
Streaming and Dynamic Algorithms for
Minimum Enclosing Balls in High Dimensions

Timothy M. Chan and Vinayak Pathak

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
{tmchan,vpathak}@uwaterloo.ca

Abstract. At SODA’10, Agarwal and Sharathkumar presented a stream-
ing algorithm for approximating the minimum enclosing ball of a set of
points in d-dimensional Euclidean space. Their algorithm requires one
pass, uses O(d) space, and was shown to have approximation factor at
most (1 +

√
3)/2 + ε ≈ 1.3661. We prove that the same algorithm has

approximation factor less than 1.22, which brings us much closer to a
(1 +

√
2)/2 ≈ 1.207 lower bound given by Agarwal and Sharathkumar.

We also apply this technique to the dynamic version of the minimum
enclosing ball problem (in the non-streaming setting). We give an O(dn)-
space data structure that can maintain a 1.22-approximate minimum en-
closing ball in O(d logn) expected amortized time per insertion/deletion.

1 Introduction

In this paper, we study a fundamental and well-known problem in computational
geometry: Given a set P of points in Rd, find the ball with the smallest radius
that contains all points in P . This is known as the minimum enclosing ball or
the 1-center problem and has various applications, for example, in clustering
and facility location. We will not survey the many known exact algorithms for
the problem, as the focus of the paper is on approximation algorithms in the
streaming and the dynamic setting.

In the standard streaming model , we consider algorithms that are allowed one
pass over the input and can store only a small (usually polylogarithmic) amount
of information at any time, as points arrive one at a time. In low constant
dimensions, it is not difficult to devise a streaming algorithm that computes a
(1 + ε)-approximation to the minimum enclosing ball using O(1/ε(d−1)/2) space,
by maintaining extreme points along a number of different directions. In fact,
streaming techniques for ε-kernels [1, 8, 3, 11] allow many other similar geometric
optimization problems to be solved with approximation factor 1+ε using 1/εO(d)

space. However, these techniques do not work well in high dimensions because
of the exponential dependencies on d.

In high dimensions, there is a trivial streaming algorithm with approximation
factor 2: fix the center of the ball B at an arbitrary input point p0 (say the first
point), and whenever a new point p arrives that lies outside B, expand B to
include p while keeping the center unchanged (see Section 2.1). Zarrabi-Zadeh

and Chan [12] gave a nontrivial analysis showing that another equally simple
streaming algorithm achieves approximation factor 3/2: whenever a new point
p arrives that lies outside the current ball B, replace B by the smallest ball
enclosing B ∪ {p}. An advantage of these simple algorithms is that they avoid
the exponential dependencies on d, using asymptotically the minimal amount
of storage, namely, O(d) space. (We assume that a unit of space can hold one
coordinate value.)

Most recently, Agarwal and Sharathkumar [2] described a new streaming al-
gorithm that also required justO(d) space but with an even better approximation
factor. They proved that the factor is upper-bounded by (1+

√
3)/2+ε ≈ 1.3661,

where as usual, ε denotes an arbitrarily small positive constant. They also proved
a complementary lower-bound result: any algorithm in the one-pass streaming
model with space polynomially bounded in d has worst-case approximation fac-
tor at least (1 +

√
2)/2 > 1.207. The gap between 1.3661 and 1.207 raises an

interesting question of what the best constant could be. It also reveals our cur-
rent lack of general understanding on high-dimensional geometric problems in
the streaming model, as the minimum enclosing ball problem is one of the most
basic and simplest to consider.

In this paper, we describe an improved upper bound of 1.22 for minimum
enclosing ball in the streaming model. The improvement is actually achieved by
the same algorithm as Agarwal and Sharathkumar’s; our contribution lies in a
better analysis of their algorithm. As intermediate solutions, we first present two
simple proofs, one yielding upper bounds of 4/3 + ε ≈ 1.333 . . .1 and another
yielding 16/13 + ε ≈ 1.2307. The 1.22 bound is obtained through more involved
numerical calculations done with the assistance of a computer program.

In the second part of the paper, we investigate the dynamic version of the
approximate minimum enclosing ball problem. Here, we are interested in data
structures that support insertions and deletions of input points efficiently. Unlike
in the streaming model, linear space is acceptable. As before, the problem is not
difficult in low dimensions: one can maintain a (1 + ε)-approximation to the
minimum enclosing ball in O(1/ε(d−1)/2 log n) time with a data structure using
O(n/ε(d−1)/2) space, by keeping track of extreme points along various directions.
The log n factor in the update time can be reduced to constant in the word RAM
model [9].

In the high-dimensional case, it is possible to dynamize the trivial factor-
2 method by using a simple randomization trick (see Section 3.1), but we are
not aware of any prior work on efficient dynamic data structures that achieve
approximation factor smaller than 2 and avoid exponential dependency on d.

We show that Agarwal and Sharathkumar’s approach, which was originally
intended for streaming, can be applied to the dynamic problem as well, if com-
bined in the right way with ideas from other known techniques: specifically,

1 Independent to our work, Agarwal and Sharathkumar (personal communication,
Dec. 2010) have also found a proof of the 4/3 upper bound, which will appear in
the journal version of their paper. Even compared against the 4/3 bound, our 1.22
bound is a substantial improvement.

Bădoiu and Clarkson’s static method for high-dimensional minimum enclosing
ball [6], and Chan’s dynamization strategy for low-dimensional ε-kernels [9]. The
resulting data structure requires O(dn) space and supports updates in O(d log n)
expected amortized time. Our analysis of Agarwal and Sharathkumar’s tech-
nique implies that the same 1.22 upper bound carries over to this dynamic data
structure.

2 Streaming MEB

2.1 Preliminaries and Agarwal and Sharathkumar’s algorithm

Let P be a set of points in Rd. We use MEB(P) to denote the minimum enclosing
ball of the set P . For a ball B, we use r(B) and c(B) to denote its radius and
center respectively. αB stands for the ball with center at c(B) and radius equal
to αr(B).

A very simple factor-2 streaming algorithm for approximating the MEB
works as follows. Let the first point be p0. Find the point p1 in P that is farthest
away from p0. This can be implemented by a one-pass streaming algorithm. Re-
turn the ball centered at p0 of radius ‖p0p1‖. This ball clearly encloses P . The
approximation factor is at most 2, since the MEB of P must enclose p0 and p1,
and any ball that encloses p and q must have radius at least ‖p0p1‖/2.

If more than one pass is allowed, we can get better ratios. In particular,
Bădoiu and Clarkson [6] (building on prior work by Bădoiu, Har-Peled, and
Indyk [7]) proved that we can achieve an approximation factor of 1+ε in O(1/ε)
passes. The algorithm works as follows. Pick a point p0 ∈ P . Next, pick p1 to be
the point farthest from p0 in P . In general, pick pj to be the point farthest from
c(MEB({p0, . . . , pj−1})) in P . It was shown that after d2/εe iterations, the set
K of O(1/ε) chosen points satisfies the following coreset property, which implies
that r(MEB(K)) (computable by brute force) is a (1 + ε)-approximation:

Definition 1. Given a set P of points in Rd, an ε-coreset of P is a subset
K ⊆ P such that P ⊆ (1 + ε)MEB(K).

Using Bădoiu and Clarkson’s algorithm as a subroutine, Agarwal and Sharathku-
mar [2] gave a streaming algorithm for finding a ((1 +

√
3)/2 + ε)-factor MEB

of a given set of points. The algorithm works as follows. Let the first point
in the input stream be its own coreset and call the coreset K1. Next, as long
as the new arriving points lie inside (1 + ε)MEB(K1), do nothing. Otherwise,
if pi denotes the new point, call Bădoiu and Clarkson’s algorithm on the set
K1 ∪{pi}. This gives a new coreset K2. In general, maintain a sequence of core-
sets K = 〈K1, . . . ,Ku〉 and whenever a new point pi arrives such that it does
not lie in (1 + ε)MEB(Kj) for any j, call Bădoiu and Clarkson’s algorithm on
the set

⋃u
j=1Kj ∪ {pi}. However, doing this might make the sequence K too

large. To reduce space, whenever a new call to the subroutine is made, the algo-
rithm also removes some of the previous Ki’s when r(MEB(Ki)) is smaller than
O(ε)r(MEB(Ku)). Agarwal and Sharathkumar proved that this removal process

does not hurt the effectiveness of the data structure, and the following invariants
are maintained, where Bi = MEB(Ki):

(P1) For all i, r(Bi+1) ≥ (1 +Ω(ε2))r(Bi).
(P2) For all i < j, Ki ⊂ (1 + ε)Bj .
(P3) P ⊂

⋃u
i=1(1 + ε)Bi.

The sequence K of coresets was called an ε-blurred ball cover in the paper.
Property (P1) ensures that the number of coresets maintained at any time is
u = O(log(1/ε)). Since each coreset has size O(1/ε), the total space is O(d) for
constant ε. Let B = MEB(

⋃u
i=1Bi) (computable by brute force). Property (P3)

ensures that (1 + ε)B encloses P . Using property (P2), Agarwal and Sharathku-

mar proved that r(B) ≤ (1+
√
3

2 + ε) r(MEB(P)), thus giving a factor-1.366 algo-
rithm for MEB in the streaming model. We show that in fact, the approximation
factor is less than 1.22. The proof amounts to establishing the following (purely
geometric) theorem:

Theorem 1. Let K1, . . . ,Ku be subsets of a point set P in Rd, with Bi =
MEB(Ki), such that r(Bi) is increasing over i and property (P2) is satisfied for a
sufficiently small ε > 0. Let B = MEB(

⋃u
i=1Bi). Then r(B) < 1.22 r(MEB(P)).

2.2 An improved analysis

We will prove Theorem 1 in the next few subsections. First we need the following
well-known fact, often used in the analysis of high-dimesional MEB algorithms:

Lemma 1 (the “hemisphere property”). Let P be a set of points in Rd.
There is no hemisphere of MEB(P) that does not contain a point from P . In
other words, assuming the origin to be at the center of MEB(P), for any unit
vector v, there exists a point p ∈ P such that p lies on the boundary of MEB(P)
and v · p ≤ 0.

We introduce a few notations. Without loss of generality, let r(B) = 1 and
c(B) be the origin. Let ui be the unit vector in the direction of the center of Bi

and σij = ui · uj be the inner product between the vectors ui and uj . Let us
also write r(Bi) simply as ri and set ti = 1/(1 − ri). Note that the ti ≥ 1 are
increasing over i.

Lemma 2. For all i < j with ti ≤ tj < 10 such that Bi and Bj touch ∂B,

σij ≥
tj
ti
− tj + ti −O(ε).

Proof. Let c, ci, cj be the centers of the balls B,Bi, Bj respectively. Figure 2.2
shows the projection of B, (1 + ε)Bi, Bj onto the plane formed by c, ci, cj . Let p
be one of the points where (1 + ε)Bj intersects Bi in this plane. Applying the
cosine law to the triangle cicjc, we get

‖cicj‖2 = ‖ccj‖2 + ‖cci‖2 − 2‖cci‖‖ccj‖σij . (1)

c cj

ci
p

B

(1 + ε)Bj

Bi

Fig. 1. Proof of Lemma 2

Next, we apply the hemisphere property to the ball Bi = MEB(Ki). Choosing
v to be the vector cj − ci, we deduce the existence of a point q ∈ Ki such that
q lies on ∂Bi and ∠cjciq ≥ π/2. By property (P2) of the blurred ball cover, we
know that q ∈ Ki ⊂ (1 + ε)Bj . Since ‖cip‖ = ‖ciq‖ and ‖cjp‖ ≥ ‖cjq‖, we have
∠cjcip ≥ ∠cjciq ≥ π/2. This means

‖cjp‖2 ≥ ‖cicj‖2 + ‖cip‖2. (2)

Substituting ‖cjp‖ = (1 + ε)rj , ‖cip‖ = ri, ‖ccj‖ = 1− rj , ‖cci‖ = 1− ri into
(1) and (2) and combining them, we get

(1 + ε)2r2j ≥ (1− rj)2 + (1− ri)2 − 2(1− ri)(1− rj)σij + r2i .

Letting si = 1− ri and sj = 1− rj and ti = 1/si and tj = 1/sj , we get

(1 + ε)2(1− 2sj + s2j) ≥ s2i + s2j − 2sisjσij + (1− 2si + s2i)
=⇒ 2sisjσij ≥ 2s2i − 2si + 2sj −O(ε)
=⇒ σij ≥ ti − tj + tj/ti −O(εtitj).

(The assumption ti ≤ tj < 10 allows us to rewrite O(εtitj) as O(ε).) ut

2.3 Proof of factor 4/3

As a warm-up, in this subsection, we give a short proof of a weaker 4/3 upper
bound on the constant in Theorem 1.

Let Bi be the largest ball that touches ∂B. Since B is the minimum enclosing
ball of

⋃u
`=1B`, by applying the hemisphere property to B with v = ui there

must exist another ball Bj such that σij ≤ 0. Combining with Lemma 2, we get

ti
tj
− ti + tj ≤ O(ε) =⇒ ti ≥

tj −O(ε)

1− 1/tj
.

Since tj ≥ 1, the minimum value achievable by ti that satisfies the above inequal-
ity can be easily found to be 4 − O(ε) (attained when tj ≈ 2). This translates
to a minimum value of 3/4−O(ε) for ri = 1− 1/ti. Since r(MEB(P)) ≥ ri and
r(B) = 1, this proves a version of Theorem 1 with the constant 4/3 +O(ε).

Remark : We have implicitly assumed that tj ≤ ti < 10 when applying Lemma 2,
but this is without loss of generality since ti ≥ 10 would imply ri > 0.99 giving
an approximation factor of ≈ 1.01.

2.4 Proof of factor 16/13

In attempting to find an example where the 4/3 bound might be tight, one
could set ti = 4 and tj = 2, which implies σij ≈ 0 by Lemma 2, i.e., ui and uj
are nearly orthogonal. However, by the hemisphere property, B would not be
defined by the 2 balls Bi, Bj alone. This suggests that an improved bound may
be possible by considering 3 balls instead of just 2, as we will demonstrate next.

Let Bi be the largest ball that touches ∂B, and Bj be the smallest ball
that touches ∂B. Let α ≥ 0 be a parameter to be set later. By applying the
hemisphere property to B with v = ui +αuj , there must exist a k such that Bk

touches ∂B and uk · (ui + αuj) ≤ 0. This means

σik + ασjk ≤ 0. (3)

Note that tj ≤ tk ≤ ti. By Lemma 2, we get

ti
tk
− ti + tk + α

(
tk
tj
− tk + tj

)
≤ O(ε)

=⇒ ti ≥
tk + α(tk/tj − tk + tj)−O(ε)

1− 1/tk
≥ tk + α(2

√
tk − tk)−O(ε)

1− 1/tk
.

The last step follows since the minimum of tk/x + x is achieved when x =
√
tk

(e.g., by the A.M.–G.M. inequality). The final expression from the last step is in
one variable, and can be minimized using standard techniques. Obviously, the
minimum value depends on α. As it turns out, the best bound is achieved when
α = 4/3 and the minimum value is 16/3 − O(ε) (attained when tk ≈ 4). Thus,
ti ≥ 16/3−O(ε), implying ri = 1− 1/ti ≥ 13/16−O(ε) and an upper bound of
16/13 +O(ε) in Theorem 1.

2.5 Proof of factor 1.22

For our final proof of Theorem 1, the essential idea is to consider 4 balls instead
of 3.

As before, let Bi be the largest ball that touches ∂B, and Bj be the smallest
ball that touches ∂B. Choose a parameter α = α(tj) ≥ 0; unlike in the previous
subsection, we find that making α dependent on tj can help. By the hemisphere
property, there must exist a Bk that touches ∂B while satisfying (3): σik+ασjk ≤

0. By applying the hemisphere property once more with v = βui + γuj + uk, for
every β, γ ≥ 0, there must exists a B` that touches ∂B satisfying

βσi` + γσj` + σk` ≤ 0. (4)

We prove that with Lemma 2, these constraints force ti > 5.54546, implying
ri = 1 − 1/ti > 0.8197 and the claimed 1.22 bound in Theorem 1. We need
a noticeably more intricate argument now, to cope with this more complicated
system of inequalities. Assume ti ≤ τ := 5.54546.

Note that 2 cases are possible: tj ≤ tk ≤ t` ≤ ti or tj ≤ t` ≤ tk ≤ ti. We first
eliminate the variable ` in (4). By (4), we have ∀β, γ ≥ 0:[
∃t` ∈ [tk, τ] : β

(
τ

t`
− τ + t`

)
+ γ

(
t`
tj
− t` + tj

)
+
t`
tk
− t` + tk ≤ O(ε)

]
∨[

∃t` ∈ [tj , tk] : β

(
τ

t`
− τ + t`

)
+ γ

(
t`
tj
− t` + tj

)
+
tk
t`
− tk + t` ≤ O(ε)

]
.

Observe that in each of the 2 cases, multiplying the left hand side by t` yields
a quadratic inequality in t` of the form at2` + bt` + c ≤ 0. (The O(ε) terms are
negligible.) In the first case, a = β + γ/tj − γ + 1/tk − 1, b = −βτ + γtj + tk,
and c = βτ ; in the second case, a = β + γ/tj − γ + 1, b = −βτ + γtj − tk,
and c = βτ + tk. The variable t` can then be eliminated by the following rule:
(∃x ∈ [x1, x2] : ax2 + bx + c ≤ 0) iff (ax21 + bx1 + c ≤ 0) ∨ (ax22 + bx2 + c ≤
0) ∨ [(a ≥ 0) ∧ (b2 ≥ 4ac) ∧ (2ax1 ≤ −b ≤ 2ax2)].

For β, we try two fine-tuned choices: (i) β = −γ(τ/tj − τ + tj) − (τ/tk −
τ + tk) +O(ε) (which is designed to make the above inequality tight at t` = τ),
and (ii) a root β of the equation b2 = 4ac where a, b, c are the coefficients of the
first quadratic inequality in the preceding paragraph (for fixed tj , tk, γ, this is
a quadratic equation in β). As it turns out, these two choices are sufficient to
derive the contradiction at the end.

Three variables γ, tj , tk still remain and the function α(tj) has yet to be
specified. At this point, it is best to switch to a numerical approach. We wrote a
short C program to perform the needed calculations. For γ, we try a finite number
of choices, from 0 to 1 in increments of 0.05, which are sufficient to derive the
desired contradiction. For (tj , tk), we divide the two-dimensional search space
into grid cells of side length 0.0005. For each grid cell that intersects {tk ≤ tj}, we
lower-bound the coefficients of the above quadratic inequalities over all (tj , tk)
inside the cell, and attempt to obtain a contradiction with (4) by the strategy
discussed above. If we are not able to get a contradiction for the cell this way,
we turn to (3), which implies

τ

tk
− τ + tk + α

(
tk
tj
− tk + tj

)
≤ O(ε);

from this inequality, we can generate an interval of α values that guarantees a
contradiction in the (tj , tk) cell. We set α(tj) to any value in the intersection

of all α-intervals generated in the grid column of tj . After checking that the
intersection is nonempty for each grid column, the proof is complete.

Remarks: Our analysis of the system of inequalities derived from (3) and (4)
is close to tight, as an example shows that these inequalities cannot yield a
constant better than 1.219 regardless of the choice of the function α(tj): Consider
ti = 5.56621 and tj = 2. If α < 1.15, pick tk = 2.67; otherwise, tk = 5.08. In
either case, by solving a 2-variable, 100-constraint linear program in β and γ, one
can verify that ∀β, γ ≥ 0, there exists a t` from a discrete set of 100 uniformly
spaced values in [tk, ti] and [tj , tk] such that the inequality derived from (4) is
satisfied.

By choosing Bk and B` more carefully, one could add in the constraints
σij ≤ 0, σij ≤ σik, σij ≤ σi`, and σik + ασjk ≤ σi` + ασj`, though tj ≤ tk, t` is
no longer guaranteed; however, the system of inequalities becomes even harder to
optimize, and we suspect that any improvements would be very small. Likewise,
an analysis involving 5 or more balls does not seem to be worth the effort, until
new ideas are found to simplify matters.

3 Dynamic MEB

3.1 Preliminaries and a dynamic coreset technique

In this section, we investigate how to maintain the MEB of points in high di-
mensions if both insertions and deletions are allowed.

The simple factor-2 streaming algorithm from Section 2 can be modified to
give a factor-2 dynamic algorithm as follows. In the preprocessing stage, pick
any random point p0 from the point set P uniformly and arrange the rest of the
points in a priority queue with the key being the distance of the point from p0.
Let’s call p0 the “anchor point.” To insert a new point, simply insert it into the
priority queue. This takes time O(log n), where n is the number of points. The
MEB returned at any time is the ball centered at p0 and having a radius equal
to the maximum key. To delete a point, remove it from the priority queue if the
point being deleted is not the anchor point itself. Otherwise, rebuild the whole
data structure by picking a new random anchor point p and arranging the rest in
a priority queue. Since the choice of the anchor point is random, the probability
with which it will be deleted is 1/n. Therefore the expected cost of deletion
is 1

nO(n log n) + O(log n) = O(log n). The space used is linear. (The update
time can be reduced to O(1) in the word RAM model by using an approximate
priority queue [9].)

To obtain a ratio better than 2, we modify a dynamization technique by
Chan [9]. His method was originally for maintaining a different type of coresets
(called ε-kernels [1]) which can be applied to many problems in low dimen-
sions, such as computing minimum-volume (non-axis-aligned) bounding boxes.
We outline his method here and point out the difficulty in adapting it for high-
dimensional MEB.

The starting point is a simple constant-factor approximation algorithm for
the minimum bounding box [1, 4]. Pick a point p0 ∈ P . This is the first anchor
point. Next, let p1 be the point farthest from p0 in P . In general, pick point pj to
be the point farthest from aff{p0, . . . , pj−1}, where aff S denotes the affine hull
of a set S. The resulting anchor points p0, . . . , pd form a coreset whose minimum
bounding box approximates the minimum bounding box of P to within O(1)
factor. The factor can be reduced to 1 + ε by building a grid along a coordinate
system determined by the anchor points; the size of the coreset increases to
O(ε−d).

Now, to make this algorithm dynamic, the approach is to choose the anchor
points in some random way and then whenever an anchor point is deleted, rebuild
the whole data structure. Because of the randomness, the deleted point will be
an anchor point with only a low probability. Thus instead of choosing pj to be
the point farthest from aff{p0, . . . , pj−1}, we pick pj uniformly at random from
the set Aj of α|P | farthest points from aff{p0, . . . , pj−1} and discard Aj . Thus,
after picking all the anchor points, we obtain a set R =

⋃
j Aj of all discarded

points. Since R is not “served” by the anchor points chosen, we recurse on R.
Since |R| is a fraction less than |P | if the constant α is sufficiently small, this
gives us a collection of O(log n) coresets. The final coreset returned is the union
of all of them. Insertions can be incorporated in a standard way, analogous to
the logarithmic method [5].

The above technique cannot be directly applied to high-dimensional MEB
because of the exponential dependency of the grid size on d. Also, with our
weaker form of coreset from Definition 1 for MEB, the union of coresets of a
collection of subsets is not necessarily a good coreset for the whole set.

3.2 A new dynamic algorithm

To modify the above technique to solve MEB, we propose two ideas. First,
instead of the static constant-factor algorithm for minimum bounding box, we
use Bădoiu and Clarkson’s algorithm for MEB (see Section 2.1) as the starting
point. A variant of Bădoiu and Clarkson’s algorithm fits nicely here: instead of
picking pj to be the point in P farthest from c(MEB({p1, . . . , pj−1})), we look
at the α|P | farthest points from c(MEB({p1, . . . , pj−1})) and pick pj to be one
of them at random with uniform probability. Secondly, instead of returning the
union of the coresets found, we use Agarwal and Sharathkumar’s blurred ball
cover concept to get a good approximation factor. In order to satisfy property
(P2), the key is to add all points from previous coresets found into the current
point set. The precise details are given in pseudocode form in Algorithms 1–3.

The set P at the root level is initialized with K̂P = ∅. Let u be the maximum
number of levels of recursion. Note that |K̂P | ≤ O(u/ε) at all levels. For |P | �
u/ε, note that |R| is a fraction less than |P | if we make the constants α and
δ sufficiently small (relative to ε). Thus, for c sufficiently large, u is bounded
logarithmically in n. Let K = 〈K1, . . . ,Ku〉 denote the sequence of coresets KP

over all currently active point sets P , arranged from the root level to the last
level. Let Bi = MEB(Ki). Then property (P3) is satisfied because of Bădoiu

Algorithm 1 P .preprocess()

if |P | < c logn then
KP ← P and return

end if
Q← P
p0 ← random point of P
for j = 1, . . . , d2/εe do
Aj ← the α|P | farthest points of Q from c(MEB({p0, . . . , pj−1}))
Q← Q−Aj

pj ← a random point of Aj

end for
KP ← {p0, . . . , pd2/εe} {an ε-coreset of Q by Bădoiu and Clarkson}
K̂R ← K̂P ∪KP {K̂P is a union of coresets at earlier levels}
R← (P −Q) ∪ K̂P {remember to add earlier coresets K̂P to the next level}
R.preprocess()
P .counter ← δ|P |

Algorithm 2 P .delete(p), where p ∈ P − K̂P

if |P | < c logn then
remove p from P , reset KP ← P , and return

end if
remove p from P
P .counter ← P .counter− 1
if P .counter = 0 or p ∈ KP then
P .preprocess() {rebuild all sets after current level}

end if
if p ∈ R then
R.delete(p)

end if

Algorithm 3 P .insert(p)

if |P | < c logn then
insert p into P , reset KP ← P , and return

end if
insert p into P
P .counter ← P .counter− 1
if P .counter = 0 then
P .preprocess() {rebuild all sets after current level}

end if
R.insert(p)

and Clarkson’s algorithm. The trick of inserting coresets at earlier levels to
the current set ensures property (P2). We can then use Theorem 1 to infer
that B = MEB(

⋃u
i=1Bi) is a 1.22-approximation to MEB(P) for a sufficiently

small ε.
Instead of applying an exact algorithm to compute B, it is better to first

compute a (1 + ε)-approximation B′i to MEB(Ki) for each i, and then return a
(1 + ε)-approximation to MEB(

⋃u
i=1B

′
i). (Note that every Ki has size O(1/ε),

except for the last set, which has size O(log n).) The latter can be done by a
known approximation algorithm of Kumar, Mitchell, and Yildirim [10], which
generalizes Bădoiu and Clarkson’s algorithm for sets of balls. The time required
is O(du) = O(d log n) (we ignore dependencies on ε from now on). It can be
checked that the proof of Theorem 1 still goes through with Bi replaced by B′i,
since the hemisphere property is still satisfied “approximately” for B′i.

The for loop in P .preprocess() takes O(dn) time for constant ε. Thus, the
total preprocessing time is bounded by a geometric series summing to O(dn).
Space is O(dn) as well. In the pseudocode for P .delete(), although the cost of
the call to P .preprocess() is O(d|P |), it can be shown [9] that the probability of
deleting an anchor point p ∈ Ki is O(1/|P |) at any fixed level. Excluding the cost
of computing B, the analysis of the expected amortized update time is essentially
the same as in Chan’s paper [9] and yields O(d log n). (The randomized analysis
assumes that the update sequence is oblivious to the random choices made by
the algorithm.) We conclude:

Theorem 2. A factor-1.22 approximation of the MEB of points in Rd can be
maintained with an algorithm that takes preprocessing time O(dn log n), uses
space O(dn) and takes expected amortized time O(d log n) for the updates.

4 Final Remarks

Agarwal and Sharathkumar [2] have given an example showing that their stream-
ing algorithm has approximation factor strictly greater than their (1 +

√
2)/2

lower bound. Thus, if their lower bound is the right answer, a different stream-
ing algorithm would be required. It would be interesting to investigate other
high-dimensional geometric problems besides MEB in the streaming model. For
example, before the recent developments on MEB, Chan [8] had given a (5 + ε)-
factor streaming algorithm for the smallest enclosing cylinder problem with O(d)
space. Can the new techniques help in improving the approximation factor fur-
ther?

On the dynamic MEB problem, the (1 +
√

2)/2 lower bound on the approxi-
mation factor is not applicable, and the possibility of a (1 + ε)-factor algorithm
with dO(1) log n update time and dO(1)n space has not been ruled out. Also,
O(d log n) may not necessarily be the final bound on the update time. For exam-
ple, Chan [9] described an O(1)-factor dynamic algorithm with O(d) expected
amortized update time for the smallest enclosing cylinder problem in the word
RAM model.

References

1. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. Journal of the ACM, 51:606–635, 2004.

2. P. K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in
high dimensions. In Proc. 21st ACM–SIAM Sympos. Discrete Algorithms, pages
1481–1489, 2010.

3. P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in
the plane. In Proc. 23rd Sympos. Comput. Geom., pages 1–10, 2007.

4. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms, 38:91–109, 2001.

5. J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformations. J. Algorithms, 1:301–358, 1980.

6. M. Bădoiu and K. L. Clarkson. Smaller core-sets for balls. In Proc. 14th ACM-
SIAM Sympos. Discrete Algorithms, pages 801–802, 2003.

7. M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In
Proc. 34th ACM Sympos. Theory Comput., pages 250–257, 2002.

8. T. M. Chan. Faster core-set constructions and data stream algorithms in fixed
dimensions. Comput. Geom. Theory Appl., 35:20–35, 2006.

9. T. M. Chan. Dynamic coresets. Discrete Comput. Geom., 42:469–488, 2009.
10. P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Approximating minimum enclosing

balls in high dimensions using core-sets. ACM J. Experimental Algorithmics, 8:1.1,
2003.

11. H. Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in
fixed dimensions. In Proc. 16th European Sympos. Algorithms, volume 5193 of
Lect. Notes in Comput. Sci., pages 817–829. Springer-Verlag, 2008.

12. H. Zarrabi-Zadeh and T. M. Chan. A simple streaming algorithm for minimum
enclosing balls. In Proc. 18th Canad. Conf. Comput. Geom., pages 139–142, 2006.

