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Abstract

We present a new combinatorial algorithm for Boolean matrix multiplication that runs in
O(n?(loglogn)®/log® n) time. This improves the previous combinatorial algorithm by Bansal
and Williams [FOCS’09] that runs in O(n3(loglogn)?/log®/*n) time. Whereas Bansal and
Williams’ algorithm uses regularity lemmas for graphs, the new algorithm is simple and uses en-
tirely elementary techniques: table lookup, word operations, plus a deceptively straightforward
divide-and-conquer.

Our algorithm is in part inspired by a recent result of Impagliazzo, Lovett, Paturi, and
Schneider (2014) on a different geometric problem, offline dominance range reporting; we im-
prove their analysis for that problem as well.

1 Introduction

In this paper, we examine the well-known problem of multiplying two (dense) n x n Boolean matri-
ces, and study “combinatorial” algorithms—in contrast to “algebraic” algorithms, like Strassen’s
and its successors [16, 18, 11], which work in some ring structure and exploit clever cancellations.
The “Four Russians” algorithm, by Arlazarov, Dinic, Kronrod, and Faradzhev [2], is the earliest
and most famous combinatorial algorithm for Boolean matrix multiplication. The time bound was
originally stated as O(n®/logn), but as noted subsequently, it can be made O(n?®/log®n) when
implemented on the standard (logn)-bit RAM model. On a RAM model with a larger word size
w > logn with standard word operations, the time bound is O(n?/(wlogn)).

The “Four Russians technique” has since become synonymous with logarithmic-factor speedups,
a phenomenon that has spread to numerous other algorithmic problems. It was believed by some
researchers (the present author included, embarrassingly) that the speedup of the two logarithmic
factors was the best possible among combinatorial algorithms; indeed, the Four Russians algo-
rithm was shown to be optimal for Boolean matrix multiplication under some restricted model of
computation [1, 15].

That is why Bansal and Williams’ FOCS’09 paper [3] came as a shock—they presented combi-
natorial algorithms for Boolean matrix multiplication that run in time O(n3(loglogn)?/log®*n)
for w = logn, and O(n3(loglogn)?/(wlog™®n)) for w > logn. Their algorithms require advanced
techniques, notably, regularity lemmas for graphs. Random sampling is also used, although the
algorithms were later derandomized [19].
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We present a still faster combinatorial algorithm for Boolean matrix multiplication that runs in
time O(n?(loglogn)?/log® n) for w = logn,' and O(n?log® w/(wlog?n)) for w > logn. In contrast
to Bansal and Williams’, our algorithm is simple and our analysis is completely elementary.

Our work is indirectly inspired by a recent manuscript of Impagliazzo, Lovett, Paturi, and
Schneider [13]. Motivated by a different problem, namely, 0-1 integer linear programming, they
analyzed a simple divide-and-conquer algorithm for a computational geometry problem called offline
dominance range reporting: given n red points and n blue points in d dimensions, report all K
pairs (p,q) of a red point p dominating a blue point ¢, i.e., p having larger value than ¢ in all
d coordinates. In a previous work, the author [5] has shown the relevance of dominance range
reporting to logarithmic-factor speedups in min-plus matriz multiplication and all-pairs shortest
paths. Geometric divide-and-conquer that inductively reduces the dimension by 1 tends not to
do well when the dimension exceeds logn, because of exponential dependence on d—the so-called
“curse of dimensionality”. Impagliazzo et al.’s analysis shows surprisingly that their algorithm
performs well even when the dimension goes slightly beyond log n: they got about n2~2(1/ (c!?loge)) |
K time for d = clogn; for example, this means subquadratic time for dimensions as high as
10g1+1/ 15=¢ . (They probably did not try to optimize the exponent 15.) In the appendix, we give
a finer analysis by a more straightforward induction proof, to show that the same algorithm has
subquadratic complexity for dimensions as high as (log?n)/(loglogn)3. This immediately implies a
new combinatorial algorithm for all-pairs shortest paths in dense real-weighted graph with running
time O(n?(loglogn)®/log?n). This is simpler than the author’s previous algorithm [6] with the
same running time, in that we completely avoid any explicit use of “word tricks”, although it is
slower than Han and Takaoka’s improved O(n®loglogn/log? n)-time algorithm [12] and Williams’

recent n>/ 92(V1081)_time algorithm [17] (the latter requires algebraic techniques for rectangular
matrix multiplication).

But what does all this have to do with Boolean matrix multiplication, where the goal is to get
beyond speedup of two logarithmic factors? Following a similar line of thought, we propose and
analyze a simple divide-and-conquer algorithm for multiplying an n x d and a d x n Boolean matrix.
We show that our algorithm works well even when d is moderately large (e.g., polylogarithmic in n),
provided that there is a subroutine to directly handle the case when one of the matrices is sparser
by about a log factor. The overall running time is then determined by this sparser case, which
can be solved by a variant of the Four Russians algorithm: to summarize, one log factor speedup
comes from table lookup, another log from using word operations, and about one more log from
sparseness as a result of the divide-and-conquer.

2 Boolean Matrix Multiplication

Preliminaries. We focus on the problem of computing the product of an n x d and a d X n
Boolean matrix. We can just multiply by n/d to upper-bound the complexity of multiplying two
n x n Boolean matrices.

We consider a slight generalization of this rectangular Boolean matrix multiplication problem,
where the first matrix is m x d and the second is d x n. We find it convenient to rephrase the
problem as a d-dimensional “geometric” problem as follows: given a set A of m Boolean d-vectors

! As in previous algorithms, the algorithm for RAM with word size w = logn can be modified to work on pointer
machines, with some extra effort. (Word operations for w = logn can be simulated by table lookup, and a batch of
table lookup queries can be handled by a radix-sort-like technique [7].)



and a set B of n Boolean d-vectors, report all pairs in A x B that have Boolean inner product equal
to 1. (More precisely, we want to output the labels to the vectors in each such pair; each pair is to
be reported exactly once.)

We first describe a subroutine to solve the problem when one of the input sets is not fully
dense. Incidentally, this gives us an opportunity to review the techniques behind the Four Russians
algorithm, as our subroutine is a modification of that algorithm, using table lookup and bit packing.?
This subroutine is the only place where we explicitly use word operations (bitwise-or).

Lemma 2.1. In the case when B has a total of Bdn 1’s for some B < 1, the problem can be solved
in O (dn + dmn0-01 4 Bdmnlogd | mn) time.

wlogn

Proof. First pre-compute the inner product of each vector of A with all possible vectors v that have
at most b := ?ég%;ff)l 1’s. The number of such vectors v is at most (d + 1)? = n0O%: for each v, the
answers are a sequence of m bits and can be packed in O(m/w + 1) words. The pre-computation
naively takes O(dmn®%') time. Now divide each vector of B into chunks with up to b 1’s, use table
lookup to find the answers for each chunk, and combine the answers by taking bitwise-or. The total
number of chunks is O(Bdn/b+n), and each chunk is handled in O(m/w + 1) time, for a total cost
of O((Bdn/b + n)(m/w + 1)). The initial division into chunks costs O(dn) time. Reporting the

labels to the output pairs costs an additional O(mn) time. ]

The Algorithm. Let By be a fixed parameter to be set later. Our algorithm is based on divide-
and-conquer and is deceptively simple:

0. If B has at most Spdn 1’s, then directly solve the problem by Lemma 2.1 and return.

1. Otherwise, find a coordinate position that has at least Sgn 1’s among the vectors of B. We
may assume that it is the first coordinate, by swapping coordinates in all vectors.

2. Recursively solve the problem for all the vectors of A that start with 0 and all the vectors
of B; the first coordinate can be dropped from all vectors.

3. Recursively solve the problem for the vectors of A that start with 1 and the vectors of B that
start with 0; the first coordinate can be dropped from all vectors.

4. Directly report all pairs of vectors of A that start with 1 and vectors of B that start with 1.

The Recurrence. Let Ty(m,n) denote the running time of the algorithm. After step 1, let am
be the number of vectors of A that start with 1 and Sn be the number of vectors of B that start
with 1, with 0 < o < 1 and fp < 8 < 1. Then step 2 takes Ty_1((1 — a)m,n) time and step 3
takes at most Ty_1(am, (1 — §)n) time, excluding a cost of O(dn + dm) to form the input to both

2Feder and Motwani [9] obtained a similar result, but for multiplying two square n x n Boolean matrices rather
than two rectangular matrices. They used combinatorial techniques on graph compression to obtain a time bound
O(Bn®log(1/8)/(wlogn)) when one of the matrices has 8n? 1’s; Bansal and Williams’ algorithm also requires this
as a subroutine. Our lemma can provide an alternative derivation of Feder and Motwani’s result.



subproblems. Step 4 takes O(afmn) time. To summarize, we get the recurrence

pca DA [Ta—1((1 — a)m,n) + Ty_1(am, (1 — B)n) + dn + dm + affmn]

dmnlogd
dn + dmn®0! + Podmnlogd
wlogn

Ta(m,n) < max
9

(1)

ignoring constant factors and the trivial base cases Ty(m,0) = T;(0,n) = Ty(m,n) = 0.

Solving the Recurrence. The solution to the recurrence is not obvious. We resort to a “guess-
and-check” approach: for a certain choice of parameters By, J, and € to be set later, we claim

that

dmnlogd
Ta(m,n) < d*(1+0)nm'= + &®mn®0 + bodmnlogd -, (2)
wlogn

and confirm the guess by induction.

If the maximum in (1) is attained by the bottom case, the claim is trivial. Otherwise, suppose
that the maximum in the top case is attained by « and § > fy. Assume inductively that (2) is true
when (d,m,n) is replaced by (d — 1, (1 — @)m,n) and by (d — 1,am, (1 — 8)n). Then Ty(m,n) is

< (d— 121+ 0 (1 — a)m) = + (d — 1)2(1 — a)mn0? 4 P ;E‘}g’:‘fbgd +(1— a)mn

d logd
4 Podamnlogd |y gy

+(d— 1)1 +6) (1 - B)n(am) == + (d — 1)2amn®

+ dn + dm + afmn

wlogn
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+ dn + dm + mn.
The key lies in the following inequality:
1—a)4+al™5(1—-6) < 1+54. (3)

To prove (3), split into two cases. If a < 62, then the left-hand side of (3) is at most 1+ !~ <
1 + 6, assuming that ¢ < 1/2. If a > §2, then the left-hand side is at most

[1—(1—¢)a] +a(l — By)es /) — (1 —¢e)a]+ a(l — Bo)(1 + 3¢In(1/6))

<
< 1—afp+ae(l+3In(1/d)) = 1,

by setting By = (1 + 31n(1/0)), assuming that €In(1/J) < 0.1.
Continuing the earlier chain of inequalities, we obtain from (3):

1
Ty(m,n) < (d—1)%1+8)%nm' = + (d —1)%mn®* + ﬂodﬂimgogd +dm + dn +mn
wlogn

1
< @40 Inm!— + @mpoot 4 Sodmnloed
wlogn



Conclusion. Putting § = 1/d, ¢ = 2logd/logn, By = (1 + 3In(1/8)) = O(log®d/logn), and
d = wlog?n/log®w into (2) yields a time bound of Ty(n,n) = O(n?). This is assuming that
eln(1/6) = o(1), i.e., logZw = o(logn). (Note that if log?w = Q(logn), we would have d =
o(wlogn) and can switch to the original Four Russians algorithm.) We have thus shown:

Theorem 2.2. For d = wlog? n/ log3 w, there is a combinatorial algorithm to multiply any n x d
and any d x n Boolean matriz in O(n?) time.

Corollary 2.3. There is a combinatorial algorithm to multiply any two n X n Boolean matrices in
time O(n>log® w/(wlog?n)) < O(n®(loglogn)?/log®n).

Many applications follow. For example, we immediately obtain a combinatorial algorithm with
the same time bound for the problem of detecting triangles in a (dense) graph with n vertices.

3 Final Remarks

Our algorithm is still substantially slower, in theory, than “algebraic” algorithms with running time
O(n¥) for w < 2.373 [18, 11]. Formally we still lack a precise, natural definition of a model that
includes algorithms like the Four Russians and the one from this paper but excludes Strassen’s and
its successors. On the other hand, the result from Theorem 2.2 on multiplying rectangular Boolean
matrix multiplication is new, regardless of the distinction between combinatorial and algebraic
algorithms (according to the current best algebraic results, we can multiply an n x n%3%2 and
n9392 x n matrix in O(n?t°M) arithmetic operations [10], or an 7 x n®17? and n%!72 x n matrix in
O(n?log? n) operations [8], or an n x logn and logn x n matrix in O(n?) operations [4]).

Our work undermines the main message from Bansal and Williams’ paper [3], that advanced
graph-theoretic techniques such as regularity lemmas provide a fruitful avenue to obtain new results
for Boolean matrix multiplication. To be fair, better time bounds such as n3/ 92y/logn) might still
be possible if there is further progress on regularity lemmas, as remarked in their paper (although
no such improvements have been reported in the intervening few years).

Our approach and Bansal and Williams’ exploit the special nature of the Boolean matrix mul-
tiplication problem; for example, they currently do not extend to matrix multiplication in the
field F5. However, they at least raise the possibility for improvements beyond two logarithmic
factors in combinatorial algorithms for other problems, such as all-pairs shortest paths.

Acknowledgement. I thank Seth Pettie for asking a question about dominance range reporting
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A Appendix: Offline Dominance Range Reporting

Impagliazzo et al.’s Algorithm. Given m red points and n blue points in d dimensions (which
are assumed to be in general position for simplicity), Impagliazzo et al. [13] proposed a variant of
a standard divide-and-conquer algorithm [5, 14] that can report all pairs (p, q) with a red point p
dominating a blue point g. (The innovation lies in step 1.)

0. If d = 0, then directly report all pairs of red and blue points and return.



1. Find a value z such that [the number of red points with first coordinate at most z|/m is equal
to [the number of blue points with first coordinate at least x]/n. (The existence of x is guar-
anteed by the intermediate value theorem; we allow a point with first coordinate exactly = to
contribute a fraction to either count.)

2. Recursively solve the problem for the red and blue points with first coordinate at least x.
3. Recursively solve the problem for the red and blue points with first coordinate at most x.

4. Recursively solve the problem for the red points with first coordinate at least x and the blue
points with first coordinate at most x; the first coordinates can be dropped from all the
points.

The Recurrence. Let Ty(m,n) denote the running time of the algorithm, excluding the O(K)
cost for reporting the K output pairs. Step 1 can be done in linear time by applying a weighted
median algorithm (by assigning each red point a weight of 1/m and each blue point a weight of
1/n). Let a be the equal value in step 1. Then step 2 takes Ty((1 — a)m, an) time, step 3 takes
Ty(am, (1 — a)n) time, and step 4 takes Ty_1((1 — a)m, (1 — a)n) time, excluding an O(dn + dm)
cost to form the input to these subproblems.® To summarize, we get the recurrence

Ty(m,n) < Jmax, [Ty((1 — a)m,an) + Ty(am, (1 — a)n) + Ty—1((1 — a)m, (1 — a)n) + dn + dm],
o (4)

ignoring constant factors and the trivial base cases Ty(m,0) = Ty(0,n) = Ty(m,n) = 0.

Solving the Recurrence. For a certain choice of parameters § and € to be set later, we claim
that
Ty(m,n) < d(14 6)%(nm*= + mn'=%)(log(mn) + d) (5)

and confirm the guess by induction.
Assume that (5) is true when (d, m,n) is replaced by (d, (1 — a)m,an), by (d,am, (1 — a)n),
and by (d —1,(1 — a)m, (1 — a)n). Then Ty(m,n) is

< d(1+ ) an((1 — a)m)' ™% + (1 — a)m(an)' %] (log((mn)/4) + d)

+d(1 461 — a)n(am)=¢ + am((1 — a)n) =¢|(log((mn)/4) + d)
+d(14 61 — a)n((1 — a)m)' = 4+ (1 — a)m((1 — a)n) =] (log(mn) + d — 1)

+dn+dm
d l—e, 1-¢ (1-a)*= 1—¢ 1—¢
< d(1+40)% |a(l —a)  "+a (1 7a)+17—|—5 (nm~—¢ +mn-"%)(log(mn) +d —1)
+ dn + dm.
The key lies in the following inequality:
1— 2—¢
a(l—a)l_a—l—al_g(l—a)—i—% < L (6)

1+06

3Technically, there should be a “+1” in the arguments because of the extra “fractional” point with first coordinate
exactly z, but we can remove that point by directly reporting all dominating pairs involving it in O(dn + dm) time.



To prove (6), split into three cases. If a@ < 62, then the left-hand side of (6) is at most
62 4+ 62(0=8) 1 1/(1 4 §) < 1, assuming that 6, < 0.1. If & > 2/3, then the left-hand side is at
most (1/3)175 + (1/3) + (1/3)27¢/(1 + §) < 1, assuming that §,¢ < 0.1. If 6> < a < 2/3, then the
left-hand side is at most
—a) "+ (1) + (1-a)* 5 (1-4/2)
a(l—a)' ™ +a' (1 —a)+ (1 —a)* - (1/3)> /2
(I—a) " +a'(1—-a)-6/18
[1—(1—e)a]+a(l —a)efm/) _5/18
[1- )
1

/\
—_

(1—6) |+ a(l—a)(1+3eln(1/5)) — /18
—a? + ae(1+43In(1/5)) — 6/18.

(VAN VANR VARSI VARSI VAN

assuming that eIn(1/5) < 0.1. If @ > (1 + 31n(1/0)), the above expression is less than 1. On the
other hand, if o < &(1 + 31In(1/4)), it is less than 1 + 2(1 + 31In(1/6))? — §/18 = 1, by setting
e =+/0/18/(1+ 31n(1/0)).

Continuing the earlier chain of inequalities, we obtain from (6):

Ty(m,n) < d(1+ 8% (nm!~° +mn'=%)(log(mn) +d — 1) + dn + dm
< d(1+ 0)Y(nm!' % + mnt=%)(log(mn) + d).

Conclusion. Putting § = 1/(c?log?c), ¢ = /6/18/(1 + 31In(1/8)) = O(1/(clog®c)), and d =
clogn into (5) yields Ty(n,n) < n?~ 9(1/(Clog N (clogn)?M). We thus have the following theorem:;
the second sentence follows by setting ¢ a small constant times logn/(loglogn)3.

Theorem A.l. There is a combinatorial algorithm to solve the offline dominance range report-
ing problem for two sets of n points in d = clogn dimensions with K output pairs in time
O(nQ_Q(l/(ClOg2 N (clogn)®M+K). Ford being a sufficiently small constant times log® n/(loglogn)3,
the time bound can be made O(n?/log!® n + K).

Many applications in computational geometry follow. For offline dominance range counting
(counting the number of red points dominating each blue point), we obtain the same result but
without the K term. We obtain similar results for general offline orthogonal range searching (which
reduces to dominance range searching after doubling the dimension), offline exact Loo-nearest neigh-
bor search (which reduces to orthogonal range searching by binary search), and exact Loo-minimum
spanning tree (which reduces to offline nearest neighbor search by Boruvka’s algorithm).

The result has implications beyond computational geometry. The author [5] has shown how to
reduce the problem in the following corollary to d instances of the d-dimensional dominance range
reporting problem, where the total number of output pairs in the d instances is O(n?).

Corollary A.2. For d being a sufficiently small constant times log? n/(loglogn)?, there is a com-
binatorial algorithm to compute the min-plus product of any n X d and d X n real-valued matrix in
O(n?) time.

Corollary A.3. There is a combinatorial algorithm for computing the min-plus product of any two
n X n real-valued matrices, and for solving the all-pairs shortest paths problem in any real-weighted
graph, in O(n>(loglogn)®/log?n) time.

As noted in the introduction, the above result is not new, but the algorithm is simpler.



