
Modern Techniques for Querying
Graph-Structured Relations:

Foundations, Systems Implementations
and Open Challenges

Amine Mhedhbi, Semih Salihoğlu

1

“Graph” Datasets and Workloads (1)

2

Ø “Relational” vs “graph” distinction is blurry:

Ø most datasets can be modeled as relations or graph

Ø Classic “graph” datasets: social, encylopedic knowledge, or biological

Social Networks Knowledge Graphs Biological Networks

Ø Classic “graph workloads”: finding cliques, long paths, reachability

“Graph” Datasets and Workloads (2)

3

Ø Colloquial term for datasets and workloads w/ several properties:

1. Datasets contain many-to-many (n-m) relationships

Ø Ex: Knows, Contacts, Calls, Transfers, etc.

2. Queries contain many joins over n-m relationships

3. Join queries can be cyclic or recursive

Ø Ex: Cliques of contacts, indirect money transfers, etc.

VLDBJ 2020

Ø Q1: Graph Data?

Ø Q2: Graph Computations?

Ø Q3: Graph Software?

Ø Q4: Main Challenges?

Ø Q5: Applications?

Volumes of Work on Graph Query Processing

4

GR-Fusion

GQ-Fast

Native Commercial
GDBMSs

Academic Work or
Relational Systems

Goal of Tutorial: Present common techniques that have emerged and
is likely to lead to wide adoption in near future.

GRainDB

Tutorial Motivation and Goals

5

Ø Cover a suite of modern join techniques for graph workloads

Ø For each: (i) foundation; (ii) integration approaches; (iii) open problems

Techniques
1. Predefined/Pointer-based Joins w/ Join Indices
2. Worst-case optimal join algorithms

3. Factorization

Ubiquitous in
native GDBMSs

Ø Emerged in PODS/ICDT work
Ø Addresses “intermediate data growth” of m-n joins
Ø Finds best application in graph workloads and GDBMSs

Our opinion: Any system in the GDBMS market will need to integrate
these techniques to remain competitive (among others)

Systems and Integration Approaches Overview

6

A Note on Query Notation

a b

c

MATCH (a)->(b)->(c), (a)->(c)

2

1

3

4

5

6

R1

R2

R3

7

Input Graph
R1

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

⋈ ⋈

R2
a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

R3
b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

Query

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins
1.1. Foundations: Predefined vs Value-based Joins
1.2. System Integration Approaches: GQ-Fast, GR-Fusion, GrainDB

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins
1.1. Foundations: Predefined vs Value-based Joins
1.2. System Integration Approaches: GQ-Fast, GR-Fusion, GrainDB

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing

Predefined/Pointer-based vs Value-based Joins

Ø A short history of the term ”pre-defined joins/access paths”

Ted Codd

… but also the reason GDBMSs can be very fast at those joins.

Network Model (1960s)

IDS: First DBMS in history

Relational Model (1970s)

Charles Bachman

A 1962 Drawing of IDS’s Data Model

13

Ø Turing Award Lecture: Programmer As a Navigator

Ø Bachman’s Talk at Computer History Museum

https://amturing.acm.org/award_winners/bachman_9385610.cfm
https://www.youtube.com/watch?v=iDVsNqFEkB0

Common GDBMS Approach to Joins

14

MATCH a-[:Trn]->b-[:Trn]->c
WHERE b.owner = “Alice”
RETURN a.owner, c.owner

Transfers
src dst amount
1 2 700
2 3 800
3 1 900
1 4 500
1 5 400
… … …

Accounts
ID owner
1 Alice
2 Bob
3 Carol
… …

2 4 51

2

3

3

1

31

2

3

1

2 1

a b ca b c

1

a b c

3 1

a b c

3 1 2

a b c

3 1 4

a b c

3 1 5

1. Adjacency lists Join Index
2. Index Nested Loop Join-like Algorithms
3. Dense ID-based access (vs a hash function or B+ tree based)

Scan Node
Property

a.owner=Alice

Extend
(a)-[:Trnsfr]->(b)

Extend
(a)<-[:Trnsfr]-(c)

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c)
Open challenges.

1. Predefined Joins
1.1. Foundations: Predefined vs Value-based Joins
1.2. System Integration Approaches: GQ-Fast, GR-Fusion, GrainDB

2. Worst-case Optimal Joins (WCOJs)

3. Factorized Query Processing

Integration Approaches

16

Ø GDBMS: Already ubiquitous

Ø RDBMSs: Several proposals for join indices + dense ID-based joins

Ø All provide DDL statements to define “graph views”

Ø All use system-level row identifiers (RIDs) as pointers

System Approach
GQ-Fast [Lin et al. VLDB ’16, ICDE ‘17] Decoupled Processor, INLJ
GR-Fusion [Hassan et al., EDBT ’18,
SIGMOD ‘18]

Decoupled Processor, INLJ

GRainDB [Jin et al. VLDB ‘22] Single Processor, Hash Joins

GR-Fusion (1): Graph Views & Join Index Creation

17

Transfers
src dst amount

Alice Bob 700
Bob Carol 800

Carol Alice 900
… … …

Accounts
RID owner balance

1 Alice 1K
2 Bob 5K
3 Carol 7K
… … …

CREATE GRAPH VIEW FinancialGraph
VERTEXES(ID=owner, balance=balance) FROM Accounts
EDGES (FROM=src, TO=dst, amount=amount) FROM Transfers

2 4 51

2

3

3

1

Ø Only the “topology”=join index is materialized

Ø Properties are in the system’s default storage

31

2

3

1

2 1

Customer
owner job
Alice Doctor
Bob Student

Carol Lawyer
… …

GR-Fusion (2): Decoupled Query Processor

SQL clauses

Decoupled Query Processor

Graph Processor
VertexScan, EdgeScan,

PathScan

Default RDBMS
Processor

Graph clausesSELECT PS.EndVertex.balance
FROM Customers C, FinGraph.Paths PS
WHERE C.job = 'Lawyer’

AND PS.StartVertex.ID=C.owner
AND PS.Length = 2

Ø PathScan:

Ø Appears simply as another table scan operator

Ø But implicitly does INLJ (DFSScan or BFSScan)

Ø Last projection: does lookups in the default storage

Table Scan
Customer

job=Lawyer

PathScan
GView: FinancialNetwork

PathLen=2

⋈
owner=ID

𝚷
endVertex.balance

Pros and Cons of Decoupled Approaches

19

Pros Cons
Easier to integrate Only “graph” queries benefit
Can do very advanced processing:
e.g., GR-Fusion has ShortestPathScan

Use of INLJ ops have performance
disadvantages (next slides)

20

GRainDB Motivation: INLJ vs Hash Joins (1)

Standard GDBMS Plan: INLJ ops

MATCH (a:P)-[e:Knows]->(b:P) WHERE a.ID < X RETURN count(*)

Scan Node
a.ID < x

Extend
(a)-[:Knows]->(b)

Standard RDBMS Plan: Hash Join

Scan Knows (e)

Hash Join
e.srcID = a.ID

Scan Person (a)
a.ID < X

✓ benefits from predicate X no benefits from predicate

21

GRainDB Motivation: INLJ vs Hash Joins (2)

MATCH (a:P)-[e:Knows]->(b:P) WHERE e.date < X RETURN count(*)

Standard GDBMS Plan: INLJ ops

Scan Node
a.ID

Extend
(a)-[e:Knows]->(b)

Standard RDBMS Plan: Hash Join

Scan Knows (e)
e.date < x

Hash Join
e.srcID = a.ID

Scan Person (a)
a.ID

✓ benefits from predicate
(even replace probe/build)

X no benefits from predicate

Filter
e.Date < x

22

GRainDB Motivation: INLJ vs Hash Joins (3)

MATCH (a:P)-[e:Knows]->(b:P) WHERE a.ID < X RETURN b.name

Standard GDBMS Plan: INLJ ops

Scan Node
a.ID < x

Extend
(a)-[e:Knows]->(b)

Scan
b.name

Effectively another INLJ operator:

joins (a.ID, e.ID, b.ID) tuple with (b.ID, b.name)

But leads to non-sequential/random reads b/c neighbors have no locality

Ø Further problem with INLJs: Worse When Reading Node Properties

Predefined/Pointer-based Joins in GRainDB: Goals

23

1. Always perform sequential reads

2. But benefit from both node/edge predicates

Ø Achieved through sideways information passing

3. Do not develop a second “graph” processor:

Ø Speed up existing primary-foreign key joins with a join index

Ø In the spirit of old-fashioned join index of Valduriez but using

modern data structures and join algorithms

Predefined Pointer-based Joins in GRainDB

24

Ø Step 1: Predefine a Primary Key-Foreign Key Join E.g.:

FROM: Accounts, Transfers

WHERE Accounts.owner = Transfers.From

Transfers
RID From To amount
1 Alice Bob 700
2 Bob Carol 800
3 Carol Alice 900
4 Alice Dan 500
5 Alice Liz 400
… … … …

Accounts
RID owner
1 Alice
2 Bob
3 Carol
… …

1 4 51

2

3

2

3

RID Index

Accounts
RIDs

Transfer
RIDs

Step 2: Rule-based Query Planning
SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

Scan
Acc

owner=Alice

HashJoin
owner=from

Scan
Trn

Scan
Acc

Scan
Acc

Scan
Trn

HashJoin

HashJoin
owner=from

HashJoin

1. Replace some HashJoins -> SIPJoin or SIPJoinIdx

2. Replace some Scans -> ScanSemiJoins (ScanSJ)
25

Example “2-hop query”

Step 2: Rule-based Query Planning

26

SIPJoinIdx

ScanSJ
Trn

Scan
Acc

ScanSJ
Acc

ScanSJ
Trn

HashJoin

SIPJoin

Scan
Acc

owner=Alice

HashJoin

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

Example “2-hop query”

Step 3: Sideways Information Passing & Semijoins
Transfers

RID F(RID) From To amount
1 1 Alice Bob 700
2 2 Bob Carol 800
3 3 Carol Alice 900
4 1 Alice Dan 500
5 1 Alice Liz 400
… … … … …

Accounts
RID owner
1 Alice
2 Bob
3 Carol
… …

SELECT a.owner, c.owner
FROM Acc a, b, c, Trn t1, t2
WHERE b.owner = Alice AND
a.owner=t1.From AND t1.To=b.owner AND
t1.To=t2.From AND t2.to=c.owner

1 4 51

2

3

2

3

RID Index

Accounts
RIDs

Transfer
RIDs

SIPJoinIdx

ScanSJ
Trn

Scan
Acc

owner=Alice

…

…

RID owner

1 Alice

RID F(RID) From To amt

1 1 Alice Bob 700

4 1 Alice Dan 500

5 1 Alice Liz 400

semijoin mask

t1 t2 t3 t4 t5 t6 … t1M
1 0 0 1 1 0 … 0

Hash Table

key values

1 {1, Alice}

Ø Use RIDs as pointers

Ø All scans are sequential unlike

nested loop joins of GDBMSs

28

GRainDB Microbenchmark Behavior (1)

MATCH (a:P)-[e:Knows]->(b:P)

WHERE a.ID < X

Micro-P

ScanSJ
Knows (e)

SJoinIdx
e.srcID = a.ID

Scan Person (a)
a.ID < X

29

GRainDB Microbenchmark Behavior (2)

MATCH (a:P)-[e:Knows]->(b:P)

WHERE e.date < X

Micro-K
Scan Knows (e)

e.date < x

Hash Join
e.srcID = a.ID

Scan Person (a)
a.ID

Summary

30

Ø Existing Approaches use RIDs and create join indices

Ø GR-Fusion & GQ-Fast use decoupled processors with INLJ ops:

Ø Easier to integrate

Ø Can provide more advanced query processing features

Ø But INLJs can degrade in particular due to non-sequential reads

Ø GRainDB use a single integrated processor with HashJoins

Ø Any PK-FK can benefit

Ø Keeps all scans sequential

Ø Unclear how to integrate more advanced processing (e.g.,

shortest path computations)

Open Challenges

31

Ø How about merge-joins: RDF-3X was based on MJs?

Ø Little work on optimizing queries

Ø Each optimizer is rule-based

Ø General wisdom: rule-based optimizers are rigid

Ø How much of join index-based operators can be implemented w/ UDFs?

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c) Open
challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)
Handling Intermediate Size Growth for Cyclic Joins

3. Factorized Query Processing

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c) Open
challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)
Handling Intermediate Size Growth for Cyclic Joins
2.1. Foundations
2.2. System Integration Approaches

3. Factorized Query Processing

Worst-case Optimal Join Sizes

34

Given Q: R1 ⋈ R2 ⋈ … ⋈ Rn, what’s the max |OUT|?

Theorem 1 (AGM, FOCS 2008):

Assume |Ri| are equal. Let be a fractional edge cover:

Then: dddddddddd (IN is total input size)

!e = (e1...en)

|OUT |≤ IN |!e|

a b

c

𝞺* : weight of minimum fractional edge cover

|OUT |≤ IN ρ*

1

0 1 |OUT |≤ IN 2

1/2

1/2 1/2 |OUT |≤ IN 3/2
𝞺* = 3/2

Traditionally: Binary Join (BJ) Plans
R1

a b
1 2
1 3
1 4

…

R2

a c
1 2
1 3
1 4

…

a b

c
INT1

a b c
1 2 2
1 2 3
1 2 4
1 3 2
1 3 4

…

Output
a b c
1 2 4
1 3 4

35

R3

b c
1 2
1 3
1 4

…

R1

R2 R3
Table(s)/Q-Edge(s)-at-a-time Joins

BJ Plans are provably suboptimal!

E.g: can generate m2 intermediate tuples on a

graph with m edges (AGM bound is m1.5)

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

a b

c

a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

INT1

a∩

36

Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time

Order q-vertices: say: a,b,c

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

a b

c

Q =

a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

Int1

a
1
2
3

INT1

a
INT2

a b

37

Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time

Order q-vertices: say: a,b,c

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

a b

c

Q =

a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

INT1

a
1
2
3

∩

INT2

a b
INT2

a b
1 2
1 3

38

Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time

Order q-vertices: say: a,b,c

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

a b

c

Q =

a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

INT1

a
1
2
3

∩

INT2

a b
1 2
1 3
2 4
2 5
2 6
3 4

Output
a b c

39

Generic Join: A WCO Algorithm (NPRR, 2013)

Column/Q-Vertex-at-a-time

Order q-vertices: say: a,b,c

a b
1 2
1 3
1 4
2 4
2 5
2 6
3 4

a b

c

Q =

Generic Join: A WCO Algorithm (NPRR, 2013)

a c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

b c
1 2
1 3
1 4
2 4
2 5
2 6
3 4

INT1

a
1
2
3

INT2

a b
1 2
1 3
2 4
2 5
2 6
3 4

Output
a b c
1 2 4

Output
a b c
1 2 4
1 3 4

40

Column/Q-Vertex-at-a-time

Order q-vertices: say: a,b,c

40

Theorem: GJ is WCO for any query (under any ordering)

E.g. will generate ≤ m1.5 intermediate tuples

Summary of Two Theorems

41

Theorem 1 (AGM Bound):

Assume |Ri| are equal. Let be min frac. edge cover:

Then: dddddddddd (IN is total input size)

!e*= (e1*...en*)

|OUT |≤ IN ρ*=|!e|

Theorem 2 (GJ is WCO): Runtime of GJ ≤ AGM

(for any query & any q-vertex ordering (QVO))

Message: To be WCO:

do q-vertex-at-a-time matching w/ multiway intersections.

Outline of Query Processing Techniques to Cover

For each we cover: a) Foundations; b) System implementations; and c) Open
challenges.

1. Predefined Joins

2. Worst-case Optimal Joins (WCOJs)
Handling Intermediate Size Growth for Cyclic Joins
2.1. Foundations
2.2. System Integration Approaches

3. Factorized Query Processing

