E(n/2) +O(nk), which gives E(n) = O(nk log n).

We return an independent set Q of G(P ). Since the average degree in G(P ) is O(k log n), we can

find such a set of size Ω(n/(k log n)) by Turán’s theorem.

To prove that Q satisfies the desired property, first associate each node of the recursion tree with

a slab, where the root slab is the entire plane and the slab of a node is partitioned into the slabs

at the two children using the vertical dividing line at the node. Consider a 4-sided range s in B3,4

with |P ∩ s| ≤ k. Find the node v in the recursion tree where s is contained in v’s slab τ but not

in the left or right child’s slab τL or τR. Since s is equivalent to a (+−−)-orthant when restricted

inside τL, and to a (−−−)-orthant when restricted inside τR, we know that |Q ∩ s ∩ τL| ≤ 1 and

|Q ∩ s ∩ τR| ≤ 1. Thus, |Q ∩ s| ≤ 2. 2

Corollary 3.4 Suppose that dg-indep(n,B2) = Ω̃(nα). Then

(i) dg-indepk(n,B3,4) = Ω̃([n/k]α);

(ii) dg-indepk(n,B2) = Ω̃([n/k]α).
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Proof: To prove (i), we first apply Proposition 3.3 to obtain a subset Q of the given n-point set and

then apply Lemma 3.2(iii) to output a DG-independent set of Q of size Ω̃(|Q|α) = Ω̃([n/(k log n)]α).

(ii) is a special case of (i), since after the transformation (a, b) 7→ (a, b,−b), a 2-dimensional

rectangle [x′, x]× [y′, y] corresponds to a 3-dimensional 4-sided box [x′, x]× (−∞, y]× (−∞,−y′]. 2

Remarks. Note that since 3-dimensional 4-sided boxes are at least as expressive as 2-dimensional

rectangles, as the above transformation illustrates, the bound in Lemma 3.2(iii) is essentially tight.

Proposition 3.3 prompts a more general definition: Given a set P of elements in a range space

and j < k, define a DGk,j-independent set of P to be a subset Q of P such that for every range

s, |P ∩ s| ≤ k implies |Q ∩ s| ≤ j. Our previous definition corresponds to the j = 1 case, whereas

Proposition 3.3 considers j = 2. A related generalization of CF-coloring was considered in Har-Peled

and Smorodinksy’s paper [19], where it was shown that bounds improve sharply as j increases for

any range spaces with bounded VC dimension. Combinatorial bounds on the DGk,j-independent set

problem can be applied to the analysis of approximation algorithms for a generalization of discrete

independent set where the “at most one” constraint in Problem 1.7 is replaced by “at most j”.

3.2 Points w.r.t. Boxes in Higher Dimensions (Proof of Theorem 1.6(i))

The case of higher-dimensional boxes can be handled by repeated application of the Erdős–Szekeres

theorem, as shown by Har-Peled and Smorodinsky [19]. We notice that the bound can be slightly

improved using our new result for 2-dimensional rectangles as the base case:

Lemma 3.5 If dg-indepk(n,Bd−1) = Ω̃(nβ/kc), then dg-indepk(n,Bd) = Ω̃(nβ/2/kc).

Proof: Let P be a sequence of n points in IRd sorted according to the first coordinate. By

the Erdős–Szekeres theorem [15], there exists a subsequence Q of Ω(
√
n) points that is monotone

increasing or decreasing in the last coordinate.

For any xd and x′d, the range IRd−1× [xd, x
′
d] contains the same points of Q as the range [x1, x

′
1]×

IRd−1 for some x1 and x′1. Thus, the d-dimensional box [x′′1, x
′′′
1 ]× [x2, x

′
2]×· · ·× [xd, x

′
d] contains the

same points of Q as the box [max{x1, x
′′
1},min{x′1, x′′′1 }]×[x2, x

′
2]×· · ·×[xd−1, x

′
d−1]×IR. We can find

a DGk-independent set of Q (and thus P ) w.r.t. Bd by finding a DGk-independent set w.r.t. Bd−1 of

the projection of Q along the last coordinate. This independent set has size Ω̃(|Q|β/kc) = Ω̃(nβ/2/kc).

2

By repeated applications of Lemma 3.5 with Corollary 3.4(ii) as the base case, we obtain

dg-indepk(n,Bd) = Ω̃(nα/2
d−2

/k). This proves Theorem 1.6(i) except for a weaker exponent in

the k factor, which can be fixed by the following general reduction:

Proposition 3.6 For a range space S with a constant VC dimension, dg-indepk(n,S) =

Ω̃(nβ/kO(1)) implies dg-indepk(n,S) = Ω̃([n/k]β).

Proof: The claim follows from a standard random sampling argument, or as a special case of

Theorem 1.8. For the latter, given a set P of n elements, just let S consist of all combinatorial different

ranges s ∈ S and |P ∩ s| ≤ k. By the bounded VC-dimension assumption (Sauer’s lemma) [23], S

has polynomial size. In the LP for the unweighted setting, OPT equals the size of the maximum

independent set of DGk(P,S), and opt ≥ n/k since we can set all xp’s to 1/k. Theorem 1.8 implies

that OPT ≥ Ω̃([n/k]β). 2
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Remark. It would be nice if Ajwani et al.’s grid-based method could be directly extended to handle

higher-dimensional boxes to yield better bounds, but such an extension does not appear obvious.

3.3 Points w.r.t. Orthants in Higher Dimensions (Proof of Theorem 1.6(ii))

For higher-dimensional orthants, better results can be obtained by applying the Erdős–Szekeres

theorem in a slightly more interesting way:

Lemma 3.7 If dg-indepk(n,Bd−1,d) = Ω̃(nβ/kc) and dg-indepk(n,Od−1) = Ω̃(nγ/kc), then

(i) dg-indepk(n,Bd,d+1) = Ω̃(nβ/2/kc), and

(ii) dg-indepk(n,Od) = Ω̃(nβ⊕γ/kc) where β ⊕ γ = 1/(1/β + 1/γ).

Proof:

(i) The proof of this part is almost identical to the proof of Lemma 3.5. We just observe that the

d-dimensional (d+ 1)-sided box [x′′1, x
′′′
1 ]× (−∞, x′2]× · · · × (−∞, x′d] contains the same points

of Q as the box [max{x1, x
′′
1},min{x′1, x′′′1 }]× (−∞, x′2]×· · ·× (−∞, x′d−1]× IR for some x1 and

x′1. The latter box is in Bd−1,d after projection along the last coordinate.

(ii) The proof of this part is also similar but requires the use of a parameter r. Let P be a sequence

of n points in IRd sorted in increasing order according to the first coordinate. By the Erdős–

Szekeres theorem, there exists either (a) a subsequence Q of Ω(r) points that is monotone

increasing in the last coordinate, or (b) a subsequence Q of Ω(n/r) points that is monotone

decreasing in the last coordinate.

In Case (a), for any value xd, the range IRd−1× (−∞, xd] contains the same points of Q as the

range (−∞, x1] × IRd−1 for some x1. Thus, the d-dimensional orthant (−∞, x′1] × (−∞, x2] ×
· · ·× (−∞, xd] contains the same points of Q as the range (−∞,min{x1, x

′
1}]× (−∞, x2]×· · ·×

(−∞, xd−1] × IR. We can find a DGk-independent set of Q (and thus P ) w.r.t. Od by finding

a DGk-independent set w.r.t. Od−1 of the projection of Q along the last coordinate.

In Case (a), for any value xd, the range IRd−1× (−∞, xd] contains the same points of Q as the

range [x1,∞)×IRd−1 for some x1. Thus, the d-dimensional orthant (−∞, x′1]×(−∞, x2]×· · ·×
(−∞, xd] contains the same points of Q as the range [x1, x

′
1]× (−∞, x2]×· · ·× (−∞, xd−1]× IR.

We can find a DGk-independent set of Q (and thus P ) w.r.t. Od by finding a DGk-independent

set w.r.t. Bd−1,d of the projection of Q along the last coordinate.

In any case, we can find an independent set of DGk(P,Od) of size

Ω̃(min{rγ , (n/r)β}/kc).

By setting r = nβ/(β+γ) to balance the two terms, we obtain a bound of Ω̃(nβ⊕γ/kc). 2

By repeated applications of Lemma 3.7(i) with Corollary 3.4(i) as the base case, we have

dg-indepk(n,Bd−1,d) = Ω̃(nα/2
d−4

/k).

By repeated applications of Lemma 3.7(ii) with Proposition 3.1(ii) as the base case, we then have

dg-indepk(n,Od) = Ω̃(nγd/k) with γ3 = 1 and γd = α/2d−4 ⊕ γd−1, i.e.,

γd = α/2d−4 ⊕ · · · ⊕ α/2⊕ α⊕ 1 =
1

2d−4/α+ · · ·+ 2/α+ 1/α+ 1
=

1

(2d−3 − 1)/α+ 1
.

The exponents in the k factors can be fixed again by Proposition 3.6. This proves Theorem 1.6(ii).
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Remark. As mentioned in the introduction, the case of boxes w.r.t. points in IRd can be reduced to

the case of points w.r.t. orthants in IR2d, i.e., dg-indepk(n, (Bd)∗) = Ω̃(nα/(2
2d−3−1+α)/k). It would

be interesting to find better bounds by a more direct approach for this dual problem. (Note that for

d = 3, one can get dg-indepk(n, (B3)∗) = Ω(n/(k polylog n)) by using divide-and-conquer to reduce

the number of sides, and Proposition 3.1 for the base case; this is described in Ene, Har-Peled, and

Raichel’s paper [14].)

4 Discrete Independent Set (Proof of Theorem 1.8)

In this last section, we present an approximation algorithm for discrete independent set by rounding

the LP from Theorem 1.8. Let {xp | p ∈ P} be the solution to the LP. Draw a random sample R

of the elements where element p is chosen independently with probability xp. For a fixed range s,

consider the random variable |R ∩ s|, which has expected value µs =
∑
p∈s xp ≤ 1 and is a sum of

independent 0-1 random variables. By the Chernoff bound,

Pr[|R ∩ s| > (1 + δ)µs] ≤
[

eδ

(1 + δ)1+δ

]µs
for any δ > 0 (possibly large). Choosing4 δ = Θ((logm)/µs), we have |R ∩ s| = O(logm) with high

probability (e.g., probability 1− o(1/m)).

Next consider the total weight w(R) of R, which has expected value µ =
∑
p∈swpxp = opt and

variance σ2 =
∑
p∈sw

2
p(xp − x2

p) ≤ W · opt, where W denotes the maximum weight in P . We may

assume that W ≤ opt/c for any fixed constant c, for otherwise we can just return the singleton with

weight W and be done. So, σ ≤ opt/
√
c. By Chebyshev’s inequality,

Pr[|w(R)− µ| > tσ] ≤ 1/t2

for any t > 0. Choosing constants c and t appropriately, we have |w(R)| ≥ Ω(opt) with probability

Ω(1). So, by repeating for an expected O(1) number of trials, we can find a subset R satisfying both

(a) |R ∩ s| ≤ O(logm) for all s ∈ S at the same time, and (b) w(R) ≥ Ω(opt).

In the unweighted case, we return a DGc′ logm-independent set Q of R of size Ω̃(|R|α/ logO(1)m),

which is Ω̃(optα) by (b). We know that Q is a feasible solution for a sufficiently large constant c′ by

(a) and the definition of DGc′ logm-independence.

In the weighted case, we compute a DGc′ logm-coloring of R with Õ(|R|1−α logO(1)m) = Õ(nα)

colors, and return a color class Q of the largest weight. Then w(Q) ≥ Ω̃(w(R)/n1−α) ≥ Ω̃(opt/n1−α)

by (b). Again, Q is a feasible solution by (a). This completes the proof of Theorem 1.8.

Remark. It is possible to make small improvements in the logarithmic factors by experimenting

with a different choice of probability values, e.g., selecting element p with probability min{bxp, 1}
for some parameter b ≥ 1.

Acknowledgement. I thank Sariel Har-Peled for asking about discrete independent set of higher-

dimensional boxes w.r.t. points, which started this work. Thanks also to Vinayak Pathak for discus-

sions two years ago on conflict-free coloring of points w.r.t. rectangles, and Shakhar Smorodinsky for

introducing me to the problem many more years ago.

4Actually δ = Θ((logm/ log logm)/µs) works too, as noted in [9].
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Appendix

A Proofs of Propositions 1.4 and 3.1

Proof of Proposition 1.4: For the only-if direction of (i), we can color a set P of elements as

follows: find a DGk-independent set Q of P of size Ω̃(|P |α/kc), give the elements of Q a common

new color, remove Q from P , and repeat.

While the size of P remains above n/2, the number of iterations is at most Õ(n1−αkc). The total

number of iterations until P becomes empty is thus Õ((n1−α+(n/2)1−α+ · · ·)kc) = Õ(n1−αkc). This

bounds the total number of colors used.

For the only-if direction of (ii), we use exactly the same algorithm (with k = 2). To see why the

result is a CF-coloring, consider a range s containing at least two elements of P . If s contains an

element of P −Q, then s contains a unique color by induction. On the other hand, if s contains only

elements of Q, then by the monotonicity property, some subrange s′ contains exactly two elements

of Q, which contradicts the DG-independence of Q.

For the converse to (i), in a DGk-coloring with Õ(n1−αkc) colors, the largest color class has size

Ω̃(nα/kc) and is a DGk-independent set. Similarly, for the converse to (ii), the largest color class in

a CF-coloring is clearly a DG-independent set.

Proof of Proposition 3.1: For each point p ∈ P , let op denote the (−−−)-orthant with corner

at p. Draw a random sample R where each point p ∈ P is chosen independently with probability

1/2k. Let VD(R) be the vertical decomposition of the complement of the union U(R) of {or | r ∈ R}.
(The collection of cells VD(R) may be regarded as a shallow cutting.) Since the union complexity of

orthants in IR3 is linear by Euler’s formula (as U(R) is an orthogonal polyhedron), VD(R) consists

of O(|R|) cells. For each cell ∆ ∈ VD(R), define its conflict list P∆ to consist of all points p ∈ P with

op intersecting ∆. Let G∆ denote the set of all pairs in P∆ and G =
⋃

∆∈VD(R)G∆. By Clarkson

and Shor’s technique [11],

E[|G|] = E

 ∑
∆∈VD(R)

|P∆|2
 = O((n/k) · k2) = O(nk).

For a fixed edge p1p2 ∈ DGk(P,O3), let q ∈ P be a point that (+++)-dominates at most k points

in P and (+++)-dominates p1 and p2. Then q is not covered by the cells in VD(R) iff q lies inside
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U(R), iff at least one point (+++)-dominated by q is chosen in R—this happens with probability

at most (1/2k)k = 1/2. If q lies inside a cell ∆ ∈ VD(R), then we know that p1p2 ∈ G∆ ⊆ G. It

follows that Pr[p1p2 ∈ G] ≥ 1/2. Thus,

E[|G|] ≥ (1/2)|DGk(P,O3)|,

implying |DGk(P,O3)| = O(nk). This proves (i).

Part (ii) follows from (i) by Turán’s theorem [3], since the average degree in DGk(P,O3) is O(k).

Remark. Since the DGk graph family is hereditary, we can alternatively use the standard greedy

algorithm for independent set (select a vertex with the largest degree, remove, and repeat) instead

of Turán’s theorem.

B Verification of 0.632 in Maple

The following script in Maple outputs a vector ≥ (0.6320002, 0, 0):

g := proc(a1,b1,c1,a2,b2,c2)

if (1-(a1+b1-c1)*a2+b2-c2 < 0) then printf("undefined!\n") end if;

(1,0,0) + (a1*a2-1, b1*a2, c2) / (2-(a1+b1-c1)*a2+b2-c2) end proc;

s := proc(a,b,c) a,c,b end proc;

u := (1,-1,0); v := (0.618,0,0);

w0 := s(u); w1 := g(u,w0); w2 := g(u,w1); w3 := g(u,w2); w4 := g(u,w3); w5 := g(u,w4);

z0 := s(w1); z1 := g(u,z0); z2 := g(u,z1); z3 := g(u,z2); z4 := g(u,z3); z5 := g(u,z4);

for i from 1 to 11 do v := \

g(s(g(g(g(g(g(z5,g(z5,g(z4,g(g(u,g(u,g(u,s(g(w1,w0))))),s(g(g(w2,s(z1)),s(z2))))))),g(g(z5,g(z4\

,g(g(u,g(u,g(w3,s(g(w1,w0))))),g(g(u,g(w3,s(g(w1,s(w2))))),s(g(g(w2,g(w1,s(w2))),s(g(u,s(g(w1,w\

0)))))))))),g(g(g(u,g(u,g(u,g(w3,s(g(w1,w0)))))),g(g(u,g(u,g(w3,s(g(w1,s(w2)))))),g(g(w3,g(w3,s\

(g(z1,s(w2))))),s(g(g(w2,g(z1,s(w2))),s(g(u,s(g(w1,s(w2)))))))))),g(g(g(u,g(w3,g(w3,s(g(z1,s(w2\

)))))),g(g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(w3,g(w2,s(z1))),s(g(u,((s(g(w1,w0)))))))))),s(g\

(g(g(w3,g(w2,g(z1,s(w2)))),g(g(z2,g(z1,s(w2))),s(g(w3,s(g(z1,s(w2))))))),s(g(g(u,g(w3,s(g(z1,s(\

w2))))),s(g(g(w2,g(z1,s(w2))),s(g(u,s(g(w1,s(w2))))))))))))))),g(g(g(z5,g(g(u,g(u,g(u,g(w3,s(g(\

w1,w0)))))),g(g(u,g(u,g(w3,s(g(w1,s(w2)))))),g(g(w4,g(w3,g(z2,s(z1)))),s(g(g(w2,g(z1,s(w2))),s(\

g(u,s(g(w1,s(w2))))))))))),g(g(g(u,g(w4,g(w4,g(w3,s(g(w1,s(w2))))))),g(g(w4,g(w4,g(w3,g(w2,s(z1\

))))),g(g(w4,g(z3,g(z2,s(g(u,s(z1)))))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1))))))))),g(g(\

g(w4,g(w4,g(w3,g(z2,s(z1))))),g(g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(z2,s(g(z2,s(z1)))),s(g(z\

3,g(z2,s(g(u,s(z1)))))))))),s(g(g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2\

,s(z1)))))),s(g(g(w4,g(z3,g(z2,s(g(u,s(z1)))))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1))))))\

))))))),s(g(g(g(g(g(u,g(u,g(w2,z0))),g(g(w3,g(w2,s(z1))),g(g(w2,s(g(w2,z0))),s(g(w3,g(w2,s(z1))\

))))),g(g(g(w3,g(w2,s(g(w2,z0)))),g(g(z2,g(w2,s(g(u,((w1)))))),s(g(u,((s(g(w1,w0)))))))),s(g(g(\

u,g(u,((g(w2,z0))))),s(g(g(w2,s(g(w2,z0))),s(g(w3,g(w2,s(z1)))))))))),s(g(g(g(u,g(u,g(w3,g(w2,s\

(z1))))),g(g(w4,g(w3,g(z2,s(z1)))),s(g(g(z2,s(g(w2,z0))),s(g(w3,g(w2,s(z1)))))))),s(g(g(g(w3,g(\

w2,s(z1))),g(g(w2,s(g(w2,z0))),s(g(w3,g(w2,s(z1)))))),s(g(g(u,g(w3,g(w2,s(z1)))),s(g(g(w2,s(z1)\

),s(g(u,g(w2,z0)))))))))))),s(g(g(g(u,g(u,g(u,g(u,s(g(w1,w0)))))),g(g(u,g(u,g(u,s(g(w1,s(w2))))\

)),g(g(w4,g(w3,g(z2,s(g(w2,z0))))),s(g(g(w3,g(w2,s(z1))),s(g(u,((z0))))))))),g(g(g(w4,g(w4,g(w3\

,g(z2,s(z1))))),g(g(w4,g(z3,g(z2,s(g(u,s(z1)))))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1))))\

)))),s(g(g(g(w3,g(z2,s(g(w2,z0)))),g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1)))))),s(g(g(w4,g(w3,\

g(z2,s(z1)))),s(g(g(w2,s(g(w2,z0))),s(g(w3,g(w2,s(z1))))))))))))))))),s(g(g(g(g(g(z3,g(g(u,g(u,\

g(w2,z0))),g(g(w3,g(w2,s(z1))),s(g(z2,s(g(w2,z0))))))),g(g(g(w3,g(w3,g(w2,s(z1)))),g(g(w3,g(w2,\

g(z1,s(w2)))),s(g(g(u,g(w2,z0)),s(g(w2,s(z1))))))),g(g(g(w3,g(w2,g(z1,s(w2)))),g(g(z2,g(z1,s(w2\

))),s(g(w3,s(g(z1,s(w2))))))),s(g(w3,((s(g(g(w2,z0),s(z2)))))))))),g(g(g(g(w3,g(w3,g(w2,s(z1)))\

),g(g(w3,g(z2,s(g(w2,z0)))),g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1))))))),g(g(g(z3,g(z2,s(g(w2\

,s(z1))))),g(g(z2,g(z1,s(w2))),s(g(u,((((z1)))))))),s(g(g(u,g(w3,((g(w2,s(z1)))))),s(g(g(z2,s(g\

(w2,s(z1)))),s(g(w3,g(z2,s(z1)))))))))),s(g(g(g(w4,g(w4,g(w3,g(z2,s(z1))))),g(g(w4,g(w3,g(w2,s(\

z1)))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1)))))))),s(g(g(g(w3,g(z2,s(g(w2,z0)))),g(g(z2,s\

(g(w2,s(z1)))),s(g(w3,g(z2,s(z1)))))),s(g(g(u,g(w3,g(w2,s(z1)))),s(g(g(z2,s(g(w2,z0))),s(g(w3,g\

(w2,s(z1)))))))))))))),g(g(g(g(g(w3,g(w3,g(z2,s(z1)))),g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,s(g(\

w2,s(z1)))),s(g(w3,g(z2,s(z1))))))),g(g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,g(w2,s(g(u,((w1))))))\

,s(g(w3,((s(g(z1,s(w2))))))))),s(g(g(w3,g(w3,((g(w2,s(z1)))))),s(g(g(z2,s(g(z2,s(z1)))),s(g(w3,\
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g(z2,s(z1)))))))))),s(g(g(g(w4,g(w4,g(w3,g(z2,s(z1))))),g(g(w4,g(z3,g(z2,s(g(w1,s(z1)))))),s(g(\

g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2,s(z1)))))))),s(g(g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,s(g(w2,s(\

z1)))),s(g(w3,g(z2,s(z1)))))),s(g(g(w4,g(w3,g(z2,s(z1)))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(w2,\

s(z1))))))))))))),s(g(g(g(u,g(w4,g(w4,g(w3,s(g(z1,s(w2))))))),g(g(w4,g(w3,g(w3,s(g(z1,s(w2)))))\

),g(g(w4,g(w3,s(g(z1,s(z2))))),s(g(g(z2,g(z1,s(w2))),s(g(w3,s(g(z1,s(w2)))))))))),g(g(g(w4,g(w4\

,g(w3,s(g(z1,s(w2)))))),g(g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(z2,g(z1,s(w2))),s(g(w3,((g(w2,\

s(z1)))))))))),s(g(g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,g(w2,s(g(u,((w1)))))),s(g(w3,((s(g(z1,s(\

w2))))))))),s(g(g(w3,g(w3,((g(w2,s(z1)))))),s(g(g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2,s(z1))))))))))\

))))),s(g(g(g(g(u,g(u,g(u,g(w3,g(w3,s(z1)))))),g(g(u,g(w4,g(w4,g(w3,s(g(w1,s(w2))))))),g(g(w4,g\

(w4,g(w3,s(g(z1,s(w2)))))),g(g(w4,g(w3,g(z2,s(z1)))),s(g(g(z2,g(z1,s(w2))),s(g(w3,s(g(z1,s(w2))\

))))))))),g(g(g(u,g(w4,g(w3,g(w3,s(g(g(u,((w0))),s(w2))))))),g(g(w4,g(w4,g(w3,g(w2,s(z1))))),g(\

g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2,s(z1))))))))),g(g(g(z4,g(\

w4,g(w3,g(z2,s(g(u,s(z1))))))),g(g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(g(u,g(u,s(z1))),s(g(z2,\

s(g(u,s(z1)))))),s(g(z3,g(z2,s(g(w2,s(z1)))))))))),s(g(g(g(z3,g(z2,s(g(z2,s(z1))))),g(g(z2,s(g(\

z2,s(z1)))),s(g(w3,g(z2,s(z1)))))),s(g(g(w4,g(w3,g(w2,s(z1)))),s(g(g(z2,s(g(z2,s(z1)))),s(g(w3,\

g(z2,s(z1))))))))))))),s(g(g(g(g(g(w3,g(w3,g(w2,s(z1)))),g(g(w3,g(z2,s(g(w2,z0)))),g(g(z2,s(g(w\

2,s(z1)))),s(g(w3,g(z2,s(z1))))))),g(g(g(w3,g(z2,s(g(w2,s(z1))))),g(g(z2,g(w2,s(g(u,((w1)))))),\

s(g(u,((s(g(w1,s(w2))))))))),s(g(g(w3,g(w3,((g(w2,s(z1)))))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(\

z2,s(z1)))))))))),s(g(g(g(w4,g(w4,g(w3,g(z2,s(z1))))),g(g(w4,g(w3,g(w2,s(z1)))),s(g(g(z2,s(g(w2\

,s(z1)))),s(g(w3,g(z2,s(z1)))))))),s(g(g(g(w3,g(z2,s(g(w2,z0)))),g(g(z2,s(g(w2,s(z1)))),s(g(w3,\

g(z2,s(z1)))))),s(g(g(w4,g(w3,g(z2,s(z1)))),s(g(g(w2,s(g(w2,z0))),s(g(w3,g(w2,s(z1)))))))))))))\

,s(g(g(g(u,g(u,g(w3,g(w3,s(g(g(u,((u))),s(w2))))))),g(g(u,g(w3,g(w3,s(g(z1,s(w2)))))),g(g(w4,g(\

z3,g(z2,s(g(w2,s(z1)))))),s(g(g(w3,g(w2,s(z1))),s(g(u,((s(g(w1,w0))))))))))),g(g(g(w4,g(w4,g(w3\

,g(z2,s(z1))))),g(g(w4,g(z3,g(z2,s(g(w2,s(z1)))))),s(g(g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2,s(z1)))\

))))),s(g(g(g(z3,g(z2,s(g(w2,s(z1))))),g(g(z2,s(g(z2,s(z1)))),s(g(w3,g(z2,s(z1)))))),s(g(g(w4,g\

(z3,g(z2,s(g(u,s(z1)))))),s(g(g(z2,s(g(w2,s(z1)))),s(g(w3,g(z2,s(z1)))))))))))))))))))),v)),v);\

end do;

Remark. In the above expression, v only appears twice. Thus, most of the intermediate vectors

(α, β, γ) (except the very last two) actually have α = 1. The g map in (9) simplifies in this case to

g((β1, γ1), (β2, γ2)) = 1
1−(β1−γ1)+β2−γ2 (β1, γ2),

If β1− γ1 > β2− γ2, we make g undefined. It would be beneficial to study the region of all points in

IR2 that can be obtained by repeated application of this map g and the map s(β, γ) = (γ, β), starting

with the initial point (−1, 0). It is not clear, however, if this region can be described in closed form.
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