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For a vector of k+1 matrix power series, a superfast algorithm is given for the
computation of multi-dimensional Padé systems. The algorithm provides a method for
obtaining matrix Padé, matrix Hermite Padé and matrix simultaneous Padé approximants.
When the matrix power series is normal or perfect, the algorithm is shown to calculate
multi-dimensional matrix Padé systems of type (ng,...,n,) in O(lin|i-log?|ln|l) block-ma-
trix operations, where || n|| =ng+ *-- + n,. When k =1 and the power series is scalar, this
is the same complexity as that of other superfast algorithms for computing Padé systems.
When k > 1, the fastest methods presently compute these matrix Padé approximants with a
complexity of O([|n|?). The algorithm succeeds also in the non-normal and non-perfect
case, but with a possibility of an increase in the cost complexity.

Keywords: Matrix Padé approximants, simultaneous Padé approximants,
Hermite Padé approximants, rational approximation.

1. Introduction

Given a vector of k + 1 power series
A(z)= Y a;;2/, i=0,1,...,k, (1.1)
j=0

with coefficients from a field %, a Hermite Padé approximant of type n =
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(ng,...,n,) is a set of k + 1 polynomials P(z) having degrees bounded by the
n;,—1 and satisfying
Ag(2) Po(2) + -+ +A(2) Pi(2) =0O(z""17), (1.2)

where ||nll =ny+ -+ +n,. A simultaneous Padé approximant of type n is a
set of k + 1 polynomials P(z) having degrees bounded by the ||zl —n; and
satisfying

Py(z)-A(z) = P(z)-Ay(z) =0(2""I*), i=1,.. k. (1.3)
(In the latter it is usually assumed that A,(z) = 1.) These approximants are also
known as type I and type II polynomial approximations, respectively. When the
coefficients of the 4,(z) and P{z) come from the ring of p X p matrices over
&, rather than % itself, then we obtain matrix Hermite Padé and matrix
simultaneous Padé approximants, respectively, of type n. When k =1, these
coincide with right and left matrix Padé approximants of a matrix of power
series (cf., Labahn and Cabay [19]).

In the scalar case, both types of approximants originated with Hermite [15,16]
and Padé [26]. Simultaneous Padé approximants were used extensively by
Hermite when he proved the transcendence of e. Both types of approximants
have been widely studied and include many classical approximation problems
(e.g., Padé approximants [13], integral approximants [18], directed vector approx-
imants [14] and G3J approximants [1]). The general definition of both types of
approximants, along with an extensive study of their properties is originally due
to Mabhler [23], who also noted strong relationships between the two types of
approximants [24]. Additional properties and relationships can also be found in
[7,10,11,17,20].

There exist a number of fast algorithms for computing these approximants. In
the scalar case Della Dora and Dicrescenzo [12] and Paszkowski [29] present
algorithms that compute a Hermite Padé approximant of type n in O(||n|| D)
operations. However, they require the input vector of power series to have the
property of being perfect (also called normal), a strong restriction. The algo-
rithm of Cabay et al. [10] also computes a Hermite Padé approximant of type n
in O(|| n|l*) operations. Their method has the advantage that it also succeeds in
the non-perfect case, but with a potential increase in complexity. There are no
such problems with the algorithms of Beckermann [3] and Van Barel and
Bultheel [2], which are of complexity of O(||n||?) even in the non-perfect case.
In terms of cost complexity, their algorithms are at present best, since they have
the additional advantage that there is no increase in complexity in the non- per-
fect case. In the case of simultancous Padé approximants, a fast O(|ln[?)
algorithm that requires no restrictions on the input vector of power series has
been given by De Bruin [6] and Beckermann [3].

In this paper, we present superfast algorithms for computing both approxi-
mants of a given type n. These algorithms can be applied to any vector of power
series; the requirement of being perfect is not needed. In addition, the algo-
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rithms also can be applied when the coefficients of the power series are square
matrices rather than just scalars. When fast polynomial arithmetic is possible,
either approximant can be computed with O(|| n || - log? ]| n||) block-matrix oper-
ations in the case of perfect power series. The algorithms can also compute
these matrix Padé approximants in the non-perfect case, with only a slight
increase in complexity. We note that there are pathological cases for which the
algorithm requires up to O(|ln|®) block-matrix operations to compute the
approximants. This is not the case with the scalar algorithms of Beckermann and
Van Barel and Bultheel. However, when k =1 and p =1, (i.e. the scalar case of
Padé approximation) the complexity is always O(|in|l -log?|ln|) operations.
This is the same complexity as that of other superfast scalar Padé algorithms
such as those given by Brent et al. [5], Cabay and Choi [9] and Sugiyvama [30].

Our methods actually provide superfast methods for computing matrix Her-
mite Padé and matrix simultaneous Padé systems, rather than just approximants.
These Padé systems, introduced in [10] and [21], consist of the desired Padé
approximants along with additional weaker type of Padé approximants. Many
applications require the entire Padé system rather than simply the Padé approxi-
mant. Thus, for example, our results combined with [20] and [21] provide
superfast algorithms for computing inverses of block Toeplitz and block
Toeplitz-like matrices along with their block Hankel counterparts.

2. Matrix Hermite Padé systems

In this section we discuss the notion of a matrix Hermite Padé system for a
vector of matrix power series. This is a natural generalization of the correspond-
ing scalar definitions given in Cabay et al. [10].

Let
A(z) =[Ag(2)1 4y(2), ..., A(2)] = [B(2) 1 C(2)] (2.1)
be a 1 X (k+ 1) vector of p X p matrix power series with det(.4,(0)) # 0. Let
n=(ng,...,n,) be a vector of nonnegative integers and
So,o(z) Soa(z) 0 Sou(2z)
S10(2) | Si(2) - Sz Z?P(z) | U(z
S(z) = | S10®) | Su@) l2) =[ PR VB,
: : : 220(z) | ¥(2)
_Sk,O(Z) Sealz) 0 Skul(2) ]
a p(k +1) X p(k + 1) polynomial matrix with each S;,(z) a p X p matrix polyno-
mial. In (2.2) the constant and linear terms in S;(z), i=0,..., k, are zero and
component-wise
ng+1 i ng - ng
n+1{n - n
degree(S(z)) < ) . e (2.3)

n,+1|n, -+ ng
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DEFINITION 2.1
Let n=(ng,...,n,) be a vector of nonnegative integers with n,> 0 for at

least one n;. The polynomial matrix S(z) is called a Matrix Hermite Padé System

(MHPS) of type n for A(z) if

(D $(z) satisfies the degree bounds (2.3);

aD A(z)-S(z)=z""1*1. 4(z), where A(z) is a 1 X (k + 1) vector of p Xp
matrix pOWer series; .

(i) ¥(0) and B(0) are nonsingular matrices, where B(z) is the p X p matrix
determined by partitioning A(z) as

A(z)=[B(z)I1C(2)]. (2.4)

A MHPS S$(z) is said to be normalized if in condition (III) we have V(0) =1,
and B(O)=1,. D

In the scalar (i.e. p = 1) case we refer to the above as simply a Hermite Padé
System (HPS). For the sake of simplicity and without loss of generality, it is
assumed in the remainder of this presentation that B(0) =1, and that the
components of n are ordered so that n,> - >n,>n, ;= =n,=0,
where 0 <a <k.

Remark 1
If B(z) =1, and C(z)=[A[2),...,A,(2)], then
C(z) V(z)+ U(z) =z"1+1-(2) (2.5)
and
C(z)Q(z) +P(z) =z"I-1-B(z). (2.6)

When k =1, the pair (U(z), V(z)) generates a right matrix Padé fraction for
C(z) of type (n,, n,) while the pair (P(z), O(z)) generates a right matrix Padé
form of type (ny— 1, n, — 1) for C(z) (cf., Labahn and Cabay [19])). DO

Remark 2

The definition of a MHPS is the natural extension of the concept of a
Hermite Padé system, introduced in Cabay et al. [10]. In general, the first block
column of a MHPS defines a matrix Hermine Padé form for A(z) of type n,
while block columns 2 to k + 1 define a “weak” matrix Hermite Padé fraction
for A(z) of type n (cf., Labahn [21])). O

Let
D(z)=B7Y(z)-C(z) (2.8)
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be a 1 X k vector of p X p matrix power series and define

. | ! e

dno—n,+1,l dno,l : : dno—nk+1,k dno,k W

1 |
dnu—n,+2,1 dno+l,l : : dno—nk+2,k dn0+l,k

H, = . . I I ’
. . | |
: |

Ldunu—n.,l o dyagona | D Ao dnnn—l,k_

(2.9)

where d, ; is the coefficient of z' in the jth component D,(z). Then a MHPS of
type n can be obtained by solving a set of linear equations with H, as the
coefficient matrix.

The component Q(z) of S(z) in (2.2) satisfying B(0) = I, corresponds to the
block solution X of

H,-X=E,, (2.10)

where E, is the unit column vector of length ||n|l ~n, with a single I, in the
last block row. That is, if X is partitioned as

t
X=Xy 1100 X0q | "t [ X Z1sree s Xok] » (2.11)

where each component x;; is a p X p matrix, then the jth component Qj(z) of
QO(z) is given by

n;—1
Qi(z)= X x,;-2". (2.12)
i=0

The remaining components of the first column of S(z) are then given by
P(z)=—-D(z)-Q(z) mod z"-1, (2.13)

Similarly, the components U(z) and V(z) (with V(0) =1,,) of S(z) in (2.2) can
be obtained from the block solution Y of

-dn0+1,1 dn0+1,2 T dn[,-l‘l,kT
H, Y= - dn0‘+2,1 dn0.+2,2 dno:i-Z,k . (2.14)
_dnnn,l Ay " dunu,k_

Note that (2.14) is valid even in those cases where n; = 0. (In the special case
when n; =0 for 1<j <k, the matrix H, is null and we simply set V(z) =1,,.)
The component U(z) of S(z) is then given by

U(z)= -D(z)*V(z) mod P AR (2.15)
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Clearly, when H, is nonsingular, solutions of (2.10) and (2.14) are possible. It
is then easy to show that (2.10), (2.11), (2.14) and (2.15) provide for the existence
of a normalized MHPS of type n. Theorem 2.2 states that this is both a
necessary and sufficient condition for existence.

THEOREM 2.2
A MHPS of type n exists if and only if det(H,) # 0.

Proof

A proof of this result is a straightforward generalization of that given for the
scalar case in Cabay et al. [10]. The result also follows in a natural way from the
work of Lerer and Tismenetsky [22). O

Note that theorem 2.2 includes the case of n,=0, 1<i<k, by setting
det(H,) =1 when H, is the null matrix. From (2.10) and (2.15), the normalized
MHPS of type (ny, 0,...,0) is determined here to be

z™Hr | U(z
S(z) = p| V) : (2.16)
0 | I
where U(z) = —D(z) mod z™*!. In section 5, for algorithmic purposes, we

adopt (2.16) even in the case when n, = 0, despite the fact that it does not meet
all the requirements set forth in (2.2).

EXAMPLE 2.3
Let
A(z)=(1, =1+22+2°~25+27+28+2°+ - - -,
—z—z24+228-2"+28+22°+ -],
with n =(2, 3, 1). Then
D(z)=[-1+22+2"—z20+27+28+2%+ - -+,
~z—224+228—2"+28+22%+ -],

and the corresponding matrix H, is nonsingular. By theorem 2.2, a HPS of type
n exists. Using eqs. (2.10)—(2.13), the normalized HPS of type r is given by

22423 14z+42z°> —-z-z22
S(z)=] 22 1+z-23 -2z |
z? 2z 1-2z2

with the first few terms of the residual being

A(z)=[1+z+ -, 4~2+522+ -+, =3+2z-2z2+---]. O
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3. Matrix simultaneous Padé systems

In this section we give the dual concept of simultaneous Padé systems. These
correspond to Hermite Padé systems except with alternate degrees restrictions
and with matrix multiplication on the left rather than the right. We show that
results parallel to those of the previous section can also be given for these

systems.
Let i
Agy(z) - Ao,k(zﬂ B(Z”
Ay(z) o AL(2)
A(z)=| . 1= e (3.1)
_Ak,l(z) o Aa(2) 11 ]
be a (k+ 1) Xk matrix of p X p matrix power series with det(C(0)) # 0. Let
n=(ng,...,n,) be a vector of nonnegative integers and define
Soo(2) | So(z) - Soul2) W
S(z) = Sio(2) | S1(z) - Sik(2) _ V(z) ' U(z)
: : : 22-Q(z) | 22-P(2)[
LSk,O(Z) Sealz) - Sk,k(z)_
(3.2)

a p(k+1) X p(k + 1) polynomial matrix with each §; (z) a p Xp polynomial
matrix. In (3.2) the constant and linear terms in §; (2),i=1,...,k, j=0,...,k
are zero, and component-wise

no | nl ... nk
ng—1{n -1 - n,—1
degree(S(z)) < llall-| . X R (3.3)
no.—l nl—l vt nk_l

DEFINITION 3.1
Let n=(ny,...,n,) be a vector of nonnegative integers. The polynomial

matrix S is called a Matrix Simultaneous Padé System (MSPS) of type n for A(z)

if

() S(z) satisfies the degree bounds (3.3);

(ID) S(z)-A(z) =z""1*1. A(z), where A(z) is a (k+ 1) X k matrix of p Xp
matrix power series; and _ .

(IID  det(Sy4,(0) #+ 0 and det(C(0)) # 0, where C(z) is the k X k matrix deter-
mined by partitioning A(z) as

B(z)
(2)

/f(z)= . (34)
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A MSPS S(z) is said to be normalized if in condition (III) we have S,,(0) =1,
and C(0)=1,. O

As in the previous section, a SPS is the notation used to denote the scalar
(p=1) case. For the sake of simplicity and without loss of generality, it is
assumed in the remainder of this presentation that C(0)=1,, and that the
components of n are ordered so that n,> -~ zn,>n,, = - =n,=0
where 0 <a <k.

Remark 1
When C(z) =1,, we obtain the equations
V(z)-B(z) + U(z)=z""1+1- B(z) (3.5)
and
0(z)-B(z) +P(z) =z""11-C(z). (3.6)

When k = 1, the pair (U(z), V(z)) generates a left matrix Padé fraction for B(z)
of type (ny, n,) while the pair (P(z), Q(z)) generates a left matrix Padé form of
type (ny— 1, n, — 1) for B(z) (cf., Labahn and Cabay [19]). O

Remark 2

The definition of a MSPS is the natural dual to MHPS of section 2. In this
case we have that the first row of a MSPS defines a matrix simultaneous Padé
fraction of type n for B(z)-C(z)~!, whereas block rows 2 to k + 1 define a
“weak’ matrix simultaneous Padé form [21] for B(z)- C(z) ! of type n. O

Let
D(z)=B(z)-C!(z) (3.7

and define H, via (2.9). Then a MSPS of type n can be obtained by solving a set
of linear equations with H,, as the coefficient matrix.

The component ¥(z) (with V(0)=1,) of S(z) in (3.2) corresponds to the
solution X of

X-H,= _[dunu~n.+1,1’~-"dunn.l| |dnnu—nkﬂ,k’--->d||n||,k]- (3:8)
(In the special case when n; =0 for 1<j <k, the matrix H, is null and we
simply set V(z) =I,.) The component U(z) of S(z) is then given by

U(z)= —-V(z)-D(z) mod z!I"l+1 (3.9)

The components P(z) and Q(z) of S(z) in (3.2) can be obtained as follows.
For n;> 0, 1 <i <a, the solution Y of

Y -H,=E,, ... (3.10)

n;?
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where E, , .., is the unit block row vector of length || n|l —n, with its single

I, in column n; + --- +n,;, yields the component Q(z)=2z"%+S,,(z). The
remaining components of the ith row of S(z) in (3.2) is then given by
8:(z)=—S8,9(z) Di(z) mod zV"N="+*2 forj=1,... k. (3.11)

For n;=0, a <i <k, define
PILLAD S
0, J#I.
Clearly, when H, is nonsingular, solutions of (3.8) and (3.10) are possible. It
is then easy to show that (3.8)—(3.12) provide for the existence of a normalized

MSPS of type n. Theorem 3.2 states that this is both a necessary and sufficient
condition for existence.

S;(2)= (3.12)

THEOREM 3.2
A MSPS of type n exists if and only if det(H,) # 0.

Proof
We again refer the reader to the dual argument presented in the scalar case
for Hermite Padé systems in Cabay et al. [10]. O

Note that theorem 3.2 includes the case of n;=0, 1<i<k, by setting
det(H,) = 1 when H, is the null matrix. From (3.9) and (3.12), the normalized
MSPS of type (ng, 0,...,0) is determined here to be

I\ U(z)
S(Z)= 0 ZnO—HI
pk

where U(z) = —D(z) mod z™*!. As for the MHPS case, we use (3.13) even in
the case that n,=0 despite the fact that it does not strictly satisfy the
requirements of (3.2).

, (3.13)

EXAMPLE 3.3
Let
—“1+z22+ 2528+ 27+ 28+ 2%+ - — -2 422827+ 2842254 -
A(z)= 1 0
0 1

Then with D(z) as in (3.7) and n =(2, 3, 1), the matrix H, is nonsingular, so a
SPS of type n exists. Using egs. (3.9)—(3.13), the normalized SPS of type n is
given by

1—z4222—2342z% 1—z+4z% z4+z23+z%+2°
S(z)= z? 22 —-z* 723424 ,
3 3

22 =232 z?2—2z3-z4 z3 23— 25
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with the first few terms of the residual being

X 4-3z+5z2+ -+ -34+6z-3z7+---
A(z)=| 1-z+2%+--- 2z—z%+ -+~ . O
—2z+42z%+ - 1+2z—-3z%+ -

4. A recurrence relation for multi-dimensional Padé systems

Given a vector of matrix power series (2.1) and a vector of integers n, a
corresponding MHPS can be determined via a method such as Gaussian
elimination at a cost of

o(llnl*+k-linl?) (4.1)

block operations. Similarly, given a matrix of matrix power series (3.1), a
corresponding MSPS can be computed at a cost of

o(linl®>+k*-|Inl?) (4.2)

block operations. In both cases there is the advantage that there need be no
restrictions on the input matrix of power series. However, in both cases such
calculations do not take into account the special structure of the coefficient
matrix of these systems. The goal of this section is to describe a recurrence
relation that will lead to an efficient algorithm for the determination of a MHPS
or MSPS of any type. The resulting algorithm takes advantage of the special
structure of the coefficient matrix (2.9), without placing any additional restric-
tions on the input.
Consider first the case of computing a MPHS. Following [10] we let

N =1+ min{n,, n,} (4.3)
and define integer vectors n® =(n§),...,n{’) for 1 <i <N by
n® =max{0, n,—N+i} forj=0,..., k. (4.4)

Then the sequence {n},_,
for each i, j with

w lies on a piecewise linear path with n{*? > n{?

.....

n® = (0, n,—ng, ...), ny=ng, (4.5)
(ng—ny,0,...,0), n,<ng,
and n'") =n. Also define n@ = —¢, = —(1, 0,...,0).
Let o, =0 and define
o;=min{o > 0;_;: det(H,») #0}, forix>1. (4.6)

Then the sequence {n”} determines a subsequence {m'?} of nonsingular points
(i) = (o)
m) = p(@,
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For i=0, let §P(z)=1,,,,, and for i>1 let S¥Xz) be the uniquely
determined normalized MHPS of type m® for A(z) with A®¥(z) the corre-
sponding residual. This gives

A(z) - 8D(z) =z"mO1+1. 40(2), (4.7)
with
BY(0) = I, and V(o) = L (4.8)
where A¥(z) is partitioned into BYXz) and C%(z) as in (2.4). Note that (4.6)
and (4.7) also hold when i = 0.
The algorithm described in the next section for constructing a MHPS of type

n requires the successive computation of S“*1(z) given S®(z). Theorem 4.1
gives a mechanism for doing this efficiently.

THEOREM 4.1

For i>0, o> 0, let ¥ =n —m® —¢,. Then n'’ is a nonsingular point
for A(z) if and only if »‘” is a nonsingular point for A)(z). Furthermore, we
have the recurrence relation

SE+D(z) =8§9D(z)-$(z) and AYV(z)=A(z), (4.9)

where $(z) is the MHPS of type m@+D —m® —¢, for A9(z), and A(z) is its
residual.

Proof

The proof of theorem 4.1 follows naturally from the scalar version given in
[10] and so will not be given here. O

The construction from egs. (4.3)—(4.8) can also be accomplished for the
computation of MSPS. The only difference is the matrix multiplication must
appear on the left, rather than the right side.

THEOREM 4.2

For i >0, o> g, let v =n) —m® —¢,. Then n{* is a nonsingular point
for A(z) if and only if »‘? is a nonsingular point for A®(z). Furthermore, we
have the recurrence relation

$E+D(z) = §(z)-SP(z) and ATT(z)=A(2), (4.11)

where $(z) is the MSPS of type m¢*D —m® —e¢, for A(z), and A(z) is its
residual.

Proof
The proof of theorem 4.2 also follows closely from the arguments used in the
scalar Hermite Padé case. Because of the differences in degree definitions and
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because a proof has not been given elsewhere, we give a more complete proof
for the MSPS case.
Let a be such that

m(li) > .

I m®O | —

>mO>mi = ... =md=0. (4.12)
Then, element by element, the degrees of S¢)(z) are bounded by
m{ m® 0 0
m) —1 md—11 -1 -1
mg)_l mg)_‘l -1 -1 (4 13)
e o -1 o0 o)
o —1
[00]
00 0 00 0 -1

where the degr_ees of the zero polynomials in rows a + 1,...,
o, In addition, in rows a + 1,.
position (j, j), where accordmg to (3.12), §, (2) =

k are denoted by

., k of §%(z), the only nonzero entries occur in
217U+ for g <j < k.

Now let ¥ =pn®) —m® — ¢, be a nonsmgular point for A(z) and let $(z2)
be the MSPS of type »* or A(’)(z) with residual A(z). Since o > o, then from

(4.4) there is an integer b > a such that

> - 2n@>nf) = =n{=0. (4.14)
Consequently,

p@ = (s -1, Syiies S, v L0, ..,O), _ (4.15)
where s = n{” —m{? for 0<j<a, and 1 <v =n{" <5 for a <j <b. Thus, the
degrees of the elements of S(z) are bounded by

(s—1) s s ), n§? 0 0

s=2| s-1 s=1] nlg) -1 ner -1 -1 -1

s—2 s—1 s—1 n‘a"}]—l nr—-1| -1 -1

(= llm@f-1-]| w & -1 o o
. o0 -1 .

] © . -1 ©

I - ® -1

(4.16)

where o appears only in rows b+ 1,..

Now, set

k.

S*(z)=8(z) 89(z).

(4.17)




S. Cabay, G. Labahn / Multi-dimensional Padé systems 213

Then from (4.13), (4.15) and (4.16), the degrees of the elements of S*(z) are
bounded by

ngr) n(btr) 0 0
n(otr)_l n(bo)_l -1 -1
n%")—l nf,")—l -1 -1

”n(a)”— 0 o) -1 o) o |»

o -1

00 00 —1 )

i o o  —1]

(4.18)

where o appears only in rows b + 1,..., k. Thus, §*(z) satisfies condition (I) for
an MSPS of type n'”.

In addition,
$*(z)-A(z) =S$(z) - $SD(z) - A(z) =2"""1+1- §(2) - AD(2)

= ZI7U+1. 4(7) (4.19)
and

k
S50(0) = So0(0) - SEH(0) + El So,;(0) - $3(0) = S50(0) - S§2(0) = 1. (4.20)
i=
Hence, S*(z) is a MSPS of type n® for A(z). We have also shown that if v
is a nonsingular point for A®(z), then n‘*? is a nonsingular point for A(z).
The proof of the converse, that »(* is a nonsingular point for A(z) if (") is
a nonsingular point for A(z), follows a similar argument (cf. [10] for a parallel
argument in the case of Padé-Hermite systems).
Thus, the smallest o for which ¥ =n() —m® — ¢/ is a nonsingular point
for A(z) is o =0,,,. This yields the MSPS S*(z) of type mU+D = plo) for
A(z). Thus S('“’(z) S*(z) and by eq. (4.19) A*D(z) = A(z) O

Remark 1

Theorems 4.1 and 4.2 reduce the problem of determining a MHPS and MSPS
of type mU*? to two “smaller” problems: determine a MHPS or MSPS of type
m® and then determine a MHPS or MSPS of type m¢*V —m® —e,. O

Remark 2
A MSPS is often computed for the purpose of determining a simultaneous
Padé form of type n for A(z). Let S¥(z) be an MSPS of type m® for A(z) with
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residual A®X(z). Then, from the proof of theorem 4.2, it is clear that [P(z), U(2)]
is a simultaneous Padé form of type v* for AY)(z) if and only if

[V(2), U(2)] = [P(2), U(z)] - $(z) (4.21)

is a simultaneous Padé form of type n'” for A(z), where o > o,. Thus, we can
compute a simultaneous Padé form of type n for 4(z) by computing all the
SPSs at the nonsingular points and then computing a simultaneous Padé form of
a much smaller type for the final residual. In addition, the problem of character-
izing the family of simultaneous Padé forms of type n for A(z) is reduced to the
simpler problem of characterizing the family of simultaneous Padé forms for the
final residuals. For further work in this area see Van Barel and Bultheel [8] and
Beckermann [4].

Similarly, a MHPS is often computed for the purpose of determining a
Hermite Padé form of type n for A(z). Let §“X(z) be a MHPS of type m'” for
A(z) with residual A9(z). Then, it is easy to show that [V(z), U(z)]" is a matrix
Hermite Padé form of type v(©) for AYXz) if and only if

[U(z), V(2)]" = $9(z) - [0(2), V(z)]" (4.22)

is a matrix Hermite Padé form of type n'®’ for A(z), where o > o;. Thus, we can
compute a matrix Hermite Padé form of type n for A(z) by computing all the
MHPSs at the nonsingular points and then computing a matrix Hermite Padé
form of a much smaller type for the final residual. O

EXAMPLE 4.3

Let A(z) be the matrix power series from example 3.3. Then (2, 3,1) is a
nonsingular point. In addition the residual matrix power series is nonsingular at
(0, 1, 1). Computing the SPS of type (0, 1, 1) for this matrix power series gives

. 1-6z—10z> —-4+29z 3-22z
S(z)=| 3z2+4;3 —12z22 922
4224+ 573 —162z2 1227

Therefore (3,4, 2) is also a nonsingular point and theorem 3.1 gives the
corresponding normalized SPS as

1-72-322 42241024 =525 +22% 1-77-422+823+132°~72% z-6z2-1023-22%+ 1125+ 320+ 1227
322423 —2%-4254+228-77 322423424525 +325 3234424 —526—-2x7 528
4z2 423 —2%— 625 +325-227 472473 - 524 7254 420 473 4524720327 - 758

with the first few terms of the residual given by
—24+15z+4z%+ -+ 2-25z+4+21z%+ ---

1492722+ --- 9z2+ .-~ . O
13z - 1122+ --- 1-2z+132%+ ---
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5. A superfast multi-dimensional Padé algorithm

Using the results of the previous section and following the approach of Cabay
et al. [10], we can construct an algorithm that efficiently computes a MHPS and
a MSPS of a given type n. The complexity of such an algorithm is generically
O(|n|l?) block operations, although there are cases where the complexity can
be higher. The desired systems are computed by determining the systems from
one nonsingular point to the next. Theorems 4.1 and 4.2 shows that such a
process can be accomplished simply by providing an efficient method for
computing an initial system along a given path and working with residuals.

In this section we present an algorithm that, when fast polynomial arithmetic
is available, will lower the complexities in both cases from ||n|? to ||n]
log?(||nll). Instead of computing from nonsingular point to nonsingular point,
we proceed iteratively doubling the step-size at each step. When we are at a
nonsingular point we can use theorems 4.1 or 4.2 and work with the residual
series. When we are not at a nonsingular point we cannot use the recurrence
from these theorems. Instead we must continue until we get to the next
nonsingular location and use the recurrence relation at this point. We will give
the details of algorithm for the computation of a MHPS only — the case of a
MSPS is similar.

Given a vector of nonnegative integers n=(ng,...,n,), the algorithm
FAST _ MHPS below makes use of theorem 4.1 to compute a subsequence of the
MHPS {S%(z)} for a given block vector of matrix power series A4(z). The output
gives results associated with the final point m®. If this final point is a nonsingu-
lar point, then the output $“(z) is a MHPS of type n. If n is a singular point,
then the output is the MHPS at the last nonsingular point in the path generated
by the sequence {n'?}.

As in [10] we present the algorithm in two parts. The first, INITIAL _MHPS,
takes as its input a vector of matrix power series, A(z), with det(4,(0)) # 0, an
integer vector n with n, > --- >n,, and a MHPS S(z) for A(z) of type m,
where m is one of the nonsingular points defined in (4.6). The procedure
returns the MHPS for the residual A(z) =A(z)-S(z)/z"™1*! at the first
nonsingular point, if such a point exists, along the piecewise path determined by
n —m — e,. The main algorithm, FAST _MHPS calls INITTAL _MHPS to itera-
tively construct MHPSs for the residuals, 4®(z). The MHPSs  S¥(z) for A(z)
are computed using the results of theorem 4.1. In the case where
INITIAL _MHPS does not return a MHPS, then FAST_MHPS returns the last
computed MHPS.

INITIAL_MHPS(A(z), n, S(z), m)
[-D)ven—m—e;; Meminfvy,v}+1,5<0,d<0
I—2) While s <M and d =0 do
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I-3) ses+1

I-4) v®emax{0,v,—-M+s}, j=0,....k

I1-5) A(z) « (A(2)- S(z)/z”'"””) mod z1#71+1

I —6) Compute d « det(H, ), using Gaussian elimination
End While

I-7) If d+0 then

solve eqs. (2.10) and (2.14) for S(z), the MHPS
of type v for A(z)

else

S(z)<-1(k+1), s<0

I —8) Return(S(z), s) O

The main algorithm, FAST _MHPS takes as its input a vector of matrix power
series and a vector of integers, each having k + 1 components. The vector of
integers must have non-negative entries (otherwise one calls FAST_MHPS with
a smaller value of k).

FAST _MHPS(A(z), n)
F-1) Nemin{ng n)}+1,i<0;, 0« 0; ay<0

me —eg; s < 15 8(z) « Ly

F-2) While (¢ <N and s> 0) do
# At this stage S(z) is a MHPS of type m = n‘“). We then compute
# S8(z) at the first nonsingular point n*9 —n(® — ¢, for the
# residual A(z)-S(z)/z""I+1,
F-3) ($(z), s) < INITIAL MHPS(A(z) n, $(z), m)
F-4) og—0o+s
# Nonsingular point is of type (m,, ..., m,), where
F-5) mj<—rnax{0 nj—N+o}, j=0,...,k
# S(z) is the correspondmg MHPS of type m
F-6) 5(z) « 8(z2) - 8(2)
F-7) If s > 0 then
F-8) a; ., < 1+log(o)]
F-9) t «min{N, 2%+ —1}; i<i+1
# Next steps obtain solution at largest nonsingular point before
# n®
F-10) M; < max{0, n;—N+t}, j=0,....,k
F-11) veM-m-—e,
F-12) A(z) <« (A(z)-S(z)/z"™1*1) mod z!I*I+!
F-13) (S(z), o) <« FAST_MHPS(A(z), v)
F-14) oc—o+ao
F-15) m; < max{0, n,—N+oc}, j=0,...,k
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F-16) S(z) « 8(z)- 8(z)
End If
End While
F-17) Return(S(z), o). O

EXAMPLE 5.1
Let A(z) =[1, A(z), AXz), A(z)] be a 4-tuple of power series with

A(z2)=1+z24+2>—25+28+27 — 28 421 4 212 - 228 4 2% ;5 4 ;%7
—z%+0(2%),

Ay)(2)=14+22 42 +20 =212 —zB 4 214 275 4+ 226 4 2,%
—z%+0(z%9),

Ay(z)=z+22+2° =22 25+ 27+ 28+ 2% + 2 4 2 4 222 4 B
+0(z%),

and suppose n = (15, 16, 16, 15). We assume that the coefficients of the power
series come from @, the field of rational numbers. In this case, the path
determined by n has one singular point, namely n® = (5, 6, 6, ,5). The algo-
rithm then proceeds as follows:

Node at start of while loop Node at start of if loop

n®=(-1,0,0,0) nP=(0,1,1,0)
nP=(0,1,1,0) n®=(1,2,21)
n®=(2,3,3,2) n®=(3,4,4,3)
n=(6,7,17,6) n®=(7,8,8,7
n®? = (14, 15, 15, 14) n® = (15, 16, 16, 15)

Thus we would call FAST _MHPS recursively to compute in step sizes of 1, 2, 4,
and 8 respectively.

Suppose now that we consider the power series in A(z) as having coefficients
from the finite field Z;. In this case the path determined by n has singular
nodes at locations n®, n®, n®, n® n® p» and nl® =pn. Therefore the
algorithm proceeds by

Node at start of while loop Node at start of if loop

n®=(=1,0,0,0 n®=(0,1,1,0)
nM=(0,1,1,0) n®=(3,4,4,3)
n®=(6,7,7,6) nt%=(9, 10, 10, 9)

n = (14, 15, 15, 14)
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In this case, the algorithm returns the Hermite Padé system of type
(14, 15, 15, 14) since this is the last nonsingular point along the path determined
by n. O

THEOREM 5.2

(Correctness)
For A(z) such that det(A4,(0))#0 and n,> --- »n,, FAST_MHPS com-
putes the normalized MHPS of type n(®), where

o= max{t: t<N, det(Hn(:)) #* O} (51)

Proof
Assume inductively that prior to pass i +1, i=0, 1,..., of the WHILE loop
F-2 the following holds:
D a;=i
(ID o =max{t: t <{N, 2% — 1}, det(H,w) # 0},
(1) m =n',
(IV) S(z) is the normalized MHPS of type m for which

A(z) - S(z) =z"™1+14(2). (5.2)

Initially, for i=0, a,=0 and therefore o =0 (because det(H,») =1 with
n® = —eg). Also, for i =0, S(z) =1,

In step F-3, if det(Hn(a+r>) =( for all ¢ such that 1 <t <N — o, then INI-
TIAL_MHPS returns (8(z), s) < (I 4y, 0). Here m =n(® is already the last
nonsingular point along the path from n©® to n and the algorithm terminates at

the earliest opportunity. Otherwise, let
s=min{t: t <N — o, det(H,w+n) # 0}, (5.3)

which defines the next nonsingular point n*9. The subroutine
INITIAL _MHPS computes S(z) of type v for the residual A(z) such that

A(z2) - $(z)=z""1+1. 4(2), (5.4)

where v =n*9 — () —¢,. Using (5.2) and (5.3), it is easy to show that the
computation in step F-6 yields S(z) - S(z) satisfying

A(z)-8(z) - 8(z) =21"""1+1. 4(2), (5.5)

and all the other conditions of the normalized MHPS of type n*® for A(z).
Just prior to step F-7, the values o, m and S(z) have been redefined so that
S(z) is now the MHPS of type m = n(®), where (for the case s > 1 in (5.3))

o =minf{t: 2% <t <N, det(H,w) # 0}. (5.6)
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With o given by (5.6), in step F-8, a,, , is determined so that
20171 ¢ o < 2% — 1, (5.7)

Clearly i+ 1<a;+1<a;,, and so the inductive hypothesis (I) holds. In steps
F-9 through F-16, the algorithm computes the MHPS of type n°*? for the
largest o in the range

o <o+ 0 <min{N, 2%+ — 1} (5.8)

for which H,+s # 0. This is accomplished by recursively invoking FAST _MHPS
for the residual A(z). Computed is the normalized MHPS S(z) of type » for
A(z) such that

A(z2)-§(z) = 0(z1"1*), (5.9)
where v =n*? — n(@) — ¢ Tt then follows that S(z) - S(z) satisfies
A(z) - 8(2)-8(z) =0(2"" 7N+, (5.10)

and all the other conditions of the normalized MHPS of type n‘“*® for A(z).
By accordingly redefining o, m and S(z) in F-14, F-15 and F-16, the inductive
hypotheses II, III and IV are shown to hold for the next pass through the
WHILE loop F-2. O

Remark 1 ;

The changes to our algorithm for the computation of a MSPS are straightfor-
ward. In this case the input to the main algorithm would be a (k + 1) X k block
matrix of p Xp power series, A(z). The only other changes would be the
multiplication in steps I-5, F-6, F-12 and F-16, which would now be on the left
instead of the right. 0O

Remark 2

The algorithms given in this section compute either a MHPS or a MSPS of
type n. They can also be used to compute matrix Hermite Padé and matrix
simultaneous Padé approximants of type n as long as »n is a nonsingular point.
At present, the algorithm used to compute the first nonsingular point and its
corresponding Padé system returns the identity if no nonsingular point can be
found. If this is changed to return all possible Padé approximants and weak
Padé approximants (determined by solving the linear system of equations) then,
because of remark 2 from the previous section, the main algorithm will return
all possible Padé forms of type n. Hence our approach can be used to find all
possible Padé forms (either Hermite Padé or simultaneous Pad€) of type n,
regardless of whether n is a singular or nonsingular point. O
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6. Complexity of the multi-dimensional Padé algorithm

THEOREM 6.1
For A(z) such that det(A4,(0)) # 0 and »n such that n; > --- > n,, the cost of
FAST_MHPS is

O((k+1)*- llnll-log?(llnlly + (k+1)*-s2- |nl]) (6.1)

p X p matrix operations, where s =max(s;|s,=m{*? —m{’} is the maximum
step-size used.

Proof
We first estimate the cost of FAST _MHPS for those n =(n,,...,n,) which
are restricted by

ng=n;—1. (6.2)

This restriction holds for all recursive calls of FAST_MHPS in step F-13. For n
so restricted and for all A4(z) let T(B) be an estimate of the cost of using
FAST_MHPS to compute the normalized MHPS of type n'“’, where

o =max{t |t < B, det(H,w) # 0}. (6.3)

With N = min{n,, n;} + 1, then T(N) gives an estimate for the cost of comput-
ing the MHPS of type n (since n'™) = n).

To obtain T(N), we examine the cost of the ith pass through the WHILE
loop F-2. Just prior to the ith pass, S(z) is the normalized MHPS of type n(®?,
where

o; = max{t |t < 2% — 1, det(H,w) # 0}. (6.4)

Let s5; be the step-size computed in F-3. Then (except when s =0 and the
algorithm is about to terminate)

s;=min{t | o; + t > 2%, det(Hwi+n) # 0}. (6.5)
Also let
y® = plartsd _ plod _ g (6.6)
Table 1
Cost estimates for one iteration.
Step Estimate of number of p X p matrix operations
F-3 Ok +1)- [ly® |- | n® || + |l D ] %)
F-6 Ok +D)- Iv@ |- n®l)
F-12 O((k +1)* || n®* D[ -log(Il n@** V1))
F-13 T+~ 1)

F-16 O((k + 1)+ || n®** 7|1 -log(l n®**V|I))
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Then estimates of the number of p X p matrix operations performed in the main
steps of FAST_MHPS are given in table 1.

In table 1, for the step F-3 the term (k + 1)« |v®@|| - | n®™ || relates to the
cost of computing the residual A(z) in step I-5 of INITIAL _MHPS, whereas
lv®||® relates to the cost of using the Gaussian elimination method to solve
systems (2.10) and (2.14) in steps I-6 and I-7 in INITIAL _MHPS. In steps F-12
and F-16 it is assumed the last polynomial multiplication methods (based on fast
Fourier transforms) are used. Note that the degrees of the polynomials com-
puted in step F-12 are O(k + 1) larger than those in step F-16, which accounts
for the difference in the complexity of the two steps.

The result (6.1) follows from table 1 by summing the costs of iteration i for
i=1,...,llog(N)]. The term (k + 1)?>-s?- ||n| in (6.1) accounts for the cost
@ of solving systems (2.10) and (2.14) in step F-3 whereas the term
(k+1D-llnll-log®llnll) in (6.1) accounts for all the other costs identified in
table 1. The cost (k + 1)?-s2- || n|| is precisely that of solving systems (2.10) and
(2 14) of type v“)—m(’“)—m(’“)—e for all nonsingular points mY, j=

.,1, where
I=max{t |t <N, det(H,n) # 0}. (6.7)
Namely,
)
Y v 1P < (k+1)% 5% || nll. (6.8)
j=1

These systems (2.10) and (2.14) (for different residual power series) arise as a
consequence of the accumulation of the recursive call of FAST _MHPS in step
F-13.

To remove the restriction (6.2) we note that S(z) at m® is obtained in step
F-3 by solving (2.10) and (2.14) at the first nonsingular point @ =m® — m©® —
e?=m®, We then add to this the cost of (6.8) to obtain

i
Y v < (k+1)7-s* lnll. O (6.9)
j=0

As a follow-up to remark 1 of the previous section, we have a similar result for
computing a MSPS.

COROLLARY 6.2
An algorithm FAST _MSPS for computing a MSPS of type (n,,...,n,) can be
given which requires

O((k+1)*- lInll-log?(lnll) + (k +1)*-5%) (6.10)

p X p matrix operations, where s =max{s;|s;=m{*? —m{’} is the maximum

step-size used. 0O
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EXAMPLE 6.3

In the perfect case, s;=1 for all i. In this case the second term in (6.1)
becomes O((k +1):||n|) and so the complexity of the algorithm becomes
O(|lnll-log?(lln ). At the other extreme, when all points with the possible
exception of the last along the computational path are singular, that is, s =s, =
max(n; +1) and (k+1)-s> [|nll, then the second term in (6.1) becomes
O(lln]l®) which corresponds to the cost of Gaussian elimination of the full
Hankel-like system (2.9). Indeed the solution is exactly that obtained by a single
invocation of INITIAL_MHPS. O

EXAMPLE 6.4

When k=1 and p = 1 the FAST _MHPS algorithm coincides with that given
for Padé approximants by Cabay and Choi [9]. In the scalar case a call to
INITIAL _MHPS always results in solving a triangular system of linear equa-
tions. Thus the cubic terms in (6.1) resulting from Gaussian elimination are in
fact not present in the scalar case. As such the algorithm computes a Padé
approximant of type (m, n) with the superfast complexity O((m + n) - log*(m +
n)). This is the case regardless of any assumptions on the size of the steps from
one nonsingular node to the next. Gaussian elimination would require O((m +
n)3) operations in this case. O

7. Conclusions

We have given a new reliable algorithm for the computation of matrix
Hermite Padé and matrix simultaneous Padé systems. This in turn provides a
reliable algorithm for the computation of the corresponding matrix Padé approx-
imants. The algorithm is superfast, that is, when fast polynomial multiplication is
possible the algorithm in most cases computes a system of type n in O(|in|l -
log? || n||) block matrix operations.

There are a number of possible research directions that follow from our work.
Our algorithm depends on the distribution of the nonsingular points along a
diagonal path in k-dimensional space. When most of the points are nonsingular
the algorithm is superfast, and hence faster than existing algorithms such as
proposed by Beckermann [11] or Van Barel and Bultheel [2]. However, when
there are very few nonsingular points and the distance between such nonsingu-
lar points is large then the algorithm has a potential complexity of O([l n|| ?).
The algorithms of both Beckermann and Van Barel and Bultheel, on the other
hand, do not depend on the singular structure of their computational path. It is
of interest to generalize their algorithms (in both the scalar and matrix cases),
using similar divide-and-conquer methods such as found in section 5. The hope
would be for algorithms that compute in superfast complexity, regardless of any
singularities in the path of computation. At present our algorithm has this
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important property, but only in the special case of scalar Padé approximants (i.e.
k=1 p=1).

Our approach has similarities with look-ahead [28] and block-pivoting [27]
methods for solving associated block Hankel-like systems. Thus, as in the scalar
algorithm [25] the algorithm promises to be a numerically stable one. This can
be done by recursing at a stable point rather than a nonsingular point. Stable
points are those having an “acceptable” condition number for the corresponding
matrix of the system of equations. Further work is under way in this direction.
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