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Abstract

Federated Learning (FL) involves training a model over a
dataset distributed among clients, with the constraint that
each client’s dataset is localized and possibly heterogeneous.
In FL, small and noisy datasets are common, highlighting the
need for well-calibrated models that represent the uncertainty
of predictions. The closest FL techniques to achieving such
goals are the Bayesian FL methods which collect parameter
samples from local posteriors, and aggregate them to approx-
imate the global posterior. To improve scalability for larger
models, one common Bayesian approach is to approximate
the global predictive posterior by multiplying local predic-
tive posteriors. In this work, we demonstrate that this method
gives systematically overconfident predictions, and we rem-
edy this by proposing β-Predictive Bayes, a Bayesian FL al-
gorithm that interpolates between a mixture and product of
the predictive posteriors, using a tunable parameter β. This
parameter is tuned to improve the global ensemble’s calibra-
tion, before it is distilled to a single model. Our method is
evaluated on a variety of regression and classification datasets
to demonstrate its superiority in calibration to other base-
lines, even as data heterogeneity increases. Code available at
https://github.com/hasanmohsin/betaPredBayesFL.

Introduction
Federated learning (FL) is a machine learning paradigm that
trains a statistical model using decentralized data stored on
client devices, with the constraint that client data is kept lo-
cal (McMahan et al. 2017). FL has found use in smartphone
applications, as well as fields such as healthcare and finance
due to the abundance of use-cases where sensitive training
data is owned by separate entities (Zheng et al. 2022).

The workflow of a typical FL algorithm involves the local
training of models on each client, followed by the commu-
nication and aggregation of these into a single global model
on a central server. Many FL techniques alternate between
these two steps until some notion of convergence is reached.

For the purpose of this work, we are concerned with the
design of FL algorithms with three key metrics in mind:

1. Communication Cost: the transmission of models be-
tween clients and servers can be expensive, especially
when each model has numerous parameters (e.g. neural
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networks). Cost effective FL techniques therefore aim to
maximize the amount of local computation at each client,
while reducing the rounds of communication.

2. Performance with Heterogeneous Data: clients may
have different data distributions from each other. This
causes the local client models to drift apart, presenting
issues when aggregating them into a global model (Zhao
et al. 2018). In particular, when client datasets are heav-
ily heterogeneous, global models tend to perform poorly
on clients’ local datasets.

3. Calibration: Clients’ data may have too few training
points, or too much variance. Therefore, a valuable goal
in FL is to produce models that are well-calibrated, or
in other words: make probabilistic predictions with accu-
rate uncertainty estimates.

Many techniques frame FL as a distributed optimization
problem. For these, there is typically a trade-off between
achieving a low communication cost and good performance
on heterogeneous data: they improve global performance at
the cost of more communication (McMahan et al. 2017;
Woodworth, Patel, and Srebro 2020). Moreover, they do not
have any systematic way of calibrating the global model.

To alleviate these problems, an alternative branch of FL
techniques takes a Bayesian perspective on learning the
model. They approximate the Bayesian posterior distribu-
tion of each client model, and aggregate them into the global
Bayesian posterior (Al-Shedivat et al. 2021; Neiswanger,
Wang, and Xing 2014). This allows the training of more
effective global models on heterogeneous data by leverag-
ing client uncertainty during aggregation (Al-Shedivat et al.
2021). Certain Bayesian FL methods also demonstrate how
to aggregate local posteriors in only a single round of com-
munication (Neiswanger, Wang, and Xing 2014). Further-
more, these methods explicitly represent and adjust the un-
certainty in model parameters, i.e., they should be well-
calibrated in principle.

In these methods, the Bayesian posterior is a distribu-
tion over model parameters, and it is expensive to represent
and manipulate. Therefore, it becomes necessary to apply
approximations to the posterior. Many methods work with
crude approximations to the client posterior (as e.g., a mul-
tivariate Gaussian) (Al-Shedivat et al. 2021; Neiswanger,
Wang, and Xing 2014), which can incur heavy error, result-
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ing in poor calibration and accuracy.
A promising Bayesian method for FL is the Bayesian

Committee Machine (BCM, Tresp 2000), which instead ag-
gregates the distribution over model predictions (referred to
as the Bayesian predictive posterior) rather than the poste-
rior over parameters. The former allows for more accurate
approximation due to its lower dimensionality. Nevertheless,
these methods need to rely on an approximate aggregation
technique, which can add bias to the global model.

In this work, we argue that the BCM is poorly calibrated
due to producing overconfident predictions. We remedy this
by proposing a new aggregation method that interpolates be-
tween the BCM predictions, and those made by a mixture
model over the local predictive posteriors. This server aggre-
gation results in an ensemble model, which is then distilled
into a single model, to be sent back to clients.

The primary contributions of our work are as follows:

• We propose a novel algorithm for Bayesian FL, called
β-Predictive Bayes. This method operates in a single
round of communication, while benefiting from perfor-
mance over heterogeneous data like the BCM. On the
other hand, it does not suffer from the same calibration
issues as the BCM.

• We empirically evaluate β-Predictive Bayes on multi-
ple regression and classification datasets, using parti-
tions simulating varying levels of data heterogeneity. The
proposed technique competes with or outperforms other
baselines with respect to calibration, particularly when
data heterogeneity increases.

Background
In federated learning (FL), data is distributed across sev-
eral clients. Let D = D1 ∪ ... ∪ Dn where Di =
{(x1, y1), ..., (xki

, yki
)} is the dataset of size ki at client

i, consisting of inputs x and targets y. The goal is to learn
a predictive model without any data leaving each client to
preserve privacy. Let mθ denote a model, parameterized by
weights θ, which outputs a predictive distribution mθ(x) =
p(y|x, θ). In a typical FL algorithm, each client learns a local
model mθi , which it shares with a trusted server that aggre-
gates them into a global model mθ̄. For example, Federated
Averaging (FedAvg) (McMahan et al. 2017) aggregates lo-
cal models by taking the average of their parameters (i.e.,
θ̄ =

∑
i θiki/(

∑
i ki)).

In practice, the datasets are often heterogeneous, which
means that they are sampled from different distributions.
To deal with heterogeneity and avoid client divergence,
FedAvg (McMahan et al. 2017) and many other vari-
ants (Mohri, Sivek, and Suresh 2019; Wang et al. 2019; Li
et al. 2020a; Wang et al. 2020; Li et al. 2020b) perform
frequent rounds of model updates and averaging where in
each round the clients update their local models based on a
few steps of gradient descent, or more generally, some form
of partial training. This can be quite costly due to the in-
creased communication and the need for synchronization at
each round. Some methods alter the training to improve per-
formance in heterogeneous settings. For instance, FedProx
(Li et al. 2020a) adds a penalty between the global model

and each client’s local model to the local training loss, while
Reddi et al. (2021) use an adaptive optimizer (such as Adam
(Kingma and Ba 2015)) at the server for aggregation.

Bayesian Learning
Bayesian learning is a training method that takes into ac-
count uncertainty over parameters (Bishop 2006). It oper-
ates by setting a “model space prior” p(θ), which encapsu-
lates beliefs about the model parameters before observing
data. Upon processing the dataset, this prior is updated to
the “model space posterior” using Bayes’ Rule: p(θ|D) ∝
p(θ)p(D|θ). This posterior is then used to make predictions.

One method for doing so is to obtain samples from the
posterior, S = {θ1, ..., θM} ∼ p(θ|D) through a method
such as Markov Chain Monte Carlo (MCMC), and use them
to approximate the “posterior predictive distribution”:

p(y|x,D) =

∫
p(y|x, θ)p(θ|D)dθ ≈ 1

M

∑
j

p(y|x, θj).

Knowledge Distillation
The goal of knowledge distillation is to compress a given
larger “teacher” model mθT (x) into a smaller “student”
model mθS (x) that matches its predictions on a shared data
distribution (Hinton, Vinyals, and Dean 2015).

A number of FL techniques assume the server has ac-
cess to a public (unlabelled) dataset U that serves as
the distillation dataset (Guha, Talwalkar, and Smith 2019;
Li, He, and Song 2021; Chen and Chao 2021). The stu-
dent is trained to minimize a loss of the form L(θS) =∑

x∈U l(mθS (x),mθT (x)). Here, l(·, ·) measures the dis-
crepancy between predictions. For classification, this dis-
crepancy can be measured by the Kullback-Leibler diver-
gence between the class distributions, while for regression
tasks, it can be measured by the mean-squared error.

Related Work
Bayesian Techniques in FL
Bayesian learning offers FL techniques the advantage of bet-
ter performance in heterogeneous settings. As argued by Al-
Shedivat et al. (2021), FedAvg can be thought of as a tech-
nique that obtains the mean of the global posterior, if each
local posterior is approximated as a Gaussian with the iden-
tity as the covariance matrix. Thus FedAvg implicitly as-
sumes a form of homogeneity, which may not be practical.
Bayesian techniques offer the ability to remedy this by using
more realistic approximations to the local posteriors.

Existing Bayesian FL techniques focus on approximat-
ing the global model space posterior p(θ|D) from the lo-
cal model space posteriors p(θ|Di) (Neiswanger, Wang, and
Xing 2014; Al-Shedivat et al. 2021).

Embarrassingly Parallel MCMC (EP MCMC,
Neiswanger, Wang, and Xing 2014) implements Bayesian
inference by drawing MCMC samples from each local
posterior (with a corrective factor from the prior), and then
estimating the local densities either as Gaussians or with
a kernel density estimator. These local densities are then
aggregated via multiplication (again with a prior corrective



factor) to obtain an approximation for the global model
space posterior. This global density is then sampled to
obtain the desired posterior samples. It is worth noting that
the original work was not designed for use with neural
networks, and the memory costs associated with the method
make it intractable for this setting. For instance, when
approximating the local posteriors as Gaussians and aggre-
gating them, a computational cost of O(d3) is required for
inverting the covariance matrices, where d is the number of
neural network parameters. This method is notable however
for operating with only a single communication round.

Federated Posterior Averaging (Al-Shedivat et al. 2021)
is similar to EP MCMC, except that it approximates the local
posteriors as Gaussians, and devises an efficient iterative al-
gorithm for aggregating the local posteriors (with cost linear
in the number of parameters). However, the method requires
multiple rounds of communication to be effective.

The main issue with both these techniques is that they re-
quire some approximation of the global model space pos-
terior (e.g., in the form of a Gaussian), which can often be
inaccurate when the number of model parameters is large.
Such approximations are especially poor for neural network
models, where the model space posterior is known to be
multimodal (Pourzanjani, Jiang, and Petzold 2017).

The Bayesian Committee Machine (BCM, Tresp 2000;
Deisenroth and Ng 2015) can be thought of as an aggre-
gation method that combines low dimensional predictive
posteriors p(y|x,Di), rather than the parameter posteriors
p(θ|Di). It aggregates as

p(y|x,D) =
1

pm−1(y|x)
∏
i

p(y|x,Di). (1)

This formula is correct assuming that the data shards Di are
independent from each other (and conditionally independent
given the single query point (x, y)). We note that this can be
satisfied if the data shards form clusters in input space, in
other words, if the data is heterogeneous in a certain way.

The BCM results in an ensemble model over the local
Bayesian samples. The advantage of this method is that pre-
dictive posteriors are much simpler, and lend themselves
to, for instance, Gaussian approximations, without sacrific-
ing accuracy. On the other hand, the aggregation formula is
no longer exact, but only approximately true, which causes
other inaccuracies (specifically, in calibration). The BCM is
the starting point for our proposed method.

The Generalized Robust BCM (Liu et al. 2018) proposes
corrections to the calibration shortcomings of the BCM in
regression. Our work analyzes the calibration under differ-
ent conditions, and extends the analysis to the classification
setting. In addition, the proposed correction algorithm re-
quires sharing a subset of the data to all clients, which is
incompatible with FL privacy constraints. In this work, we
propose a different correction procedure amenable to FL.

One-Shot Federated Learning
Owing to the importance of efficient communication, several
methods have been developed to perform FL within a single
communication round. One-Shot FL (Guha, Talwalkar, and

Smith 2019), as well as Federated Learning via Knowl-
edge Transfer (FedKT) (Li, He, and Song 2021) perform
one round training by constructing an ensemble from the
client models, and compressing it into a single model us-
ing knowledge distillation on a public unlabeled dataset.
The methods differ in how they construct the teacher ensem-
ble: whereas “One-Shot FL” averages the client predictions
(and was tailored for SVM models), “FedKT” aggregates
based on majority voting by local models (and only applies
to classification tasks). The latter technique uses a scheme
called “consistent voting”, where it uses discrepancies be-
tween client votes to determine which clients are uncertain
about their predictions, and thus can be ignored in the ma-
jority vote. Our work is similar to these approaches, but de-
rives aggregation rules for the local client models using a
Bayesian perspective, and is applicable to any type of tasks
or predictive models. In contrast to our method, these exist-
ing techniques do not prioritize well-calibrated predictions.

Analysis of BCM Calibration
As mentioned before, the BCM aggregation requires the in-
dependence assumption of the data shards. We analyze when
and how this approximation fails: in that it can produce an
overconfident global model.

We can analyze the BCM equation in the context of Gaus-
sian process (GP) regression, since it allows us to explicitly
calculate the predictive mean and variance.

We assume a smooth, isotropic kernel function k(x, x′) =
k(||x− x′||). We assume a model with Gaussian noise, i.e.,
y = f(x)+ϵ where ϵ ∼ N (0, σ2

o) and σ2
o is the “observation

variance” in the predictions (in other words, the aleatoric
uncertainty in our predictions).

In this setting, the BCM predictive posteriors can be ap-
proximated as Gaussians p(y|x,Di) = N (µi,Σi) (and with
prior p(y|x) = N (µp,Σp)). The aggregation formula (1)
now computes a global mean and covariance:

Σg =

(∑
i

Σ−1
i − (n− 1)Σ−1

p

)−1

, (2)

µg = Σg

(∑
i

Σ−1
i µi − (n− 1)Σ−1

p µp

)
. (3)

Suppose the input data-points lie in some bounded region R,
i.e., xi ∈ R for all i. For the GP we outline two observations
about the predictive variance σ2(x∗):

Lemma 1 (Choi and Schervish 2007). Assume x∗ ∈ R. Un-
der some mild conditions on the kernel function, and under
the assumption of Gaussian or Laplacian observation noise,
as the number of data-points increases σ2(x∗) → σ2

o (and in
addition, the predictive mean converges to the true function
value: µ(x∗) → f(x∗)).

Lemma 2. Assume x∗ /∈ R, and is sufficiently far away
from all training points such that k(x∗, xi) ≈ 0 for all xi ∈
R. Then the predictive variance becomes σ2(x∗) = σ2

o +
k(x∗, x∗), which we refer to as the “prior variance” σ2

p.
Also, the predictive mean becomes µ(x∗) = 0.



The proof for this lemma, and all following theorems are
in the appendix. Taken together, Lemma 1 and 2 mean that
near data, the GP attains the correct mean and variance, and
away from it, it reverts to a larger prior variance. This reflects
the model’s higher uncertainty on unobserved data.

Equipped with these observations, we can analyze the
case with partitioned data. We assume two idealized parti-
tions for the overall dataset D into the m shards:
• Idealized Homogeneous Partition: each dataset Di is

sampled from the same distribution as global dataset D.
• Idealized Heterogeneous Partition: all points xi ∈ Di

and xj ∈ Dj are separated (k(xi, xj) ≈ 0). In other
words, the local datasets form clusters in the input space.

Our primary result is that the BCM equations under-estimate
the predictive variance in the case of the idealized homoge-
neous partition, i.e., the BCM predictions are overconfident:
Theorem 1 (BCM, homogeneous). If the data is split
among m clients in an idealized homogeneous partition, and
x∗ ∈ R is a single test point, then the BCM equations (2) un-
derestimate the predictive variance σ2

BCM(x∗) < σ2
o as the

size of the data subsets grows (|Di| → ∞).
On the other hand, in the same setting, for the mean pre-

diction, if we assume a small prior precision σ−2
p ≈ 0, a

quick calculation shows that we still obtain accurate results.
Starting with the equation for the BCM predictive mean (2)
and applying Lemma 1, we obtain:

µBCM(x∗) =
∑
i

σ−2
i µi/(

∑
i

σ−2
i )

≈
∑
i

σ−2
o f(x∗)/(

∑
i

σ−2
o ) = f(x∗).

In other words, the predictive mean still recovers the true
mean function at x∗. We can also check that the BCM pro-
duces a calibrated predictive variance in the case of ideal-
ized heterogeneous data, which lines up with the idea that
the BCM is accurate under certain heterogeneous partitions.
Note that this contrasts with proposition 1 of Liu et al.
(2018), which asserts that the BCM is overconfident with
heterogeneous partitions. The reason for the difference is
that they assume i) that the data stays in the same bounded
region as |D| → ∞, and ii) that the number of partitions
grows to ∞. In that setting, the disjoint partitions clump to-
gether as |D| → ∞, unlike our setting.
Theorem 2 (BCM, heterogeneous). If the data is split
among m clients in an idealized heterogeneous partition,
and x∗ ∈ R is a test point near Dk, then the BCM equations
(2) correctly estimate the predictive variance σ2

BCM(x∗) =
σ2
o as the size of the data subsets grows (|Di| → ∞).

Analyzing the Predictive Mixture Model
From the above we see that the BCM model produces over-
confident estimates for the (idealized) homogeneous setting.
An alternate model that produces well-calibrated estimates
in this setting is the predictive mixture model:∑

i

|Di|
|D|

p(y|x,Di). (4)

For GP regression, when each p(y|x,Di) =
N (µi(x), σ

2
i (x)) is Gaussian, this model produces a

Gaussian mixture as its predictive distribution. In general,
this will not be Gaussian, but we can approximate it with
an overall Gaussian prediction N (µmix(x), σ

2
mix(x)),

matching the mean and variance of the mixture:

µmix(x) =
∑
i

|Di|
|D|

µi(x), (5)

σ2
mix(x) =

∑
i

|Di|
|D|

(σ2
i (x) + µ2

i (x))− µ2
mix(x). (6)

This is because the moments of a mixture are equal to the
mixtures of the moments. Unlike the BCM model, for ho-
mogeneous data, the mixture model is well-calibrated:
Theorem 3 (mixture model, homogeneous). If the data is
split among m clients in an idealized homogeneous parti-
tion, and x∗ ∈ R is a test point in the bounded region of
the data, then the predictive mixture equations (5) correctly
estimate the predictive variance σ2

mix(x
∗) = σ2

o as the size
of the data subsets grows (|Di| → ∞).
However, the drawback of the mixture model is that for the
idealized heterogeneous partition, it overestimates the pre-
dictive uncertainty:
Theorem 4 (mixture model, heterogeneous). If the data is
split among m clients in an idealized heterogeneous parti-
tion, and x∗ ∈ R is a test point near Dk, then the predictive
mixture equations (5) overestimate the predictive variance
σ2
mix(x

∗) > σ2
o as the data subset size grows (|Di| → ∞).

Calibration Analysis for Classification
The preceding analysis may be extended to classification (or
more general) models under the following assumptions. Be-
low, we denote the true underlying predictive model (with
correct aleatoric uncertainty) as pT (y|x), and the prior pre-
dictive model as pP (y|x). We assume:
1. For x∗ in the vicinity of data subset Di, and assuming all

data subsets are large enough, the local predictive model
converges to the true model, i.e. p(y|x,Di) = pT (y|x);

2. For x∗ far away from the data subset Di, the local pre-
dictor outputs the prior model: p(y|x,Di) = pP (y|x);

3. The prior model pP (y|x) has higher variance, uncer-
tainty, and/or entropy than the true model pT (y|x).

All these are desiderata for well-calibrated models. The
first desideratum ensures that the model is accurate for in-
domain points and the second desideratum ensures that the
model reverts to predictions it would have made in the
absence of data (the prior predictions) for out-of-domain
points. The final desideratum ensures that the prior predic-
tions are sufficiently uncertain.

Although some of these assumptions may not be satis-
fied by some approximate models, they are the ideal goal for
a well-calibrated model. For instance, in classification with
neural networks using a softmax layer, item 2 may not be
true, and it is the goal of multiple methods to correct this de-
fect (Mukhoti et al. 2021). This is why, for analytically sim-
ple models such as GP regression, these assumptions hold.



Heterogeneous Data Homogeneous Data
BCM Calibrated Overconfident

Mixture Underconfident Calibrated

Table 1: Summary of Predictive Variance Analysis.

Under the above assumptions of well-calibrated local
models, we can extend the analysis to classification. For sim-
plicity we assume pP (y|x) is a uniform distribution. We let
c denote the correct class for the test point x∗.

Theorem 5 (BCM, homogeneous, classification). Assum-
ing well-calibrated local models, and an idealized homoge-
neous partition, if x∗ ∈ R is a test point in the bounded
region of the data, then BCM predicts the correct class with
probability pBCM(c|x∗,D) > pT (c|x∗,D).

This follows from the fact the local distributions are cor-
rect p(y|x,Di) = pT (y|x) and BCM multiplies them to-
gether to produce pBCM(y|x,D) ∝ pmT (y|x), which will be
more confident than the desired distribution pT (y|x).

For heterogeneous data, only one of the factors in the
product distribution converges to pT (y|x), while the others
still match the uniform prior pP (y|x). In this case, the prod-
uct yields an accurate model.

Theorem 6 (BCM, heterogeneous, classification). Assum-
ing well-calibrated local models, and an idealized hetero-
geneous partition, if x∗ ∈ R is a single test point near
Dk, then the BCM predicts the correct class with probability
pBCM(c|x∗,D) = pT (c|x∗,D).

Similarly analyzing the mixture model, we see it is under-
confident for heterogeneous data:

Theorem 7 (mixture model, heterogeneous, classifica-
tion). Assuming well-calibrated local models, and an ide-
alized heterogeneous partition, if x∗ ∈ R is a test point near
Dk, then the mixture predicts the correct class with proba-
bility pmix(c|x∗,D) < pT (c|x∗,D).

On the other hand, for homogeneous data, each predic-
tive distribution is identical, and equal to the true distri-
bution, so that the mixture returns the correct distribution
pmix(y|x,D) =

∑
i(|Di|/|D|)pT (y|x) = pT (y|x).

Theorem 8 (mixture model, homogeneous, classifica-
tion). Assuming well-calibrated local models, and an ide-
alized homogeneous partition, if x∗ ∈ R is a test point in
the bounded region of the data, then the mixture predicts the
correct class with probability pmix(c|x∗,D) = pT (c|x∗,D).

We summarize the analysis results in Table 1.

Calibrating the Aggregated Model
The preceding analysis motivates us to combine the predic-
tive mixture model (4), and the BCM (henceforth referred
to as the “product model”) (1). Namely, to obtain the correct
calibration in the predictive model, we should interpolate be-
tween the mixture, which is accurate for homogeneous data,
and the product, which is accurate for heterogeneous data.

Algorithm 1: Distilled β-PredBayes
Input: Client datasets Di, sampler MCMC sample
Output: Model θ∗

for each client i do
{θ}i = MCMC sample(Di) {//step 1}
Communicate {θ}i to server {//step 2}

end for
At Server:
p̂(y|x,Di) =

1
|{θ}i|

∑
θ∈{θ}i

p(y|x, θ) {//step 3}
p̂β(y|x,D) = Aggregate(p̂(y|x,Di)) {//step 4, Eq. 7}
β∗ = argminβ

∑
− log p̂β(y|x,D) {//step 5, tune β}

θ∗ = Distill(p̂β∗(y|x,D)) {//step 6}
return θ∗

For interpolation parameter β, the model, which we refer to
as β-Predictive Bayes is:

log pβ(y|x,D) = β log
( 1

p(y|x)n−1

∏
i

p(y|x,Di)
)
+ (7)

(1− β) log
(∑

i

|Di|
|D|

p(y|x,Di)
)
.

The case of β = 0.0 corresponds to the mixture model, and
β = 1.0 corresponds to the product model.

In the case of regression, assuming Gaussian outputs
for each local predictive distribution p(y|x,Di), and us-
ing the mixture approximations (5), the aggregated predic-
tive distribution is approximately a Gaussian pβ(y|x,D) =
N (µβ(x), σ

2
β(x)) with:

σ−2
β (x) = β · σ−2

prod + (1− β) · σ−2
mix(x) (8)

µβ(x) = σ2
β(x)

(
β · σ−2

prod(x)µprod(x)

+ (1− β) · σ−2
mix(x)µmix(x)

)
.

In other words, the inverse-variance (or precision) interpo-
lates between that of the product and mixture distributions.

We learn β by minimizing the negative log-likelihood of
a dataset on the server, U using a gradient-based optimizer.

β∗ = argmin
β

∑
(x,y)∈U

− log pβ(y|x,D). (9)

For regression, the Gaussian negative log-likelihood can be
used for training (by approximating pβ(y|x,D) with (8)).

By tuning β this way, we don’t need to know where we are
along the homogeneous-heterogeneous partition spectrum.
Since we are only tuning a single scalar parameter, a small
dataset may suffice. Furthermore, we can use U as a distilla-
tion dataset to compress the ensemble into one model. The
steps for β-predBayes are presented in Algorithm 1.

Experiments
We evaluate β-PredBayes on a number of regression and
classification datasets. All tests used 5 clients, with a dis-
tillation set composed of 20% of the original training set.
Further experimental details, such as the models, and hyper-
parameters, are included in the appendix.



Figure 1: NLL on the classification datasets with increasing heterogeneity (tested with h ∈{0.0, 0.3, 0.6, 0.9}). Averages and
standard error over 10 seeds are reported. Omitted values (e.g., for FedPA on EMNIST) denote results where NLL diverged.

Figure 2: ECE on the classification datasets with increasing heterogeneity (tested with h ∈{0.0, 0.3, 0.6, 0.9}). Averages and
standard error over 10 seeds are reported.

Since the goal is to evaluate the calibration of the pre-
dictions (not just their accuracy), we measure negative-log-
likelihood (NLL) on the test set. This evaluates calibration
since NLL should be minimized for the correct prediction
probabilities (Guo et al. 2017). For classification, we may
also use the expected calibration error (ECE), which mea-
sures the difference between the confidence (probabilities)
assigned to predicted classes, and the fraction that are pre-

dicted correctly (see the appendix for more details).

Classification Dataset Setup
The method was evaluated for classification on the fol-
lowing datasets: MNIST (Lecun et al. 1998), Fashion
MNIST (Xiao, Rasul, and Vollgraf 2017), EMNIST (Cohen
et al. 2017) (using a split with 62 classes), CIFAR10 and
CIFAR100 (Krizhevsky, Hinton et al. 2009). Each of these



Method Air Quality Bike Wine Quality Real Estate Forest Fire

EP-MCMC 11.20 ± 0.42 1.92 ± 0.12 2.93 ± 0.09 1.90 ± 0.29 1.90 ± 0.09
FedBE 6.34 ± 0.03 0.94 ± 0.05 2.13 ± 0.01 0.49 ± 0.01 1.39 ± 0.01
OneshotFL 6.69 ± 0.05 0.98 ± 0.05 2.17 ± 0.01 0.53 ± 0.01 1.39 ± 0.01
Mixture 9.45 ± 0.02 1.22 ± 0.02 2.57 ± 0.03 0.65 ± 0.01 1.39 ± 0.01
Product 10.17 ± 0.08 1.47 ± 0.02 3.06 ± 0.10 0.83 ± 0.03 2.57 ± 0.03

β-PredBayes (ours) 7.05 ± 0.04 0.95 ± 0.01 2.05 ± 0.05 0.53 ± 0.03 1.55 ± 0.01∗

D-β-PredBayes (ours) 4.53 ± 0.12 0.32 ± 0.05 1.34 ± 0.03 0.18 ± 0.02 1.56 ± 0.03

Table 2: Average NLL (± standard error) on regression datasets, based on 10 seeds. Lower is better. All values are statistically
significant relative to D-β-PredBayes (p < 5%) according to the Wilcoxon signed-rank test, except those marked with ∗.

datasets is distributed among clients based on a “heterogene-
ity parameter”, h. For h = 0, the data is split uniformly
among the clients, and is thus homogeneously distributed.
For h = 1, the data is sorted by class before being split
among clients. This means that each client observes data
from different classes with little overlap. In this sense, h = 1
represents the “fully heterogeneous” setting. For 0 < h < 1,
data from the above extremes is mixed: a fraction of size
h of the homogeneous data shard is replaced with the fully
heterogeneous data for each client.

Classification Results

We evaluate β-PredBayes, in both its distilled (listed as D-
β-PredBayes) and non-distilled forms, along with the prod-
uct (BCM) and mixture models. We also evaluate several
baselines, run for one communication round. The results for
NLL over different settings of the heterogeneity are plotted
in Figure 1, while ECE results are shown in Figure 2.

For the NLL, the β-PredBayes model (and its distilled
variant) perform best (least NLL), followed by the Mixture
model, on the tested datasets. As heterogeneity increases,
the NLL loss generally increases for other methods, while
it largely remains stable for β-PredBayes. For the ECE, as
heterogeneity increases, the metric jumps more erratically
for some methods (which may be due ECE’s sensitivity to
hyperparameters like bin count). But the overall trend is
still that β-PredBayes performs best (with lowest ECE), fol-
lowed by its distilled variant, followed by the mixture model.
We note that for ECE, β-PredBayes outperforms the mixture
model for high heterogeneity setting (h = 0.9), which is ex-
pected from the analysis that predicted that mixture models
would not be well-calibrated in this setting.

Regression Dataset Setup

The regression datasets used for evaluation include: the
“wine quality” (Cortez et al. 2009), “air quality” (De Vito
et al. 2008), “forest fire” (Cortez and Morais 2007), “real
estate” (Yeh and Hsu 2018), and “bike rental” (Fanaee-T
and Gama 2013) datasets from the UCI repository (Dua and
Graff 2017). These datasets were sorted according to certain
features (such as the date, for “airquality”), then split among
clients, to simulate heterogeneous data.

Regression Results
For regression, β-predBayes was evaluated, along with the
product and mixture models as well as other baselines that
use an ensemble for predictive inference (since these yield a
predictive variance). The resulting (Gaussian) NLL for het-
erogeneous data are shown in Table 2. For all datasets except
“Forest Fire,” the distilled form of β-PredBayes performs
best in NLL. Note that it is possible that the distilled version
outperforms the non-distilled one due to some regularization
effect of having a smaller model.

Conclusion and Future Work
This work presented β-Predictive Bayes, an algorithm that
aggregates local Bayesian predictive posteriors using a tun-
able parameter β, and then distills the resulting model. The
parameter β enables accurate calibration performance. Ow-
ing to its Bayesian nature, the method is also well suited for
heterogeneous FL, and requires only a single communica-
tion round. We perform empirical evaluation on various clas-
sification and regression datasets to show the competence of
our methods in heterogeneous settings. Our work reinforces
that Bayesian learning can provide well-calibrated models
in heterogeneous settings with efficient communication.

Some future directions to improve our work include:

• Personalized FL. Our proposed approach learns a sin-
gle global model for all clients. When clients have differ-
ent class-conditional distributions p(y|x), a personalized
model can be more desirable for each client.

• Privacy. The proposed method transmits weight samples
(obtained by MCMC) to the server. Although no data
is shared, information about the data could be leaked
via the model weights unless a theoretically proven pri-
vate mechanism is used or encryption is applied. This
trait is shared by other techniques (e.g., FedAvg, FedPA).
It would be interesting to explore rigorously private
methods, such as differentially private sampling mech-
anisms (Dimitrakakis et al. 2017).

• Server dataset. β-Predictive Bayes uses public data
stored at the server for distillation and tuning β. When a
public dataset is not available, it may need to be synthet-
ically generated. It would be better to avoid this genera-
tion and to develop a data-free technique for distillation
and learning β in the future.
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A Proofs of Theorems
We provide proofs for the theorems in the main text. Recall
the BCM aggregation equation as:

p(y|x,D) =
1

pm−1(y|x)
∏
i

p(y|x,Di)

which, in the case of Gaussian local predictive posteriors
p(y|x,Di) = N (µi,Σi) simplifies to computing the Gaus-
sian global predictions p(y|x,D) = N (µg,Σg):

Σg =

(∑
i

Σ−1
i − (n− 1)Σ−1

p

)−1

µg = Σg

(∑
i

Σ−1
i µi − (n− 1)Σ−1

p µp

)
.

The mixture aggregation is:∑
i

|Di|
|D|

p(y|x,Di)

which we approximate with an overall Gaussian prediction
N (µmix(x), σ

2
mix(x)):

µmix(x) =
∑
i

|Di|
|D|

µi(x)

σ2
mix(x) =

∑
i

|Di|
|D|

(σ2
i (x) + µ2

i (x))− µ2
mix(x).

Gaussian Process Analysis
We assume a smooth, isotropic kernel function k(x, x′) =
k(||x− x′||). We assume a model with Gaussian noise, i.e.,
y = f(x) + ϵ where ϵ ∼ N (0, σ2

o).
On some dataset D = (X,y), and with test point x∗, the

Gaussian process inference equations predict a mean and
variance for p(y∗|x∗,Di) = N (µ(x∗), σ2(x∗)). If we de-
note k∗ = [k(x∗, x1), ..., k(x

∗, x|D|)]
⊤ the vector of ker-

nel evaluations between the test point x∗ and the points in
the dataset D, and K as the kernel matrix (where Ki,j =
k(xi, xj) for xi, xj ∈ D) then the inference equations are
(Rasmussen and Williams 2006):

µ(x∗) = k⊤
∗ (K+ σ2

oI)
−1y (10)

σ2(x∗) = σ2
o + k(x∗, x∗)− k⊤

∗ (K+ σ2
oI)

−1k∗ (11)

We assume the data lies in some bounded set R. Starting
with the lemmas in the main text:

Lemma 1 (Choi and Schervish 2007). Assume x∗ ∈ R. Un-
der some mild conditions on the kernel function, and under
the assumption of Gaussian or Laplacian observation noise,
as the number of data-points increases σ2(x∗) → σ2

o (and in
addition, the predictive mean converges to the true function
value: µ(x∗) → f(x∗)).

Lemma 2. Assume x∗ /∈ R, and is sufficiently far away
from all training points such that k(x∗, xi) ≈ 0 for all xi ∈
R. Then the predictive variance becomes σ2(x∗) = σ2

o +
k(x∗, x∗), which we refer to as the “prior variance” σ2

p.
Also, the predictive mean becomes µ(x∗) = 0.

Proof. The inference equation 10 for the predictive variance
reads:

σ2(x∗) ≈ σ2
o + k(x∗, x∗)− 0⊤(K+ σ2

oI)
−10

≈ σ2
o + k(x∗, x∗)

Similarly, the predictive mean is µ(x∗) ≈ 0⊤(K +
σ2
oI)

−1y = 0.

BCM The primary theorems establishing the calibration
performance of the BCM and mixture models are:

Theorem 1 (BCM, homogeneous). If the data is split
among m clients in an idealized homogeneous partition, and
x∗ ∈ R is a single test point, then the BCM equations (2) un-
derestimate the predictive variance σ2

BCM(x∗) < σ2
o as the

size of the data subsets grows (|Di| → ∞).



Proof. According to the BCM aggregation equation for re-
gression:

σ−2
BCM(x∗) =

∑
i

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

Where σ−2
i (x∗) is the inverse of the predictive variance out-

put by the GP trained on Di. As the size of the dataset Di

increases, from Lemma 1 we know that σi(x
∗) will converge

to σ2
o . On the other hand σ2

p = k(x∗, x∗) + σ2
o . Combining

these facts (in the limit of increasing data points):

σ−2
BCM(x∗) = mσ−2

o − (m− 1)(σ2
o + k(x∗, x∗))−1

> mσ−2
o − (m− 1)σ−2

o

= σ−2
o

Where the second inequality follows from the fact that
k(x∗, x∗) > 0 (for a positive kernel function).

This implies σ2
BCM < σ2

o as claimed.
Furthermore, for a kernel function with a large prior pre-

cision σ−2
p ≈ 0 (which is typical in practice when using an

uninformative prior), we see that:

σ−2
BCM = mσ−2

o − (m− 1)σ−2
p

≈ mσ−2
o .

So we end up underestimating the predictive variance by
a factor of m, for m clients.

Theorem 2 (BCM, heterogeneous). If the data is split
among m clients in an idealized heterogeneous partition,
and x∗ ∈ R is a test point near Dk, then the BCM equations
(2) correctly estimate the predictive variance σ2

BCM(x∗) =
σ2
o as the size of the data subsets grows (|Di| → ∞).

Proof. The BCM aggregation equation for regression is:

σ−2
BCM(x∗) =

∑
i

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

Since x∗ is in the vicinity of some data subset Dk, we can
apply Lemma 1 to get σ−2

k (x∗) = σ−2
o . On the other hand,

since the data subsets are split up heterogeneously, the test
point x∗ is far from the other data sub-sets such that we can
apply Lemma 2 to obtain σ−2

i (x∗) = σ−2
p (x∗) for all i ̸= k.

Plugging these into the above expression yields:

σ−2
BCM(x∗) = σ−2

k (x∗) +
∑
i̸=k

σ−2
i (x∗)− (m− 1)σ−2

p (x∗)

= σ−2
o + (m− 1)σ−2

p (x∗)− (m− 1)σ−2
p (x∗)

= σ−2
o .

Mixture Model The following theorems analyze the cali-
bration performance of the mixture model.
Theorem 3 (mixture model, homogeneous). If the data is
split among m clients in an idealized homogeneous parti-
tion, and x∗ ∈ R is a test point in the bounded region of
the data, then the predictive mixture equations (5) correctly
estimate the predictive variance σ2

mix(x
∗) = σ2

o as the size
of the data subsets grows (|Di| → ∞).

Proof. In this setting, appealing to Lemma 1, each local pre-
dictor outputs N (µi(x

∗) = f(x∗), σ2
i (x

∗) = σ2
o). There-

fore we have:

σ2
mix =

∑
i

|Di|
|D|

(σ2
i (x

∗) + µ2
i (x

∗))− µ2
mix(x

∗)

=
∑
i

|Di|
|D|

(σ2
o + f2(x∗))− (

∑
i

|Di|
|D|

f(x∗))2

= σ2
o + f2(x∗)− f2(x∗)

= σ2
o .

Theorem 4 (mixture model, heterogeneous). If the data is
split among m clients in an idealized heterogeneous parti-
tion, and x∗ ∈ R is a test point near Dk, then the predictive
mixture equations (5) overestimate the predictive variance
σ2
mix(x

∗) > σ2
o as the data subset size grows (|Di| → ∞).

Proof. The mixture models predictive variance is:

σ2
mix(x

∗) =
∑
i

|Di|
|D|

(σ2
i (x

∗) + µ2
i (x

∗))− µ2
mix(x

∗)

Since x∗ lies in the vicinity of Dk, we have (applying
Lemma 1) that σ2

k(x
∗) = σ2

o (and µk(x
∗) = f(x∗)), while

from Lemma 2 we know σ2
i (x

∗) = σ2
p(x

∗) > σ2
o (and

µi(x
∗) = 0) for all i ̸= k.

σ2
mix(x

∗) =
|Dk|
|D|

(σ2
o + f2(x∗))

+
∑
i̸=k

|Di|
|D|

(σ2
p(x

∗))− µ2
mix(x

∗)

=
|Dk|
|D|

σ2
o + σ2

p(x
∗)
(
1− |Dk|

|D|

)
+

|Dk|
|D|

f2(x∗)

− |Dk|2

|D|2
f2(x∗)

=
|Dk|
|D|

σ2
o + σ2

p(x
∗)
(
1− |Dk|

|D|

)
+ (

|Dk|
|D|

− |Dk|2

|D|2
)f2(x∗)

>
|Dk|
|D|

σ2
o + (σ2

o + k(x∗, x∗))
(
1− |Dk|

|D|

)
= σ2

o + k(x∗, x∗)
(
1− |Dk|

|D|

)
> σ2

o .



In other words, we overestimate σ2
o by a constant of at least

k(x∗, x∗)
(
1− |Dk|

|D|
)
.

We note that in this case, the predictive mean of the model
is also inaccurate since µmix(x

∗) = |Dk|
|D| f(x

∗) ̸= f(x∗).

Classification Analysis
For classification, the following theorems determine the cal-
ibration performance of the BCM and mixture models (as-
suming a uniform prior). We make use of the fact that for the
predicted class pT (c|x∗) > pT (i|x∗), for i ̸= c (ie. it has the
highest probability).

Theorem 5 (BCM, homogeneous, classification). Assum-
ing well-calibrated local models, and an idealized homoge-
neous partition, if x∗ ∈ R is a test point in the bounded
region of the data, then BCM predicts the correct class with
probability pBCM(c|x∗,D) > pT (c|x∗,D).

Proof. Let pi = pT (y = i|x∗,D) denote the true class prob-
abilities. Since the local models are well-calibrated, each lo-
cal model predicts p(c|x∗,Di) = pc. The BCM prediction
for the correct class is pBCM(c|x∗,D) ∝ pmc . We have:

pBCM(c|x∗,D) = pmc /(
∑
i

pmi )

= 1/(
∑
i

(
pi
pc

)m)

> 1/(
∑
i

pi
pc

)

= pc

= pT (c|x∗,D).

The inequality in line 3 above follows from the fact that pi <
pc for the correct class c, so that pi/pc < 1 and (pi/pc)

m <
pi/pc.

Theorem 6 (BCM, heterogeneous, classification). Assum-
ing well-calibrated local models, and an idealized hetero-
geneous partition, if x∗ ∈ R is a single test point near
Dk, then the BCM predicts the correct class with probability
pBCM(c|x∗,D) = pT (c|x∗,D).

Proof. We have that for x∗ near Dk, p(c|x∗,Dk) =
pT (c|x∗,D) while for other shards i ̸= k p(c|x∗,Di) =
pP (c|x∗) = 1/K:

pBCM(c|x∗,D) =
1

pm−1(c|x∗)

∏
i

p(c|x∗,Di)

= Km−1pT (c|x∗,D)
∏
i̸=k

1

K

=
Km−1

Km−1
pT (c|x∗,D)

= pT (c|x∗,D).

Theorem 7 (mixture model, heterogeneous, classifica-
tion). Assuming well-calibrated local models, and an ide-
alized heterogeneous partition, if x∗ ∈ R is a test point near
Dk, then the mixture predicts the correct class with proba-
bility pmix(c|x∗,D) < pT (c|x∗,D).

Proof. We have that for x∗ near Dk, p(c|x∗,Dk) =
pT (c|x∗,D) while for other shards i ̸= k p(c|x∗,Di) =
pP (c|x∗) = 1/K. Letting pT (c|x∗,D) = pc and noting that
pc > 1

K (since otherwise the data point x∗ has no correct
label):

pmix(c|x∗,D) =
∑
i

|Di|
|D|

p(c|x∗,Di)

=
|Dk|
|D|

pT (c|x∗,D) + (1− |Dk|
|D|

)pP (c|x∗)

=
|Dk|
|D|

pc + (1− |Dk|
|D|

)
1

K

<
|Dk|
|D|

pc + (1− |Dk|
|D|

)pc

= pc.

Theorem 8 (mixture model, homogeneous, classifica-
tion). Assuming well-calibrated local models, and an ide-
alized homogeneous partition, if x∗ ∈ R is a test point in
the bounded region of the data, then the mixture predicts the
correct class with probability pmix(c|x∗,D) = pT (c|x∗,D).

Proof. For each local dataset, p(c|x∗,Di) = pT (c|x∗,D),
so that:

pmix(c|x∗,D) =
∑
i

|Di|
|D|

p(c|x∗,Di)

=
∑
i

|Di|
|D|

pT (c|x∗,D)

= pT (c|x∗,D).

B Additional Experimental Details
Additional details for the experiments are provided below.

Hardware, Software, and Randomization Details
The code for experiments was written in the Python lan-
guage (version 3.8.10), primarily using the Pytorch (version
1.9.0), Numpy (version 1.19.5) and Scipy (version 1.6.2) li-
braries. Randomization was done by setting seeds for Py-
torch and Numpy.

Experiments were carried out on a compute cluster using
a single Nvidia GPU (either the T4, or P100).



Expected Calibration Error
Assuming the predicted class probabilities are organized
into M equally spaced bins B1, ..., BM on the interval [0, 1],
the expected calibration error is calculated as:

M∑
m=1

|Bm|
|D|

|acc(Bm)− conf(Bm)|, (12)

where acc(Bm) is the average accuracy of the predictions
in bin m (the fraction of points in Bm classified correctly)
and conf(Bm) is the average confidence of the predictions
in bin m (the average value of p(c|x∗,D), where c denotes
the predicted class). For our experiments, we calculated ECE
using 15 equally spaced bins.

Models
A two-layer fully connected network with 100 hidden units
was used for MNIST, Fashion MNIST, EMNIST, as well as
the regression datasets. For the CIFAR10 and CIFAR100
datasets a Convolutional Neural network was used with 3
convolution layers, each followed by “Max Pooling” lay-
ers, with a single fully connected layer at the end. For all
networks, the ReLU activation function was used between
layers. For classification, the output was the predictive dis-
tribution over classes, while for regression the output was
the mean of the predictive distribution. A Gaussian prior is
assumed over the network parameters, p(θ) = N (0, σ2I),
with σ = 5e4.

Baselines
The Federated techniques compared include: Federated Av-
eraging (FedAvg, McMahan et al. 2017, Federated Poste-
rior Averaging (FedPA, Al-Shedivat et al. 2021, Embarrass-
ingly Parallel MCMC (EP MCMC, Neiswanger, Wang, and
Xing 2014, FedProx (Li et al. 2020a), Adaptive FL (Reddi
et al. 2021), Federated Bayesian Ensemble (FedBE) (Chen
and Chao 2021), One Shot Federated Learning (OneshotFL,
Guha, Talwalkar, and Smith 2019, in addition to the BCM
(Tresp 2000) and the mixture model.

In the case of FedAvg, FedProx, FedBE, and
OneshotFL, either SGD with momentum or the Adam
optimizer (Kingma and Ba 2015) was used for local
optimization (as selected by a grid search). For the rest of
the methods, including our own, since they require MCMC
sampling, cyclic stochastic gradient Hamiltonian Monte-
Carlo (cSGHMC, Zhang et al. 2020) was used. For EP
MCMC, the algorithm was computationally intractable for
neural network models due to the calculation of the inverse
of a covariance matrix over parameters. Thus a diagonal
covariance matrix was assumed (which corresponds to the
assumption that the local posteriors are approximated by an
axis-aligned Gaussian). All methods were run for a single
round.

Training Details
For MNIST, Fashion MNIST and EMNIST, the training was
run for 25 epochs per client overall (split into 5 rounds for
FedAvg and FedPA, while only run in a single round for the

rest). For CIFAR10 and CIFAR100, training was run for 50
epochs per client (split into 10 rounds for multi-round meth-
ods). For the regression datasets, a total of 20 epochs are
used for all datasets except “air quality”, which used 100
epochs (in both cases, divided into 5 rounds for multi-round
methods). The methods involving sampling used a maxi-
mum of 6 samples for all experiments.

Hyperparameter Tuning
Hyperparameters were selected based on searching a grid for
the best performing settings according to the validation set
performance (accuracy for classification, and mean squared
error for regression).

The hyperparameters tuned, and their corresponding grids
are outlined in Table 3 for both classification and regression.
Note that FedPA requires a sampler at each client, and an
optimizer at the server. To distinguish where each hyperpa-
rameter is used for this algorithm, we therefore label these
cases FedPA(C) and FedPA(S) respectively.

In the tables, (D-)β-PredBayes denotes the (distilled) β-
predictive Bayes algorithm.

The optimizers used for client training include SGD, SGD
with momentum (SGDM), and Adam, while for distillation,
we also used Stochastic Weight Averaging (SWA) as a pos-
sible optimizer.

The tuned hyperparameter settings for the homogeneous
(h = 0) classification datasets are in Table 4, while for the
heterogeneous setting h > 0 they are in Table 5. For the
regression datasets, the tuned values are in Table 6.

Note about reading tables: for these tables, if a hyper-
parameter is repeated more than once, with an algorithm
named beside it in brackets, it means the hyperparameter
for that algorithm is different. The rest of the algorithms
associated with that hyperparameter use the value listed
without brackets. For instance, in Table 6, for the “Bike”
dataset, the sampler learning rate is listed in the row “Sam-
pler Learning Rate” as 2e-1, while it is listed separately
with the additional specification “FedPA (C)”, as 5e-1.
This means that FedPA uses a sampler learning rate of
5e-1, while the other sampling algorithms use 2e-1.

Other hyperparameters not part of the grid search include:

• Batch size: fixed to 100 for all experiments
• Momentum in SGDM: fixed to 0.9 for all experiments
• Model architecture (as described in the main paper)

More algorithm-specific decisions/hyperparameters in-
clude:

• FedBE: 10 model samples were drawn from the approxi-
mate posterior to use in the ensemble for all experiments
(following the experiments in the original paper. This
gave a total ensemble size of 16 models = 10 (sampled)
+ 5 (client models) + 1 (averaged model). By contrast
β-predBayes contained an ensemble with 5 models.

• Adaptive FL: The FedYogi server update was used, based
on the results from, which suggested that it performed
best among their proposed variants. β1 = 0.9 and β2 =
0.99 were fixed, again, based on the paper.



• One-Shot FL: For the classification case, aggregation is
done by averaging the logits of the client models. (This is
opposed to averaging and normalizing the probabilities,
after the softmax layer).

In tables 3, 4, 5 and 6, LR is used to denote learning rate.

Heterogeneous Classification Dataset Construction
The process for constructing a heterogeneous classification
dataset is as follows:

• A parameter h ∈ [0, 1] is fixed.
• The dataset is sorted by class labels, and split evenly into

shards for each client (the “fully heterogeneous shards”).
• A copy of the dataset is made and split such that each

shard contains a roughly uniform class distribution for
each client (the “homogeneous shards”).

• To form the final shard for a client, a fraction h of each
homogeneous shard is replaced with the data from the
corresponding fully-heterogeneous shard.

In this way, h = 0 corresponds to the homogeneous data
setting, while h = 1.0 corresponds to a degenerate hetero-
geneous case (for class distributions in each client).

Regression Models
A note on implementation for regression: the distilled stu-
dent model is the same architecture as the client models, ex-
cept in the last layer where it is made to output both a mean
and an input-dependent variance. This network is trained to
minimize the KL divergence between its output Gaussian
distribution, and that of the teacher network.

Additionally, for regression, only the baselines which pro-
vide an ensemble are evaluated (since the ensemble is used
to predict the variance estimate of the output, σ2(x∗)).

Training β

We choose β in β-predBayes to minimize the negative log-
likelihood on the server dataset U . This is done using 10
epochs of gradient descent, using the Adam optimizer with
a learning rate of 1e-2 (for all experiments).



Hyperparameter Grid Settings Algorithms Used In
Classification Regression

Optimizer {SGD, SGDM, Adam}
FedAvg, OneshotFL
FedPA(S), FedProx
AdaptFL, FedBE

Local LR {1e-1, 1e-2, 1e-3} {1e-1, 1e-2, 1e-3, 1e-4} FedAvg, OneshotFL,
FedProx, AdaptFL, FedBE

Server LR {1, 5e-1, 1e-1, 1e-2} FedPA(S), AdaptFL

Cov. Param (ρ) {0.4, 0.9, 1.0} FedPA(C)

Proximal Parameter (λ) {1, 1e-1, 1e-2, 1e-3} FedProx

Adaptivity (τ ) {1, 1e-1, 1e-2, 1e-3} AdaptFL

Sampler LR {5e-1, 1e-1, 1e-2,1e-3} {5e-1, 2e-1, 1e-1, 1e-2, 1e-3} (D)PB, EPMCMC,
FedPA(C)

Maximum Samples {4,6,12} (D)PB, EPMCMC,
FedPA(C)

Temperature { 1
|D|} {1, 5e-1, 5e-2, 1

|D| }
(D)PB, EPMCMC,

FedPA(C)

Sampler Cycles {5} {2, 4,5} (D)PB, EPMCMC,
FedPA(C)

Samples per Cycle {2} {1,2,3} (D)PB, EPMCMC,
FedPA(C)

Distill Optimizer {SGDM, Adam, SWA} D-PB, OneshotFL,
FedBE

Distill LR {1e-2, 5e-3, 1e-4} {1e-2, 5e-3, 1e-3, 1e-4} D-PB, OneshotFL,
FedBE

Distill Epochs {100, 50, 20} D-PB, OneshotFL,
FedBE

Table 3: The hyperparameters tuned, their possible values in the grid search, and the algorithms each hyperparameter applies
to.



Hyperparameter Tuned Value

MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

Optimizer SGDM

Optimizer (FedProx) SGDM Adam Adam SGDM SGDM

Optimizer (AdaptFL) SGDM SGDM SGDM SGD SGD

Local LR 1e-1 1e-1 1e-1 1e-2 1e-2

Local LR (FedProx) 1e-1 1e-3 1e-3 1e-2 1e-2

Local LR (AdaptFL) 1e-2 1e-2 1e-2 1e-1 1e-1

Server LR 1 5e-1 1e-1 5e-1 5e-1

Server LR (AdaptFL) 1e-1

Cov. Param (ρ) 0.4

Proximal Param (λ) 1e-2 1e-3 1e-3 1e-3 1e-3

Adaptivity (τ ) 1e-2

Sampler LR 5e-1 1e-1 1e-1 1e-1 1e-1

Sampler LR (FedPA(C), EP MCMC) 1e-1

Maximum Samples 6

Temperature 1
|D|

Sampler Cycles 5

Samples per cycle 2

Distill Optimizer Adam

Distill LR 1e-4

Distill Epochs 100

Table 4: The tuned values of hyperparameters for the classification datasets in the homogeneous case h = 0.

Hyperparameter Tuned Value

MNIST Fashion MNIST EMNIST CIFAR10 CIFAR100

Optimizer SGDM

Optimizer (FedProx) Adam Adam Adam SGDM SGDM

Optimizer (AdaptFL) SGD

Local LR 1e-2 1e-2 1e-3 1e-3 1e-3

Local LR (FedProx) 1e-3 1e-3 1e-3 1e-2 1e-2

Local LR (AdaptFL) 1e-1

Server LR 1 5e-1 1e-1 5e-1 5e-1

Server LR (AdaptFL) 1e-1

Cov. Param (ρ) 0.4

Proximal Param (λ) 1e-2 1e-2 1e-2 1e-3 1e-3

Adaptivity (τ ) 1e-2

Sampler LR 1e-1

Maximum Samples 6

Temperature 1
|D|

Sampler Cycles 5

Samples per cycle 2

Distill Optimizer Adam

Distill LR 1e-4

Distill Epochs 100

Table 5: The tuned values of hyperparameters for the classification datasets, in the heterogeneous case h > 0.



Hyperparameter Tuned Value

Air Quality Bike Wine Quality Real Estate Forest Fire

Optimizer Adam

Optimizer (FedPA(S)) SGDM Adam SGDM SGDM SGDM

Optimizer (FedProx) SGDM Adam Adam Adam SGDM

Optimizer (AdaptFL) SGDM SGDM SGD SGD SGD

Local LR 1e-2 1e-2 1e-3 1e-2 1e-4

Local LR (FedProx) 1e-2 1e-2 1e-2 1e-1 1e-1

Local LR (AdaptFL) 1e-2 1e-1 1e-1 1e-1 1e-2

Server LR 1e-1 1e-2 5e-1 1 1

Server LR (AdaptFL) 1e-1 1e-1 1 1e-1 1

Cov. Param (ρ) 0.4 1.0 0.9 0.4 0.4

Proximal Param (λ) 1e-2 1e-3 1e-3 1e-2 1e-1

Adaptivity (τ ) 1e-2 1e-1 1 1e-2 1e-2

Sampler LR 1e-1 2e-1 2e-1 2e-1 1e-2

Maximum Samples 6 4 4 6 4

Temperature 1 1
|D| 5e-2 5e-1 5e-1

Sampler Cycles 5 5 4 5 2

Samples per cycle 1 2 2 2 2

Distill Optimizer Adam

Distill LR 1e-3 1e-3 5e-3 5e-3 5e-3

Distill Epochs 100

Table 6: The tuned values of hyperparameters for the regression datasets.


