
Understanding and Efficiently Servicing

HTTP Streaming Video Workloads

by

James Alexander Summers

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2016

c© James Alexander Summers 2016

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Live and on-demand video streaming has emerged as the most popular application for the

Internet. One reason for this success is the pragmatic decision to use HTTP to deliver video con-

tent. However, while all web servers are capable of servicing HTTP streaming video workloads,

web servers were not originally designed or optimized for video workloads. Web server research

has concentrated on requests for small items that exhibit high locality, while video files are much

larger and have a popularity distribution with a “long tail” of less popular content. Given the

large number of servers needed to service millions of streaming video clients, there are large

potential benefits from even small improvements in servicing HTTP streaming video workloads.

To investigate how web server implementations can be improved, we require a benchmark

to analyze existing web servers and test alternate implementations, but no such HTTP stream-

ing video benchmark exists. One reason for the lack of a benchmark is that video delivery is

undergoing rapid evolution, so we devise a flexible methodology and tools for creating bench-

marks that can be readily adapted to changes in HTTP video streaming methods. Using our

methodology, we characterize YouTube traffic from early 2011 using several published studies

and implement a benchmark to replicate this workload. We then demonstrate that three differ-

ent widely-used web servers (Apache, nginx and the userver) are all poorly suited to servicing

streaming video workloads. We modify the userver to use asynchronous serialized aggressive

prefetching (ASAP). Aggressive prefetching uses a single large disk access to service multiple

small sequential requests, and serialization prevents the kernel from interleaving disk accesses,

which together greatly increase throughput. Using the modified userver, we show that character-

istics of the workload and server affect the best prefetch size to use and we provide an algorithm

that automatically finds a good prefetch size for a variety of workloads and server configurations.

We conduct our own characterization of an HTTP streaming video workload, using server

logs obtained from Netflix. We study this workload because, in 2015, Netflix alone accounted

for 37% of peak period North American Internet traffic. Netflix clients employ DASH (Dynamic

Adaptive Streaming over HTTP) to switch between different bit rates based on changes in net-

work and server conditions. We introduce the notion of chains of sequential requests to represent

the spatial locality of workloads and find that even with DASH clients, the majority of bytes are

requested sequentially. We characterize rate adaptation by separating sessions into transient, sta-

ble and inactive phases, each with distinct patterns of requests. We find that playback sessions

are surprisingly stable; in aggregate, 5% of total session duration is spent in transient phases,

79% in stable and 16% in inactive phases. Finally we evaluate prefetch algorithms that exploit

knowledge about workload characteristics by simulating the servicing of the Netflix workload.

We show that the workload can be serviced with either 13% lower hard drive utilization or 48%

less system memory than a prefetch algorithm that makes no use of workload characteristics.

iii

Acknowledgements

I would like to thank my supervisor, Tim Brecht, for his guidance and detailed feedback on

my work. Derek Eager was also deeply involved in my research. I have collaborated with many

others while conducting my research and publishing the results, including Bernard Wong, Ben

Cassell, Tyler Szepesi and Alex Gutarin.

I thank the members of my PhD committee for thoughtful and thorough reviews: Ken Salem,

Paul Ward, and Carey Williamson.

I appreciate the financial support I received in the form of a Go-Bell Scholarship, a David R.

Cheriton Scholarship and a scholarship awarded by Netflix. I am also grateful for the Doctoral

Thesis Completion Award, largely for the deadline it provided to defend my PhD.

Finally I thank my wife for unwavering support and tolerance, and my parents who encour-

aged my extended education.

iv

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Goals . 3

1.3 Contributions . 4

1.3.1 Methodology for Creating Benchmarks 4

1.3.2 Creating a YouTube-like Benchmark . 5

1.3.3 Understanding and Improving Web Server Implementations 5

1.3.4 Netflix Server Workload Characterization 7

1.4 Chapter Summary . 8

2 Background and Related Work 9

2.1 Background . 9

2.1.1 Video Delivery Methods . 9

2.1.2 Video Client Implementation . 11

2.1.3 Video Server Implementation . 13

2.1.4 Video Control Plane . 14

2.2 Related Work . 15

v

2.2.1 Workload Studies . 16

2.2.2 HTTP Streaming Video Implementation Details 24

2.2.3 Streaming Video Benchmarks . 26

2.2.4 Improving Server Implementations . 28

2.3 Chapter Summary . 31

3 Workload Methodology 32

3.1 Overview of the Methodology . 33

3.2 Workload Specification . 35

3.2.1 Title Characteristics . 35

3.2.2 Session Characteristics . 38

3.2.3 Client Network Characteristics . 39

3.3 YouTube-like Benchmark . 40

3.3.1 Experimental Environment . 41

3.4 Client Configuration . 42

3.5 Server Configuration . 44

3.5.1 Determining File Placement . 45

3.5.2 File Set Generation . 46

3.5.3 File Set Locations . 47

3.5.4 Potential File System Performance . 47

3.6 Running Web Server Experiments . 48

3.6.1 Steady-state Behaviour . 49

3.6.2 Bandwidth-Limited Clients . 50

3.6.3 Effect of Pacing . 51

3.6.4 Duration and Repeatability . 52

3.7 Baseline Server Performance . 53

3.7.1 Implementing Asynchronous Serialized Aggressive Prefetching 54

3.7.2 Effect of Chunk Size . 55

3.7.3 Effect of Request Size . 58

3.8 Chapter Summary . 59

vi

4 Selecting a Prefetch Size 61

4.1 Motivation . 62

4.2 Automatic Prefetch Sizing . 65

4.2.1 Algorithm for Adjusting Prefetch Size 65

4.2.2 Slowly Adjusting Prefetch Size . 68

4.2.3 Prefetch Algorithm in Action . 69

4.3 Handling Multiple Bit Rates . 71

4.4 Changes to Experiments . 74

4.4.1 Server Configuration . 74

4.4.2 Workload Characteristics . 75

4.4.3 Experiment Procedure . 75

4.5 Experimental Evaluation . 76

4.5.1 Effect of System Memory . 77

4.5.2 Effect of Popularity Distribution . 79

4.5.3 Effect of Hard Drive Characteristics . 81

4.5.4 Effect of Multi-Bitrate Workloads . 82

4.6 Discussion . 84

4.7 Chapter Summary . 84

5 Netflix Server Workload 86

5.1 Background . 87

5.1.1 Netflix Servers . 88

5.1.2 Data Collected . 89

5.1.3 Netflix Clients . 90

5.2 Netflix Workload Characteristics . 91

5.2.1 Catalog Contents . 91

5.2.2 Viewing Sessions . 94

5.2.3 Example Sessions . 97

vii

5.2.4 Request Statistics . 100

5.3 Chains . 102

5.3.1 Lengths of Chains . 104

5.3.2 Chains Starting at Offset Zero . 104

5.3.3 Chain Survival Distances . 106

5.4 Phases . 107

5.4.1 Request Patterns During Phases . 108

5.4.2 Phases at the Start of Sessions . 109

5.4.3 Transient Phases . 110

5.4.4 Stable Phases . 115

5.4.5 Inactive Phases . 117

5.4.6 Impact on Sequentiality . 119

5.5 Creating a Workload Specification . 119

5.6 Evaluation of Workload-specific Prefetch Algorithms 121

5.6.1 Prefetch Algorithms . 121

5.6.2 Evaluation Methodology . 122

5.6.3 Evaluation Results . 123

5.7 Chapter Summary . 126

6 Conclusions and Future Work 128

6.1 Summary and Contributions . 128

6.1.1 Workload Methodology and YouTube-like Benchmark 129

6.1.2 Determining Prefetch Sizes . 130

6.1.3 Characterize Netflix Server Workload 131

6.2 Future Work . 131

6.2.1 Constructing a New Benchmark . 132

6.2.2 Testing Prefetch Algorithms with New Benchmark 132

6.2.3 Multiple disks . 133

6.2.4 Investigate Memory Management . 134

6.3 Concluding Remarks . 134

viii

References 135

ix

List of Tables

3.1 Client access speeds . 39

3.2 Summary of workload specification . 40

3.3 Characteristics of constructed workloads . 44

3.4 Average throughput using wc . 48

3.5 Throughput and confidence intervals for some runs of the userver 53

3.6 Disk performance, 0.5 MB chunks at 70 req/s 56

3.7 Disk performance, 2.0 MB chunks at 35 req/s 57

4.1 Extra data read due to prefetching (SD titles) 64

4.2 Automated algorithm parameters . 77

5.1 Summary of server log files contents . 89

5.2 Prevalence of request types . 101

5.3 Per-file use of parallel downloads . 101

5.4 Chain statistics . 103

5.5 Summary of Netflix storage server workload specification 120

5.6 Size for first prefetch in a chain . 122

x

List of Figures

2.1 Example of a client video session . 12

2.2 Processing an HTTP connection . 13

3.1 Overview of the methodology . 34

3.2 Popularity distributions for 7,200 sessions, with different catalog sizes 36

3.3 Duration of titles . 37

3.4 Fraction of bytes downloaded during session . 38

3.5 A small example of an httperf wsesslog 43

3.6 Video locations at low block numbers . 47

3.7 Cache warming techniques . 50

3.8 Using dummynet to model client networks . 51

3.9 Effect of pacing on throughput . 52

3.10 Aggregate throughput of web servers: (a) userver, (b) Apache and nginx . 54

3.11 Workload with 0.5 MB chunks: (a) Aggregate throughput, (b) Missed deadlines . 56

3.12 Workload with 2.0 MB chunks: (a) Aggregate throughput, (b) Missed deadlines . 57

3.13 Throughput using a 2 MB prefetch size . 58

3.14 Throughput servicing 2 MB requests . 59

3.15 Throughput using an unchunked file set . 60

4.1 Throughput versus prefetch size . 63

4.2 Transaction times versus prefetch size . 66

xi

4.3 Dynamic prefetch size adjustments using HD files 69

4.4 Dynamic prefetch size adjustments using SD files 70

4.5 Comparing prefetching techniques for SD files while varying system memory . . 78

4.6 Comparing prefetching techniques for HD files while varying system memory . . 79

4.7 Different popularity distributions (α), with SD files and 4 GB of memory 80

4.8 Different disks with SD files and 4 GB memory 81

4.9 Different disks with HD files and 4 GB memory 82

4.10 Mixed bit rates: 50% SD files and 50% HD files. 83

5.1 Catalog and Flash Cache throughput . 90

5.2 Bit rates chosen by clients . 92

5.3 Duration of titles viewed . 93

5.4 Number of times titles or files were viewed . 94

5.5 Fraction of files downloaded in a session . 95

5.6 Portion of titles accessed during sessions . 96

5.7 Relative start and end of sessions and pauses. 97

5.8 Requests issued during a session . 98

5.9 Details of session startup . 100

5.10 Average sizes of chunk requests . 102

5.11 Percentage of chains ordered by chain size . 104

5.12 CDF of lengths of chains with different start offsets 105

5.13 Cumulative number of longer chains . 106

5.14 Request activity aggregated over all sessions . 109

5.15 Start times of transient phases . 111

5.16 Detailed view of bit rates accessed at start of example session from Figure 5.8 . . 112

5.17 Associated bit rates: First transient phase for sessions with a stable phase 113

5.18 Associated bit rates: Successor transient phases 115

5.19 Aggregate download rate for requests . 116

xii

5.20 Ratio of play time to chain duration . 118

5.21 Percentage of sessions in inactive phases at different times 118

5.22 Comparison of bit-rate-based algorithms . 124

5.23 Comparison of chain-length-based algorithms 125

xiii

Chapter 1

Introduction

1.1 Background and Motivation

The popularity of streaming video over the Internet is rapidly increasing. According to Sand-

vine’s December 2015 Global Internet Phenomena Report [83], Netflix and YouTube account

for 37.1% and 17.9% of peak fixed-line North American traffic, respectively. As of December

2015, more than 70% of peak downstream traffic is streaming video and audio, compared to

45.7% in September 2010 [82]. Outside of North America, streaming video and audio accounts

for about 40% of peak Internet traffic, with higher percentages for countries with access to paid

services like Netflix or BBC iPlayer [82].

There have been decades of research and development related to video streaming, but we

believe there are two main reasons for the recent rapid increase in popularity: the widespread

availability of fast broadband to homes and a new approach to video streaming over the Internet

using HTTP (HyperText Transfer Protocol), the underlying protocol for the World Wide Web. In

early video-on-demand systems, video was delivered by specialized servers, using video-specific

protocols, over dedicated networks, to custom set-top boxes that played the videos for users [66,

36]. This was necessary because of the expense of system resources. System memory and disk

storage were very expensive [74], and networks had relatively little bandwidth, so specialized

algorithms and protocols were necessary to make it possible to deliver video at all.

As time passed, computer resources became cheaper and more abundant. Increased CPU

power made set-top boxes unnecessary. The low cost of system memory enabled clients to buffer

large amounts of video, making it possible to deliver video over a best-effort network. Since

there is no longer a need for specialized real-time protocols, the practical decision was made to

1

use HTTP to deliver video, thus leveraging the existing HTTP ecosystem consisting of: routers,

caches, CDNs (Content Distribution Networks), and web servers. This has the benefit of lowering

the cost of developing video delivery infrastructure. Additionally, using the same protocol for the

bulk of Internet traffic makes it easier for video to coexist with traditional HTTP web traffic [12].

However it is unclear how efficiently web servers deliver streaming video because they were

not designed with this workload in mind. Prior to the introduction of video streaming, web sites

had relatively little data, and it was often possible to store most or all of the data from a web

site in the file cache of the web server. Web servers were optimized for the case where most

content would be serviced from system memory. In contrast, video workloads cannot typically

fit in memory due to the large average size of video files and the tendency for video collections

to have long tail popularity distributions [96, 39, 64]. For example, a single web server used to

store a fraction of Netflix’s catalog may contain more than 200 TB of data on 36 Hard Drives and

6 SSDs [69]. Prior research into designing high-performance web servers by Harji, et al. [41] re-

veals that, in some cases, web servers should be implemented and tuned differently for workloads

that can be serviced entirely from system memory compared to workloads that must be serviced

largely from hard drives. For example, Harji et al. experimented with a non-video workload and

found that using non-blocking sendfile provides higher server throughput when there is little

disk I/O, while using the blocking version of sendfile provides higher throughput when a

web server is disk-bound [42].

Given the large and growing quantity of HTTP-based streaming video traffic, it is essential

to study this workload and determine whether or not the HTTP ecosystem is well suited to han-

dling this workload. If it is possible to improve the efficiency of delivering streaming video, the

increased capacity could be used to either accommodate future growth with the same hardware,

or the current level of demand could be accommodated with less hardware. Much of the exist-

ing research in streaming video has concentrated on client implementations and network issues.

In contrast, we closely investigate the implementation of the web servers used to deliver HTTP

streaming video, about which there has been little research. Our expectation is that web server

capacity for streaming video clients can be increased if web servers are specifically designed and

tuned to service a highly sequential, disk-bound workload.

The remainder of this chapter is structured as follows. In Section 1.2, we discuss the goals of

the thesis. Then we discuss the contributions of the thesis in Section 1.3, and finally summarize

this chapter in Section 1.4

2

1.2 Goals

Our primary goal is to understand HTTP streaming video workloads and, if it is possible, to im-

prove web servers in order to increase the number of HTTP streaming video clients that can be

serviced with an acceptable level of quality. To ensure that our results are applicable to produc-

tion environments, when possible, we will focus on testing actual web server implementations in

a representative test environment. We now describe several subgoals:

Understand HTTP Streaming Video Server Workloads

Because we would like our work to be widely applicable, we study the workloads of web servers

for the two largest streaming video services: YouTube, which streams short user-generated

videos; and Netflix, which streams professionally-produced Movies and TV shows. These ser-

vices account for 17.9% and 37.1% of peak North American traffic, respectively [83]. We obtain

workload information from two different sources: published research papers that characterize

HTTP streaming video workloads, and raw data obtained from production web servers. There

are many published research studies about aspects of YouTube workloads, but no specific charac-

terizations of the workload on individual web servers. For this reason, we infer the characteristics

of a server workload from several papers that describe the implementation of YouTube clients

and others that characterize the combined workload of different populations of YouTube clients.

There is also a lack of published information about Netflix server workloads, so in this case,

we obtained raw server logs under an NDA (Non-Disclosure Agreement) which we analyze to

characterize the workload of Netflix servers.

Use Knowledge of Workload to Create a Benchmark

In order to test web servers in a laboratory environment, we create a benchmark to represent

clients that are streaming HTTP video. The benchmark should be customizable, with a flexi-

ble methodology for creating benchmarks with different specifications. Flexibility is necessary

because there are a variety of different video providers with different characteristics that we

would like to represent, such as YouTube with mostly short-duration videos in low resolutions,

and Netflix with longer videos that are available in higher resolutions. The capabilities of the

different client applications available for these services differ, affecting the requests issued by

clients [62, 60] and influencing user behaviour [29, 15, 21]. We would like to be able to create

benchmarks that reflect these different factors, to experimentally determine the sensitivity of web

server implementations to differences between current video services and to anticipated future

workloads.

3

Evaluate and Possibly Improve Existing Web Servers

Using representative benchmarks to understand the operation of existing web servers, we find

and evaluate opportunities for increasing efficiency. Some of the questions we are interested in

include the best way to tune existing web server implementations, as well as the best way to store

video content in the file systems of web servers. This will give us a baseline to use for evaluating

potential implementation improvements. We intend to investigate how well web servers exploit

the sequential request patterns of streaming video clients. Most existing studies investigate the

use of caching as a means to improve efficiency of servicing the most popular content, while we

will investigate strategies for efficiently servicing all content, including the less popular content

that is prevalent due to the typical “long-tail” nature of video popularity.

1.3 Contributions

This thesis makes contributions in three areas. We develop a flexible methodology for creating

streaming video benchmarks to enable the evaluation of web server implementations in a labo-

ratory setting. We contribute to the better understanding of web server workloads for the two

most-popular streaming services, YouTube and Netflix. Finally, using benchmarks to evaluate

web server implementations, we develop techniques that can significantly increase the through-

put, and therefore the capacity, of web servers. We now describe these contributions in detail.

1.3.1 Methodology for Creating Benchmarks

• We develop tools and methodologies to create video streaming benchmarks that can be

used in a laboratory to experimentally evaluate the performance of web servers. The

benchmark creation tools are flexible so that benchmarks can be created that represent

the specifications of the wide variety of streaming video services that currently exist and

to accommodate future changes in streaming video workloads.

• We demonstrate the necessity of throttling the network (using dummynet [80]) to simulate

the variety of network connections common today, including home broadband connections

and low-bandwidth cellular networks. We also show that it is necessary to emulate the

pacing of requests from simulated clients to represent the important property that clients

request data at approximately the same rate as they play it.

• We develop tools for controlling the placement of files on disk to ensure that we can create

libraries of content in a repeatable manner, thereby ensuring that experimental results are

4

repeatable when it is necessary to recreate a catalog. It was necessary to develop the

tools because the FreeBSD file system places files at unpredictable locations on disk and

throughput can vary by 25% or more for a typical hard drive depending on whether the

data is placed on inner or outer tracks.

• We devise an experimental methodology to determine the capacity of a web server: the

maximum throughput of client requests that can be serviced with acceptable latency. We

demonstrate the benefits of our procedure for warming the server cache and instituting

ramp-up and ramp-down periods to ensure that experiments are repeatable and of suffi-

ciently short duration to be practical, yet representative.

This work is described in detail in Chapter 3 and has been published in the proceedings of

the 5th Annual International Systems and Storage Conference (SYSTOR 2012) [91].

1.3.2 Creating a YouTube-like Benchmark

• Using existing published research, we derive a specification for the workload of a YouTube

server. We then use that specification to create a benchmark using our methodology. We

could find no direct characterizations of the workload at YouTube servers, so we infer

a server workload specification by combining the information from several papers that

examine network traffic from either individual YouTube clients [79, 60, 7], or collections

of YouTube clients in different geographical areas [34, 23, 19, 39].

The work deriving the YouTube server workload specification is in Chapter 3 and is also

part of the paper presented at the 5th Annual International Systems and Storage Conference

(SYSTOR 2012) [91].

1.3.3 Understanding and Improving Web Server Implementations

• Using the YouTube-like benchmark, we examine the performance of three web servers

(Apache [52], nginx [67], and the userver [43]). We found that all three exhibit

relatively poor throughput. Although streaming video workloads are largely sequential,

and hard drives service sequential requests with relatively high throughput, we observe

poor hard drive throughput, similar to what might be expected from non-sequential disk

accesses. We were surprised to find that the operating system was not able to effectively

prefetch and/or schedule the disk requests resulting from this workload. Our work demon-

strates the value of the benchmark and being able to run experiments with existing web

server implementations in a laboratory setting.

5

• We determine the best way to store content on disk. Two methods have been used to store

content on disk: 1) storing a single video in multiple separate files, used by Apple’s Live

Streaming [12]; and 2) using a single file for the entire video, used by Microsoft’s Smooth

Streaming [12]. We show that it is possible to access the disk with significantly higher

throughput when using a single file per video because of the reduced amount of file system

metadata that must be read.

• We show that relatively simple modifications to the userver web server, to perform ag-

gressive prefetching and sequentialized disk accesses, significantly increases throughput.

Initial experiments reveal that the modification of the userver enables throughput to be

doubled when using a prefetch size of 2 MB, but only when the content is stored using a

single file per video.

• We use the flexibility of our benchmark methodology to conduct a series of experiments

to determine the sensitivity of the prefetch algorithm to different system and workload

characteristics, such as: 1) the amount of available system memory, 2) video popularity

distribution, 3) video bit rates, and 4) hard drive characteristics. We show that the best

prefetch size varies significantly and provides up to 4 times higher throughput than without

application-level prefetching, and up to 3 times higher throughput than a prefetch size that

is too large.

• Because the benefit from choosing the best prefetch size is large, and because that size

may be different for each system or change in workload characteristics, manually tuning

the prefetch size requires significant effort. Therefore, we develop an algorithm that dy-

namically and automatically determines the best prefetch size. We show that our automated

algorithm is equally as effective as exhaustive manual tuning.

• Using mathematical analysis, we determine that the overhead of reading content from hard

drives is minimized when the prefetch size is proportional to the square root of the file bit

rate.

The relatively poor efficiency of existing web servers and the benefits of serialized aggressive

prefetching are described in Chapter 3 and have been published in the proceedings of the 5th

Annual International Systems and Storage Conference (SYSTOR 2012) [91]. The evaluation

of different options for storing content on hard drives is in Chapter 3 and we have published

those results in the proceedings of the 22nd International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV 2012) [92]. The factors that affect the

prefetch size and the automated algorithm are presented in Chapter 4. These results have been

published in the proceedings of the 7th ACM International Systems and Storage Conference

(SYSTOR 2014) [90].

6

1.3.4 Netflix Server Workload Characterization

• Our analysis and experimentation with our YouTube-like benchmark have been successful,

but there are two issues with the benchmark. First, because there was no available literature

specifically about the workload of HTTP streaming video servers and because we had no

access to production servers, we were required to infer the workload on YouTube servers

from information about individual clients and collections of clients. Second, the sources

available to us for our work in 2012 were based on studies of YouTube dating 2011 and

earlier when YouTube clients rarely (for less than 5% of viewing sessions [34]) changed

the bit rate while playing content. YouTube clients switched to using DASH (Dynamic

Adaptive Streaming over HTTP [86]) at the end of 2012 [94]. DASH-based clients adapt

to changes in available network and system bandwidth by switching the bit rate of content

that the clients are playing, and it is unclear how these changes will impact servers. We

remedy both of these issues by obtaining log files from two different production Netflix

servers. We analyze these log files to characterize more recent server workloads that result

from servicing DASH-based clients.

• We introduce two abstractions to aid in our analysis of the Netflix server log files. The log

files are very complicated because of the use of DASH by Netflix clients, and because of

the large number of different client implementations that exist, so these abstractions are

critical tools for understanding the workload. We develop algorithms for forming chains

of sequential requests as a tool for analyzing the spatial locality of client requests in the

workload, regardless of the different methods clients use to issue HTTP requests [62]. We

develop methods for recognizing phases in the complicated patterns of client requests for

content with different bit rates, to aid in understanding the effects of the DASH algorithms.

• One concern with DASH clients is that if they change bit rates often, this will reduce the

spatial locality of the workload and make aggressive prefetching less effective. From the

analysis of phases, we determine that Netflix clients seldom change bit rates, despite the

use of DASH. This is reflected in the distribution of chain lengths. Although there are large

numbers of short chains (about 60% are less than or equal to 1 MB), the bulk of content

is downloaded in long chains (chains greater than or equal to 10 MB account for about

95% of bytes downloaded). This implies that spatial locality of the Netflix workload is not

significantly worse than our YouTube-like benchmark, suggesting that the techniques we

developed to improve throughput when servicing our benchmark are likely to be applicable

to more modern clients and servers.

• We devise a method for analyzing the measured distribution of chain lengths in order to

compare the efficiency of different prefetch algorithms. Using this technique, we find that

a relatively large prefetch size enables the Netflix workload to be serviced efficiently, and

7

that using both smaller and larger prefetch sizes is less efficient, similar to the findings of

our experiments with the YouTube-like benchmark. We also find that by using workload-

specific characteristics, such as the bit rate of the requested video and the probability that

chains will be long or short, we can adjust prefetch sizes to either reduce hard drive utiliza-

tion by 13% or system memory use by 48%, compared to a prefetch algorithm that does

not use workload information.

This work on characterizing and analyzing the Netflix workload appears in Chapter 5 and is

published in the proceedings of the 2016 IEEE International Symposium on Workload Charac-

terization (IISWC 2016) [89].

1.4 Chapter Summary

According to Cisco, Internet video accounted for 64% of global consumer Internet traffic in 2014,

and they project that the proportion will rise to 80% by 2019 [27]. Most of this traffic is delivered

from web servers, so for this reason, we study the video web server workloads to determine if

existing web server implementations can be improved to increase the number of HTTP streaming

video clients that can be serviced with the same resources.

In this thesis, we analyze YouTube traffic from 2011 using published research studies to

create a specification of a workload and use it to generate a YouTube-like benchmark. We con-

duct experiments using the benchmark to show that by applying aggressive prefetching, more

than double the number of clients can be serviced using the same server hardware. We design

and evaluate an automated algorithm that dynamically determines a prefetch size that matches

the best manual tuning and increases server capacity by up to 4 times, depending on the work-

load and server hardware resources. Finally, we obtain server logs from two Netflix servers to

compare the workload from clients that implement DASH to the benchmark, which represents

non-adaptive clients. We show, by a novel analysis of the chains in the Netflix workload, that the

algorithms we developed experimentally using the YouTube-like benchmark are also likely to be

effective for Netflix servers.

8

Chapter 2

Background and Related Work

2.1 Background

In this section, we describe how video is delivered over the Internet. We provide a brief his-

tory of how network video delivery has developed from using proprietary networks owned by

video providers, to an HTTP-based system that delivers video from existing web servers over the

Internet.

In this thesis we will use the term title rather than video to refer to the object that a user

selects (and a client downloads) from the catalog of a video service. We adopt this term to

reduce confusion because titles have both video and audio components and we use the term

“video” specifically to refer to a component of a title. Depending on the service, a title could be

a user-generated video, a music video, a TV show, or a Movie.

2.1.1 Video Delivery Methods

Video-on-demand systems were first introduced by telecommunication providers and cable com-

panies as an alternative to broadcast TV or renting physical media from video stores [66, 74].

Unlike broadcast TV, subscribers could select a title from a catalog and start viewing whenever

they wished, without the inconvenience of leaving their homes to visit a video store. In addition

to starting titles whenever they wanted, subscribers could also perform trick play operations such

as pause, resume, rewind and fast-forward, just as they could with rented physical media.

The earliest video delivery systems were limited by a lack of resources. Memory was ex-

pensive (as much as $50 per MB [74]) and disk drives were small, slow and expensive ($3,000

9

for a drive with a capacity of 9 GB, a 10 MB/s transfer rate and an average seek latency of 15

ms [74]). Designing a video delivery system that was commercially viable was difficult due to

the resource constraints, so service providers used proprietary video servers, managed networks

(such as ATM), and provided set-top boxes to subscribers to view the content [66, 36]. These

systems were push-based, with the video server responsible for sending content to the clients,

and ensuring that content was transmitted fast enough to avoid gaps in video playback.

As technology improved and became cheaper, it became possible to deliver video with ac-

ceptable quality over the unmanaged Internet. Broadband networks with sufficient bandwidth

became widely available to consumers, making dedicated video networks unnecessary. Propri-

etary set-top boxes could be replaced with PCs or cheaper general-purpose client devices with

enough processing power to decode video streams and sufficient memory to buffer adequate

amounts of data to hide network latencies. In addition to the benefit of being able to watch ti-

tles in many more locations, because it was no longer necessary to own a dedicated network to

supply titles, it became possible for many new video suppliers to be created. This resulted in

new alternative suppliers for movies and TV shows like Hulu, Amazon and Netflix, and also

suppliers for new types of video, such as user-generated video sites like YouTube, Yahoo! video

and Dailymotion. These new systems are pull-based, with the clients responsible for requesting

data from the server and timing the requests so that titles can be displayed without pausing or

stuttering.

There are several different methods for delivering titles over the Internet. Video streaming

technologies either use streaming-specific protocols, such as RTP (Real Time Transport Proto-

col), RTCP (Real Time Control Protocol) and RTSP (Real Time Streaming Protocol), or simply

use the standard HTTP (HyperText Transfer Protocol) [12]. Our work concentrates on HTTP-

based video delivery because of its growing popularity and its widespread use including the most

popular video suppliers, like YouTube and Netflix.

One method of delivering titles, called Progressive Download, is popular for its simplicity.

A client requests the entire file containing the title using the standard HTTP protocol, but the

client does not wait until the entire file is downloaded before playing the title. Instead, a client

starts playing the title once enough data has been transferred, and continues playback at the same

time as the remainder of the file is delivered. The limitation of progressive download is that the

entire title is requested as a single file, so it can be difficult to efficiently provide some trick play

features unless the entire file has been downloaded and stored.

An additional drawback of progressive download is that it can be wasteful of network and

server resources. Users usually stop watching a title before the end is reached. For one typical

YouTube workload [34], only 20% of users watch to the end of the title and 60% of users watch

less than 20% of a title. To avoid downloading content that will not be viewed, pacing is used to

10

reduce the average download rate so that it is just above the bit rate of the content. With pacing,

when a user unpredictably ends playback, there is a limited amount of unplayed content that was

read from storage and sent over the network. Pacing is a defining feature of HTTP streaming

video and can either be implemented on the server or on the clients, as we describe in detail in

Section 2.2.2.

To address the shortcomings of progressive download, streaming was introduced. In this

case, the title is divided into many segments of equal playback time, and the client requests a

sequence of segments (e.g. using HTTP range requests) rather than a single file. Clients are able

to download segments from any portion of the title at any time, making operations like skipping

ahead or back in a title easy and efficient to implement. Also, if the title is available in multiple

quality levels (requiring playback at different bit rates) the clients can use rate adaptation (or

DASH for Dynamic Adaptive Streaming over HTTP) to compensate for dynamic variations in

network bandwidth and server conditions by switching between different versions of the title,

choosing the highest-quality version that can be delivered using the available network bandwidth

and server resources [87, 53]. This also makes it possible to switch to different servers to hide

failures and ensure a good quality of experience for the user.

2.1.2 Video Client Implementation

The difference between push-based and pull-based video delivery systems is whether the clients

or servers direct the content delivery system. With a pull-based HTTP video delivery system,

the clients are responsible for requesting title content and satisfying the real-time requirements

of displaying a title, while the server is simply responsible for responding to client requests as

quickly as possible. Because clients operate over the unmanaged Internet, they cannot depend

on guaranteed network bandwidth or latencies, so they must maintain a playout buffer of title

content to be able to compensate for occasional reductions in network bandwidth or delays at

the server. It is important for clients to ensure the playout buffer does not under-run (called

rebuffering), because users are sensitive to annoying delays in displaying video and users will

stop viewing if video quality is poor [32].

The details of how a client displays a title differ for specific services such as YouTube [34,

4], Netflix [3], and Hulu [2], but the process generally consists of two phases. First the client

acquires a manifest that provides information about all the segments that make up a specific title,

then the client sends requests to the video server, decodes the title content received, and displays

the contents for the user [12].

The manifest file contains information about which server contains the title content and the

URL (uniform resource locator) to use to access each segment. The manifest includes informa-

11

tion about all the different versions of a title, including different resolutions, encoding methods,

quality levels and other information [12]. For large video service providers with multiple servers

and multiple copies of titles, there is an opportunity to manage demand over the servers by gen-

erating manifests specifically tailored to each client.

Viewing Session

After the client receives the manifest, it starts sending requests to the video server and displaying

the video for the user as content is downloaded. Figure 2.1 shows the lifetime of a viewing

session for a typical video service. The bottom rectangles show three requests issued to the

server, with delays between the requests. The top rectangle shows playback of the title. The

rectangles representing the requests are narrower than corresponding playback areas because

content must be downloaded faster than it is played to avoid rebuffering. The delays that are

added between requests implement pacing and ensure that the average download rate is close to

the bit rate of the title content being played. To start a session, the client establishes a network

connection to the server (at time t0) and requests the first segment in the title, illustrated by

the first box on the bottom of the diagram, labelled fill. Playback does not start until enough

content is downloaded into the playout buffer (at time t1), which accounts for the delay before

playback starts. While playing the title, the client periodically replenishes the playout buffer

by requesting subsequent segments. At some unpredictable point, the user will stop viewing

and cause the client to terminate the connection. When playback is terminated, the downloaded

content depicted by the dashed line is discarded. The amount discarded could have been much

larger if pacing had not been used to limit the average download rate.

Playout Buffer

Establish Connection

fill refill refill

Video Display

Terminate

timet0 t1

Figure 2.1: Example of a client video session

12

Not all sessions have this simple form of requesting content sequentially from a single file.

Potentially there are user events such as pausing or skipping to a new title location, which cause

the client to delay requests or to discard the current contents of the playout buffer and refill it

starting at a new point in the title. Also the client may switch files as part of rate adaptation.

2.1.3 Video Server Implementation

Because title content is delivered using the standard HTTP protocol, any web server can be used.

However, web servers were not originally designed and tuned for streaming video workloads.

Prior to the use of web servers for video streaming, web server workloads could be largely cached

in system memory, so web servers may not be effective at servicing disk-bound workloads. There

are results that show that the best web server architecture for disk-bound workloads is different

from when the workload is largely cached [42], so it is likely that some web server architectures

may be better suited to video workloads than more conventional HTTP workloads. In this thesis,

we found it necessary to devise the ASAP architecture described in Section 3.7.1.

At a basic level, web servers have a simple design [75]. Figure 2.2 shows the basic steps

involved in processing a single viewing sessions from a client. A web server is expected to

process hundreds or thousands of these sessions concurrently.

Accept Get Request

Prefetch Data

Send Data Close

Figure 2.2: Processing an HTTP connection

To start a viewing session, a client establishes one or more TCP connections to use for issuing

requests and receiving data in response. After the server accepts the connection, it waits to

receive requests from the client. When a request arrives, the server determines if the request can

be satisfied out of memory; that is, whether the requested data was read previously in the same or

13

different session and retained in a web server or filesystem cache. If the requested data is present

in memory, the server can proceed to send the data to the client.

If the requested data is not in memory, the server must read the data from a storage device,

such as a hard drive or SSD (Solid-State Drive). To minimize overhead [85], the server may read

more data from the file system than was actually requested, called read-ahead [95], or prefetch-

on-miss [57]. The server reads extra data in the expectation that it will soon be requested, and

by reading the data ahead of time, the server amortizes the overhead of reading over more than

one request. Not all servers prefetch only in response to cache misses, which is the reason

we use a dotted line between the Get Request and Prefetch Data boxes in Figure 2.2. If data is

always prefetched in advance of it being requested, it is possible to eliminate the latency between

receiving a request and sending data in response. This strategy is called prefetch-on-hit [57]

because a prefetch is triggered when a request can still be serviced using previously prefetched

data (i.e., a cache hit), in the expectation that the newly prefetched data will be available just

before it is requested. In this thesis, while we are concerned with prefetch latency, our main goal

is to ensure that web servers are able to service requests with high throughput, thus servicing

as many clients as possible. Our techniques can trade increased latency in exchange for higher

throughput because streaming video clients are designed to tolerate the network latencies that

are possible when using the HTTP protocol over a best-effort Internet

The server waits for requests and services them as they arrive until the client eventually

stops requesting data and the client ends the session by closing connections. The unpredictable

timing of when a client will stop requesting data may negate some of the throughput gains from

prefetching because storage device throughput is wasted when the server prefetches data that

is not subsequently requested by a client. Also, if a server prefetches data too soon, data can

be evicted by the memory management algorithm and will need to be read again. Choosing a

good prefetch size that minimizes wasted prefetches and evictions while being large enough to

improve efficiency is a difficult problem that is studied in this thesis.

2.1.4 Video Control Plane

Many HTTP streaming video services are very large. Catalogs contain many titles, content is

available in many different resolutions and bit rates, and there are large numbers of subscribers.

Catalogs are often too large to fit on a single server, even if a single server could provide suffi-

cient throughput for the large number of subscribers. For these reasons, streaming video service

providers require large numbers of web servers, either in their own data centres or at external

CDNs.

The service provider typically manages the large number of servers and the use of CDNs

14

with a video control plane. One function of the control plane is to determine how to partition

the titles in the catalog among the servers and CDNs, and the number of copies to utilize. These

decisions may be influenced by the anticipated popularity of the titles, the throughput capabilities

of servers, expected server failures, and the geographic location of servers. The other function

of the control plane is to direct clients to the best server that contains the content the user wishes

to watch, based on the current demands on the servers. A coordinated network control plane

may assign clients to different video servers based on which servers are in or out of service, the

relative server loads, and the dynamic conditions of the network [59].

The policies of the control plane can have a great effect on throughput. Poor placement of

titles can result in overloaded servers, so the control plane logic tries to anticipate demand, then

partition the catalog among servers so that the load is balanced. This is a challenging problem

that we do not address in this thesis. Instead, we simply recognize that a control plane chooses

titles for each server and chooses which clients are directed to each server, and we consider the

resulting workload on the server. It is important to note that the workload on an individual server

is not necessarily similar to the overall workload, but can be shaped by the policies implemented

by the control plane.

2.2 Related Work

Our goal is to understand HTTP streaming video workloads so that we can discover ways to im-

prove the efficiency of the web servers that are used to deliver streaming video. Delivering video

using a best-effort network protocol is a difficult problem, and as a result, it is a popular area of

research. However, much of this research specifically investigates client implementation issues,

network issues, and the design of control planes, rather than server implementation issues. In

the absence of specific information about the implementation of web servers for HTTP stream-

ing video, we examine the general characteristics of HTTP streaming video workloads to help

understand where web servers might have problems servicing the workload. We also examine re-

search and methods for improving web servers for workloads that are similar to streaming video

workloads. In the following sections, we specifically examine the existing research literature in

four areas.

Characteristics of Videos and User Viewing Sessions: This is information about what titles

are watched and how those titles are watched. This includes characteristics such as title duration

and bit rates that determine the workload, and characteristics such as popularity, ratings or title

category that allow us to predict which titles will be chosen. An important characteristic of user

behaviour is the viewing ratio which is the duration of a viewing session divided by the duration

15

of the title, which has a great effect on the spatial locality of the workload. We are also interested

in which parts of titles are watched, to determine if user interest is skewed to certain parts of the

video, like the start or end.

Implementation Details for HTTP Streaming Video: In addition to title and session char-

acteristics, server efficiency may be affected by client implementation details. For example,

web servers may use different algorithms and kernel syscalls when responding to HTTP range

requests, compared to requests for an entire file. We need to know implementation details in

addition to title and session characteristics to implement a benchmark that accurately reproduces

streaming video traffic.

Existing Benchmarks: We investigate existing tools that can be used to create an HTTP

streaming video benchmark. We found studies fell into two categories; workload generators

that create workload specifications, and benchmark platforms that can be used to reproduce the

specified workloads.

Improving Server Efficiency: Studies that specifically investigate issues with delivering HTTP

streaming video typically recommend improvements to the control plane (such as the use of

proxy caches or peer to peer video delivery) or recommend changes in client implementations.

There is little research that specifically investigates the implementation of web servers for HTTP

streaming video workloads. However, we examine a number of more generic studies that de-

scribe techniques for improving disk throughput for sequential workloads.

2.2.1 Workload Studies

An HTTP streaming video workload is shaped by the characteristics of titles and sessions. The

duration of a title and its bit rate place a ceiling on session duration and spatial locality of re-

quests. There are two broad categories of streaming video services that have been studied: short

video services such as YouTube that supply user-generated videos and music videos; and long

video services such as Netflix that supply TV shows and movies. In addition to title charac-

teristics, session characteristics such as viewing duration and starting position in a title shape

workloads further. The most frequently studied workload is that of YouTube. Chowdhury and

Makaroff [26] provide a survey of studies that characterize titles and sessions for YouTube. We

describe many different YouTube studies in the following sections, because they each contain

different characterizations. We include the year that each YouTube study was conducted because

16

the YouTube workload has evolved over time. We also describe studies for long video services

and short video services other than YouTube.

We organize the different workload studies based on which of four general methods is used to

collect the information needed to characterize titles and sessions: 1) Receiving information from

instrumented client applications. 2) Capturing streaming video traffic at the edge of networks and

analyzing the traces. 3) Acquiring public information about titles via APIs or scraping web pages.

4) Obtaining server logs from service providers. We discuss the workload characteristics that are

described in each study and, where appropriate, comment on how we used the information in this

thesis.

Instrumenting Clients

A direct approach to determining the behaviour of users is to instrument the client applications

that are used to view streaming video. We examined these studies to determine how much of a

title is typically watched in a session, which portions of the titles are watched, how often users

pause playback or skip to a new title position, and if there are workload characteristics that affect

these behaviours.

Dobrian, et al. [32] investigate the effect of video quality on viewing times. We are interested

in this information because users are the ultimate judge of the quality of streaming video, so we

would like to know which quality metrics are most important to users, so we can use those metrics

for evaluating the effectiveness of servers. The authors collect information about 1 million users

and 2 million sessions from several popular service providers that are representative of Internet

video traffic. They analyze the effect of join time (the delay before the title starts playing),

buffering ratio (the percentage of time that playback freezes, waiting to refill the playout buffer),

average bit rate and rendering quality to determine which have the greatest effect on viewing

times. They find that the buffering ratio has the largest effect; a 1% increase in the buffering ratio

decreases viewing time by 1 to 3 minutes. Join time is also negatively correlated with viewing

time. As a result, for our experiments in Chapter 4, we model the user behaviour of terminating

viewing sessions when there is excessive rebuffering, by aborting sessions when the response

time for a request exceeds 10 seconds.

Chen, et al. [22] obtained trace data from 100,000 titles watched in 100 million sessions

using clients of the Chinese PPLive VoD service. They specifically analyze the data for title

characteristics that can be used to predict how long a user will watch a particular title, as a

percentage of title duration. They find that, on average over all sessions, 61% of a title is viewed

and the percentage that is viewed depends on the title duration, popularity, and category (e.g.

movie, cartoon, sport, news). Notably, they found that users watch the first episode in a series

17

for a shorter amount of time than subsequent episodes, and that there is an inverse relationship

between watching time and title duration. The drawback with this study is that the authors

excluded 53% of sessions that involve playback interruptions or user trick play, so the sample

they use may not be representative.

Chen, et al. [21] examine viewing ratios of titles, as well as the browsing behaviour of users

(i.e., a series of short viewing sessions while the user samples titles, followed by a long viewing

session that marks the end of browsing). They collected data from instrumented clients for

about 540 million sessions from 49 million different users of the Tencent VoD service, which

provides both long-duration and short-duration titles. This study contains detailed information

about events that occur during sessions: rebuffering events and user skips and pauses. They find

the percentage of a title that is viewed is inversely related to popularity. The median viewing

ratio for the less popular titles is about 40% of the title, while it is about 70% for the more

popular titles. The category of the title (e.g. movie, music video, TV show, or sporting event)

also affects the session duration. The logs contain information about rebuffering events, with

80% of sessions having no rebuffering events and 8% having more than 3 rebuffering events.

Skips occur in 62% of sessions, there are an average of 6 skips per session, 80% of skips are for

intervals that are less than 5 minutes of content, and rebuffering events tend to induce skips. For

the Netflix workload in Section 5.4.3, we measured an average of about 2 transient phases per

session (where transient phases are caused by events such as skips or switching bit rates for rate

adaptation), so skips appear to be more frequent for this Tencent workload than for our Netflix

workload. We do not currently model browsing for our workload methodology.

These studies show that users behave similarly for all of these different video services. Many

sessions (30-60%) last for less than 20% of the title, and only 10-30% of sessions are for more

than 90% of content. Unfortunately, we could not use these studies directly to create a workload

specification because they are incomplete. They contain only information about user behaviour

during sessions, and not the characteristics of the titles (such as popularity or duration) that are

watched.

Capturing Traffic from Clients

Although instrumenting clients is an excellent method for obtaining detailed information about

user behaviour, researchers do not usually have access to the proprietary information collected

from instrumented clients, or have the access necessary to add their own instrumentation to client

implementations. As an alternative, a number of researchers collect information by capturing all

the raw HTTP requests from clients on a subnetwork, and can infer the behaviour of users by

analyzing the raw requests. This analysis can be difficult. For example, the raw HTTP requests

18

refer to URLs, and it may not be clear which title is stored at a particular URL. If the URL being

used by a client changes, there are two potential causes: it may indicate that the user switched

titles (and therefore ended one session and started another), or it may indicate that the client

changed to accessing a different bit rate version of the same title as part of rate adaptation.

Finamore, et al. [34] collect information about HTTP requests in 2011 from two different

types of YouTube clients that use different access mechanisms, named PC-player and Mobile-

player. In general, PC-player clients run in browsers on desktop computer and laptop computers,

and Mobile-player is used with smart phones and all other devices, including non-mobile devices

such as smart TVs that run custom application on iOS or Android operating systems. We found

this study to contain the most complete information about streaming video workloads of all the

studies we examined. We use the characterizations of titles and sessions from this study for the

workload specification in Chapter 3. The authors use tstat to classify traffic and generate fine-

grained flow-level statistics about viewing sessions. They generate information about sessions,

including the amount of time spent viewing videos and the percentage of title content that is

downloaded. They find resolution switches are rare; only 5% of PC-player and 0.5% of Mobile-

player sessions include a resolution switch, and fewer than 0.3% of PC-player sessions have

more than one resolution switch. Because of these low numbers for resolution switches, we do

not model adaptation for our workload specification in Section 3.2.2. The authors find that 60%

of videos are watched for less than 20% of their duration, and only 20% of users watch the entire

video. They also provide some low level details of bandwidth use by clients. The PC-player

uses a single persistent TCP connection to download a burst of data at a high transfer rate at the

start of a session, then downloads data at a steady lower transfer rate after a few seconds, with the

server responsible for pacing the download rate. The mobile-player similarly downloads at a high

transfer rate for the first few seconds, then transitions to a mode where each individual segment

of data is downloaded using an HTTP range request over a new TCP connection. The mobile-

player client is responsible for pacing the download rate and issues requests on approximately a

3 second interval, with about 1 second being required to download the requested segment. The

authors do not provide information about the popularity distribution of different titles, so we

must obtain that information from other studies.

Gill, et al. [39] provide a comprehensive characterization of the YouTube workload in 2007,

with results that are similar to Finamore, et al. [34]. The authors collect information about

626,000 requests for 324,000 unique videos on their University campus and characterize the

aggregate average download rate by clients over different periods of time. They find that title

popularity has a Zipf distribution with α = 0.56, and that fewer than 10% of titles viewed one

day are also viewed the next day. Titles are encoded with nearly uniform bit rates with a mean of

394 Kbps and median of 328 Kbps. Based on this information, we use a single fixed bit rate for

our workload specification in Section 3.2.1. The main drawback with their work is that although

19

both title durations and session durations are measured, the authors do not relate the two; whereas

Finamore, et al. [34] provide sessions durations as a fraction of title duration, which is a form

more convenient for specifying a workload.

Zink, et al. [98] captured traces of YouTube traffic at the edge of a campus network over

six different time periods in 2007. They measure the popularity of titles and find the traces all

have similar Zipf distributions, and about 75% of titles are requested a single time over a 24

hour period. They also measure the distribution of session durations, and find average durations

between 75 and 99 seconds for different traces.

These three YouTube workload studies give similar characterizations (where they overlap)

despite being collected from different networks and different years, and are therefore the source

of most of the information used to create a workload specification for the benchmark in Sec-

tion 3.2.

In addition to YouTube studies, there are also studies that analyze traces collected at the edge

of networks from Netflix clients. Laterman [51] collected traces from both Netflix and Twitch

clients over 5 months in 2015 at the University of Calgary. Laterman analyzes 305 million HTTP

requests issued by Netflix clients using 14.3 million TCP connections over the collection period

to characterize the requests, to analyze the popularity distribution of the titles that were selected,

and to show how the volume of requests fluctuates over time. The measured characteristics in this

study are similar to the results we obtain in Section 5.2.4. The data collected at the University

of Calgary is not representative of the workload of a Netflix server since it combines requests

to potentially many different servers. Additionally, the aggregate demand from the University

of Calgary is much lower than that for Netflix servers. From our two Netflix server logs (as

described in Table 5.1), we determine that a single day of demand for the Netflix catalog server

is equal to about 20 days of demand from the University of Calgary and one day of demand for

a flash cache server is equal to 50 days of demand from the University of Calgary.

Crawling and Scraping Web Sites

Some researchers are not interested in session characteristics and analyze only information about

titles, such as number of views (popularity), user-assigned rating, number of user comments,

duration and bit rate. In these cases, it is not necessary to instrument clients or capture client net-

work traffic, but instead researchers can obtain information about titles by crawling and scraping

the websites of service providers. Some service providers also offer APIs that supply this infor-

mation directly. Researchers can observe dynamic changes in title characteristics, if information

is periodically sampled. In particular, the evolution of popularity can be characterized by sam-

pling view counts periodically. For this thesis, we are interested in the short-term characteristics

20

of streaming video workloads and not longer-term characteristics such as the evolution of title

popularity, so we are mainly interested in these studies to find detailed information about title

characteristics such as duration and bit rates.

Cheng, et al. [24] use a crawler to study YouTube videos. We use their information about

the distribution of title durations for our workload specification in Section 3.2.1 because it is

comprehensive and clearly presented. A major methodological issue they must solve is that

YouTube does not provide a list of all available videos. YouTube provides some short lists of

titles, such as “Most Viewed” and “Top Rated”, and for each individual title, YouTube web pages

include lists of related videos. The authors construct a list of videos to track by starting from a

small set of “top rated” lists and then expand that list by visiting the individual web pages for

videos in the list to add 20 videos that are related to the original list. They repeat the procedure of

visiting pages and adding related videos to a depth of four. After repeating this procedure many

times on many different days, the researchers obtained information about more than 2.7 million

videos (out of an estimated 43.5 million). Using this information, the authors produce detailed

distributions of characteristics of the videos in the list, including a distribution of title durations,

title bit rates, and the number of views for each title (representing the popularity of titles). This

study provides the most detailed information about title durations and bit rates of the studies we

examined, and although the data was collected in 2007, a recent study by Che, et al. [20] found

that the title durations in 2013 are largely the same, except that there were more titles longer than

10 minutes because YouTube raised its limit on title duration to 15 minutes.

Cha, et al. [19] investigate the popularity of YouTube titles, as well as Daum UCC, a Korean

user generated video site in 2007. They perform a detailed analysis of video popularity, to de-

termine whether the popularity distribution is Zipf, log-normal, or exponential. They discuss the

potential mechanisms that could result in the different distributions and determine that the pop-

ularity distribution is Zipf-like, with an exponential cutoff in the tail of the distribution that they

speculate is caused by a lack of information about available titles. The authors analyze dynamic

changes in popularity to determine that caching the top 16% of the most popular videos, aug-

mented by the 10,000 most popular videos from the previous day, would result in an 83% cache

hit rate. They also determine that 5% of videos are requested at least once every 10 minutes,

and because these are the most popular files, peer-to-peer delivery could reduce the server work-

load by 41%. These findings could be applied to improve the implementation of control plane

algorithms, and therefore could have an indirect effect on the workloads of individual servers.

Mitra, et al. [64] investigate 4 short video services, Dailymotion, Yahoo!, Veoh and Metacafe

by collecting information about 1.9 million titles in total, and show the popularity distributions

are largely similar to the YouTube workload that is characterized by the three studies we de-

scribed in the previous section. Mitra, et al. provide two measures of popularity, views since

upload and viewing rate (defined as the increase in number of views between two crawls, di-

21

vided by the interval between crawls). The measured popularity distributions for viewing rates

are much more Zipf-like than the distributions for views since upload, which tend to have pro-

nounced cutoffs. The authors argue the viewing rate is more relevant when analyzing caching

algorithms because an old title that has many accumulated views may appear to be more popu-

lar than a recent video which has not had time to accumulate many views, leading to incorrect

caching decisions if the current viewing rate is actually higher for the recent title. This reasoning

suggests that viewing rate distributions should be used to specify workloads. For this reason, in

Chapter 3, we use a Zipf distribution without cutoff to represent title popularity.

For all of these studies, the authors could measure the popularity of titles and characteristics

such as title duration and bit rate using publicly-available information. The main drawback is

that the collected lists of videos do not necessarily include all videos available from the different

services, so the lists are potentially biased by the method used to construct lists of videos, which

in most cases are skewed towards the popular titles. Borghol, et al. discuss biased sampling of

YouTube videos and provide a method for unbiased sampling [14]. Another drawback is the lack

of information about which servers are used to store the titles, so there is no way to determine

which titles are supplied from any particular server. Since there is no information about the

workloads of individual servers, we assume the workload of an individual server is similar to the

aggregate workload (except for scale) when we create a workload specification in Chapter 3. In

Chapter 5, we characterize the workload of an individual Netflix server.

Using Server Logs

The most accurate information about server workloads is contained in server logs and traces,

which capture activity from all clients, regardless of the network location of the clients. Service

providers usually collect more information than they publicly supply, and it can be difficult to

convince service providers to share this proprietary information. Ideally, we would be able to

determine the workload of an individual server from these studies, but in all cases, the authors

analyze the aggregated logs from all servers and do not provide information about individual

servers. Our primary interest in these studies is to obtain more information about sessions, such

as session duration, which portions of titles are watched and user actions such as pauses and

skips.

Yu, et al. [96] obtained logs containing information about 21 million sessions that occurred

over 219 days from all servers of the Chinese PowerInfo VoD service, which supplies titles with

long durations. Our primary interest in this study is information about how the shape of the Zipf

popularity distribution changes from day to day, and about session durations, to help develop the

benchmark in Chapter 3. For each session, the server logs contain a title ID, the session start and

22

end time, and a code identifying the server that supplied the content. They report changes in the

arrival rates of new user sessions over time, the popularity of titles, changes in popularity over the

“life span” of a title, and session durations (in minutes). The authors find that 53% of sessions

are shorter than 10 minutes. They find that sessions tend to be shorter for more popular titles

than less popular titles, which is the converse of the findings of Chen, et al. [21]. As a result, for

our workload specification of Section 3.2.2, we choose session durations independently of title

popularity. The popularity distribution is Zipf-like with cutoff, and the distribution varies only

slightly from day to day; the Zipf α parameter has a mean of 0.8 and standard deviation of 0.07.

Because of the relatively small daily variation in the Zipf α parameter, we use a constant Zipf

parameter for our workload specification in Chapter 3.

Costa, et al. [29] obtained server logs from two streaming video services in 2004: eTeach,

which contains educational content (including lectures) at the University of Wisconsin-Madison,

and UOL, a VoD service in Latin America. The title durations are relatively short, 75% of eTeach

titles are shorter than 10 minutes and 97% of UOL titles are shorter than 5 minutes. The authors

measure the hourly and daily variation in server load, the popularity distribution of content,

and session inter-arrival times. They find that the popularity distribution is Zipf and session

arrivals are exponentially distributed. As a result, we issue requests using a Poisson process

(which produces an exponential distribution) for our benchmark, as described in Section 3.4.

They make detailed measurements of sessions: the starting points in the title, intervals between

pauses, the duration of pauses, the number of skips, and the skip intervals. They did a thorough

analysis of skips and pauses during sessions and found that when the title duration is longer than

15 minutes, sessions include an average of 3 pauses and 2 skips, with skips backward slightly

more likely than skips forward. For sessions with multiple skips or pauses, users are likely to

repeat the same action (e.g., skip forward repeatedly). Less than 20% of sessions shorter than 5

minutes include skips, so for our short video workload in Section 3.2.2 we use a simple session

model that does not include skips. This is the only study we could find that provides information

about which portions of titles are viewed during sessions. The distribution of access frequencies

for the educational content is roughly uniform for popular files (usually lectures longer than 15

minutes) and skewed towards the start of titles for less popular titles. For entertainment titles, the

distribution of access frequencies is skewed towards the start regardless of popularity. We find

that the title access pattern for the Netflix workload, shown in Section 5.2.2, are similar to the

pattern for popular educational content rather than short entertainment titles.

Summary

Considering all of the studies using different sources of information, we conclude: 1) the popu-

larity of titles usually has a Zipf-like distribution (with an α value likely between 0.5 and 0.8),

23

possibly with a cutoff in the tail, depending on how the data is collected. 2) Most sessions do

not last for the full duration of a title, and a significant number of sessions are very short. 3)

For short video services, such as YouTube, users usually start watching from the beginning of

the title. For titles with long durations and live video streams, the distribution of starting points

varies depending on the content type and access frequencies. They are either uniform, or skewed

towards earlier title positions. 4) Skips and pauses appear to be common for sessions with long-

duration titles, and uncommon for short-duration titles. This information helps us to determine

which characteristics to model for our workload methodology in Chapter 3. In particular, for the

workload specification, we decided that all sessions start from the beginning of a title and do not

include skips, which is a reasonable simplification for a short video service. The lack of specific

information about the workload of individual servers, and the differences between short-duration

and long-duration video services, are the main motivations for characterizing the Netflix server

workload in Chapter 5.

2.2.2 HTTP Streaming Video Implementation Details

The workload studies in the previous section provide high-level characterizations of the work-

load, but not much low-level information about how the implementation of clients or servers

generate these workload characteristics. In particular, we are interested in how pacing is im-

plemented. Depending on the service, pacing can be implemented either by the clients or the

server. We are interested in low level details for two reasons. First, the benchmark of Chap-

ter 3 must represent HTTP streaming video clients accurately, so it must implement one of these

methods for pacing. Second, knowing the implementation details of Netflix clients will aid in the

interpretation of server logs in Chapter 5, which contain records of individual HTTP requests.

Client-based Pacing Implementations

With client-based pacing, the client is responsible for controlling the download rate from a con-

ventional web server. Begen, et al. [12] provide an overview of implementation issues for stream-

ing clients and describe a number of implementations that perform rate adaptation: 3GPP (3rd

Generation Partnership Project), Microsoft Smooth Streaming, and Apple HTTP Live streaming.

Their study provides information about request sizes and inter-arrival intervals between requests

that are necessary to reproduce client request patterns accurately. This information about a num-

ber of specific services enables us to infer common implementation details that we mimic with

our workload generator in Section 3.4.

24

Mansy, et al. [62] study clients for YouTube, Netflix, and Hulu over WiFi and 3G networks

and measure inter-arrival rates of requests. This study was published in 2014, after we created our

workload specification in Chapter 3, so we use this study primarily to augment our interpretation

of the Netflix server logs in Chapter 5 and to understand the evolution of YouTube. The authors

describe the on-off behaviour of clients: clients start in a buffering phase where content is down-

loaded as fast as possible, followed by a steady state phase where clients alternate between an on

state when content is being downloaded and an off state when no content is downloaded. They

describe two methods of implementing on-off behaviour. For iOS clients of all three streaming

services and Android YouTube clients, the on state corresponds to the download of an individual

range request and the off state occurs between the completion of one request and issuance of the

next request. For Android clients of Netflix and Hulu, the on-off behaviour occurs inherently as

part of TCP’s flow control mechanism.

The authors also provide information about the number of TCP connections used. Some

clients establish a new TCP connection for each request, some use a persistent connection for all

requests (starting a new connection when the bit rate changes), and some use a new connection

for every few requests. In Section 5.2.4, we perform an analysis of request sizes and TCP con-

nection use for many different Netflix clients including iOS, Android and many others, and we

observe the frequent use of parallel TCP connections which were not reported by Mansy, et al.

Server-based Pacing for YouTube

For the studies of the YouTube workload that we describe in Section 2.2.1, the majority of con-

tent is delivered with the YouTube servers controlling the pacing. The PC-player described by

Finamore, et al. [34] and the player described by Gill, et al. [39] request an entire file at once (po-

tentially starting from a non-zero file offset) and the server sends data at an average rate slightly

above the bit rate of the content.

Alcock and Nelson [7] analyze packet header traces in 2011 to provide detailed information

about the server-based pacing method used by YouTube, which they call block sending. At

the start of a session, YouTube servers send an initial burst of 32 seconds of content, followed

by the periodic transmission of content in 64 KB blocks at an interval timed to result in an

average download rate about equal to the bit rate. They show that this technique causes network

congestion and is the cause of 40% of packet loss events for YouTube traffic, resulting in between

1% and 1.5% of YouTube content being retransmitted unnecessarily. Ghobadi, et al. [35] propose

a solution to this problem that involves placing an upper bound on the TCP congestion window

size based on the bit rate of the content and the round-trip time. The authors (some of whom

work for Google) implemented this solution in production servers and reduced retransmissions

25

by up to 50%, illustrating the value of modifying servers based on the analysis of workload

characterizations.

For our benchmark in Chapter 3, the workload specification is based on YouTube because

there are more studies that contain information pertinent to constructing a workload specification

and because the short title durations support short experiment durations. However, we do not

implement server-based pacing, but instead use clients that support range requests for pacing,

because it is easier to observe HTTP requests than changes in the TCP receiver window size.

Additionally, server-based pacing requires customized servers that keep state information for

each client, and it is easier to use client-based pacing with conventional web servers.

2.2.3 Streaming Video Benchmarks

We require an HTTP streaming video benchmark to use for experiments with web servers in a

lab environment. However, we could not find a suitable benchmark. In order to create our own

benchmark, we survey the literature to find existing benchmarks that could be customized or

modified. We also examine HTTP streaming workload generators that generate artificial traces

that could be the basis for a benchmark.

Workload Specification Generators

Zink, et al. [98], in a study that characterizes a YouTube workload from traces captured in 2007,

explain how to use their measured data to generate a list of sessions. For each session, a title

is chosen based on the measured popularity distribution, and the number of bytes of content to

download during the session is chosen based on the measured distribution of session lengths

from the traces. Using a measured distribution to determine the number of bytes transferred in a

session is inflexible because it is not necessarily clear how changing workload parameters such

as title duration or the mix of bit rates will change the distribution of session lengths in bytes. In

Chapter 3, we compute the number of bytes as the product of the duration of the title, a viewing

fraction and a bit rate, where the title duration distribution, viewing fraction distribution and bit

rate are all specified independently and could be obtained from different workload studies or

based on projections of future workloads.

Abhari and Soraya [1] crawl and scrape the YouTube website in 2008 to collect information

about 43,000 titles for use with their workload generator. The workload generator consists of

two parts. One part is a server workload generator that specifies the sizes of files required to

store the titles in the catalog. The other part makes use of the “related video” lists to simulate

a series of session with the same user: either selecting a title from the entire catalog using the

26

measured popularity distribution, or from the related video list for that title. The drawback of this

generator is that session durations are not modelled because session duration information cannot

be determined from crawling the YouTube website. We do not model related video lists in our

benchmark. The popularity boost from being on a related list is reflected in the overall popularity

distribution, so the effect of related video lists is reflected in our benchmark, even though related

lists are not explicitly modelled.

Tang, et al. [93] developed the MediSyn streaming workload generator. Their focus is on

generating long-term workloads. They allow for new titles to be added to the catalog and changes

to the popularity of titles as they age after the time of introduction. There are two steps to

workload generation: 1) file property generation, where the duration, bit rate and popularity are

assigned from measured distributions; and 2) file access generation where sessions are created

by choosing a file based on popularity (accounting for the age of the title) and choosing a session

duration. We are interested in conducting experiments that last at most a few hours (because of

the need to run multiple experiments for comparisons), where it is reasonable to assume that the

catalog contents and title popularity distributions do not change. In Section 3.2, our method for

choosing title and session characteristics is similar to MediSyn; but the modelling of long term

popularity shifts would be more useful for testing control plane algorithms for placing content

on servers.

Benchmark Implementation Platforms

General-purpose workload generators, such as SWORD [9], BenchLab [18], and TCSB [28] can

be used to benchmark HTTP-based systems but these generators have not been configured specif-

ically to produce HTTP streaming video. If we were to use one of these benchmark platforms,

we would still have to generate a workload specification in the required format and to provide

clients. An advantage to some of these benchmarks, like BenchLab, is that they use existing

client implementations and potentially eliminate the need to implement a simulated client. The

disadvantages are that it may be difficult to reproduce the infrastructure needed to support an ex-

isting client (such as a control plane for supplying manifests), and it may be impossible to bypass

DRM (digital rights management) to obtain properly encoded files for playback. For our bench-

mark, we use simulated clients so that we do not need to supply additional infrastructure and so

that we do not need to use any specific encoding for our many test files. We use httperf [65],

an existing HTTP traffic generator; this approach is shared by several other benchmarks, such as

StreamGen [61] (which is targeted at distributed applications with complex data flows).

27

2.2.4 Improving Server Implementations

In order to achieve our goal of improving web server implementations, we examined existing

studies that address this issue. Traditionally, the performance of the disk has not been a limiting

factor for web server performance. In many cases, the workloads used to evaluate different web

servers are not much bigger than the file cache, so there is little disk access and the results may

not apply to workloads where that is not true. For example Choi, et al. [25] tested with 5 different

traces, with a cache hit rate of 88.3% for one trace and more than 99.5% for the others. Pai, et

al. [75] performed experiments over a range of workload sized from 15-150 MB, which is not

much larger than the 128 MB of system memory for their experiments. Because streaming video

workloads are typically too large to fit in system memory, the long tail of less popular content

that is requested must be read from hard drives. Techniques such as disk I/O scheduling and

aggressive prefetching are critical to maximize the throughput of reading less popular content

from hard drives. Disk performance is not often discussed in research specifically about web

servers [42], so we must consider more general research for improving disk performance. Addi-

tionally, existing studies usually do not examine a streaming video workload. There are studies

that examine streaming workloads or sequential workloads, but they assume that the entire file is

always downloaded, which is not true of streaming video workloads.

In the next section, we describe research about the use of prefetching to exploit the spatial

locality of a streaming video workload to improve disk throughput, we discuss memory manage-

ment issues that arise from aggressive prefetching, and we consider how title content should be

stored on hard drives.

Prefetching

The main benefit of using prefetching with a streaming video workload is that it reduces the over-

head of reading from disk. Hard drives have high sequential throughput, but it takes a relatively

large amount of time to move to a new location on disk, due to the time required to move the hard

drive head and the rotational latency. The main challenge with prefetching is to decide how much

data to prefetch at a time. Considering only the throughput of the hard drive, prefetches should

be as large as possible. However, the duration of viewing sessions may not be predictable, since

users often stop watching the video before they reach the end, so there is a concern that some

prefetched data will never be requested by a client, and therefore the effort spent prefetching may

be wasted. Another concern is that if too much data is prefetched, there may be cache pollution

or the page replacement algorithm will evict prefetched content before it can be requested.

The requests issued by individual clients may be highly sequential, but when hundreds or

thousands of clients access the same server concurrently, the requests from clients are inter-

28

leaved and requests arrive at the server in a non-sequential, seemingly random order. Recogniz-

ing if there are sequential accesses in the server workload, to find opportunities for increasing

throughput by prefetching data, can be a difficult problem. Li, et al. [54] survey different defini-

tions of sequentiality that have been used, and discuss three features that differentiate algorithms

for detecting sequentiality in workloads: 1) how many interleaved sequences of requests can be

recognized, 2) whether strided access is recognized or if requests must be strictly consecutive,

and 3) whether there is a limit on the inter-arrival time of requests. In Section 5.3, we devise the

chain abstraction to represent the sequentiality of the Netflix workload, where we describe our al-

gorithm for recognizing sequentiality to create chains. In terms of the sequentiality features used

by Li, et al., our algorithm for creating chains: 1) recognizes any number of concurrent chains, 2)

requires that requests be strictly contiguous, and 3) permits at most a 40 second (but adjustable)

inter-arrival gap. In addition to the features described by Li, et al., our chain algorithm accepts

out-of-order requests, which they do not.

Li, et al. [56] provide a 2-competitive algorithm for determining the prefetch size. They

consider two costs of reading data: the time required to transfer the data from a hard drive and

the time it takes to reposition a hard drive head between the end of one read and the start of

the next (including the seek time, rotational delay and other overhead). They prove that if the

prefetch size is chosen so that the transfer time for the data is equal to the average repositioning

time, the time required to service the workload will be at most double that of the optimal offline

algorithm (that has knowledge of exactly how much data will be requested during each session).

This algorithm is not always the best choice, particularly if there is not enough system memory

available to store prefetched data. We use this rule in Section 4.5 to choose the initial prefetch

size for our automated algorithm, but as the experimental results show, the initial prefetch size is

not always the best choice.

Panagiotakis, et al. [76] use a large fixed size for prefetching. They compare different prefetch

sizes and show that, when servicing 100 sequential streams, the best prefetch size improves

throughput by 4 times compared to not prefetching. Their experiments differ from ours in Chap-

ter 4 because they use an artificial workload of equal length streams rather than a streaming video

workload with a wide variety of session lengths. Also, their server only reads data from the hard

drive and does not transmit data over the network to clients, which affects the accuracy of their

results because as we show in Section 3.6.2, server throughput can be different when servicing

clients with limited network bandwidth. They do not provide a method for choosing the best

prefetch size, or any of the other parameters for their prefetch algorithm, but instead illustrate

the effect of varying those parameters. Our automated algorithm described in Section 4.2, has

similarly large benefits as Panagiotakis, et al., in the best case increasing throughput by up to 5.2

times compared to not prefetching.

For large streaming video services, particularly those that implement rate adaptation, clients

29

request content at many different bit rates. Gill and Bathen [37] analyze a model where there are

endless steady streams at different bit rates and prefetched content is stored in an LRU memory

buffer, and prove that the prefetch size should be proportional to the bit rate. We discuss these

findings in detail in Section 4.3 and present our own analysis using different assumptions than

Gill and Bathen. In contrast, we show that the prefetch size should be set proportional to the

square root of the bit rate.

Memory Management

A streaming video workload can potentially benefit from both caching and prefetching; with the

use of caching to reduce disk requests for the most popular content and prefetching to increase

disk throughput to service the long tail of less popular content. Both caching and prefetching

require the use of system memory to store content until is requested by clients, and because

system memory is limited, it is necessary to balance these two uses. Depending on the memory

management algorithm, overly large prefetches can cause either cache pollution (i.e., a decrease

in the cache hit rate) or cause prefetched data to be evicted before it can be requested.

Bhatia, et al. [13] provide an algorithm that adjusts the prefetch size so that there are no

evictions, essentially setting the prefetch size based on feedback from the memory management

algorithm. We found that this algorithm is too restrictive. We include experiments in Section 4.5

where server throughput is higher when a small number of evictions are allowed. We find there

is a need to balance the benefit of higher disk throughput against the cost of more evictions.

The problem of integrating prefetching and caching has been widely studied. There are a

number of studies that propose algorithms for combining prefetching and caching [78, 17, 50],

but these studies consider single-threaded workloads, so it is unclear whether the results hold for

web server workloads with hundreds or thousands of concurrent clients. Other authors propose

an approach that does not combine the caching and prefetching algorithm, but instead divides

system memory into separate pools, for exclusive use by either prefetching or caching. These

algorithms, such as DULO [46] and SARC [38], resize the pools to obtain equal marginal benefits

from prefetching and caching.

For this thesis, we do not investigate memory management issues, because these algorithms

are implemented in the kernel. We expect that the kernel we use has a memory manager that is

adequate for our prefetch algorithms and we closely monitor the memory manager for signs of

excessive cache pollution or evictions.

30

Storage for Titles

The increase in throughput from prefetching will be greatly reduced if title content is not stored

sequentially on disk. This is an important consideration because the placement of data on a hard

drive is determined by the file system. Normally, the kernel does not allow an application to

control the placement of data or to easily determine the placement of a file on disk. Because of

this, the choice of file system can impact the performance of servers, and the best choice of file

system depends on the characteristics of the workload, as demonstrated by Sehgal, et al. [84].

We are able to obtain good performance from the default FreeBSD file system using procedures

outlined in Section 3.5, so we do not investigate file systems any further in this thesis.

2.3 Chapter Summary

In this chapter, we describe the methods used to deliver HTTP streaming video. We describe

pull-based streaming video client applications, explaining how the client communicates with the

control plane to determine which server to use for downloading content. Then we describe how

the client maintains a playout buffer of content in case of excessive network latency. Importantly,

there is a limit to the amount of content the client places in the playout buffer, after which it refills

the buffer at the bit rate of the content as it is watched by the user (called pacing).

We then survey the work related to servicing HTTP streaming video workloads using four cat-

egories: characteristics of titles and sessions in the workload, implementation details for HTTP

streaming video clients and servers, existing benchmarks, and general methods for improving

web server efficiency. We did not find any single study that could provide all details of the

workload at an individual server, so we combined several studies to create the workload speci-

fication in Section 3.2. We describe the available benchmarks with workloads similar to HTTP

streaming video, but found none that adequately reproduce the client behaviours in the studies

we examined.

We examine work related to improving server performance in three areas: 1) We survey the

literature about sequential prefetching, since a streaming video workload is highly sequential.

2) Since both caching and prefetching are important to servicing streaming workloads, we de-

scribe the research on strategies for partitioning system memory between these two uses. 3) We

consider potential issues with the file system.

In the next chapter, we make use of the extensive research about YouTube streaming video

workloads to create a benchmark that produces a workload that is meant to approximate that seen

by a YouTube server.

31

Chapter 3

Workload Methodology

In this chapter, we create a benchmark for testing web server implementations. We then use the

benchmark to experimentally evaluate three different web server implementations and show we

can double the throughput of a web server when servicing an HTTP streaming video workload.

There are three specific goals for our web server benchmark. First, it should generate web

server loads that are representative of what would be observed at HTTP streaming video web

servers in real deployments. Second, the benchmark should measure the performance of web

servers by running for a sufficient length of time and by isolating and removing the effects of

starting and stopping experiments. Lastly, since we anticipate using benchmarks to test a variety

of web servers, including different design and implementation alternatives, we ensure that each

experiment does not run for too long, otherwise the benchmark is unlikely to be used.

We use the benchmark to evaluate three different web servers: Apache, nginx and the

userver. We determine that they all exhibit unexpectedly poor disk throughput. We then de-

termine that there are two issues that contribute to the poor throughput: storing titles separated

into multiple files (called chunks) rather than a single file and that the kernel interleaves concur-

rent disk requests which prevents kernel prefetching algorithms from improving disk throughput.

We modify the userver web server to perform Asynchronous Serialized Aggressive Prefetch-

ing (ASAP), and show that in concert with storing titles in a single file, this technique doubles

server throughput compared to web servers that do not implement ASAP.

Our methodology for creating benchmarks and running experiments was published in the pro-

ceedings of the 5th Annual International Systems and Storage Conference (SYSTOR 2012) [91]

and appears in Sections 3.1 through 3.4 and 3.6. We published our investigation of whether to

store titles in chunks or unchunked in the proceedings of the 22nd International Workshop on

Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2012) [92]

32

which appears in Section 3.5. The experimental results in Section 3.7 are collectively reported

in both of these papers.

3.1 Overview of the Methodology

Our primary objective for this chapter is to devise flexible tools and methodologies for construct-

ing HTTP streaming video benchmarks that can be used to understand, compare and improve the

performance of web servers. Although the work in this thesis is focused on web server perfor-

mance, another potential future use for the benchmark is to evaluate the use of proxy caches and

CDNs.

Our methodology for generating a workload and benchmark is divided into separate phases:

1. Specify a workload: This requires characterizing a workload by understanding what are

believed to be the important observations and parameters (including distributions) required

to sufficiently characterize a workload.

2. Construct a workload: This is accomplished by supplying the workload specification to a

workload construction program which creates artificial traces (wsesslogs) that are used

by httperf to generate the desired load.

3. Set up the experiment: This phase includes setting up the networking, client, and server

environments. This includes populating the server with files that will be requested and

setting up dummynet on all of the client machines to mimic the desired mix of networks.

These steps are performed using information from the workload specification.

4. Run the benchmark: The final phase is to execute the benchmark and collect the perfor-

mance data.

Figure 3.1 illustrates these different phases. It is important to note that, in this chapter, we

generate workloads based on the information we have obtained from several different papers that

characterize YouTube video requests. Later, in Chapter 5, we characterize Netflix traffic, which

could be used to create a workload specification for use with this methodology.

From our survey of existing workload characterization papers, we discovered a number of

common issues in serving HTTP streaming video workloads that we want to capture in our

benchmark design.

33

constructor Switch

specification

Workload

Log files

httperf
wsesslogs

Client 1 Client 2

httperf

dummynetdummynet

httperf

File set
constructor Server

File set
Workload

Figure 3.1: Overview of the methodology

• Titles are not always watched to the end, and we want to capture that behaviour. This is done

by generating client sessions that ask for an appropriate fraction of a title.

• We expect that many streaming video workloads will be disk intensive, so the methods used

to store content in the file system can have a large influence on performance. Very little

information is available about the specific methods used to store content on servers, so we

have made this portion of the methodology flexible. In particular, we experimentally evaluate

whether to store content in multiple files (which we refer to as chunked) or in a single file

(unchunked). We must support two different forms of HTTP requests for these alternatives:

HTTP range requests for unchunked titles and normal HTTP GET requests for chunked titles.

We are also careful when we create the catalogs of titles used for experiments because the hard

drives we use implement zoned bit recording, which means that data on the outer tracks can

be accessed with higher throughput than those on inner tracks. We ensure that titles are placed

at approximately the same disk positions regardless of how titles are stored.

• We assume that HTTP requests related to searching and browsing for titles occur on a separate

machine. This is how large streaming video systems are designed in practice [34, 96] and it

simplifies the benchmark.

• Because we obtained measured characteristics of the YouTube workload from existing studies,

our benchmark reproduces the actions of older YouTube clients that did not employ adaptive

streaming. Fewer than 5% of YouTube sessions involved a resolution switch and a majority of

those switches occurred in the first 10 seconds [34], so we do not include resolution switches

in our benchmark. We discuss the behaviour of adaptive clients in Chapter 5.

34

3.2 Workload Specification

Our goal in designing benchmark workloads is to accurately model the request traffic seen by

real web servers streaming titles to clients. However, satisfying this goal is not sufficient to

ensure benchmark results that are representative of web server performance in real deployments.

In real deployments, the server hardware is provisioned to match the actual workload; we instead

generate a workload based on the capabilities of the server hardware, such as hard drive capacity.

We scale workload characteristics, such as the number of different titles requested, to match the

capacity of our experimental server rather than the much larger capacity of real deployments.

There are also a number of pragmatic secondary goals that affect how we design our work-

loads. For example, although most workloads model current traffic patterns, workloads that are

reconfigurable can be used to model anticipated demands and traffic parameters; this can be ex-

tremely useful in planning and forecasting future design requirements. Some parameters, such

as title durations, are unlikely to be significantly different as a result of technology changes, but

values for parameters such as bit rate and client downstream bandwidth may be very different in

the future. Therefore, in designing a reconfigurable workload, we explicitly separate parameters

we expect will change over time, which enables us to quickly experiment with different workload

configurations.

In addition to reconfigurability, another workload design goal is ensuring a reasonable bench-

mark run time. The goal is to provide rapid feedback that is useful for both web server develop-

ment and configuration tuning. This led us to design workloads with sessions that are as short as

possible without sacrificing their ability to characterize the steady-state performance of the web

servers. For example, we found that in our experimental setup, workloads with 7,200 sessions

ensure that the web server performance reaches steady-state.

In the following sections, we describe in detail the specification of one example video stream-

ing workload suitable for generating a benchmark.

3.2.1 Title Characteristics

Our title and session characteristics and distributions are drawn primarily from the work of Fi-

namore, et al. [34]. This paper provides low-level details about client sessions by measuring

traffic at the edge of the network, and is a source for information regarding YouTube title char-

acteristics and download mechanisms used in 2011.

There is much debate in the literature about the shape of a YouTube title popularity distri-

bution. Some find a close fit with a Zipf distribution [39]. Others find that Gamma or Weibull

35

distributions fit more closely [24]. For our workload, we use a Zipf distribution because previous

work that measures over a short time frame, similar to our target benchmark environment, finds

that measurements follow a Zipf distribution [98]. In contrast, measurements that sample over

a longer period of time or rely on crawling the YouTube data API [24] to extract viewing infor-

mation tend to have non-Zipf-like distributions. Cha, et al. discuss these issues [19], and show

that when individual clients with Zipf-distributed title preferences are combined, the aggregate

distribution curve is not necessarily Zipf-like.

The Zipf distribution requires two parameters; we chose an alpha value of 0.8 [1] and a title

population of 10,000 for our benchmark workload. The number of titles was based partly on

the capacity of the hard drive in our server, which can hold 10,000 titles with the average size

of 13 MB. The catalog size was also chosen to suit our experiment length of 7,200 sessions.

This choice of parameters results in about 35% of requests being serviced from the cache for our

experiments.

Other choices for the number of titles are possible, and will affect the popularity distribution.

Figure 3.2 shows the popularity distributions for both our choice of 10,000 files for the catalog

and the distribution if there are 500 files in the catalog. The 10,000 title distribution is nearly a

straight line, but the 500 video distribution has a steep cut-off for ranks close to 500. We feel the

10,000 title distribution is more representative of the popularity of YouTube titles selected over

a short period of time, with about 67% of titles requested a single time compared to a measured

average value of 77% [97].

 1

 10

 100

 1000

 1 10 100 1000 10000

N
u
m

b
er

 o
f

V
ie

w
s

Rank

10,000 titles
500 titles

Figure 3.2: Popularity distributions for 7,200 sessions, with different catalog sizes

36

Another important parameter is the list of durations of the titles in the catalog. YouTube title

durations have a complicated distribution; for example there is a peak at 200 seconds (the typical

duration of a music video) and another at 10 minutes, a limit that YouTube had imposed on most

title durations (this limit has since be increased to 15 minutes, and some users are exempted

from duration limits [20]). Some authors specify the duration algorithmically as an aggregation

of normal distributions [24]. We use a CDF to represent the distribution of title durations rather

than an analytical formula because we believe the distribution is likely to be irregular for any

catalog. Figure 3.3 shows the duration distribution used for our workload, from measurements

made by Finamore, et al. [34].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 1 10

C
D

F
 (

%
)

Duration (minutes)

Figure 3.3: Duration of titles

From this distribution, we assign a duration to each title without accounting for the title

popularity. One study of YouTube [1] has suggested a very weak correlation between popularity

and title duration, with a correlation coefficient of less than 0.1, so we choose duration and

title popularity independently. An additional concern with assigning durations is that the most

popular titles make up a large proportion of the workload, so the durations assigned to these

titles may have a large effect on the proportion of sessions that might be serviced from the cache.

We assign the median title duration to the two most popular titles because if the most popular

titles are significantly shorter or longer than the median, it will have a big impact on the overall

workload.

The final title characteristic we assign is the bit rate. There are many different video encod-

ings and variable bit rates used for YouTube titles, as observed by Finamore, et al. [34], with an

37

average rate of 394 Kbps [39]. However, a single rate is used for more than 90% of sessions [34],

so we use a single fixed bitrate of 419 Kbps, chosen because it represents 10 seconds of content

using 0.5 MB of data.

3.2.2 Session Characteristics

Our workload specification must, in addition to providing the characteristics of the titles, also

specify how much of each title is downloaded by the clients. From previous studies, we know

that most clients do not watch to the end of the titles [34, 96, 22]. Session duration depends on

the duration of the title chosen, so Figure 3.4 shows the curve we use to determine what fraction

of a title is downloaded during a session, based on measurements by Finamore, et al. [34].

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fraction of Bytes

Figure 3.4: Fraction of bytes downloaded during session

We choose a session fraction independently of title properties such as duration or popularity.

For some workloads, for example the video on demand system deployed by China Telecom [96],

sessions last longer for less popular titles than more popular titles. For other workloads, like

Tencent Video [21], the opposite occurs and sessions are shorter for less popular titles. In the ab-

sence of specific measurements for YouTube traffic, we believe that choosing the session fraction

independent of popularity is a reasonable simplification.

The final needed session characteristic is the session initiation rate. Rather than assign a par-

ticular value, we instead vary the average session initiation rate in order to determine web server

38

performance limits. We could find no measurements of the session initiation rate for YouTube

traffic. However, Abhari and Soraya use a Poisson distribution for their YouTube workload

generator [1] (without providing a justification), and measured session initiation rates for China

Telecom video requests [96] resemble a modified Poisson distribution (modified to reflect lower

numbers of arrivals than expected from a true Poisson process). Therefore, we use a Poisson

process to initiate sessions.

3.2.3 Client Network Characteristics

Table 3.1 shows the access speeds we use for our clients in this workload. This data represents

the speeds of client computers in the United States used to access Akamai servers, and were

measured by Akamai in 2011 [5]. Akamai does not provide detailed information about the distri-

bution of access speeds, but instead divides access speeds into ranges and reports the percentage

of access speeds in each range, as shown in the Akamai Share column. As a result, we represent

each category with a single average rate, shown in the Rates Mbps column. For our streaming

video workload, we disregard the low speed clients reported by Akamai because their access

rates are too slow for viewing video and because they represent an insignificant fraction of the

total. We chose the specific values in the Share column based on the use of 12 hosts to simulate

clients.

Category Akamai Akamai Rates Share

Rates Share Mbps

High Above 5 Mbps 42.0% 10.0 42%

Bband 2 – 5 Mbps 38.0% 3.5 42%

Medium 0.5 – 2 Mbps 18.2% 1.0 17%

Low Below 0.5 Mbps 1.8% – 0%

Table 3.1: Client access speeds

We also model network delays between the clients and the server. We do not have information

regarding the network delay for typical YouTube clients, so we assign a constant delay of 50 ms

to both the forward and reverse paths, which is the approximate time to transmit data from coast-

to-coast in North America. We expect that delays in the real world are likely to be different than

50 ms, depending on the geographical location of servers relative to clients and the type of access

network used. If a study is produced with more detailed measurements, we can accommodate

different delay values within our framework as is the case with all other characteristics.

39

3.3 YouTube-like Benchmark

Table 3.2 provides a summary of the parameters we use to construct a benchmark that represents

YouTube traffic. We give a description of each parameter, its value or distribution, and the source

of the measurement. This table is an abstract specification. Once we target an experimental

environment, then we can produce a concrete implementation of the abstract session specification

that is specific to the test equipment.

Parameter Description Value used Source

Video Popularity Distribution Zipf α = 0.8 [1]

Video Count 10,000

Video Duration Distribution See Figure 3.3 [34]

Video Bit rate 419 Kbps [39]

Session Length Distribution See Figure 3.4 [34]

Session Arrival Process Poisson [48, 47]

Session Count 7,200

Session Chunk Timeout 10 seconds [12]

Client Network Bandwidth See Table 3.1 [5]

Client Network Delay 50 ms, one way

Client Request Size (MB) 0.5 and 2.0

Client Request Pacing Yes

Client Adaptation None [34]

Server Storage Method Chunked

Server Chunk Size (Time) 10 s and 40 s

Server Chunk Size (MB) 0.5 and 2.0

Server Chunk Sequence By Session

Server Video Placement Random

Server Warming Size 3,500 chunks

Server Ramp-Up 200 sessions

Server Ramp-Down 100 sessions

Table 3.2: Summary of workload specification

An important implementation detail for the benchmark is how to implement pacing so that

the average download rate for content is approximately equal to the encoded bit rate of the

content. For most YouTube clients, pacing is implemented by special algorithms on YouTube

40

servers [34, 39]. We prefer that our benchmark be usable without requiring YouTube-specific

server modifications, so we implement pacing using a pull-based mechanism based on Apple’s

HTTP Live Streaming platform [12], that is also similar to the methods used by Netflix clients

to download content (described in Section 5.1.3). Titles are divided into segments that represent

10 second intervals of combined audio and video information, and clients download this data

in chunks consisting of one or more segments. Notionally, clients first download chunks at full

speed, representing filling a playout buffer, then they request subsequent chunks at an average

rate that is equal to the bit rate of the content, representing pacing.

There are two ways to implement client chunking; the clients can use HTTP range requests

to download chunks from a single title file, or the titles can be divided into chunks and stored

in separate files that are requested by the clients in their entirety. We utilize both methods in

experiments, depending on whether content is stored in a single file or in multiple files. In Sec-

tion 3.7.2 we evaluate three alternatives for storing 10 second segments of content: a) 0.5 MB

files that contain a single segment, b) 2.0 MB files that contain 4 segments, and c) single files that

contain all segments. In addition to experimenting with different storage options, we also eval-

uate the use of different client request sizes in Section 3.7.3, either 0.5 MB or 2.0 MB requests.

For the experiments with different storage sizes and request sizes, we use six different workload

specifications to create benchmarks.

3.3.1 Experimental Environment

The equipment and environment we use to conduct our experiments were selected to ensure that

network and processor resources are not a limiting factor in the experiments. We use 12 client

machines and one server. All client machines run Ubuntu 10.04.2 LTS with a Linux 2.6.32-30

kernel. All systems have had the number of open file descriptors permitted per user increased

to 65,535. Eight clients have dual 2.4 GHz Xeon processors and the other four have dual 2.8

GHz Xeon processors. All clients have 1 GB of memory and four 1 Gbps NICs. The clients are

connected to the server with multiple 1 Gbps switches each containing 24 ports.

The server machine is an HP DL380 G5 with two Intel E5400 2.8 GHz processors that each

include 4 cores. The system contains 8 GB of RAM, three 146 GB 10,000 RPM 2.5 inch SAS

disks and three Intel Pro/1000 network cards with four 1 Gbps ports each, for a total of up

to 12 Gbps of bandwidth. The server runs FreeBSD 8.0-RELEASE. The data files used in all

experiments are on a separate disk from the operating system. We intentionally avoid using Linux

on the server because of serious performance bugs involving the cache algorithm, previously

discovered when using sendfile [40]. Additionally, at least one popular streaming video service,

Netflix, uses FreeBSD on their servers [69].

41

On the clients, we use a version of httperf [65] that was locally modified to support new

features of wsesslog and to track statistics for every requested chunk. We use dummynet [80],

which comes with Ubuntu, to emulate networks with different access speeds.

We use a number of different web servers. Most experiments use version 0.8.0 of the

userver, which has been previously shown to perform well [16, 77] and is easy for us to

modify. We also use Apache version 2.2.21 and version 1.0.9 of nginx. The default configu-

ration parameters for Apache are not well suited to servicing video. It closes persistent client

connections if a new request isn’t received within 5 seconds of the previous request and also

after 100 requests have been received. We modified these and other configuration parameters in

Apache and similar parameters in the other servers to obtain the best performance, evaluating

different potential parameters with a series of experiments, similar to the procedure used by Arlitt

and Williamson [10].

3.4 Client Configuration

Our experiments utilize 12 client hosts to generate hundreds to thousands of concurrent streaming

video sessions. Each client host is on its own gigabit subnet and we use dummynet to impose

bandwidth limits and add delay to each session. Overhead from dummynet limits each client

computer to a maximum of approximately 600 Mbps of throughput, or 7,200 Mbps aggregate

bandwidth over all clients.

We approximate the specification in Table 3.1 by configuring dummynet to allow 10 Mbps

of bandwidth on 5 of the clients, 3.5 Mbps on 5 of the clients, and 1 Mbps on the remaining two

clients. Statistics are collected separately for each client, so this configuration makes it easy to

generate statistics for individual rates. We use dummynet to delay both incoming and outgoing

packets by 50 ms to simulate network latencies and tuned the client and server TCP parameters

to handle the larger bandwidth-delay product introduced by the delay.

Our workload generator creates a trace file (called a wsesslog) for each client host that

specifies a sequence of HTTP requests for entire files or ranges within files. An instance of

httperf running on each host uses the wsesslog file to issue HTTP requests to the web

server. Figure 3.5 shows a small example of a wsesslog that contains requests for several

titles. The comments in the figure explain the requests.

Each title is requested in a sequence of chunks using a persistent HTTP connection called a

session. Sessions are initiated using a Poisson process, so the duration between session initiations

is independent with a common exponential distribution. New sessions are started independently,

simulating the access pattern of many concurrent streaming video viewers. Normally, httperf

42

requests the next chunk in a session as soon as the previous chunk is completely received, but if

a pacing delay is specified, a request will not be sent until the specified pacing time has elapsed

from the start of the previous request. This is used to emulate video player buffering and/or users

pausing a title.

Session 1: 4 chunks stored in separate files, with pacing

after the first two requests

vid01/secs-0-9 timeout=10

vid01/secs-10-19 timeout=10

vid01/secs-20-29 timeout=10 pacing=10

vid01/secs-30-39 timeout=10 pacing=10

Session 2: 3 chunks with range requests within the same file,

with no pacing

vid02 range=0-524287 timeout=10

vid02 range=524288-1048575 timeout=10

vid02 range=1048575-1572863 timeout=10

Session 3: bit rate change - 2 chunks from separate files

vid03/high/secs-0-9 timeout=10

vid03/med/secs-10-19 timeout=10

Session 4: pause/rewind/skip forward

vid04/secs-0-9 timeout=10

vid04/secs-10-19 timeout=10 pacing=60 # pause for 60 seconds

vid04/secs-20-29 timeout=10

vid04/secs-0-9 timeout=10 # skip back to start

vid04/secs-100-109 timeout=10 # skip forward

Figure 3.5: A small example of an httperf wsesslog

We also specify a timeout for each request in the wsesslog file, and if the request is not

completely serviced before the timeout elapses, httperf terminates the session. This loosely

approximates a user becoming unsatisfied with the response or video quality and ending the

session. We use the failure count as a primary indication of whether the web server is over-

loaded. The throughput figures are also affected by timeouts because only completed requests

43

are included in our throughput measurements.

In our benchmark, the first 3 chunks of each session are requested without pacing delays,

simulating the filling of a client device’s playout buffer; and subsequent chunks are paced so

they are requested at a rate of one chunk every 10 seconds. Each request is given a 10 second

timeout, to represent the requirement that data must be received before it can be played back.

Table 3.3 contains summary statistics that characterize our workloads for the two different

sizes of client requests. Both are constructed using the specification in Table 3.2 and differ only

in the request size. We do not need to include separate statistics for the three alternative storage

methods because those methods affect only the format of requests that are issued; the size and

timing of requests is the same for all three storage methods. The first four values in Table 3.3 refer

to statistics derived solely from the abstract specification, and are the same for both workloads.

The remaining values differ because session durations are rounded up to a multiple of the chunk

size.

Description 0.5 MB 2.0 MB

unique titles 3,366 3,366

single-session titles 67.5 % 67.5 %

average title duration 258.7 s 258.7 s

average title size 12.9 MB 12.9 MB

average session time 146.3 s 150.6 s

average requests per session 14.628 3.766

unique file chunks requested 60,004 16,318

total file chunks requested 105,323 27,188

number of chunks viewed once 44,478 12,293

Table 3.3: Characteristics of constructed workloads

3.5 Server Configuration

Any web server is capable of servicing the requests made by the httperf clients, which are

simple static file requests. Files that represent the titles must be created a priori on the server’s

file system. We use two different methods for generating files to represent the titles, depending

on whether the clients are configured to use range-requests or chunk requests. For chunk re-

quests, we create many thousands of chunk-size files in the same directory, in numerical order,

44

starting from a newly-installed file system. Each title in the specification is assigned a consecu-

tive sequence of chunks. Sessions are represented by sequential requests through as many of the

chunks as necessary to equal the session duration. For range-requests, we create a single file to

represent each title, with the size of a file equal to the duration of the title multiplied by the bit

rate of the title. Sessions are represented by a sequence of contiguous range requests.

Since there are two methods for storing titles in files, one of our goals is to compare the

alternative methods to determine the effect on performance. To permit a fair comparison, care

is taken to ensure that the same number of bytes of data are being requested whether the title is

stored in chunks or not. Additionally, all of the data associated with each title is as close to the

same location as possible on disk, irrespective of the size and number of chunks used to store the

title. This is required because the throughput of disk reads can be significantly impacted by the

location of the files being read.

In the following sections, we describe a procedure for creating different file sets and for con-

firming that titles are stored at comparable disk locations. We developed and tested this procedure

on servers using FreeBSD (versions 8.0 and 9.0) with the native UFS file system. It is likely that

different file systems or operating systems will use different algorithms for file placement, so

different algorithms and tools will have to be developed for other operating systems.

3.5.1 Determining File Placement

File system implementation details are hidden behind a layer of abstraction. Applications are

able to create directories and files within a hierarchy of directories, but cannot control where

files are physically placed on disk. The kernel is responsible for file placement, and it is difficult

for applications to even determine where the files are placed, let alone control the placement.

We determine the physical location of each file on disk using dtrace and the Unix wc util-

ity. dtrace is a framework that allows us to insert probes into the kernel to monitor when spe-

cific kernel functions are called, and to record the arguments to those functions. While dtrace

is monitoring the kernel, we run a script that uses wc to read every byte in every file in the file

set. We use dtrace to collect information about all calls to the internal kernel functions open,

close, and bufstrategy. We capture the names of files from the open call, and track the

close calls to determine which files are associated with bufstrategy calls. The arguments

to bufstrategy provide the logical block addresses (LBA) where the files are stored on disk.

After collecting the LBAs accessed for each file, we post-process the dtrace logs to com-

pute the average LBA for each file, including inodes. If the files represent full titles, the computed

average LBA is used to represent the location of the title. If titles are represented by multiple

45

chunks, we average the locations of the chunks to represent the location of the title. Title loca-

tions calculated in this manner can then be used to determine whether a title is stored at the same

disk locations regardless of the method used to store content in files.

3.5.2 File Set Generation

Our goal is to be able to directly and fairly compare the performance of titles stored with different

granularities and to examine the impact that decision has on web server performance. As a result,

we develop a methodology to control where files are placed on disk so that we can use the same

locations on the same disk to store different file sets (i.e., chunked and unchunked).

We use three different file sets: one using a 0.5 MB chunk size, one using a 2.0 MB chunk

size, and one that stores titles unchunked. Because title durations may not be exact multiples of

each of the chunk sizes, we pad the file sizes (with data that is never requested) to ensure that

a title occupies the same amount of space on disk, regardless of the chunk size. This helps to

ensure that for each chunk size examined, the same title data can be placed in approximately the

same location on disk.

We create a file set by starting with a freshly created file system, then writing all file chunks

in a single directory. We have observed that when starting from an empty directory, files tend

to be written to disk in sequential order starting from the location of the directory entry. We

influence where files are placed on disk by controlling the order that files are written. When

a title consists of multiple chunks, we create the chunks consecutively on disk, but we create

titles in a randomized order so there is no particular relationship between the location of a title

and the number of times it is viewed. Using the same creation order for the different file sets,

all chunks for the same title will be stored contiguously on disk, and at very close to the same

physical locations for each of the different file sets. Unfortunately, this simple procedure does

not produce repeatable results because the FreeBSD file system does not place directories in the

same location each time the file system is recreated. Since files are placed at the same position

as the containing directory, it follows that files will be placed at unpredictable locations on disk.

We work around this problem by creating a large number of directories (in this case 500),

while using dtrace to determine the location of each directory. We then create the file set in

the directory with the lowest LBA, so that the file set will be created at low LBAs.

This procedure for creating file sets is expected to place files at the fastest locations on disk,

with the chunks that comprise a title placed consecutively and with minimal file fragmentation.

This layout permits significant performance optimizations that might not be possible with file

sets that are heavily fragmented. We expect this layout could be achieved in most commercial

46

environments where title deletions are relatively uncommon, so it is a reasonable and consistent

basis for comparing file sets.

3.5.3 File Set Locations

Figure 3.6 shows the average locations of each title when the file sets are created using our

procedure. This figure shows that, for the most part, the files are placed in sequential order and

titles created earlier have lower average locations. For each file set, only about 1.2% of the files

are outliers, calculated as files that are out of sequence by more than 1% of the maximum LBA

(i.e. 3x106 LBA). Comparing the locations of files in different file sets (excluding the outliers)

shows the average divergence in location is quite low, at approximately 7x105 LBA (0.23%

of the maximum LBA). Therefore, we believe titles created using our procedure are placed at

comparable locations on disk.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500

A
v
er

ag
e

L
B

A
 (

x
 1

0
6
)

Title Number

0.5 MB
2 MB

unchunked

Figure 3.6: Video locations at low block numbers

3.5.4 Potential File System Performance

We use two different file sets, one created at low LBAs as shown in Figures 3.6 and an equivalent

file set created at high LBAs, to conduct experiments to determine the potential throughput that

47

can be obtained while reading those title files. We use wc to read all the chunks used for all titles

in the file set. The chunks making up a particular title are read in sequential order but the titles

are chosen in a random order. We repeat the experiments 15 times for each file set while using

iostat to measure average disk throughput. We calculate 95% confidence intervals using a

t-distribution for the results for each file set, which are shown in Table 3.4.

File Set Mean (MB/s) 95% c.i.

Low Unchunked 94.9 0.062

Low 2 MB Chunks 57.3 0.023

Low 0.5 MB Chunks 34.8 0.12

High Unchunked 77.7 0.057

High 2 MB Chunks 50.0 0.016

High 0.5 MB Chunks 31.9 0.085

Table 3.4: Average throughput using wc

Throughput is 10 to 25% higher when the file sets are placed at low LBAs on disk (i.e. on

outer tracks) compared to high LBAs. These results demonstrate that placement has a significant

effect on access speed and further illustrates the importance of placement when conducting a fair

comparison between file chunk sizes. For consistency, we use the file sets with low LBAs for all

other experiments in this thesis.

The results also show there is a significant difference caused by the choice of chunk size;

the larger the chunk size, the higher the throughput. The following sections explore whether the

throughput differences that occur when using wc also occur when a web server accesses the file

set.

3.6 Running Web Server Experiments

For our web server experiments, we measure the aggregate throughput of the server when ser-

vicing workloads at different request rates. We use these measurements to produce graphs, such

as Figure 3.8, that show the aggregate throughput in MB/s from requests that were completely

serviced prior to the timeout expiry. The benchmark workload is generated in an open loop fash-

ion, with the session initiation rate independent of responses from the server. However, when

timeouts occur, it affects the workload because the remaining scheduled requests in a session are

48

skipped after a timeout occurs. When the server is not overloaded, we expect the throughput to

be equal to the request rate multiplied by the size of chunks requested.

The methodology for running experiments and collecting measurements has a significant ef-

fect on the results. In this section we describe some of the methodological issues related to

running experiments. We explain how we ensure that experiments reach steady-state in a reason-

able amount of time. We then demonstrate the importance of two features of our methodology:

using dummynet to throttle network connections, and the pacing of requests. Finally, we discuss

the execution time and repeatability of our experiments.

3.6.1 Steady-state Behaviour

We include in our measurements only those sessions that are serviced completely while the web

server is operating at a steady-state (i.e., when the rate of session initiations is equal to the rate

of session completions). At the start of an experiment, the rate of session completions is very

low because the paced sessions in our workload last an average of 146 seconds. Because of

this, we don’t measure sessions during a ramp-up period. Similarly, when we stop initiating new

sessions at the end of the experiment, any sessions that are still active should not be included in

the measurement because the server is no longer at steady state. We apply a ramp-down period

at the end of an experiment to account for this, and we do not count sessions that are initiated too

close to the end of the experiment.

An additional consideration at the start of an experiment is the state of the cache. For re-

peatable results, we must ensure that the cache is in the same state at the beginning of every

experiment. It is most practical to start with an empty cache, but a web server will not reach full

performance until the cache is full, which can take a considerable amount of time.

Figure 3.7 is an example of the curves we use to evaluate the progress of an experiment. The

curves show the length of time it takes for each individual chunk to be serviced, in the order

they are requested over the course of an experiment. The no warming curve shows the response

times when no cache warming is performed, in which case the response times are longer and

more variable before 4000 chunks have been requested than after. The warm 3500 chunks and

warm 14000 chunks curves show the results when the cache is pre-warmed with the most popular

chunks before the start of the experiment, which results in lower and more stable response times

at the start of experiments. Given the results in Figure 3.7, we modified httperf to ignore

requests that time out during a 3,200 request ramp-up period at the start of experiments and for a

1,600 request ramp-down period at the end of experiments.

We use a script to start the clients, the server, and the tools we use to monitor the progress

of the benchmark. vmstat is used to monitor CPU utilization. iostat monitors disk usage

49

 0

 1

 2

 3

 4

 5

 0 2000 4000 6000 8000 10000

R
es

p
o
n
se

 T
im

e
(s

)

Chunk Requested

no warming
warm 3500 chunks

warm 14000 chunks

Figure 3.7: Cache warming techniques

which includes bandwidth, transaction size, transaction times, queue lengths, and the fraction

of time the disk is busy. At the end of an experiment, our script combines the most important

information from httperf, the server, and the monitoring tools into a single report. In partic-

ular, the total amount of data read from disk, sent by the server and received by the client are all

recorded.

3.6.2 Bandwidth-Limited Clients

The use of dummynet enables us to simulate network characteristics such as available band-

width and latency. We conduct experiments to demonstrate the importance of simulating repre-

sentative client access networks. In one case, we configure the userver to use up to a max-

imum of 100 processes and 20,000 simultaneous connections. In the other case, we configure

the userver to use only 1 process and 1 connection in order to serialize the servicing of re-

quests. We run two experiments comparing these configurations using the workload with 0.5 MB

chunks. The clients do not use pacing because with a single connection configuration, the server

throughput will be bounded by the pacing rate. The first experiment does not use dummynet

(unthrottled) and the second uses dummynet to model different client networks (throttled).

Figure 3.8 shows the results of these two experiments. When client bandwidth is unthrottled,

there is only a small difference between using a single connection and using multiple connec-

50

tions. However, when client bandwidth is throttled, a single connection provides unacceptably

low throughput. This demonstrates the importance of simulating realistic client network speeds,

to avoid proposing methods that are acceptable in a lab environment but would fail in the real

world.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Target chunks/sec

multiple connections (unthrottled)
multiple connections (throttled)
single connection (unthrottled)

single connection (throttled)

Figure 3.8: Using dummynet to model client networks

3.6.3 Effect of Pacing

The video players on some devices, especially those with limited memory capacity like smart-

phones and tablet devices, will limit the amount of title content stored on the device at any point

in time. Playback begins by first buffering a reasonable amount of data to play the title with-

out having to rebuffer (i.e., stop playback while waiting for title content to be delivered) and

then requesting more content when buffer space becomes available. As described previously,

this behaviour is mimicked in our workloads by using the pacing functionality we have added to

httperf.

However, video players on some devices have significant amounts of memory and utilize

a technique known as progressive download [12]. In this case, a client device downloads title

content as quickly as it can be delivered, either by requesting the entire file that contains the title,

or if the title is stored in chunks, by requesting the next chunk as soon as the previous chunk

arrives. In this case, clients will request content far in advance of when it will be played back.

An interesting question is whether or not such behaviour by the clients (issuing paced versus

non paced requests) affects the overall throughput of the server. To examine this issue we create

51

a new workload that has no pacing delays to compare to a workload with pacing. We can create

workloads with specified mixes of clients issuing paced versus non paced requests, but we con-

sider here the extreme case in which none of the clients pace their requests and are only limited

by the speed of the server and their network connection.

Figure 3.9 shows the results of this experiment. The lines in the graph that are labeled pacing

and no pacing show differences in throughput depending on whether pacing is part of the work-

load. These results would have been difficult to predict a priori, and demonstrate the necessity

of including pacing in the benchmark.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Target chunks/sec

pacing
no pacing

Figure 3.9: Effect of pacing on throughput

3.6.4 Duration and Repeatability

One of our stated goals is to produce a benchmark that completes in a reasonable amount of time.

We believe that the execution times are sufficiently long to reach a steady state yet not so long to

prohibit their use. For the graphs in this chapter, an experiment for one data point lasts 30 – 65

minutes (depending on the target request rate) with about 5 hours needed to generate one line on

a graph (e.g., Figure 3.9).

The length of the experiments and the exclusion of ramp-up and ramp-down phases when

gathering performance metrics helps in obtaining repeatable results. We tested the stability of

the experiments by repeating experiments 10 times at selected rates. This also enabled us to

compute 95% confidence intervals for the failure rate percentages. Table 3.5 contains measured

statistics for a number of experiments that are described in this chapter. The confidence intervals

52

for throughput are small, particularly when there are no failures during the experiment, so exper-

iments are repeatable whether or not the server is overloaded. We omit confidence intervals from

our figures because the range is typically smaller than the symbols used to mark data points and

it makes the graphs easier to read.

Request Tput Mean Tput CI Failure Failure

Rate (MB/s) (MB/s) Mean (%) CI (%)

Figures 3.12a and 3.12b, ASAP userver

20 39.2 0.01 0.0 0.00

40 68.4 0.09 5.7 0.13

Figures 3.12a and 3.12b, vanilla userver

20 33.1 0.12 14.1 0.95

40 33.3 0.61 52.5 1.68

Figures 3.11a and 3.11b, vanilla userver

70 33.8 0.06 2.3 0.17

100 38.9 0.15 19.6 0.66

Table 3.5: Throughput and confidence intervals for some runs of the userver

3.7 Baseline Server Performance

We use our HTTP streaming video benchmark to evaluate the performance of three different

web servers: nginx, Apache and the userver. The purpose of the experiments in this

section is to obtain baseline performance results for these web servers, and to compare different

potential methods for storing titles. Specifically, we evaluate workloads where clients request

0.5 MB segments at a time, for 3 different on-disk chunk sizes (0.5 MB, 2 MB, and unchunked),

comparing the throughput of these web server configurations at different target request rates.

Figure 3.10a shows the results for the userver and Figure 3.10b shows the results for nginx

and Apache. From these results, we see that the userver and nginx perform similarly,

with Apache generally trailing in performance. The file chunk size has only a modest impact

on throughput for all three web servers, with the largest performance increase occurring when

changing from 0.5 MB to 2 MB chunks.

Given the results using wc in Table 3.4, we were surprised by the small difference in per-

formance from increasing the chunk size for the web servers. These performance results led us

to examine the contributions of the disk in isolation, as the throughput results in Figures 3.10a

and 3.10b combine the throughput of both the cache and disk. We used iostat to measure

53

 0

 10

 20

 30

 40

 50

 60 80 100 120 140 160 180 200 220

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Target requests/sec

userver unchunked
userver 2 MB chunks

userver 0.5 MB chunks

(a) Throughput of the userver

 0

 10

 20

 30

 40

 50

 60 80 100 120 140 160 180 200 220

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Target requests/sec

nginx unchunked
nginx 2 MB chunks

nginx 0.5 MB chunks
Apache unchunked

Apache 2 MB chunks
Apache 0.5 MB chunks

(b) Apache and nginx Throughput

Figure 3.10

the disk throughput alone using a workload with a target request rate of 80 requests/sec. The

results were similar for both nginx and the userver: 26.5 MB/s, 25.7 MB/s and 22.6 MB/s

for unchunked, 2 MB, and 0.5 MB file sets, respectively. These throughput values are far below

the peak disk throughput in the top half of Table 3.4 of 94.9, 57.3 and 34.8 MB/s, which were de-

termined by using wc to read the same file sets. These results suggest that neither the userver

nor nginx are efficiently reading from disk, and that the chunk size has a small impact on disk

read performance for these servers.

3.7.1 Implementing Asynchronous Serialized Aggressive Prefetching

We had originally expected that the operating system could, without additional hints or modifica-

tions, significantly leverage the larger chunks to improve disk performance. However, the similar

levels of throughput observed in Figures 3.10a and 3.10b when using different chunk sizes might

indicate that there are inefficiencies with the implementation of prefetching and disk scheduling

in the kernel. We hypothesized that an application-level disk scheduler and prefetcher might help

the web servers take advantage of larger chunk sizes and achieve higher throughput.

Therefore, we implement a version of the userverwith two modifications. First we modify

the userver to perform aggressive prefetching: when it is necessary to read from the hard drive,

the userver always requests a large amount of data (e.g., 2 MB) rather than the smaller amount

(e.g., 0.5 MB) requested by the client. A second modification to serialize access to the hard drive

was also necessary because FreeBSD interleaves prefetch operations from concurrent threads,

which has the effect of dividing the large prefetches into numerous small disk accesses, negating

the benefits of aggressive prefetching.

54

We modify the architecture of the userver to enable application-controlled prefetching

by introducing a single helper thread which is solely responsible for accessing the hard drive.

For servers with multiple hard drives, a helper thread is used for each drive. We use the

SF NODISKIO option in the FreeBSD implementation of sendfile that causes the system

call to return an EBUSY error code rather than blocking to read from disk [81]. When this oc-

curs, we send a message to a helper thread which reads a portion of the file and signals the main

thread of the userver after the data is read. The helper thread uses a FIFO queue and ser-

vices requests sequentially. It prefetches a configurable amount of data prior to servicing each

request. Although we bypass the kernel disk scheduling algorithm completely by issuing read

requests singly in FIFO order, the performance gain from avoiding interleaved disk accesses is

much greater than the small potential gain from allowing the kernel to schedule read requests.

However, if it is necessary to maximize hard drive throughput, it is possible to implement a

more sophisticated scheduling algorithm for the request queues in the helper threads. In the

experiments and graphs that follow, we refer to the version of the userver that is modified

to implement Asynchronous Serialized Aggressive Prefetching as the ASAP userver and the

unmodified version as the vanilla userver.

We also made additional modifications to the userver that allow us to specify all of the files

that comprise each title. This information can be used to prefetch multiple consecutive chunks

of the same title when the desired prefetch amount is larger than a single chunk. This is done

for comparison purposes rather than as something we would expect a server to implement. It

permits us to study the throughput of the server when files are stored in different sized chunks,

while prefetching the same amount of data.

3.7.2 Effect of Chunk Size

We now repeat the baseline server experiments using the ASAP version of the userver and

compare the results to the vanilla versions of the three web servers. Figure 3.11a shows the

throughput of all four different servers using the 0.5 MB chunk file set. For these experiments, we

vary the target request rate between 40 and 100 chunks/s (20 to 50 MB/s). When the request rate

exceeds the capacity of the server, some requests will not be received within the timeout interval,

and those sessions will be terminated before they can be completely serviced. Figure 3.11b

shows the percentage of sessions that could not be completely serviced for each target load.

These results show that all four server configurations provide similar performance. The failure

rates at 70 chunks/sec are lower for nginx and the vanilla userver than Apache and the

ASAP userver. The difference is larger than the 95% confidence intervals, so these server

configurations are somewhat better at servicing the workload when using the 0.5 MB file set.

55

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target chunks/sec

vanilla userver
ASAP userver

nginx
apache

(a) Aggregate throughput with 0.5 MB chunk size

 0

 10

 20

 30

 40

 50

 60

 40 50 60 70 80 90 100

F
ai

lu
re

s
(p

er
ce

n
t)

Target chunks/sec

vanilla userver
ASAP userver

nginx
apache

(b) Missed deadlines, 0.5 MB chunks

Figure 3.11

Table 3.6 shows the results from monitoring the disk performance during the experiments at

a request rate of 70 chunks/sec (35 MB/s). The average times for read transactions are lower for

nginx and the vanilla userver, which may explain why the performance of those servers is

slightly better. The ASAP userver performs worse than two of the other servers with the 0.5

MB chunk workload because the serialization of disk accesses by the web server prevents disk

I/O scheduling in the kernel. We are also interested in establishing an approximate upper limit on

disk throughput for this file set. Our examination involves running a simple experiment using wc

to sequentially read the exact same file chunks that are requested as part of the benchmark. This

experiment is similar to the one described in Section 3.5.4, except that rather than accessing all

files on disk a single time, we instead access the same subset of files as the benchmark, including

multiple accesses of the same file. The results of this experiment are labeled wc in Table 3.6,

and the average throughput using wc is 33% higher than the throughput of any web server.

Web server Avg. Time Per Avg. Read Avg. Tput Avg. Disk

Read (ms) Size (KB) MB/s Utilization

Vanilla userver 2.9 72.9 24.3 100%

ASAP userver 3.7 84.7 21.7 97%

Apache 3.1 71.3 22.1 99%

Nginx 2.8 71.1 24.7 100%

wc 2.3 84.0 37.2 91%

Table 3.6: Disk performance, 0.5 MB chunks at 70 req/s

56

Interestingly, the serialization of disk accesses is beneficial for the 2.0 MB file set. Fig-

ure 3.12a shows the aggregate throughput and Figure 3.12b shows the session failure rate when

the chunk size is 2.0 MB. With the 2.0 MB chunk size, the ASAP userver reaches a failure-

free throughput of 35 chunks/sec, 2.33 times the failure-free throughput of the other servers.

Table 3.7 shows that there is much higher disk throughput with prefetching, both because of low

average read times, and because the average read size is large. The disk throughput of the ASAP

userver is only 13% lower than the performance of wc with 2.0 MB chunks The 2.0 MB

workload uses the same abstract workload specification as the 0.5 MB workload, but we cannot

compare the throughput measurements because the file sets are different and performance will

vary because the session durations are slightly different in the two workloads.

 0

 10

 20

 30

 40

 50

 60

 70

 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target chunks/sec

vanilla userver
ASAP userver

nginx
apache

(a) Aggregate throughput with 2.0 MB chunk size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40

F
ai

lu
re

s
(p

er
ce

n
t)

Target chunks/sec

vanilla userver
ASAP userver

nginx
apache

(b) Missed deadlines, 2.0 MB chunks

Figure 3.12

Web server Avg. Time Per Avg. Read Avg. Tput Avg. Disk

Read (ms) Size (KB) MB/s Utilization

Vanilla userver 3.6 88.1 23.9 100%

ASAP userver 2.3 112.4 42.7 90%

Apache 2.2 39.3 17.2 100%

Nginx 4.3 87.4 19.9 100%

wc 2.0 112.0 48.8 90%

Table 3.7: Disk performance, 2.0 MB chunks at 35 req/s

57

Finally, in Figure 3.13 we show the throughput that can be achieved with the ASAP

userver when titles are stored unchunked, compared to using 0.5 and 2 MB chunks. For

the experiments with the unchunked and 2 MB chunk file sets, the userver was configured

with a prefetch size of 2 MB. In the case of the 0.5 MB chunk size experiment, the files are too

small for 2 MB prefetches, so instead we prefetch four consecutive chunks from the same title,

so all experiments read 2 MB when accessing the hard drive.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 60 80 100 120 140 160 180 200 220

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

ASAP userver 2 MB pre unchunked
ASAP userver 2 MB pre 2 MB chunks

ASAP userver 4 x 0.5 MB pre 0.5 MB chunks

Figure 3.13: Throughput using a 2 MB prefetch size

These results show that, when using sequentialized reads and aggressive prefetching, the

size of chunks used to store titles has a large effect on server throughput. Server throughput is

lowest with 0.5 MB chunks, it is improved by approximately 20 MB/s with 2 MB chunks, and

is improved by an additional 20 MB/s with unchunked files. This shows that prefetching data

from chunks performs significantly worse than prefetching from an unchunked title, even when

prefetching the same amount.

3.7.3 Effect of Request Size

In the previous section, we showed that server throughput can be greatly increased by using

aggressive 2 MB prefetches to read data from the hard drive. This increase is accomplished

without modifying the client log files, which contain requests for 0.5 MB of data. We performed

experiments to determine if we could achieve equivalent performance as the ASAP userver

by changing the client log files to contain bigger requests, accomplished by simply generating a

58

new workload with a different request size. Figure 3.14 shows the results of experiments using a

workload with 2 MB requests, which represent 40 seconds of video content. We chose a size of 2

MB to equal the prefetch size we have been using, not because we know of any HTTP streaming

video implementation that uses this request size; most implementations use shorter request sizes

that optimize network performance [53]. We cannot compare the results of these experiments

directly to the results in Figure 3.13 because the different request size changes the workload. For

example, there is an average of 15.4 requests per session using the 0.5 MB request size compared

to an average of 4.3 requests per session with 2 MB requests, so the target requests per second

are significantly different for the two workloads. Comparing only the experiments in Figure 3.14

that use a 2 MB request size, it is clear that increasing the request size does not have the same

effect as prefetching.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 15 20 25 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t

(M
B

/s
ec

)

Target requests/sec

ASAP userver unchunked
vanilla userver unchunked

nginx unchunked

Figure 3.14: Throughput servicing 2 MB requests

3.8 Chapter Summary

In this chapter, we present our methodology for generating an HTTP streaming video bench-

mark in a lab environment. We create a workload specification using the published information

available about YouTube at the time. Our methodology allows us to update the specification to

represent other HTTP streaming video workloads, such as the Netflix information provided in

Chapter 5. We describe how we use the specification to control a modified version of httperf

and dummynet to generate a benchmark consisting of hundreds or thousands of concurrent

59

sessions that can be used to test server implementations. We demonstrate the importance of a

number of features of the methodology: measuring performance only during steady-state opera-

tion, limiting network bandwidth to represent WAN networks used by client devices, and pacing

client requests. We also show that experiments are very repeatable.

An important part of servicing the benchmark workload is populating the file system of the

server with the files that will be requested. Because there are many possible ways to store title

content in files, we develop a careful procedure that ensures we can accurately compare alterna-

tive approaches. We find that storing the entire title in a single file enables maximum throughput,

but a web server must also employ serialized aggressive prefetching to take advantage of titles

stored this way. We investigate three different web servers and determine that they cannot take

advantage of unchunked titles in our experimental environment, while a modified version of the

userver can. Figure 3.15 shows that throughput is nearly doubled when the userver is

modified to prefetch 2 MB at a time from an unchunked file set.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 60 80 100 120 140 160 180 200 220

T
h

ro
u

g
h

p
u

t
(M

B
/s

ec
)

Target requests/sec

ASAP userver unchunked
vanilla userver unchunked

nginx unchunked
Apache unchunked

Figure 3.15: Throughput using an unchunked file set

We have shown the benefit of using 2 MB prefetches to service HTTP streaming video work-

loads, but we have not examined other prefetch sizes. In the next chapter, we show that 2 MB is

not necessarily the prefetch size that maximizes throughput, and we design, implement and ex-

perimentally evaluate an algorithm that will automatically and dynamically find a good prefetch

size.

60

Chapter 4

Selecting a Prefetch Size

In the previous chapter, we created a benchmark and used it to show that the throughput of

the userver could be greatly increased by the use of aggressive prefetching. We started by

choosing a rather arbitrary 2 MB prefetch size and demonstrated that we could more than double

throughput. One goal of this chapter is to better understand how to choose a prefetch size and

to determine whether it is possible to increase throughput by more than a factor of two. To

investigate this question, we varied a number of different workload and system characteristics and

performed experiments to determine the best prefetch size to use depending on these factors: 1)

the bit rates of content, 2) the amount of system memory available, 3) the popularity distribution

of titles, and 4) the performance characteristics of the hard drive. We found that the best prefetch

size varied significantly, between 2 and 12 MB, depending on how we changed the workload

and server hardware. In the best case, we find that throughput can be increased by a factor of 3.6

when servicing the YouTube-like benchmark using an ASAP version of the userver, compared

to a vanilla version. If the bit rate of the content is higher, throughput can be increased by a factor

of 5.2.

It requires exhaustive testing to experimentally determine the best prefetch size, and it is

unreasonable to expect system administrators to determine the best prefetch size using time-

consuming experiments; particularly since the procedure would have to be repeated when the

workload or system hardware changes. Therefore, we develop an algorithm that is able to dy-

namically adjust the prefetch size to choose a good prefetch size automatically. We demonstrate

that the results of the automated algorithm are similar to the best results found using a manual

procedure, under all the different conditions we tested.

Finally, we consider the problem of how to choose a prefetch size when the workload contains

content with mixed bit rates. For our YouTube-like benchmark, we use a single bit rate (based on

61

the published information about YouTube traffic in 2011), but for more recent workloads, such as

the Netflix workload characterized in Chapter 5, content is requested at many different bit rates.

We use a novel mathematical analysis to determine that the prefetch sizes should be proportional

to the square root of the bit rate of the content. We conduct experiments with a mixed bit rate

workload to show that throughput is higher when prefetch sizes are scaled based on the square

root of the bit rates than 4 other alternatives we tried.

In the next section, we start our discussion by demonstrating the need to use different prefetch

sizes to service different workloads.

4.1 Motivation

In this section, we show the results of experiments that demonstrate the need to use different

prefetch sizes for workloads with different characteristics. We use two different benchmarks

for these experiments: the benchmark we developed in the previous chapter, and one where the

content has been changed to represent a higher bit rate. We have changed the way we report

experimental results in this chapter because of the large number of experiments that we conduct

to compare potential prefetch sizes. Rather than using a curve to report the throughput achieved

for a series of experiments using different request rates (e.g. Figures 3.12a and 3.12b), we instead

report the maximum throughput that could be achieved without timeouts. We discuss the changes

to the experiment procedure in detail in Section 4.4.

Figure 4.1 shows the results obtained while servicing the two different benchmarks. The

SD (standard definition) results are for experiments using the 419 Kbps files of the benchmark

used previously, and the HD (high definition) results are for the new benchmark with files that

represent a 2,095 Kbps bit rate (5 times the SD bit rate). The individual bars represent the

throughput obtained using the unmodified vanilla userver (labeled “V”) and using the ASAP

userver with different fixed prefetch sizes (labeled 2, 4, 6, 8, 10 and 12 to denote the prefetch

size used in MB). The throughput obtained from the disk (Disk Tput) and the actual throughput

observed by all clients (Actual Tput) are also shown.

These results reveal that there is a significant performance difference between the vanilla

userver and the ASAP userver using the best prefetch size, with a factor of 2.5 improve-

ment with SD files (prefetch size 4 MB), and a factor of 3.4 improvement with HD files (prefetch

size 8 MB). They also show that the 2 MB prefetch size used in the previous chapter may be

significantly undersized for titles with HD bit rates. Additionally, these results demonstrate that

although larger prefetch sizes can be used to increase disk throughput, at some point the benefits

become minimal or non-existent. Furthermore, the increase in disk throughput does not neces-

sarily translate into improved client throughput (Actual Tput). When prefetch sizes grow too

62

 0

 10

 20

 30

 40

 50

 60

 70

V 2 4 6 8 10 12 V 2 4 6 8 10 12M
ax

.
F

ai
lu

re
-F

re
e

T
p
u
t

(M
B

/s
)

Disk Tput
Actual Tput

HD TitlesSD Titles

Figure 4.1: Throughput versus prefetch size

large, we observe reduced server throughput. However, what is too large for one workload and

system configuration (e.g., 8 MB for SD files in this figure), may be the best prefetch size for

another (8 MB for HD), motivating the need for an automated tuning algorithm.

Considering the possible consequences of prefetch sizes that are too big allows one to obtain

insight into the types of information that would be useful for an automated prefetching algo-

rithm. Cache evictions occur when prefetched data evicts data from memory that was retrieved

for a previous client request, before it can be sent in response to a new client request for the same

title. This results in a re-read of the data from disk that would have otherwise been unneces-

sary. Prefetched data can also be evicted from memory before it is requested by a client. This

phenomena, which we refer to as a prefetch eviction, results in the same data being prefetched

more than once (our current implementation only initiates prefetches for on demand requests that

cannot be serviced from the file system cache). Data that is prefetched but never requested can

be considered a wasted prefetch. This occurs for sessions that do not reach the end of the title

(the majority of sessions), and the system prefetches beyond the data requested.

As seen in Figure 4.1, for SD files prefetch sizes larger than 4 MB reduce total server through-

put. To provide some insights into the impact of different prefetch sizes, Table 4.1 presents some

rough measurements, gathered during the execution of the SD experiments, using columns with

the following meanings: Size: prefetch size; Disk/Requested: ratio of the total bytes read from

disk versus the total bytes requested (values less than one indicate cache hits and values greater

than one indicate that re-reads were required); Cached/Requested: ratio of bytes read from the file

63

system cache versus bytes requested1; Evicted/Requested: ratio of bytes evicted versus bytes re-

quested; Wasted/Requested: ratio of bytes wasted versus bytes requested. The amount of wasted

prefetch bytes may be slightly inaccurate when the same file is requested during more than one

session, as it is difficult in this case to determine if it was truly a wasted prefetch.

Size

(MB)

Disk /

Requested

Cached /

Requested

Evicted /

Requested

Wasted /

Requested
V 0.85 0.15 0.00 0.00

2 0.90 0.14 0.00 0.03

4 1.10 0.08 0.10 0.08

6 1.62 0.02 0.52 0.12

8 2.04 -0.02 0.86 0.16

10 2.36 -0.06 1.12 0.18

12 2.63 -0.09 1.34 0.20

Table 4.1: Extra data read due to prefetching (SD titles)

As seen in Table 4.1, once prefetch sizes are too large (in this case greater than 4 MB) the

system does a lot of “extra work” to service requests. Significantly more data must be read than is

being requested because it must either be re-read due to file cache or prefetch evictions or because

the system has already prefetched data beyond the end of a session. Although cache evictions,

prefetch evictions, and wasted prefetches serve as the limiting factors to the performance of in-

creasingly aggressive prefetching, in this experiment the prefetch evictions (Evicted/Requested)

cause the most harm. For example, with a prefetch size of 6 MB the total number of bytes that

have been prefetched and evicted (and therefore need to be re-read from disk) is greater than half

of the total number of bytes requested. As a result, our automated algorithm tries to avoid exces-

sive prefetch evictions and the results shown in our evaluations in Section 4.5 include information

about prefetch eviction rates.

We have shown that there is a delicate balance between prefetch sizes that are large enough

to support high disk throughput, and sizes that are too large resulting in adverse consequences

such as eviction of useful data from memory. With this balance in mind, we describe the design

of our automated algorithm.

1 Unfortunately file cache hit information is not available from the OS so we calculate an approximation using

the number of requested bytes minus the bytes read from disk and the number of evicted and wasted bytes. Some

values are negative because of the inaccuracies in wasted prefetches.

64

4.2 Automatic Prefetch Sizing

Our automated algorithm relies on an underlying prefetcher that performs aggressive prefetching.

The ASAP version of the userver, which performs prefetching at the application layer, is one

example of a web server that can be controlled by the automated algorithm, but other web servers

that use different mechanisms for aggressive prefetch could also be used with this algorithm.

Prefetches for all files of the same bit rate (the handling of different bit rates is described in

Section 4.3) are done using the same prefetch size p except at the end of a file, where only the

remainder of the file is read. The role of the automated sizing algorithm is to monitor the state of

the server and use this feedback to periodically adjust p to improve the throughput of the system.

In the remainder of this section, we describe the algorithm we use to adapt the prefetch size,

discuss the need to adjust prefetch sizes slowly, and demonstrate the operation of the automated

algorithm using two example experiments.

4.2.1 Algorithm for Adjusting Prefetch Size

Our automated algorithm uses a gradient-descent method. While the web server is running, we

continually calculate a score S, which represents the amount of work done, and the algorithm

periodically adjusts the prefetch size either larger or smaller depending on which adjustment is

expected to reduce the score. Past work suggests using file cache misses to represent the effort

required by the server [17, 37, 13]. However, our objective is to maximize throughput to the

client, which involves both file cache misses and disk transfer times. Minimizing cache misses

irrespective of disk transfer times can result in poor overall throughput. Therefore, we define our

score as the product of both the time to read from disk and the file cache miss ratio.

Figure 4.2 illustrates the trade-off between cache misses and disk throughput for different

choices of prefetch size, with a prefetch size of “0” representing the results of using the vanilla

version of the web server and relying on the operating system (FreeBSD) mechanisms to obtain

good throughput. The left y-axis is used to show the number of milliseconds per transaction

(mspt), which measures the time to read 128 KB from disk, and the right y-axis is used to show

the file cache miss ratio, which measures the ratio of data read from disk to the total data re-

quested (note that ratios greater than 1 are possible when data must be read into memory multi-

ple times due to evictions). From this figure we can see that for some prefetch sizes, accepting

a small increase in the cache miss ratio can greatly reduce the disk transfer time, and potentially

improve overall throughput to the clients.

Our automated algorithm starts with an initial prefetch size and continually measures and tries

to minimize the score while the server is running. At regular intervals, the algorithm compares

65

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

 3

m
sp

t
(m

s)

C
ac

h
e

M
is

s
R

at
io

Prefetch size (MB)

Transaction Time
Fraction From Disk

Figure 4.2: Transaction times versus prefetch size

the score at the current prefetch size (p) to the scores that were previously measured for the next

larger (pl) and smaller (ps) prefetch sizes. If either pl or ps has a lower score than p, the prefetch

size is adjusted towards that size. If the score has not yet been measured for pl and the measured

score for ps is higher than the score for p, we try the unmeasured prefetch size, pl (and vice versa

if ps has not been measured). If neither pl nor ps have been measured we try pl. As will be

discussed in Section 4.2.2, the prefetch size must be changed gradually. Therefore, we slowly

change p until it is equal to the desired prefetch size.

One of the limitations of gradient descent methods is that they are prone to finding local

minima if random fluctuations in the workload cause the score to be unusually large. To solve this

issue, we deflate the past scores when the algorithm reaches a minimum. The gradual deflation

of past scores will eventually cause the algorithm to retry a previously rejected prefetch size and

recompute the gradient using the newly measured score. If the algorithm was at a local minimum,

the new gradient will be lower, and the algorithm will continue to descend towards the global

minimum.

While the gradient descent method is suitable under most conditions, it is not effective when

the system is under either very light or heavy memory pressure. In the case that the server is

under light memory pressure, increasing the prefetch size will improve the disk transfer time,

but it may not cause a corresponding decrease in the cache miss ratio. The result is an oversized

66

p that will cause the server to perform very poorly when the load increases. Therefore, we turn

off the automated algorithm when the load is deemed too light. Notice that there is no harm in

turning off the automated algorithm because the server is under loaded and is therefore able to

successfully service all of its clients.

The opposite extreme is when the server is under heavy memory pressure. In this scenario,

the gradient descent method is incapable of changing the prefetch size quickly enough to avoid

client timeouts. We handle this situation by quickly changing the prefetch size to a new value

calculated using the prefetch eviction time (the average amount of time that prefetched data is

resident in memory before it is evicted). By knowing the client request rate, we can calculate

the time t before the prefetched data will be accessed. Therefore, if t is greater than the prefetch

eviction time, then the prefetched data must be re-read from disk when the client makes its

request. By reducing the prefetch size, we reduce memory pressure, which in turn increases the

time that data remains in memory before being evicted, thereby avoiding re-reading the data from

disk.

This algorithm is controlled with the following parameters (the actual values used while

conducting our experimental evaluation are provided in Section 4.5):

start size This is the initial prefetch size used when starting the server. In a production system,

we would set this value to the size in use at the time the server was last stopped or shut

down.

adjust interval The score and other system performance information is collected over this inter-

val, then used to adjust the prefetch size. This interval must be sufficiently long to average

out short-term variations in demand, but short enough that the algorithm will converge on

the best prefetch size before the server is overloaded.

step size This is the amount by which the prefetch size is increased or decreased.

score deflation factor This is a deflation factor used to reduce the value of the scores stored by

the algorithm when it reaches a local minimum.

busy threshold This sets a minimum threshold for when to apply the adaptation algorithm in

terms of how busy the prefetcher is. This threshold is used to avoid adjusting the prefetch

size when the server is under a light load.

evict threshold This threshold specifies the amount of prefetch evictions that are necessary be-

fore we use the prefetch eviction time to set the prefetch size.

67

4.2.2 Slowly Adjusting Prefetch Size

There is a serious practical limitation with respect to implementing an automated algorithm for

prefetch sizing: changing the prefetch size can result in server overload if not handled properly.

The problem arises when there are large numbers of titles with the same bit rate, as is the case

for our workloads. To keep up with each client, the server prefetches data at the title bit rate.

Therefore, the interval between prefetches is equal to the prefetch size divided by the bit rate.

We use the same prefetch size for all clients, so data for all clients must be prefetched within the

prefetch interval.

This can be a problem when we increase the prefetch size. For example, assume we are

currently using a prefetch size that results in a 60 second interval and we increase the prefetch size

and the result is an 80 second interval. After changing to the new size, every client will require

a prefetch within 60 seconds (prefetches are issued on demand). However, a larger amount of

data will be prefetched for each client. If the system was close to overload when prefetching

the smaller amount, it will likely overload while issuing larger prefetches over the same interval.

However, once the larger amount of data has been prefetched for each client; subsequent client

requests will be spread over an 80 second interval and will not overload the server.

A similar problem occurs when the prefetch size is reduced. Suppose clients are prefetching

in a 60 second interval and the prefetch size is decreased, resulting in a 40 second interval.

For the first 40 seconds after the change, we will prefetch data using the smaller prefetch size,

then between 40 and 60 seconds we will prefetch data for both the remaining clients that are

prefetched in the 60 second interval as well as the clients who have converted to the new size.

This period of doubling the number of prefetches can also cause the server to overload.

The solution to both of these problems is to change the prefetch size gradually, which cor-

responds to a gradual change in the interval between prefetches. Slowly adapting the prefetch

size over time limits the additional demand on the disk for the first requests after the prefetch

size changes (in particular when it increases). Furthermore, this gradually changes the prefetch

interval, which ensures that prefetches using the new size do not concentrate in the same manner

as they would if the prefetch interval changed rapidly.

By adapting slowly, the automated algorithm avoids server overload conditions that could

otherwise occur. Despite the fact that it changes gradually, however, it remains effective at

converging towards effective prefetch rates, as will be seen in Section 4.5.

68

4.2.3 Prefetch Algorithm in Action

We present the results of two different experiments to demonstrate the operation of the automated

algorithm and to motivate some of its features. These experiments show that the algorithm can

adapt regardless of whether the starting prefetch size is higher or lower than the best size. They

also show the utility of the score deflation feature and of using the prefetch eviction time to set

the prefetch size.

Figure 4.3 shows the operation of the algorithm during the execution of an experiment using

HD files. The figure shows the throughput of data delivered to the client, the value of the score,

and the prefetch sizes chosen by the algorithm over time. The throughput is plotted using the

right y-axis, while both the value of the score and the prefetch size are plotted using the left

y-axis (which, for clarity, has only a single axis labelling, for prefetch size). To show how the

algorithm dynamically adapts, the request rate builds over the experiment, starting at 80% of

the maximum load and increasing in 5% steps over 2,700 seconds. It remains at the maximum

load for 1,200 seconds, until the ramp-down period at the end of the experiment when existing

sessions end and no new sessions are initiated.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1000 2000 3000 4000 5000
 0

 20

 40

 60

 80

 100

 120

P
re

fe
tc

h
 S

iz
e

(M
B

)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Elapsed Time (s)

Prefetch Size
Tput
Score

Figure 4.3: Dynamic prefetch size adjustments using HD files

The algorithm starts with a prefetch size of 4 MB, which is smaller than the best prefetch size

for this workload. The prefetch size remains at 4 MB until the system experiences enough load,

which begins to occur at around the 500 second mark. The algorithm increases the prefetch size

69

in response to lower scores until the algorithm reaches a local minimum at about 1,000 seconds.

The stored scores are gradually deflated until the algorithm retries the higher prefetch size and

measures a lower score. The algorithm continues to increase the prefetch size until it settles

at 7.5 MB, where it stays until the experiment enters the ramp-down period. As the request

rate drops at the end of the experiment, the algorithm responds by increasing the prefetch size

to 8 MB, just before the load drops below the busy threshold value and the algorithm no

longer adjusts the prefetch size.

Figure 4.4 shows an example of an experiment where the prefetch eviction time is used to

quickly adjust the prefetch size. This experiment uses SD files and starts with a prefetch size

of 8 MB, a size that worked well with the HD files in the previous experiment, but is too large

for this workload. The y-axis on the right is used to show workload throughput in MB/s as

well as the average prefetch eviction times in seconds. Initially, the large prefetch sizes are

effective because the system load is relatively light. After about 500 seconds have elapsed with

the increasing workload, the large prefetches begin to cause prefetch evictions. The algorithm

uses the average prefetch eviction time of about 60 seconds and the average bit rate of 0.05 MB/s

to calculate a new prefetch size estimate of 3 MB. After the prefetch size reaches 3 MB, the

prefetch size is close to the best value, and the gradient descent algorithm reacts to the rise and

eventual fall of the request rate during the remainder of the experiment.

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000
 0

 10

 20

 30

 40

 50

 60

 70

 80

P
re

fe
tc

h
 S

iz
e

(M
B

)

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Elapsed Time (s)

Prefetch Size
Tput

Eviction Time * .85
Score

Figure 4.4: Dynamic prefetch size adjustments using SD files

70

These experiments demonstrate that the algorithm is able to converge to a good prefetch size

even if it starts at a prefetch size significantly higher or lower than the well-performing alterna-

tive. They also demonstrate the ability of the algorithm to adapt well with different workloads.

4.3 Handling Multiple Bit Rates

For most experiments conducted to this point, we have considered environments in which only

standard definition (SD) bit rate files are requested. This is because YouTube workload charac-

terization studies found that although different bit rates were available, about 99% of requests

were for SD titles [34] and because to our knowledge there do not exist workload characteriza-

tion studies that can be used to construct representative benchmarks that include mixed bit rates

(this problem is addressed in Chapter 5).

However, we have performed some experiments using HD bit rate titles (in section 4.1), and

we find that the best prefetch size can be different for different bit rate titles. We would like to

determine how we should choose a prefetch size, based on the bit rate of the title, for workloads

where clients request content with a number of different bit rates. Our analysis in this section is

not a substitute for the automated algorithm we have previously described. For the multi-bitrate

experiment described in Section 4.5.4, we use the automated algorithm to select a prefetch size

for one of the bit rates in the workload and scale the prefetch size used for the other bit rates

based on this analysis.

The most relevant existing study is a paper by Gill and Bathen [37]. They prove that the

optimal solution, which provides the highest aggregate throughput, is to use prefetch sizes that

are proportional to the bit rates bi of the individual streams i. For their proof, they assume

that the workload consists of multiple steady sequential streams (that do not end) and that the

cache used to store prefetched data is maintained using an LRU (Least-Recently Used) page

replacement algorithm. First they prove that with an LRU-based cache, prefetched data is evicted

from memory after an interval L that depends only on the size of the cache and the aggregate

bit rate of the streams. Then they prove that because prefetched data will remain in memory

for L seconds, and because prefetching more data always increases throughput (which is true

for endless streams), it is optimal to choose a prefetch size that ensures the interval between

prefetches is equal to L. This implies that the prefetch size should be equal to L · bi; in other

words, the prefetch size is optimal when it is proportional to the bit rate of the stream.

There are two critical assumptions in Gill and Bathen’s proof. The first is that streams are

endless, which is not true of streaming video workloads where streams not only end, but they

may end at unpredictable times. Second, their analysis assumes that an LRU cache is used to

71

store prefetched data, but this is not necessarily the best choice compared to many other page

replacement algorithms that have been proposed [72, 73, 17, 49, 31, 46]. So we consider the

problem of determining the best prefetch sizes if we assume streams are finite, and do not assume

a particular page replacement algorithm is used.

Analyzing Finite Streams

First, we consider the implications of assuming streams will end at unpredictable times. We

assume that there are n streams of client requests, with different request rates bi. We will ser-

vice each of those streams with a prefetch size pi that may be different for each stream. Video

streams are finite and may have unpredictable durations (see Section 3.2.2), so we define D as

the expected duration of a stream. When a stream ends, there may be some amount of wasted

prefetched data that has not been requested by clients because data was prefetched beyond the

point at which requests are made. Our intuition is that doubling the prefetch size will double the

waste, so we assume that waste is a linear function of the prefetch size: w · pi. This intuition is

supported by Table 4.1, which shows that the amount of wasted prefetched data is approximately

a linear function of the prefetch size.

To service the finite streams, we must prefetch all the requested data from disk, and there are

also two additional overhead costs that we must minimize. 1) The cost of repositioning the disk

head between prefetches (e.g., the seek time, rotational latency and other processing overhead),

which we represent as Cp, in terms of milliseconds per prefetch. 2) The cost of prefetching

data that is never requested by clients, which we represent as Cw in terms of the number of

milliseconds used to prefetch each byte of data that is wasted. We use average values for Cp and

Cw, even though the cost of repositioning the disk head will vary depending on timing and disk

I/O scheduling, and the cost of reading a byte of wasted data varies depending on the placement

of data on disk.

We now quantify the average cost per second of these two overheads. The number of

prefetches per second for each individual stream is bi/pi, so the cost of those prefetches is

Cp · bi/pi. The cost of wasted prefetches when each stream ends is Cw · w · pi, so we amor-

tize the one-time cost over the expected duration of the stream to calculate the cost of wasted

prefetches per second as (Cw · w · pi)/D. Therefore, to minimize the overhead of prefetching,

we must solve the following problem:

minimize
∑

i

(Cp
bi
pi

+ Cw
wpi
D

) (4.1)

72

Constraint on Memory Use

An additional constraint on the problem of choosing the best prefetch sizes for each bit rate

is that there is a limited amount of memory available for caching prefetched content. Rather

than assuming a particular page replacement algorithm, we simply assume that prefetched pages

are not evicted before they are requested by clients. Since all the prefetched pages must fit in

memory of size M , our constraint on memory use is:

∑

i

pi = M (4.2)

We use the method of Lagrange multipliers to minimize the cost of prefetching, subject to

the memory constraint:

minimize Λ(pi, λ) =
∑

i

(Cp
bi
pi

+ Cw
wpi
D

) + λ(
∑

i

pi −M) (4.3)

where λ is the Lagrange multiplier. This equation is minimized when the partial derivatives, with

respect to pi, are zero:

∀i,
Cpbi
p2i

= Cw
w

D
+ λ =⇒ pi =

√

Cpbi
Cw

w
D
+ λ

(4.4)

We do not use this equation directly to compute prefetch sizes because it is difficult to quan-

tify some of the constants. Instead we note that all factors in this equation other than bi and pi are

constants, and therefore prefetch sizes that are proportional to the square root of the bit rate will

minimize the overhead costs of prefetching, and thereby maximize the aggregate throughput of

client requests. In practice, we would use the automated algorithm to choose a prefetch size for

a designated bit rate, then scale the prefetch sizes for other bit rates in proportion to the ratio of

the square root of the bit rate divided by the square root of the designated bit rate.

Both our theoretical analysis and that of Gill and Bathen make assumptions that do not neces-

sarily hold for real-world streaming video workloads. For this reason, we compare these alterna-

tives for choosing prefetch sizes, either proportionally to the bit rate or to the square root of the bit

rate, in two ways. First, in Section 4.5.4, we conduct experiments to determine which rule yields

better results for the YouTube-like benchmark and the memory management algorithm imple-

mented by the FreeBSD kernel (which we believe is LRU-based). Second, in Section 5.6.3, we

73

use simulation to compare different prefetch algorithms for servicing the workload of a Netflix

server.

Now that we have described a mechanism for handling mixed bit rates and an automated

algorithm for choosing prefetch sizes, we conduct a number of experiments to evaluate the ef-

fectiveness of the algorithms.

4.4 Changes to Experiments

After the preliminary experiments described in the previous chapter, we made three changes

for the experiments in this chapter. First, we change the hard drives we use in the server. In

the previous chapter, we used a server-class SAS hard drive, which is unlikely to be used for

a production system because it is very expensive for its relatively small capacity. In its place,

we use two cheaper and larger SATA hard drives that are more likely to be used for a production

video server (such as Netflix servers [69]). Second, we populate the hard drives with two different

sets of files, representing titles with two different bit rates. We made this change for convenience,

so we could test a multi-bitrate workload, and so that we do not have to repopulate the hard drive

to test different bit rate titles. Finally, as previously mentioned in Section 4.1, we report results

only for the highest request rate that could be supported without timeouts. We will discuss these

changes in detail in the sections that follow.

4.4.1 Server Configuration

The server hardware and software used for experiments in this chapter are similar to those in the

previous chapter (described in section 3.3.1). We updated the kernel to FreeBSD 9.1-RELEASE,

re-tuned the kernel and web server settings, and observed that the change in kernel version had

little effect on experimental results. We continue to use a fast 10,000 RPM SAS drive to store

operating system files and applications, but we no longer use an SAS drive to store title content

and instead use two different SATA drives. The hard drive used to store content for most experi-

ments is a 1.0 TB 5,400 RPM Western Digital Red drive (model WD10EFRX), chosen because it

is advertised to be energy efficient while providing high throughput. We also use a faster 1.0 TB

7,200 RPM Seagate drive for comparison (model ST 1000DM003).

The server contains 32 GB of RAM, but for experiments, we configure the kernel to recognize

a smaller amount, typically 4 GB for most experiments. We use a small amount of system

memory so that our results are relevant for production servers which typically contain multiple

hard drives. Our experiments use a single hard drive, but we expect the results to scale with the

74

number of hard drives, if we provide the same amount of system memory per drive. For example,

we expect that our results using 4 GB of system memory would be applicable to a production

server with 36 hard drives and 144 GB of system memory. Since servers are typically limited to

a few hundred GB of system memory, we restrict our use of system memory to at most 8 GB,

which would be scaled to 288 GB for a production server with 36 hard drives.

We use the ASAP version of the userver web server for experiments as well as the original

“vanilla” version of the userver for comparison purposes. The ASAP version of the userver

has been further modified to collect extra statistics, which is possible because we implement

prefetching at the application layer. We monitor data that is evicted before it is used (prefetch

eviction), the time between prefetching and eviction (eviction time), and data that is prefetched

but never requested (wasted prefetches). These and other metrics are used in our automated

prefetching algorithm, described in Section 4.2.

4.4.2 Workload Characteristics

We populate the hard drives on the server with files that represent two different fixed bit rates:

419 Kbps, to represent the common bit rate for YouTube as used in the previous chapter (called

SD), and 2,095 Kbps to represent higher definition titles (called HD). We chose a bit rate of

2,095 Kbps because it is close to the average bit rate reported for the most common high bit rate

format requested by YouTube clients [34]. For these two types of files, ten seconds of title content

is represented by 0.5 MB and 2.5 MB of data, respectively. Title content is stored unchunked,

with one file per title, and clients issue HTTP range requests for segments of title content.

We approximately fill the 1 TB hard drives on the server by creating 20,000 SD files and

8,000 HD files, which are inter-mixed so that both types of file are present in all zones on a drive.

Titles are stored so that there is no particular placement due to popularity.

Titles have a Zipf popularity distribution with α = 0.8 for all experiments except where

otherwise noted. The title duration distribution is the same as used in the previous chapter,

where the average duration of a title is 267 seconds. Therefore, SD and HD files have an average

size of 13 MB and 66 MB, respectively. The average duration of a session is 162 seconds. The

title duration and viewing duration distributions are the same for HD and SD files.

4.4.3 Experiment Procedure

The goal of the experiments in this chapter is to determine which prefetch size enables the highest

throughput, for particular workload characteristics and server resources. To determine this, we

75

perform a number of experiments for each candidate prefetch size, varying the client request

rate and observing when the server is overloaded. To find the highest request rate that can be

serviced, we increase the aggregate request rate in 2 MB/s increments, until the rate is high

enough that timeouts are detected. Each experiment takes 30-50 minutes, so it takes several hours

to determine the highest throughput supported by each prefetch size. We normally investigate

6-10 different prefetch sizes to determine the best prefetch size for a given configuration.

Our criterion for determining whether a given aggregate request rate can be serviced is that

the response time does not exceed a 10 second timeout threshold for any request in the benchmark

workload. This is the maximum failure-free rate, and is a very strict test. Real-world client

implementations typically buffer more than 10 seconds worth of title content, so users will not

experience rebuffering after such a short delay. Also, users will typically accept more than one

rebuffering delay. We use the strict criteria to ensure consistency across experiments since the

same data is requested for all successful experiments, but failed sessions do not all request the

same content.

For the SD experiments, the clients request 92 GB worth of data in 12,000 viewing sessions

with the number of concurrent sessions peaking at 650. When using a Zipf α parameter of 0.8,

69% of titles are requested a single time and the average number of views per title is 2.1.

For the HD experiments, the clients request 148 GB worth of data in 4,000 sessions with a

peak of 250 concurrent sessions. With α = 0.8, 72% of titles are requested only once, and the

average number of views per title is 1.9.

4.5 Experimental Evaluation

In the following sections, we present results from a suite of experiments for two reasons. First,

there is a wide variety of potential deployment scenarios, with different server hardware and

workload characteristics, and we would like to understand the factors that impact the best choice

for prefetch size. Second, we would like to test the effectiveness of the automated algorithm

for different deployment scenarios. We investigate two different server configuration choices:

the amount of system memory and the performance characteristics of the hard drives used to

store content. We also investigate the effect of the title popularity distribution, by generating

workloads with different α values. Finally, we evaluate different options for handling multi-

bitrate workloads.

For each variation in workload or hardware configuration, we perform a number of experi-

ments to determine the maximum failure-free throughput the userver can achieve for a range

of fixed prefetch sizes (representing a manual tuning). We compare those results to the automated

76

algorithm (labeled “A” in the graphs in this chapter), as well as the vanilla web server (labeled

“V”). In all cases, we present the average throughput of the userver (Actual Tput), the hard

disk (Disk Tput), and prefetch evictions (Evictions Tput).

For the automated algorithm, in addition to the parameters shown in Table 4.2, we also choose

a starting prefetch size, which we determined based on work done by Li et al. [58]. Their analysis

shows that the prefetch size should be set so that the time required to transfer the data from disk

is equal to the average seek time. Based on that analysis we experimentally determined that the

WD Red drive should use a starting prefetch size of 3 and 4 MB for the SD and HD workloads,

respectively. Similarly, for the Seagate drive, we use a starting prefetch size of 2 and 3 MB

for the SD and HD workloads, respectively. While other starting sizes are possible, these were

chosen using previously established best practices and because good estimates for the starting

size help to control the duration of experiments (recall that adjustments in prefetch sizes must

be done gradually over time). Note that in many cases these starting sizes are not good choices

and that despite having to slowly make prefetch size adjustments, our algorithm does converge

on sizes that are appropriate for the system and workload.

Parameter Value

adjust interval 180 seconds

step size 0.5 MB

score deflation factor 5%

busy threshold 60%

evict threshold 5%

Table 4.2: Automated algorithm parameters

4.5.1 Effect of System Memory

We performed experiments with three different amounts of system memory by changing the

hw.physmem kernel parameter for 2 GB, 4 GB and 8 GB of physical memory. The SD work-

load, as shown in Figure 4.5, is quite sensitive to the amount of system memory. Disk throughput

generally increases with prefetch size regardless of the amount of system memory, but if there is

too little system memory available to store the prefetched data, the extra disk throughput results

in evictions rather than actual throughput. The throughput when using the automated algorithm

77

(labeled “A”) is within 5% of the throughput when using the best fixed prefetch size, demon-

strating that the performance with the automated algorithm is comparable to that of the best

hand tuned value. The throughput when using the unmodified vanilla version of the userver

(labelled “V”) is lower than when using the best prefetch sizes of 2 or 4 MB.

 0

 10

 20

 30

 40

 50

 60

 70

V 1 2 4 6 8 1012 A V 1 2 4 6 8 1012 A V 1 2 4 6 8 1012 AM
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput
Evictions Tput

8 GB4 GB2 GB

Figure 4.5: Comparing prefetching techniques for SD files while varying system memory

These results also provide insight into reasons why increasing system memory improves

throughput. The benefits of caching are seen when actual throughput is greater than disk through-

put. For example, with a 2 MB prefetch size, increasing system memory from 2 GB to 8 GB

results in a 54% increase in actual throughput without a significant change in disk throughput. A

larger amount of system memory also enables the use of larger prefetch sizes. When using 8 GB

of system memory, throughput increases by an additional 35% when we increase the prefetch

size from 2 MB to 4 MB.

We repeated the experiments using an HD workload and obtained the results shown in Fig-

ure 4.6. Compared to the SD workload, when using the same prefetch size, the eviction through-

put is lower for all memory configurations This is because the bit rate of an HD title is 5 times

higher than an SD title, so only 1/5 as many HD clients can be serviced for a given throughput.

Less system memory is required to store prefetched data for the fewer (HD) clients, because the

amount of memory needed to store prefetched data is equal to the number of concurrent clients

multiplied by the prefetch size. As a result, there are fewer evictions for a given prefetch size.

Additionally, the improvements in throughput with larger system memory sizes are mainly due to

78

increasing the number of cache hits. Going from 2 GB to 8 GB of system memory, when using a

prefetch size of 6 MB, there is a 28% improvement in actual throughput with no significant gain

in disk throughput. Then, using 8 GB of system memory, there is an additional 15% throughput

gain by increasing the prefetch size from 6 MB to 12 MB.

 0

 10

 20

 30

 40

 50

 60

 70

 80

V 2 4 6 8 10 12 A V 2 4 6 8 10 12 A V 2 4 6 8 10 12 AM
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput
Evictions Tput

8 GB4 GB2 GB

Figure 4.6: Comparing prefetching techniques for HD files while varying system memory

For most of the test configurations, the actual throughput of the automated algorithm is simi-

lar to using the best fixed prefetch size. In the worst case, when using 8 GB of system memory,

throughput is 16% lower. This is because the starting prefetch size of 4 MB is a poor estimate

compared to the best fixed prefetch size of 12 MB, and the experiment is too short to allow the

adaptive algorithm to converge on a better prefetch size.

4.5.2 Effect of Popularity Distribution

The distribution of the workload directly impacts the effectiveness of caching. Changing the α
parameter of the Zipf popularity distribution affects the number of requests for the most popular

files. Workloads with higher α values more frequently request popular files and should benefit

more from the file system cache.

Although prefetching is not directly affected by the popularity distribution, caching and

prefetching compete for system memory. In order to determine if the best prefetch size is sen-

79

sitive to the popularity distribution, we generated two additional workloads: one with α = 0.6

and the other with α = 1. These are compared with the standard workload that uses α = 0.8.

All three workloads use the same SD file set, and files have the same popularity rank in all

the distributions. This ensures that, to the extent possible, the same titles are requested in each

workload.

Figure 4.7 shows the maximum failure-free rates that could be achieved across the different

workloads, using 4 GB of system memory. These results demonstrate that the actual throughput

increases with larger α values, across all prefetch sizes. In contrast, there is little or no change

in disk throughput and eviction throughput across the prefetch sizes. For these experiments, the

workload distribution has little impact on prefetching so the best throughput is achieved using a

4 MB prefetch size, regardless of the α parameter. The increase in actual throughput with larger

values of α is caused by an increase in cache hits.

 0

 10

 20

 30

 40

 50

 60

 70

V 1 2 4 6 8 1012 A V 1 2 4 6 8 1012 A V 1 2 4 6 8 1012 AM
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput
Evictions Tput

Alpha 1.0Alpha 0.8Alpha 0.6

Figure 4.7: Different popularity distributions (α), with SD files and 4 GB of memory

Again, in this case, the automated algorithm works well with these workloads. With the

α = 1 workload, the automated algorithm provides 14% higher throughput compared to the best

fixed prefetch size. The automated algorithm was able to achieve higher throughput because

it converged on a prefetch size of 3 MB, which is not one of the fixed prefetch sizes that was

evaluated in our manual tuning process.

80

4.5.3 Effect of Hard Drive Characteristics

The experiments presented so far use a 1.0 TB 5,400 RPM Western Digital Red drive. As a

point of comparison, we repeat the SD and HD experiments of Section 4.1 using a 1.0 TB 7,200

RPM Seagate drive with lower rotational and seek latencies. Both drives have the same capacity

and we carefully populate the drives with files of the same size in the same locations using the

procedure in Section 3.5.2 to ensure results obtained using these drives can be directly compared.

The differences in the speeds of these disks are reflected in Figure 4.8, which shows the

results of prefetch size experiments using 4 GB of system memory. The results for the Red drive

were previously shown in Figure 4.1 and are included here for convenience.

 0

 10

 20

 30

 40

 50

 60

 70

 80

V 1 2 4 6 8 10 12 A V 1 2 4 6 8 10 12 AM
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput
Evictions Tput

Seagate driveWD Red drive

Figure 4.8: Comparing prefetching techniques on different disks with SD files and 4 GB memory

Due to the higher transfer rates and shorter seek times, the Seagate drive is able to achieve

higher throughput when using small prefetch sizes. In addition, the higher throughput of the

Seagate drive allows the userver to support about twice as many concurrent clients. The

tradeoff is that, by doubling the number of concurrent clients, the memory required to store all

of the prefetched data is also doubled. The increased memory pressure causes more evictions

when using the Seagate drive. The differences between the drives are smaller when using the

HD workload, shown in Figure 4.9. When servicing HD files, there are fewer concurrent clients,

which reduces memory pressure and the eviction rates when compared with the SD case.

81

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

V 2 4 6 8 10 12 A V 2 4 6 8 10 12 AM
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput
Evictions Tput

Seagate driveWD Red drive

Figure 4.9: Comparing prefetching techniques on different disks with HD files and 4 GB memory

When comparing the improvements due to asynchronous serialized aggressive prefetching

with the Vanilla case, the throughput increases are larger when using the Seagate drive than

when using the WD Red Drive. For the WD Red drive the improvements are as large as a factor

of 2.4 and 3.4 for the SD and HD workloads, respectively. However, for the Seagate drives the

improvements are as large as a factor of 3.6 and 5.2 for the SD and HD workloads, respectively.

The throughput using the automated algorithm is close to the throughput using the best manually-

determined prefetch size, ranging from 11% lower for the SD workload on the Seagate drive to

7% higher for the SD workload on the Red drive.

4.5.4 Effect of Multi-Bitrate Workloads

The workloads in the experiments prior to this point have used a single bit rate for all files. In

Section 4.3, we devised a method for handling workloads with multiple bit rates, and we now

test our method using a workload that contains 50% HD files and 50% SD files.

Some of the results of the experiments we have conducted with this multiple bit rate workload

are shown in Figure 4.10. For these experiments we use either a fixed 6 MB prefetch size (which

provides the highest throughput) or we use the automated algorithm to compute a prefetch size

for the HD files, then scale that prefetch size to be used for SD files. The labels just below

the x-axis (.1, .2, .45, .75 and 1) specify the different scaling factors we applied in different

experiments. The other labels on the x-axis (6 MB, A, and V) show the prefetch algorithm used,

82

either a fixed 6 MB prefetch size, the automated algorithm (“A”) or the vanilla userver (“V”),

which does not use a scaling factor.

The scaling factors of key interest are 1, 0.45 and 0.2. A factor of 1 means that the same

prefetch size is used for SD files as HD files. A factor of 0.45 is calculated using the rule we

developed in Section 4.3. That is, the prefetch size should be proportional to the square root

of the bit rate. Since HD files have a 5 times higher bit rate than SD files, by our analysis, the

scale factor for SD files should be
√

1/5 = 0.45. Therefore, when the HD file prefetch size is

6 MB the SD prefetch size is 2.7 MB. We include a scaling factor of 0.2 because previous work

by Gill and Bathen [37] determined that it is optimal (under specific conditions) to prefetch an

amount proportional to the bit rate, and the SD bit rate is 20% of the HD bit rate. In addition,

0.1 and 0.75 are included to examine the sensitivity of the results to the scaling factor. Note that

the best prefetch size for this workload is close to that for the purely HD workload. This is not

surprising because the throughput required to service the HD requests dominates the throughput

requirements for the SD requests; although there are equal numbers of clients requesting SD

and HD files, HD files account for 5/6 of the total throughput and SD files are 1/6 of the total

throughput.

 0

 10

 20

 30

 40

 50

 60

 70

.1 .2 .45 .75 1 .1 .2 .45 .75 1 1M
ax

.
F

ai
lu

re
-f

re
e

tp
u
t

(M
B

/s
)

Disk Tput
Actual Tput

Evictions Tput

VA6MB

Figure 4.10: Varying scaling factors and the prefetching technique while using 50% SD files and

50% HD files on WD Red drive.

We observe that the differences in throughput are fairly small across the different scaling

factors, for this workload and system configuration. This indicates that throughput is not very

sensitive to the scaling factor when servicing this workload. However, the throughput obtained

83

with the scaling factor of 0.45 is as good or better than that achieved with the other scaling

factors. In future work, it would be interesting to determine if there are circumstances under

which the differences are larger. Finally, we note that the automated algorithm performs very

well and is again comparable to the best fixed prefetch sizes for this workload.

4.6 Discussion

Our results show the importance of having sufficient server memory to support a large prefetch

size. For example, with the scenarios considered in Figure 4.5, increasing the server memory

from 2 to 8 GB enables a doubling of the throughput. Although these results are for a single disk

system, appropriate scaling by the number of disks can yield insight applicable to the common

deployment scenario in which an HTTP streaming video server is configured with many disks.

It might be possible to reduce the amount of system memory required by improving the

memory management algorithms and reducing prefetch evictions. For our experiments, we use

the existing FreeBSD memory management algorithms, but other studies have shown benefits

can be obtained by treating prefetched memory specially [55, 13, 37] and by using streaming-

specific caching algorithms such as interval caching [30]. In future work, we plan to investigate

these techniques, which can be applied in concert with our automated algorithm.

Another possible area of future work concerns stream-specific adjustments to prefetch size.

Our results show the potential benefit of using a prefetch size scaling factor based on the bit rate

of the title being streamed. Considering additional characteristics might yield further benefits.

For example, using a smaller prefetch size for new streams could be beneficial when there is

a relatively high rate of termination by the user early in the playback of the title, as is often

observed in practice [34, 11]. One might also take into account the title or user identity, for

example prior work has observed that some users are “serial” early-quitters [11].

4.7 Chapter Summary

We have shown that the prefetch size that maximizes throughput varies with changes to workload

and server hardware characteristics. We performed a large number of experiments to determine

that the prefetch size is sensitive to the bit rate of title content, the popularity distribution of titles,

the amount of system memory, and the performance characteristics of hard drives. Because it is

very time-consuming to manually conduct the large number of experiments necessary to deter-

mine the best prefetch size, we developed an algorithm that continually monitors both the cache

84

hit rate and transfer times for hard drive transactions in order to dynamically and automatically

choose the best prefetch size. We successfully applied the automated algorithm to all our experi-

ment scenarios, thereby demonstrating that the algorithm is likely to be useful for a wide variety

of potential production installations without requiring system administrators to select a prefetch

size manually.

We also used a mathematical analysis of mixed bit rate workloads to show that the overhead

of prefetching is minimized when the prefetch size is proportional to the square root of the bit

rate. We validated our analysis by comparing it to other alternatives experimentally. We will

make further use of this result in the next chapter, where we characterize the workload of Netflix

servers as well as evaluating and improving prefetch algorithms for servicing that multi-bitrate

workload.

85

Chapter 5

Netflix Server Workload

In Chapter 3 we created a benchmark that reproduces a YouTube-like workload in a laboratory

environment. We then used that benchmark to conduct experiments to develop and evaluate dif-

ferent prefetch algorithms in Chapter 4. This approach allowed us to develop and test the ASAP

architecture and an automated prefetch sizing algorithm, which together significantly improve

web server throughput.

However, there are limitations to this work. First, YouTube is mainly a service for titles

with short durations: predominantly user-generated videos and professionally-produced music

videos. The characteristics of YouTube network traffic may differ from those of video services

like Netflix, Amazon, HBO, Hulu, Apple and others, which stream long format, professionally

produced content like TV shows and movies. Second, existing workload characterizations have

typically been constructed from traces observed at the edge of a client network [34, 98, 39]

and as a result, the traces contain only a subset of demand for content servers, forcing us to

infer the total demand on a server. Finally, most existing workload studies were conducted for

services that did not implement rate adaptation (typically called DASH, for Dynamic Adaptive

Streaming over HTTP) to provide high quality video by adjusting the bit rate in reaction to

changes in network and server conditions. Studies that have examined DASH have analyzed

client implementations [45, 62, 79, 60] or the use of network bandwidth [33, 44, 63, 3, 6], rather

than the impact of DASH on the servers. Therefore, in this chapter, we conduct a characterization

of a second HTTP streaming video workload that does not have these limitations.

We were able to obtain anonymized log files (HTTP request traces) from two different pro-

duction Netflix web servers. Netflix has over 81 million global subscribers [71] and supports an

extremely diverse and representative set of client devices that implement DASH over broadband,

DSL, WiFi and cellular connections. The log files capture all the requests to these servers, re-

86

gardless of the locations of the client devices. The log files provide detailed information about

requests, and also identify individual viewing sessions, so we can reliably identify all of the

HTTP requests made by a particular client device while a particular title is viewed. Addition-

ally, we have obtained information about the nominal bit rates of the files that are stored on the

server, which enables us to better understand the impact of rate adaptation on the server. This

is an unprecedented view of the workload of a production server from what is, as of 2016, the

largest source of HTTP streaming video. Characterizing this type of workload is an important

step to understanding and optimizing the performance of the servers used to support the growing

number of streaming video services.

In this chapter, we provide background information about how client devices interact with

Netflix servers. We then analyze the server logs to characterize the titles in the catalog, viewing

sessions, and information about client requests, which are markedly different than the specifi-

cation of a YouTube-like workload in Chapter 3. Our goal is to understand the impact of rate

adaptation on servers, in particular how the spatial locality of the workload is affected. We de-

velop and use a chain abstraction to characterize the spatial locality of requests for the same title,

and a phase abstraction to characterize the operation of the many different clients that access the

Netflix service. We apply the knowledge we gain by characterizing the server workload to pro-

pose workload-specific prefetch algorithms. We analyze those algorithms and show that by using

workload-specific characteristics, such as the probability that chains will be long or short, we can

adjust prefetch sizes to reduce hard drive utilization and consume less system memory compared

to a prefetch algorithm that does not use workload information. We expect that the techniques

we use can be repeated for similar HTTP streaming video services with DASH clients, which

represent the future of how TV shows and movies will be viewed.

5.1 Background

Netflix is a widely popular Internet service for streaming TV shows and movies (collectively

called titles). In the past, Netflix made extensive use of CDNs such as Akamai, Limelight and

Level 3 [3] but the rapid growth of its popularity has led it to create and manage its own CDN,

starting in 2012 [70].

The netflix.com site is served from the Amazon AWS cloud in geographically relevant

regions. However, audio and video content is serviced using high-capacity web servers or clus-

ters of such servers, placed in Internet exchange sites around the world. In addition, ISPs may

also utilize one or more Netflix-supplied servers inside their data centre, to reduce inter-ISP

traffic [68]. Together these servers can be thought of as comprising the Netflix CDN.

87

The Netflix CDN does not operate like a traditional pull-based CDN. Nightly, during off-

peak hours (called a fill period), the Netflix control plane predicts which titles are likely to be

requested during the next 24 hour period and directs each individual content server to remove

and add titles according to those predictions. Then, to playback a title selected by a user, a client

device acquires a manifest from the control server that specifies which content servers should be

accessed by the client and provides URLs for the files containing the different bit rates for the

selected title. Clients strive to use the highest quality video and audio supported by the network

and available content servers. They select a primary server for playback and for the most part

continue to use that server unless it experiences low throughput, errors, timeouts or rebuffering

events while playing at an already low bit rate.

5.1.1 Netflix Servers

Netflix servers are Open Connect Appliances (OCAs) [69] which run FreeBSD 10.0 and nginx.

There are different hardware configurations that are continually evolving. We focus on a log file

from a Catalog (or Storage) server which contains 36 hard drives of 3 TB and 6 SSDs of 512 GB.

We also examine a second log file from a flash cache (or offload) server, which contains 14 SSDs

of 1 TB each. A single storage server has too little capacity to store the entire Netflix catalog

(about 2 Petabytes of data) so it is part of a cluster of 20 servers. An offload cluster contains

copies of the most popular content from the catalog cluster. Typically both cluster types are

deployed in Internet exchange sites.

The server logs obtained from Netflix contain information about every HTTP request that

is received by the servers. Each log entry contains the URL of the file being read (which is

anonymized), the offset and size of the request, a timestamp for the completion time of the

request (with 1 second accuracy), the time required at the server to service the request, and the

number of bytes sent to the client. Each log entry also specifies which playback device type was

used and includes an anonymized viewing session identifier. Normally session identifiers are not

included in web server logs and appropriately discerning sessions in such logs can be difficult

because HTTP requests do not require an application-layer session. Subscribers are not identified

in the log files, so we cannot tell which sessions involve the same subscriber, preventing us from

analyzing user behaviours such as binge watching.

The request data provided in the server logs are in terms of bytes, which is difficult to interpret

when files are available in many different bit rates and because variable bit rate (VBR) encodings

are used. In order to convert byte values into quantities that are meaningful in the context of titles

and which can be used to compare requests with different bit rates, we obtained information about

all the files present on the server. For each file, we have the nominal bit rate of the file, the size

88

of the file in bytes, and the identity of the hard drive or SSD on which the file is stored. When

necessary, we convert a file offset in bytes into a nominal title time by dividing the byte offset

by the nominal bit rate. This is an approximation because the average bit rate of VBR-encoded

content fluctuates over time and is not necessarily equal to the nominal bit rate at a given file

offset. As a result, there may be variation in title-relative calculations, which is reduced by

computing averages over many requests.

5.1.2 Data Collected

Table 5.1 provides statistics about the contents of the catalog server and flash cache log files.

The catalog server log was collected over 24 hours, in March of 2014 and the flash cache log was

collected over 23 hours in May of 2014.

Statistic Catalog Server Flash Cache

Total Data Sent 30.8 TB 75.9 TB

Average Throughput 2.9 Gbps 7.5 Gbps

Peak Throughput 5.5 Gbps 12.9 Gbps

Number of Sessions 126,064 284,986

Number of Unique Titles 9,793 1,170

Number of Unique Files 102,386 30,606

Number of TCP Connections 1,725,983 4,379,498

Number of HTTP Requests 64,993,469 192,814,827

Table 5.1: Summary of server log files contents

Figure 5.1 shows the aggregate throughput for each of the two servers, calculated by aver-

aging the bytes serviced in 5 minute intervals. Requests are logged after servicing the request.

As a result, the end of each log file will be missing requests that were issued but not completed

before the end of the log period. To simplify the handling of these cases, we ignore sessions that

start in the last hour of a log period. From 06:00 until 08:00 the Flash Cache is in the fill period.

During this time it is adjusting its content rather than servicing client requests. For both servers,

the peak throughput is about double the average throughput and as one would expect, the Flash

Cache server is servicing considerably more traffic. Note that each server is capable of servicing

substantially more traffic if required.

We compared several characteristics of the workloads for the two different servers and found

they were very similar. The key exception is the popularity distribution of titles (shown in Sec-

89

 0

 2

 4

 6

 8

 10

 12

 14

00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00

A
v
er

ag
e

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Time

Catalog Server
Flash Cache

Figure 5.1: Catalog and Flash Cache throughput

tion 5.2.1), which is explained by the different roles for these servers. For all other characteristics,

we only show results for the catalog server.

5.1.3 Netflix Clients

Netflix supports many different types of client devices, including consumer electronic devices

like Blu-ray players and televisions, desktop computers, laptops, Android and iOS mobile de-

vices, and game consoles. Audio and video content are encoded separately, at many different

variable bit rates. Some clients require the content to be stored in separate audio and video files

to allow the selection of video bit rate independently from the audio bit rate, and to allow audio

playback in different languages. Other clients require audio and video content to be combined

in the same file. The server log files include references to 5 different audio bit rates, 14 different

video bit rates and 8 different combined bit rates.

Title content is divided into 2 second intervals called segments. An entire segment is re-

quired for decoding and playback, thus clients change bit rates at segment boundaries. Because

segments vary in size, there is a table at the start of each file that specifies the offsets of all seg-

ments. When a session starts, the client downloads segment offsets and content from multiple

files with different bit rates, then selects a starting bit rate that can be supported by available net-

work bandwidth. Clients continue to download segments sequentially from the same file unless

network or server conditions change (which may result in switching to a different bit rate) or a

user event occurs (e.g., stopping or skipping to a new title position). Clients that are in a steady

90

state limit the number of segments they download ahead of the playback point to avoid waste

when a user event occurs (i.e. the clients implement pacing). There is no simple relationship

between segments and requests; some clients download multiple segments with a single request,

while others use multiple concurrent HTTP requests to obtain segments in multiple parts.

Netflix clients issue HTTP GET requests using two different formats. Some clients fully

specify the block of data they are requesting by providing the offsets of the first and last bytes,

called chunk requests (or range requests). Alternately, clients can specify only the offset of the

first byte, and the server will send data until the client terminates the TCP connection (or the

file ends), called open-ended requests. Clients do not necessarily use only one of these request

formats; often different request formats are used for audio and video content.

We provide more information about the requests issued by Netflix clients when we show

two example viewing sessions in Section 5.2.3, and we provide measured statistics of request

characteristics in Section 5.2.4. The wide variety of different client implementations is the major

motivation for the chain and phase abstractions introduced in Sections 5.3 and 5.4.

5.2 Netflix Workload Characteristics

We use the methodology of Chapter 3 as a framework for characterizing the Netflix workload

represented by the server traces. We first consider the fundamental aspects of streaming video

workloads: the characteristics of the titles in the catalog, and how titles are accessed during

viewing sessions. We then characterize the requests issued by Netflix clients, which are much

more complicated and varied than are used for YouTube [34, 8].

5.2.1 Catalog Contents

The contents of the catalog of titles stored on a server dictate some of the basic characteristics

of the workload. For example, the duration of titles affects the maximum duration of viewing

sessions, the bit rates used for encoding titles affect the size of requests, and the popularity of

files affects the temporal locality of the workload. In the following sections, we characterize the

subset of the Netflix catalog that was requested by clients from the titles available on the catalog

server.

91

Distribution of Bit Rate Choices

Netflix titles are encoded in many different formats and bit rates, both to accommodate a wide

variety of devices and network access methods and to provide alternatives for rate adaptation

algorithms [62]. In all cases, a single file is used to hold all content for a particular title and rate.

Figure 5.2 shows the popularity of all bit rates requested by clients. The bit rate labels are not in

strict numerical order, they are grouped by content type (e.g. audio, video, and combined). The

graph shows popularity in terms of both the proportion of total bytes requested and the proportion

of total nominal title time.

The two lowest bit rates are very popular in terms of nominal title time because they contain

audio content, which is available in only a few encodings. The most popular video bit rates

in terms of title time are the 1,750 and 3,000 Kbps versions (11% and 6%, respectively), but

in terms of the volume of data, 25% of the total bytes are requested from files with bit rates

of 5,800 Kbps. It is interesting that so many sessions have enough bandwidth for high bit rate

content.

 0

 5

 10

 15

 20

 25

6
4

9
6

1
2

8

1
6

0

1
9

2

3
8

4

1
0

0

1
7

5

2
5

0

5
0

0

1
0

0
0

1
3

5
0

1
5

0
0

2
6

0
0

2
3

5

3
7

0

3
7

5

5
6

0

7
5

0

1
0

5
0

1
7

5
0

2
3

5
0

3
0

0
0

3
8

5
0

4
3

0
0

4
5

0
0

5
8

0
0

6
5

0
0

1
0

0
0

0

P
er

ce
n
t

Bit Rates (Kbps)

Audio Combined Video

Bytes
Nominal Title Time

Figure 5.2: Bit rates chosen by clients

92

Distribution of Title Lengths

Figure 5.3 shows the distribution of durations for titles in the catalog that were requested by

users in the catalog server trace. There are peaks at 22 and 43 minutes, corresponding to the

durations of TV shows, and a broad peak at about 90 minutes, corresponding to movies. This

variety of title durations is dramatically different than the title durations for short user-generated

video services like YouTube. For YouTube (according to a recent survey [20]), more than 96%

of titles are shorter than 10 minutes, while more than 99% of titles requested from the Netflix

catalog server are longer than 10 minutes.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100 110 120

P
D

F
 (

%
)

Nominal Title Duration (minutes)

Figure 5.3: Duration of titles viewed

Popularity Distribution of Titles

Figure 5.4 provides two measures of popularity: the number of times that each distinct title was

selected by users; and because titles are encoded in multiple bit rates, the number of times that

individual files were requested. Note that log scales are used for both axes. We include measure-

ments for both the catalog server and flash cache to show the differences between the workloads.

The flash cache popularity distribution is Zipf-like with a cutoff, and it closely resembles the

popularity distribution observed in workload studies for YouTube [24, 19], Yahoo! Video [48],

93

and PowerInfo [96]. For the catalog server curves, there is an unusual peak in the number of

sessions that access the 20 most popular titles and 200 most popular files. This is a large diver-

gence from the Zipf-like popularity distribution observed for the flash cache (and the other cited

workloads).

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

N
u
m

b
er

 o
f

S
es

si
o
n
s

Rank

Catalog Server Titles
Catalog Server Files

Flash Cache Titles
Flash Cache Files

Figure 5.4: Number of times titles or files were viewed

5.2.2 Viewing Sessions

Viewing sessions start with a user selecting a particular title and include all the user actions (such

as pausing or skipping position in the title) and client actions (such as switching bit rates) that

occur while the client is playing the title. Sessions are identified in the server logs, but we do

not have direct information about user and client actions, we infer those actions by observing

the relative file offsets of requests and the intervals between request arrivals. In this section,

we investigate the main characteristics of viewing sessions including: the duration of sessions,

which parts of the titles are accessed during sessions, where sessions start and end within the

title, and at which positions playback is paused.

94

Fraction of Title Downloaded

Since the duration of a title has a large influence on the duration of a viewing session for that title,

we express session durations as a percentage of the title duration. There are some complications

in computing this percentage because viewing sessions often involve requests for data from many

different files with different bit rates, due to rate adaptation. We compute the percentage of title

duration downloaded at each individual bit rate, then add those percentages together to get the

overall percentage. We compute fractions separately for audio, video and combined files because

clients often access them concurrently.

Figure 5.5 shows the cumulative percentage of sessions that are longer than a given percent-

age of a title. About 10% of sessions download more than 100% of the title, which is a result

of repeated downloads of the same title content; so it appears that clients likely do not cache

much content after it has been played. Clients typically download a greater percentage of the

title for audio content than video content (e.g., about 30% download more than 100%). We find

that for about half of the sessions, clients download 20% or less of the video content for a title.

These results are remarkably similar to those reported for other services offering TV shows and

movies [21], and for short user-generated video services like YouTube [34];

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

C
D

F
 (

%
)

Aggregate Percentage of Title Sent (%)

Audio Content
Combined Content

Video Content

Figure 5.5: Fraction of files downloaded in a session

95

Portions of Titles Viewed

Having determined how much of a title is typically downloaded, we are interested in determining

which parts of a title are typically accessed. To generate this data, we first convert the start and

end offsets of each request into title-relative percentages by dividing the offsets by the size of

the file. We then use bins of size 1% to record which portions of the title are requested. We use

percentages to normalize the results for different title durations, and to accommodate files with

different bit rates. Figure 5.6 shows that the first 1 percent of the title (i.e. the first 1% of at least

one file) is accessed in 85% of all sessions, very few sessions access the end, and the number

of sessions that access the title between 10% and 90% is remarkably uniform. As is the case in

Figure 5.5, more audio content is accessed than video content during a session.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
es

si
o
n
s

(%
)

Relative Title Position (%)

Audio Content
Combined Content

Video Content

Figure 5.6: Portion of titles accessed during sessions

We are unable to determine whether this characteristic of the Netflix workload, that most

parts of titles are accessed with similar frequency, is unusual. Most studies have not investigated

this issue and instead assume sessions always start at the beginning of a title [22, 34, 98]. We

are aware of only one other system, an educational media site [29], with similar uniform access

frequencies.

96

Figure 5.7 shows information about the typical positions where sessions start and end, and

the positions where pauses occur. To compute the start position of a session, we find the offset of

the earliest request and divide it by the size of the file. We compute the end position similarly, by

using the final offset of the request that is received last. To find pauses, we look for requests that

are for adjacent portions of a file, but the interval between the requests is more than 40 seconds.

We divide sessions into 1% bins to count the number of sessions that start, end or pause at that

relative title position, and report the results as percentages relative to the total number of sessions.

About 36% of sessions start in the first 1% of the title, 60% start within the first 5% of the title,

and about 45% of all sessions reach the last 5% of the title. Outside of the first and last 5% of

a title, pauses are about equally likely to occur at any relative position in a title. We have no

information about the identity of the user for a session because that information is not available

in the server logs, but the close match between the number of sessions starting and ending at

the same point in the title may indicate that users resume sessions from where they stop, which

might indicate a long-term pause.

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
n
ta

g
e

o
f

S
es

si
o
n
s

(%
)

Relative Title Position (%)

Sessions Starting
Sessions Ending

Pauses

Figure 5.7: Relative start and end of sessions and pauses.

5.2.3 Example Sessions

To illustrate client behaviour during a session, we now present and describe two individual ex-

amples of sessions.

97

Figure 5.8 shows a session that lasts for about 32 minutes, consisting of requests for about

22 minutes of title content. The top half of Figure 5.8 uses rectangles to represent each request.

The x-coordinate of the bottom left corner of each rectangle indicates the elapsed time at which

the request is issued and the y-coordinate shows the position within the title of the first byte

of the request. The x-coordinate of the top right corner indicates the time at which the request

is completed and the y-coordinate identifies the position within the title of the last byte of the

request. A tall and narrow rectangle indicates that a large request was serviced quickly and a short

and wide rectangle denotes a small request that was serviced slowly. The y-axis values (position

in the title by minutes) are an approximation, since the content is encoded using variable bit rates.

We convert file offsets to title positions by dividing the byte offset of a request by the file size,

then multiplying the resulting fraction by the title duration.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30

64
235
375
560
750
1050
1750
2350
3000

A
p
p
ro

x
.

P
o
si

ti
o
n
 i

n
 T

it
le

 (
m

in
u
te

s)

B
it

 R
at

e
(K

b
p
s)

Elapsed Session Time (minutes)

Video Requests
Audio Requests

Figure 5.8: Requests issued during a session

The bottom half of Figure 5.8 shows the different bit rate files that are accessed during the

98

session, with the bit rates labelled on the right. Each interval (between two vertical lines) depicted

in the bottom half of the figure corresponds to a rectangle in the top half.

There are a total of 51 open-ended requests in this session. Audio and video content is

obtained from separate files and only a single audio bit rate is accessed. There is a period from

about the 19 to 29 minute marks where there are no requests, likely indicating that the user

paused playback. There are periods when a large number of files with different video bit rates

are accessed over a short period, such as at times 0, 2, 4 and 11 minutes. In these cases 6, 6, 5

and 5 video bit rates are accessed, respectively. These unstable periods reflect the actions of the

DASH algorithm, either downloading segment offset tables or performing rate adaptation. There

are also stable periods when only a single bit rate is accessed, for an extended period from 13 to

20 minutes, as well as many shorter periods.

Figure 5.9 shows the first 1.5 minutes of a different example session. This zoomed-in view

illustrates the use of chunk requests, and the spacing of the requests (the slope formed by the

series of rectangles) reveals important details about request timing. The initial unstable period

lasts for about 0.1 minutes, then the client accesses a single video bit rate for the remaining time.

From 0.1 to 0.5 minutes, the client downloads about 2 minutes of title content in 0.4 minutes

of elapsed time, so content is downloaded about 5 times faster than the bit rate of the content,

indicating a period of time when the client is filling its playback buffer. After 0.5 minutes, 1

minute of content is downloaded in 1 minute of elapsed time, which indicates that pacing is

occurring. These patterns of requests and inter-arrival timings are important characteristics of

client implementations.

Figure 5.9 also reveals details about how chunk requests are issued. After 0.75 minutes

of session time, requests are issued in clusters that are separated by time gaps, illustrating the

method used for pacing chunk requests. Pacing occurs naturally due to TCP flow control for

open-ended requests [62]. Requests in the clusters overlap in elapsed session time (e.g., at the

1 minute mark in the top portion) due to the use of parallel TCP connections. These concurrent

requests are occasionally processed out of order, with examples of this just after 0.75 minutes of

elapsed time and just before the 1 minute mark. In these cases, there are requests that are higher

in the graph (indicating a later title time) while starting further to the left (indicating an earlier

elapsed time).

From these examples, it is clear that DASH clients have complicated patterns of requests, and

that different client implementations may use substantially different methods for downloading

content.

99

 0

 1

 2

 3

 4

 0 0.25 0.5 0.75 1 1.25 1.5

96
235
375
560
750
1050
1750
2350
3000

A
p
p
ro

x
.

P
o
si

ti
o

n
 i

n
 T

it
le

 (
m

in
u

te
s)

B
it

 R
at

e
(K

b
p
s)

Elapsed Session Time (minutes)

Video Requests
Audio Requests

Figure 5.9: Details of session startup

5.2.4 Request Statistics

The variation in the format and sizes of requests issued by Netflix clients reflects the wide variety

of client devices. Table 5.2 categorizes requests based on the type of content, for both open-

ended and chunk requests. Audio accounts for about 5% of the total bytes requested. Only 1.3%

of all requests are open-ended, but they account for 1/3 of the total bytes requested. Clients are

more likely to use open-ended requests for audio and combined content, but more likely to use

chunk requests for video content. Clients often use different request types for audio and non-

audio content, and for about 10% of sessions, clients alternate between open-ended and chunk

requests.

There is significant variation in request sizes, even after considering the different available

bit rates. The number of bytes downloaded with open-ended requests is extremely variable, and

100

Type Requests % GB %

Open Audio 208,045 0.3 1,095.7 3.5

Open Video 445,728 0.7 5,828.1 18.5

Open Combined 166,720 0.3 4,033.0 12.8

Open Total 820,493 1.3 10,956.8 34.8

Chunk Audio 2,654,422 4.1 299.2 0.9

Chunk Video 53,758,669 82.3 18,411.5 58.4

Chunk Combined 8,102,517 12.4 1,832.2 5.8

Chunk Total 64,515,608 98.7 20,542.9 65.2

Total 65,336,101 100.0 31,499.6 100.0

Table 5.2: Prevalence of request types

depends more on session events than client implementations, so we examine only the chunk

requests in Figure 5.10. The figure shows the average lengths of chunk requests, both in bytes

(left axis), and in nominal title time (right axis). For most audio and combined content, the

average amount requested is more than 2 seconds in terms of title time; this is caused by clients

requesting more than one 2 second segment at a time. For video content requests (bit rates 235-

10,000), the average title time is between 0.4 and 1.9 seconds because some clients divide a

segment into multiple parts and download the parts in parallel, while others download multiple

segments in a single request, and some do both.

Because parallel downloading has a large effect on the request size, we measure how fre-

quently clients issue parallel requests for the same file. Table 5.3 shows, for each file in each

session, the percentage of files that are downloaded using parallel connections at some point in a

session. We compute these numbers by finding the maximum number of concurrent requests to

the same file during the same second, which is the granularity of the timestamps. More than half

of files are downloaded in parallel during a session.

Number of Connections 1 2 3 4 5 ≥ 6

Percent of Files 41.9 18.0 33.0 6.0 0.8 0.3

Table 5.3: Per-file use of parallel downloads

Next, we introduce an abstraction that provides a unified view of requests that is independent

of how different clients issue requests.

101

 1

 10

 100

 1000

 10000

 100000

6
4

9
6

1
2

8
1

9
2

3
8

4
1

0
0

1
7

5
2

5
0

5
0

0
1

0
0

0
1

3
5

0
1

5
0

0
2

6
0

0
2

3
5

3
7

5
5

6
0

7
5

0
1

0
5

0
1

7
5

0
2

3
5

0
3

0
0

0
3

8
5

0
4

3
0

0
4

5
0

0
5

8
0

0
6

5
0

0
1

0
0

0
0

 0

 10

 20

 30

 40

 50

 60

A
v
er

ag
e

R
eq

u
es

t
L

en
g
th

 (
K

B
)

N
o
m

in
al

 T
it

le
 T

im
e

(s
)

Bit Rates (Kbps)

Audio Combined Video

Average Length
Nominal Title Time

Figure 5.10: Average sizes of chunk requests

5.3 Chains

In this section we analyze the spatial locality of the server workload. Although requests from

individual clients are commonly viewed as being highly-sequential, trick play operations, and

especially rate adaptation (which causes requests to be issued for different files) can disrupt

sequentiality. Determining the degree of spatial locality is important since it can be used to un-

derstand whether or not aggressive prefetching is likely to be as effective on this workload, as it

has been on other workloads [91] [90]. Additionally, it may be possible to use workload charac-

teristics to tailor the web server to better handle this particular workload. In Section 5.6, we use

simulation to evaluate a prefetching algorithm that makes use of our workload characterization

to make better decisions when prefetching.

To study spatial locality, we introduce a chain abstraction that represents a contiguous se-

quence of requests to the same file from the same client. Unlike prior characterizations of se-

quential access [54], a chain can include requests that were received out-of-order, on different

parallel TCP connections used by the same client. We analyze the spatial locality of the server

workload by examining characteristics of the chain lengths, such as the overall chain length dis-

tribution. Our simulations in Section 5.6 also employ the chain abstraction, as a higher-level

workload representation than individual requests.

102

Our algorithm for finding chains of requests is simple in principle: find sequences of con-

tiguous requests for content from the same file during the same session. The algorithm uses

two passes. First, we iterate through each request in a session to determine if the end offset of

the request is directly adjacent to the start offset of another request for the same file. To handle

potentially out-of-order requests, we recognize adjacent requests regardless of the relative order

in which they were received, as long as the adjacent requests are received within 40 seconds of

each other. We chose this limit after analyzing the distribution of time gaps and finding that the

longest commonly occurring gap due to pacing is 32 seconds, so a limit of 40 seconds encom-

passes pacing gaps while preserving gaps caused by client inactivity. For the second pass, the

algorithm combines adjacent requests into the longest chains possible.

We applied the chain-formation algorithm to the Netflix workload and found about 2.3 mil-

lion chains in the 65 million requests. Table 5.4 provides statistics about the chains. The “%”

column specifies the percentage of the total number of chains of each type and NTT/chain spec-

ifies the average lengths of chains in seconds of nominal title time. The table shows that chains

rarely consist of more than one open-ended request, in contrast to chains of chunk requests with

41 requests on average. The average sizes of video and combined chains are similar for both

chunk and open-ended requests, indicating that the spatial locality of non-audio chains is similar

regardless of the way HTTP requests are made.

Chain Type % Reqs MB NTT

/chain /chain /chain

Open Audio 7.2 1.3 6.8 534.1

Open Video 17.3 1.1 15.1 63.7

Open Combined 7.0 1.0 25.5 148.5

Open Total 31.5 1.2 15.5 189.8

Chunk Audio 10.7 10.8 1.3 134.7

Chunk Video 54.6 43.0 15.1 51.6

Chunk Combined 3.2 109.5 25.5 147.6

Chunk Total 68.5 41.1 13.4 69.1

Grand Total 100.0 21.5 14.1 107.1

Table 5.4: Chain statistics

103

5.3.1 Lengths of Chains

We now characterize the lengths of the chains found. Figure 5.11 provides two different cumu-

lative distributions of the length of chains, ordered by bytes, from shortest to longest. The curve

labelled Chains shows the percentage of chains that are shorter than a given length, and the Bytes

Requested curve shows the cumulative percentage of total bytes that are downloaded in chains.

More than 60% of the chains are 106 bytes (1 MB) or shorter and only about 15% of chains are

longer than 107 bytes (10 MB), so the majority of chains are relatively short. However, most of

the content is downloaded in long chains. More than 90% of the total bytes are downloaded in

chains longer than 10 MB and fewer than 2% are downloaded in chains shorter than 1 MB. These

results suggest that despite servicing DASH clients that access many different bit rate files, most

bytes will be requested in long chains with high spatial locality.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

C
D

F
 (

%
)

Length of Chains (bytes)

Chains
Bytes Requested

Figure 5.11: Percentage of chains ordered by chain size

5.3.2 Chains Starting at Offset Zero

Clients must download segment offset tables before requesting content from files so that play-

back can be started from any position in the title. This supports the implementation of DASH

algorithms as well as user actions such as skipping backward and forward in the title. About

104

24% of chains start from an offset of zero, where the segment offsets are stored, so these chains

are a significant subset of the workload.

Figure 5.12 shows a CDF of the lengths of all chains that start from a file offset of zero and

therefore contain segment offset information, compared to the chains with non-zero offsets. We

divide the chains that start at an offset of zero into two categories, depending on whether the

chain consists of open-ended or chunk requests. For chains of open-ended requests that start

at zero, 84% are exactly 768 KB in length (likely due to the size of socket buffers used on the

server), and only 0.4% are shorter. For chains of chunk requests that start at an offset of zero,

the majority of chains are very short; more than 49% are shorter than 16 KB and 98% are shorter

than 128 KB. The remaining chains that start at an offset greater than zero, of either open-ended

or chunk requests, are longer. Only 33% of chains starting from a non-zero offset are shorter

than 768 KB in length. Chains that start at an offset of zero are easy to recognize and tend to

be much shorter than chains with non-zero starting offsets. We evaluate two prefetch algorithms

that make use of these properties in section 5.6.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

C
D

F
 (

%
)

Length of Chains (bytes)

zero offset open-ended
zero offset chunk

non-zero offset

Figure 5.12: CDF of lengths of chains with different start offsets

105

5.3.3 Chain Survival Distances

We now analyze the chain length distribution to determine whether it can be described by sim-

ple equations. Figure 5.13 is a complementary cumulative distribution function (CCDF) that is

generated from the measured chain lengths. This figure contains the same information as Fig-

ure 5.11, but shows the percentage of all chains that are longer than a given length as opposed

to the percentage of chains that are shorter than a given length. For example, Figure 5.13 shows

that about 10% of chains are longer than 20 MB (2x107 bytes) and about 1% are longer than

450 MB. We display the data using log scales on both axes in order to find potential power-law

relationships in the data, which will appear as straight segments on the curve.

 0.01

 0.1

 1

 10

 100

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

C
o
m

p
le

m
en

ta
ry

 C
D

F
 (

%
)

Length of Chains (bytes)

Chain Lengths

265 x
-0.1111

91700 x
-0.5432

1.15e+14 x
-1.6306

Figure 5.13: Cumulative number of longer chains

We observe that the curve appears very straight for chain lengths between 1 MB and 200 MB,

so we divide the chain lengths into three segments: shorter than 1 MB, between 1 MB and

200 MB, and longer than 200 MB, and fit power-law equations to each of those segments. We

compute the survival function S(x) for a chain of length x in bytes from the set of all chain

lengths X as follows:

S(x) = Prob(X > x) = Ax−c (5.1)

106

The three power-law equations are shown in Figure 5.13. For each equation, the values for A

and c were calculated using a linear fit of the logarithms of the data values.

These equations can be used to compute a conditional probability for how long chains will

survive. We would like to determine the probability that a chain that is longer than x will have

total length at least x+d. We call d the survival distance for a given chain length and probability.

We compute an expected survival distance d, given a particular probability P that a chain of

length at least x will have total length longer than x+ d as follows:

P =
Prob(X > x+ d)

Prob(X > x)
=

A(x+ d)−c

Ax−c
(5.2)

which can be solved for d:

d = (P−1/c − 1)x (5.3)

To use this equation, we can select a probability target, for example, P = 0.45, and compute

that d = 3.35x for the range 1 MB to 200 MB. So for any chain that reaches a length between

1 MB and 60 MB (= 200 MB/ 3.35), there is a 45% chance the chain will grow to 3.35 times that

length.

Having defined and characterized chains, we use them in the next section to understand how

the DASH algorithms affect chain lengths. We also use chains in Section 5.6 both to implement

a prefetch algorithm and to compare different prefetch algorithms for servicing the workload.

5.4 Phases

While examining traces of individual sessions, such as those in Figures 5.8 and 5.9, and others not

included in this thesis, we found that clients seem to exhibit patterns of requests. For example,

the bottom part of both Figures 5.8 and 5.9, show that each session starts by issuing requests

for multiple files (each containing a different bit rate encoding). This pattern of issuing requests

for multiple files for a short period of time occurs in many other sessions we have examined,

in addition to the examples in Figure 5.8. We also noticed patterns where clients either access

content sequentially from a single bit rate (i.e., a single file), or they do not access any files (i.e.

playback is paused). Our goal in this section is to try to understand if such patterns are common

across sessions and to understand the impact of these patterns on the sequentiality of requests.

107

Our characterization provides insights into client behaviour including the use of rate adaptation

and helps explain the observed chain length distribution.

We first characterize phases by examining patterns of activity for chunk requests. We ana-

lyze chunk requests because their short duration provides fine-grained information about average

download rates, compared to open-ended requests. We show how chain lengths can be used to

recognize transient phases, then we show how the average download rate of chunk requests varies

during the stable phase. Finally we show that the average transfer characteristics of chains of both

open-ended and chunk requests are similar, so our findings specifically about chunk requests are

applicable to both types of chains.

5.4.1 Request Patterns During Phases

In our model, we identify three different phases, where clients issue requests with characteristic

patterns during each phase. In the following list, we informally describe the patterns of requests

that identify each phase, as well as the actions of the client during the phase.

Transient: The client issues requests for a number of different bit rate files in a short period

of time. For most clients this occurs at the start of a session, when there is a change in network

or server bandwidth, or after the user changes to a different playback position. This pattern of

requests for different files over a short period of time reflects the operation of the rate adaptation

algorithm, when the client downloads segment offset tables and content from many different bit

rate files.

Stable: The client retrieves content sequentially from the same file because the bit rate being

used is stable. At some points in time (e.g., at the beginning of a session) the client retrieves

content as quickly as possible. The client operates in this mode when it must fill its playout

buffer after a transient phase. As a result, we call this mode of operation filling mode . Once

the playout buffer contains enough data, requests are paced to arrive at the server so the average

download rate is approximately equal to the bit rate of the file. We refer to this mode of operation

as pacing mode . Clients use different mechanisms for pacing requests, depending on whether

they are issuing open-ended or chunk requests.

Inactive: The client temporarily stops issuing requests for content from files of any bit rate.

After this phase, the client usually enters the transient phase.

108

5.4.2 Phases at the Start of Sessions

In this section, we analyze non-audio chunk requests issued at the beginning of sessions, where

we assume that clients start in a transient phase, followed by a stable phase. We validate this

assumption in Section 5.4.3, after we develop a method for recognizing phases, by showing that

97% of sessions start in a transient phase.

Figure 5.14 shows average request characteristics calculated by aggregating all non-audio

chunk requests in the workload. The values are generated in 1 second intervals, relative to the

start of each session. We compute the four measurements for each second of each session, then

calculate averages by totaling the measurements over each second and dividing by the number of

sessions that have not yet ended during that second. The left axis shows the number of concurrent

connections and files, and the right axis shows the arrival interval and request duration. The

curves in Figure 5.14 are smoothed because there are few long sessions. We average data values

in bins equal to 1% of the elapsed session time for all the graphs in this section.

 0

 1

 2

 3

 4

 5

 1 10 100 1000 10000
 0

 0.5

 1

 1.5

 2

 2.5

A
v
er

ag
e

C
o
u
n
t

A
v
er

ag
e

In
te

rv
al

 o
r

D
u
ra

ti
o
n
 (

s)

Elapsed Session Time (seconds)

Concurrent Connections
Concurrent Files
Arrival Interval

Request Duration

Figure 5.14: Request activity aggregated over all sessions

The Concurrent Files curve in Figure 5.14, which shows the number of unique files that

were requested during each second of elapsed time, can be used to characterize the first transient

phase, when a number of files with different bit rates are accessed in a short amount of time. The

109

number of concurrent files peaks after 3 seconds, then declines steadily; which indicates that the

first transient phase is less than 20 seconds for most sessions.

From 1 second to 10 seconds the Concurrent Connections curve and Concurrent Files curve

are quite similar. This indicates that, on average, a single connection is used to request files

during this time. Afterwards, clients use an average of about two TCP connections to access

each file.

The Request Duration curve is fairly level, indicating that the average request size remains

constant regardless of phase. The Arrival Interval curve is calculated by subtracting the arrival

time of the next request from the arrival time of the current request (regardless of which parallel

TCP connections are used), and will be equal to 0 if the requests arrive during the same second.

The average time between arrivals gradually increases during the period from 10 to 200 seconds

because an increasing proportion of clients transition from the transient phase to the stable phase

and then from filling mode (when requests are issued as quickly as possible) to pacing mode

(when requests are issued at the same rate as content is consumed). After about 200 seconds,

almost all clients are in pacing mode, so the average arrival interval remains nearly constant.

We have now characterized the pattern of chunk requests for the phases that occur at the start

of sessions. In the following sections, we provide algorithms for recognizing phases whenever

they occur during a session, which are also applicable to sessions with open-ended requests.

5.4.3 Transient Phases

During the transient phase, many different bit rate files are accessed in quick succession in order

to download segment offset tables and video content from many different bit rate files, which

results in a cluster of relatively short chains. During the stable phase, all content is requested

sequentially from the same file which causes relatively long chains. The clusters of short re-

quests that occur during transient phases have significantly different patterns depending on the

client implementation and the action that triggered the transient phase. Figure 5.8 shows some

examples of different patterns of requests for transient phases. Because of this wide variety of

patterns, we use a robust and simple algorithm to recognize phases.

We define short chains as those with a duration of less than or equal to 40 seconds, and long

chains have a duration longer than 40 seconds. We then find clusters of short chains that have

less than a 10 second gap between the end of one short chain and the start of another. We define

the discrete clusters of short chains as representing transient phases. The long chains identify

stable phases. We determined the 40 second and 10 second threshold values experimentally.

We searched for values that would result in roughly an equal number of short clusters and long

chains, because we expect that a transient phase will typically be followed by a stable phase.

110

Figure 5.15 shows, for each second of elapsed time, the percentage of active sessions that

are starting a cluster of short chains and the percentage of sessions that are starting a long chain.

Over 97% of sessions start with a transient phase, and approximately equal numbers of transient

phases and long chains start after 100 seconds of elapsed time. Using our chosen threshold

values, the occurrence of transient phases and the other phases meets our expectations.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000P
er

ce
n
ta

g
e

o
f

A
ct

iv
e

S
es

si
o
n
s

(%
)

Elapsed Session Time (seconds)

Stable Phases Starting
Transient Phases Starting

Figure 5.15: Start times of transient phases

Transient Phase Bit Rates: First Transient Phase

Having determined when transient phases occur, we now characterize which bit rates are ac-

cessed together during transient phases. We provide information about the average number of

bit rates accessed at the start of sessions in Figure 5.14, but there is no information about which

specific bit rates are accessed. This is information that would be useful when constructing a

benchmark. During the transient phases, Netflix clients systematically request content at dif-

ferent bit rates in order to determine the highest video bit rate that can currently be supported

by the network and server. Additionally, segment offset tables at the start of files must be read

once before requesting any content, so the first transient phase usually contains more requests

for more bit rates than later transient phases. After the transient phase, the most suitable bit rate

is used to download the bulk of content during the stable phase that follows the transient phase.

111

For example, Figure 5.16 shows a detailed view of the bit rates accessed during the first 12

minutes of the example session shown in Figure 5.8. During the first 0.75 minutes, the client ac-

cesses 6 different video bit rates between 235 Kbps and 1,750 Kbps (downloading at 1,050 Kbps

for 0.5 minutes) before choosing 1,750 Kbps for the first stable phase (i.e., the first chain with a

duration longer than 40 seconds).

64

235

375

560

750

1050

1750

2350

3000

 0 1 2 3 4 5 6 7 8 9 10 11 12

B
it

 R
at

e
(K

b
p

s)

Elapsed Session Time (minutes)

Video Requests
Audio Requests

Figure 5.16: Detailed view of bit rates accessed at start of example session from Figure 5.8

We wish to examine the relationship, over all sessions, between the average amount down-

loaded at different bit rates during the transient phase and the bit rate chosen for the stable phase

that follows the transient phase. We start by characterizing the bit rates accessed during the first

transient phase, based on the bit rate used for the first stable phase. About 33% of sessions are

shorter than 40 seconds and cannot have a stable phase by definition, 56% of sessions have a

stable phase, and for the remaining 11%, either the session duration is too short or the network

connection is too unstable for a stable phase to form. Figure 5.17 shows the bit rates accessed

during the first transient phase averaged over all sessions. For each stable phase bit rate (given

on the x-axis), the figure shows the average percentage of content (in terms of nominal title time)

that is downloaded during the first transient phase at each different video or combined bit rate

(given on the y-axis). In other words, each column is a histogram of the percentage of content

downloaded at each bit rate (i.e. each row) during the transient phase that precedes the stable

phase with the given bit rate. Percentages are calculated for each stable phase bit rate separately,

so the percentage downloaded during the transient phase at all video and combined bit rates total

100% for each stable phase bit rate. Circles are used to show values between 5% and 100%, and

the circle in the legend represents 10%. The area of each circle is proportional to the percentage

112

of the total content downloaded at that bit rate during the transient phase. The circles are too

small below 5%, so crosses are used to show percentages between 0.5% and 5%. Percentages

below 0.5% are considered to be negligible, so they are not shown.

100

175

250

500

1000

1350

1500

2600

235

370

375

560

750

1050

1750

2350

3000

3850

4300

4500

5800

6500

10000

1
0
0

1
7
5

2
5
0

5
0
0

1
0
0
0

1
3
5
0

1
5
0
0

2
6
0
0

2
3
5

3
7
0

3
7
5

5
6
0

7
5
0

1
0
5
0

1
7
5
0

2
3
5
0

3
0
0
0

3
8
5
0

4
3
0
0

4
5
0
0

5
8
0
0

6
5
0
0

1
0
0
0
0

B
it

 R
at

e
A

cc
es

s
P

er
ce

n
ta

g
es

 D
u
ri

n
g
 T

ra
n
si

en
t

P
h
as

e
(K

b
p
s)

Stable Phase Bit Rate (Kbps)

Combined Video

V
id

eo
C

o
m

b
in

ed

5 - 100%
0.5 - 5%

Figure 5.17: Associated bit rates: First transient phase for sessions with a stable phase. The x-

axis specifies the bit rate used for the first stable phase. The y-axis specifies the bit rates accessed

during the first transient phase, for each individual stable phase bit rate.

We provide a brief example of how this chart is read, using the example session shown in

Figure 5.16. During the first transient phase of the example session, the client issues requests for

video bit rates between 235 Kbps and 1,750 Kbps, then starts a stable phase at 1,750 Kbps. Com-

paring the example session of Figure 5.16 to the average of all sessions that have a stable phase

113

bit rate of 1,750 Kbps, the example session appears to be typical. In the 1750 column of Fig-

ure 5.17, only a small percentage of content is downloaded at video bit rates above 1,750 Kbps,

and the percentage of content downloaded at bit rates between 235 Kbps and 1,750 Kbps is about

the same (the circles are of similar size), which is similar to the pattern of bit rate accesses of the

example session (except for the large amount of content downloaded at a bit rate of 1,050 Kbps).

We make some general observations about Figure 5.17. The pattern of examining a number

of lower rates before settling on a stable phase bit rate largely holds for the other stable phase

video bit rates. However, there are exceptions: 0.5% of sessions use a 370 Kbps bit rate and

never access any other bit rate, and the group of sessions using stable phase bit rates of 4,500,

6,500 and 10,000 Kbps (0.05% of sessions) do not access bit rates lower than 4,500 Kbps. In

these cases, the atypical patterns could be caused by differences in client implementations, or it

is possible that the results are an artifact of the small sample size. We also observe that similar

amounts are read at each bit rate during the first transient phase and that very little content is

downloaded at rates higher than the stable phase bit rate.

Transient Phase Bit Rates: Successor Transient Phases

Many sessions have more than one transient phase. For example, in Figure 5.16, there are 5

transient phases that follow the first (called successor transient phases), at approximately 2,4,7,9

and 11 minutes. Some of the successor transient phases (those at 2 and 11 minutes) are similar

to the first transient phase in that they request data for a large number of bit rates that are lower

than the stable phase bit rate, while the other successor transient phases are different because the

lowest bit rates are not accessed. To determine if there are generally differences between the first

transient phase and successor transient phases, we analyze the 150,290 successor transient phases

in the workload. We generated three charts, for the cases where the bit rate of the stable phase

increases (29%), decreases (17%) or remains the same (54%) relative to the preceding stable

phase bit rate. Figure 5.18 shows the chart for successor transient phases when the stable phase

bit rate decreases. The other two charts are quite similar, so we do not show them. The patterns

of bit rate accesses show that on average, compared to the first transient phase, there is a bias

towards accessing bit rates slightly above and below the stable phase bit rate during successor

transient phases, and a weaker tendency to access the lowest bit rates. This is possibly because

clients have more knowledge of network conditions after the first transient phase and therefore

have less need to probe the lowest bit rates, or fewer bit rates are accessed because segment

headers are downloaded during the first transient phase and do not need to be downloaded again.

114

100

175

250

500

1000

1350

1500

2600

235

375

560

750

1050

1750

2350

3000

3850

4300

5800

1
0
0

1
7
5

2
5
0

5
0
0

1
0
0
0

1
5
0
0

2
3
5

3
7
5

5
6
0

7
5
0

1
0
5
0

1
7
5
0

2
3
5
0

3
0
0
0

3
8
5
0

4
3
0
0

B
it

 R
at

e
A

cc
es

s
P

er
ce

n
ta

g
es

 D
u
ri

n
g
 T

ra
n
si

en
t

P
h
as

e
(K

b
p
s)

Stable Phase Bit Rate (Kbps)

Combined Video
V

id
eo

C
o
m

b
in

ed

5 - 100%
0.5 - 5%

Figure 5.18: Associated bit rates: Successor transient phases. Includes only transient phases

where the following stable phase bit rate is lower than preceding stable phase bit rate.

We have now explained how the length of chains (using a threshold of 40 seconds) can be

used to identify phases. We have also characterized the timing of transient phases and the bit

rates that are accessed during transient phases. We next investigate the timing of requests during

the stable phase, which changes between the filling and pacing modes.

5.4.4 Stable Phases

Chains not belonging to a transient phase make up stable phases. That is, each chain longer

than 40 seconds comprises a stable phase. The average duration of a stable phase is 8.5 minutes.

115

This provides an estimate of the average interval between events, which include skips, pauses, or

ending the session by the user, as well as the operation of the rate adaptation algorithm by client

devices.

We use two different methods to characterize changes in the download rate during a stable

phase, which will enable us to identify the transition from filling mode to pacing mode. The first

method is only valid for chains of chunk requests. We compute the average download rates to

directly show the point where the chain transitions from high download rates to lower download

rates. The second method characterizes download rates indirectly, but can be used for chains of

both open-ended and chunk requests.

Download Rates

Figure 5.19 shows the average number of bytes downloaded in requests, categorized by the length

of chain that contains the request, during each second of elapsed session time. The average

download rate is the total number of bytes requested during each second divided by the number

of sessions that are active during that second. The Long Chains curve has an early peak signifying

the filling mode, followed by a decrease to a largely constant rate after 200 seconds. From this

curve, it appears that almost all sessions are in pacing mode after 200 seconds, in accord with

Figure 5.14. The apparent decrease in the download rate for long chains after 1,000 seconds is

caused by an increasing number of sessions that are in inactive phases (as shown in Figure 5.21).

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000 10000

A
v
g
.
D

o
w

n
lo

ad
 R

at
e

(K
B

/s
)

Elapsed Session Time (seconds)

Transient Phases
Stable Phases

All Phases

Figure 5.19: Aggregate download rate for requests

116

Figure 5.19 also shows a large variation in total download rates by elapsed session time. The

average download rate of all requests is about 3 times higher at the start of the session (between

6 and 11 seconds) than it is after 200 seconds. This indicates that typical clients use much less

bandwidth in pacing mode than is available during the first transient phase.

Transfer Ratios

For open-ended chains, we cannot directly observe changes to the transfer rate because they

occur at the TCP level, via TCP flow control [62], which is not recorded in the server traces.

However, we can use an indirect method to show that the transfer characteristics of chains of

open-ended and chunk requests are similar, and therefore conclude that the characteristics of

filling mode are the same for both types of requests. We use the property that the filling mode is

limited in duration, so the longer the chain, the higher the proportion of time spent in the pacing

mode. Since the ratio of content downloaded in a chain to the duration of the chain (the transfer

ratio) is equal to 1 while in pacing mode and greater than 1 while in filling mode, we expect that

the longer a chain, the closer the transfer ratio will be to 1.

Figure 5.20 shows the average transfer ratios for chains with the same elapsed time, calcu-

lated separately for chains of open-ended and chunk requests. The transfer ratio is much larger

than 1.0 for short chains, particularly chains of open-ended requests, where the maximum ratio

of 14.5 is for chains with 2 second duration. The transfer ratio declines quite gradually, indi-

cating that the filling mode is very long for some sessions. The calculated ratios for chains of

open-ended and chunk requests are nearly identical for durations longer than 12 seconds. This

is strong evidence that, although we cannot directly measure them, the patterns of changes of

transfer rates for open-ended requests are similar to the patterns shown in Figure 5.19 for long

chains of chunk requests.

5.4.5 Inactive Phases

To detect inactive phases, we simply find sufficiently long periods of time when no requests are

issued. Figure 5.21 shows the percentage of sessions (that have not yet ended) that are in an

inactive phase during each second of elapsed time. A session is in an inactive phase if it issues

no requests for any file for a period of at least 40 seconds. We chose the threshold value of

40 seconds to match the 40 second threshold for inter-arrival gaps for chains (as described in

Section 5.3). Inactive phases are common; at least 10% of sessions are in an inactive phase after

117

 0
 1

 5

 10

 15

 1 10 100 1000 10000

N
o
m

in
al

 T
it

le
 T

im
e/

D
u
ra

ti
o
n

Chain Duration (seconds)

Open-Ended Chains
Chunk Chains

Figure 5.20: Ratio of play time to chain duration

the first few seconds, and the percentage increases rapidly after 5,000 seconds. This indicates

that most long sessions are caused by inactive phases.

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000

S
es

si
o
n
s

in
 I

n
ac

ti
v
e

P
h
as

e
(%

)

Elapsed Session Time (seconds)

Figure 5.21: Percentage of sessions in inactive phases at different times

118

5.4.6 Impact on Sequentiality

Now that we have defined and examined the different phases, we consider the proportion of time

spent in each phase for this workload. Across all sessions, transient phases account for 5.2%

of the time, stable phases 79.1%, and inactive phases 16.4%. These numbers add up to 100.7%

because there is a small amount of overlap between the transient and stable phases for some

clients. With respect to bytes transferred, 7.6% of the total number of bytes are downloaded in

transient phase chains, and 92.4% in stable phase chains. The proportion of bytes downloaded in

the transient phase is higher than the proportion of time because clients do not use pacing during

the transient phase.

Understanding these phases helps to explain the distribution of chain lengths in Figure 5.11.

Many different bit rate files are accessed during transient phases, but not much content is read

from each file, resulting in a large number of short chains. Clients spend a large proportion of

time in stable phases, and the stable phases last a long time (8.5 minutes on average), so there

are relatively few long chains that account for a large proportion of the total bytes requested. We

make use of these chain length characteristics in Section 5.6, when we analyze potential prefetch

algorithms that make use of these characteristics.

5.5 Creating a Workload Specification

In order to demonstrate the utility and completeness of our workload characterization, we con-

sider the problem of creating a workload specification using the information we have presented.

As described in Chapter 3, the workload specification could be used to construct a Netflix-like

benchmark in the future.

Table 5.5 lists the major workload parameters for the Netflix workload, which are represented

by the figures listed in the source column. This table has a similar format as Table 3.2, but

because we do not know the capacity of the target server and experiment environment, we omit

those hardware-dependent parameters.

Because the sessions and request patterns for the Netflix workload are more complicated than

the YouTube-like benchmark, future work would involve modifying the workload generator and

httperf to accommodate the differences.

We have much more information about sessions and requests in the Netflix workload than

we did for the YouTube-like workload specification. Therefore, the workload constructor would

need to be extended to implement the following functions:

119

Parameter Description Source

Video Popularity Distribution Figure 5.4

Video Duration Distribution Figure 5.3

Video Bit Rates Figure 5.2

Session Length Distribution Figure 5.5 (and 5.7)

Session Arrivals Figure 5.1

Client Request Size (MB) VBR, Figure 5.10

Client Request Pacing Figure 5.19

Client Adaptation Figure 5.15 (and 5.17)

Server Storage Method Single File

Server Chunk Size (Time) 2 second segments

Table 5.5: Summary of Netflix storage server workload specification

• Generate a set of sessions that are representative of the Netflix workload. Tasks include

choosing a title, a starting point in the title, the duration of the session, the time at which

bit rate adaptations occur, and the timing of any user events such as skips and pauses. We

characterize these parameters in Sections 5.2.1, 5.2.2 and 5.4.4.

• Generate phases based on the session events, then derive chains to represent the phases.

We characterize these factors in Section 5.4.

• Convert the chains into individual requests using the bit rate, duration and title position of

the chain. We must choose an HTTP format for the requests: open-ended or chunk, and

whether or not to use parallel connections, as detailed in Section 5.2.4.

To be able to generate open-ended chains that are paced, it may be necessary to make further

modifications to httperf, in addition to those described in Section 3.4. However, since the

transfer characteristics for chains of open-ended requests and chunk requests are similar, it might

be sufficiently accurate to use chunk requests for all chains.

After these changes, it would be possible to test web server implementations using a Netflix-

like benchmark, including the simulation of rate adaptation. A Netflix-like benchmark could also

be adjusted to examine future changes in workload characteristics (e.g., the use of HTTPS).

120

5.6 Evaluation of Workload-specific Prefetch Algorithms

In this section, we demonstrate the utility of our workload characterization by using it to de-

velop workload-specific prefetch algorithms. We use a simple simulation model of a web server

to carry out a first-cut performance evaluation of the algorithms, in comparison to a baseline

prefetch algorithm that makes no use of workload characteristics. In the future, the insights we

gain can be used as a starting point for modified server implementations, which can then be

evaluated experimentally.

5.6.1 Prefetch Algorithms

We describe five algorithms for choosing a prefetch size: the baseline algorithm that is used for

most of the experiments in Chapter 4, two algorithms that make use of the bit rate of files as

discussed in Section 4.3, and two algorithms that make use of the characteristics of chains in the

Netflix workload.

Fixed: The baseline algorithm uses a single fixed prefetch size and it requires no workload

information.

Proportional: This algorithm uses a fixed prefetch size that is proportional to the bit rate of

the file being accessed.

Square-Root: This algorithm uses a fixed prefetch size that is proportional to the square root

of the bit rate.

First-Grow: This algorithm makes use of workload chain characteristics in two ways. The

algorithm uses one of three specifically-determined prefetch sizes for the first prefetch in a chain,

depending on the type of chain and its starting offset in the file. Second, it grows the size of

subsequent prefetches by a multiplier, based on the power-law relationship we derived from the

chain lengths in Section 5.3.1, until the prefetch size reaches a maximum.

The First-Grow algorithm uses a relatively small prefetch size at the start of chains because

the majority of chains are short. Using a relatively small first prefetch size will reduce the

amount of content that is prefetched but not subsequently requested by clients for short chains.

Additionally, chains that start from an offset of zero (where the segment offset table is stored) are

often very short, as shown in Figure 5.12. We divide chains into three categories: chains of open-

ended requests that start at zero, chains of chunk requests that start at zero, and the remaining

121

chains. To take advantage of the different chain length distributions, we perform a separate cost-

benefit analysis for each category and determine the best first prefetch sizes. For this analysis,

the benefit is the amount of data that is requested by clients at the start of each chain, up to the

prefetch size. The cost has two components: prefetching data that will not be requested because

the chain is shorter than the prefetch size, and performing seeks for the chains that are longer

than the prefetch size. The prefetch sizes that provide the lowest cost-benefit ratios are listed in

Table 5.6.

Offset of Chain Start Request Type Size (bytes)

Starts at zero Open-Ended 1,049,212

Starts at zero Chunk 131,073

Starts later than zero Either Type 2,936,037

Table 5.6: Size for first prefetch in a chain

The First-Grow algorithm also gradually increases the prefetch size to take advantage of the

characteristics of longer chains derived in Section 5.3.3. Specifically, we multiply the current

chain length by 3.35 to compute a prefetch size, which is calculated to provide a 45% survival

rate, based on Equation 5.3. We tried a range of different survival rates and determined that 45%

provided the lowest disk utilization for the workload.

First-Grow-SR: This algorithm is the same as First-Grow, except the prefetch size grows to a

maximum that is proportional to the square root of the file bit rate.

5.6.2 Evaluation Methodology

We apply a trace-based simulation, using the chains that are computed from the Netflix storage

server log, to compare the different prefetch algorithms. For our analysis, we track the usage of

two important resources: the hard drives that store content, and the system memory that holds

prefetched content. We determine resource usage by applying a prefetch algorithm to each chain

independently. Given the length of a chain in bytes, as well as the start and end times of the

chain duration, we simulate the timing and size of the prefetch operations that would be required

to service each chain. We maintain a global record, divided into 60 second intervals over the

elapsed time of the logs, that aggregates resource usage from individual chains to determine

total utilization over time. After processing all chains, we find the maximum system memory

consumption and the maximum utilization of a hard drive that occurs during an interval.

122

To determine the consumption of system memory, we calculate the amount of prefetched data

and the time that it is resident in memory. Notionally, when a chain starts, a memory buffer equal

to the first prefetch size is allocated, which is reused and potentially resized for any subsequent

prefetches. The prefetch buffer is freed 40 seconds after the chain ends. This 40 second interval

matches our criteria for forming chains, so this delay in deallocating a prefetch buffer represents

the actions of a memory management algorithm that keeps prefetched data in memory until a

chain is known to end. We make the simplifying assumptions that prefetched data will not be

evicted prematurely, and also that there is sufficient system memory for prefetch buffers, to avoid

simulating a memory management algorithm.

To track hard drive utilization, we consider two separate operations: transferring data from

disk and repositioning the disk head between prefetch operations. We calculate hard drive utiliza-

tion as a fraction of maximum capacity. Given the maximum transfer rate tmax and the maximum

seek rate smax, we compute transfer utilization as t/tmax and seek utilization as s/smax. We add

these utilization fractions together (since a hard drive cannot seek and transfer data at the same

time) to determine total disk utilization. If the calculated utilization of a hard drive is more than

100%, then the prefetch algorithm is infeasible because it would overload a hard drive.

To obtain values for smax and tmax, we use benchmark results for a Hitachi Deskstar 5K3000,

which has been used by Netflix in the past [69]. We found measured transfer rates for two

benchmarks: 125.5 MB/s for 2 MB sequential transfer reads and 48.4 MB/s for 2 MB random

transfer reads [88]. From the sequential benchmark, where no seeks are required, it follows that

tmax = 125.5 MB/s. From the random benchmark, t = 48.4 and s = 24.2, since there is 1 seek

per 2 MB read, and we calculate smax as follows:

t

tmax

+
s

smax

= 1 =⇒ smax = s
tmax

tmax − t
(5.4)

So smax = 24.2 · 125.5/(125.5− 48.4) = 39.4.

5.6.3 Evaluation Results

We first evaluate the algorithms that make use of information about the bit rate of the content

being requested, in comparison to the baseline algorithm which uses a single fixed prefetch

size. Our earlier mathematical analysis of the best way to service mixed bit rate workloads in

Section 4.3 indicates that we should choose a prefetch size that is proportional to the square root

of the bit rate of the content. We confirmed the analysis experimentally using the YouTube-like

123

benchmark in Section 4.5.4, and we now repeat the evaluation analytically, using the Square-

Root and Proportional algorithms, to determine if using prefetch sizes proportional to the square

root of the bit rate is also the best option for the Netflix workload.

Figure 5.22 shows the usage of two different resources: the utilization of the hard drive with

the highest load (labelled Util and using the left axis), and the maximum amount of system

memory consumed (labelled Mem and using the right axis). Each data point is the result of

analyzing one of the prefetch algorithms using a prefetch size parameter shown on the x-axis. The

parameters have different meanings for each algorithm. For the Fixed algorithm, the parameter is

the single size used for prefetching. For the Proportional and Square-Root algorithms, the x-axis

shows the prefetch size used for a 2,000 Kbps bit rate and the other prefetch sizes are scaled

proportionally to the bit rate, or proportionally to the square root of the bit rate, respectively.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20
 0

 30

 60

 90

 120

 150

D
is

k
 U

ti
li

za
ti

o
n

 (
%

)

M
ax

im
u

m
 M

em
o

ry
 U

se
 (

G
B

)
Prefetch Size for 2000 Kbps (MB)

Fixed Util
Proportional Util
Square-Root Util

Fixed Mem
Proportional Mem
Square-Root Mem

Figure 5.22: Comparison of bit-rate-based algorithms

The baseline Fixed algorithm provides its best hard drive utilization of 57% using a prefetch

size of 7 MB, with memory consumption of 47 GB. Compared to the baseline, memory con-

sumption is lower for both Proportional and Square-Root, using 29 GB and 31 GB respectively

for the same nominal 7 MB prefetch size. However, the best hard drive utilization is higher

than the baseline for Proportional while it is 5% lower than the baseline for Square-Root, with

utilization of 54% when using a nominal 8 MB prefetch size. These results are similar to our

experiments with the YouTube-like benchmark, shown in Figure 4.10, where the square-root rule

provides the highest throughput.

124

We now consider algorithms that make use of chain characteristics. Figure 5.23 shows the

results when we compare the First-Grow and First-Grow-SR algorithms to the baseline Fixed

algorithm. The x-axis parameter specifies: the single prefetch size for Fixed, the maximum

prefetch size for First-Grow algorithm, and for First-Grow-SR, the maximum prefetch size used

for the 2,000 Kbps bit rate with the other maximum prefetch sizes scaled proportionally to the

square root of the bit rate. The Fixed curve is provided for reference and also appears in Fig-

ure 5.22.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20
 0

 30

 60

 90

 120

 150

D
is

k
 U

ti
li

za
ti

o
n

 (
%

)

M
ax

im
u

m
 M

em
o

ry
 U

se
 (

G
B

)

Prefetch Size (MB)

Fixed Util
First-Grow Util

First-Grow-SR Util

Fixed Mem
First-Grow Mem

First-Grow-SR Mem

Figure 5.23: Comparison of chain-length-based algorithms

Compared to the baseline Fixed algorithm, the First-Grow algorithm reduces hard drive uti-

lization and consumes less system memory because the initial prefetch sizes used by the First-

Grow algorithm are small compared to the final prefetch size, which is equal to the single prefetch

size always used by the Fixed algorithm. Using smaller initial prefetch sizes also reduces wasted

prefetches for short chains, which is the reason that hard drive utilization is reduced. The First-

Grow-SR algorithm has nearly identical hard drive utilization as First-Grow while reducing mem-

ory consumption further, because using a maximum prefetch size that is proportional to the

square root of the bit rate makes the most efficient use of limited system memory (as shown in

Section 4.3).

In summary, the best choice of prefetch algorithm depends on the extra workload information

that is available to the server. If there is no workload-specific information available, we can use

the baseline Fixed algorithm with a prefetch size of 7 MB, which results in disk utilization of

125

57% and memory consumption of 47 GB. If there is workload information available, then we can

reduce disk utilization or memory consumption or both by using one of the following algorithms:

Square-Root: If only bit rate information is available, Square-Root reduces memory consump-

tion by 42% while matching the 57% hard drive utilization of the Fixed algorithm.

First-Grow: If only chain information is available, First-Grow reduces hard drive utilization by

5% with the same 47 GB memory consumption as Fixed.

First-Grow-SR: If both bit rate and chain information is available, First-Grow-SR reduces

memory consumption by 48% while matching the 57% hard drive utilization of Fixed.

Alternatively, hard drive utilization can be lowered by 10% when matching the 47 GB

memory consumption of Fixed.

The lowest hard drive utilization of all the algorithms we evaluated is 50% for First-Grow-SR

with a prefetch parameter of 16 MB, which is a 13% reduction compared to the disk utilization

of Fixed with a prefetch size of 7 MB. The First-Grow-SR algorithm consumes 52 GB of system

memory to achieve 50% disk utilization, which is 11% more memory than Fixed. These results

show that the efficiency of servicing the Netflix workload, either in terms of disk utilization or

memory consumption, can be improved by making use of workload characteristics.

5.7 Chapter Summary

In this chapter, we analyze anonymized web server log files to characterize the workloads of

Netflix streaming video servers. Because of the complexity and variety of methods that Netflix

clients use to request content, we introduce chains to represent sequential requests for content

from the same file, regardless of the different forms that requests may take. We then utilize chains

to help identify transient, stable and inactive phases in the client implementations. We observe

that playback sessions are quite stable. On average, the first transient phase lasts for only 1% of

the session duration, there are only four transient phases per session, and they account for only

4% of total session duration (equivalent to 1 minute for a 22 minute title or 2 minutes of a 44

minute title). We find that despite there being large numbers of short chains due to activities such

as rate adaptation (60% are shorter than 1 MB), the vast majority of content is downloaded in

long chains (95% of content is downloaded in chains larger than 10 MB).

We also use the chains to analyze potential prefetch sizing algorithms for use with the Netflix

workload. We analyze a simple algorithm that uses a single fixed prefetch size and requires no

workload information as a baseline. We then test algorithms that make use of the bit rate of

126

the content to select a prefetch size and confirm that setting the prefetch size proportional to

the square root of the bit rate results in lower resource utilization than setting the prefetch size

proportional to the bit rate, confirming the mixed bit rate analysis in Section 4.3. We also show

that utilization can be further reduced by making use of specific chain characteristics, such as the

starting offset of chains and chain survival distances. to implement prefetch algorithms.

We find that despite the differences between the Netflix workload and YouTube-like bench-

mark workload, particularly for session characteristics and the use of DASH, both HTTP stream-

ing video workloads can be more efficiently serviced by aggressively prefetching content that is

expected to be requested by clients.

127

Chapter 6

Conclusions and Future Work

We now conclude our investigation of HTTP streaming video workloads as well as our efforts

to improve the implementation of web servers to deliver this workload. In this chapter, we first

briefly summarize our research and highlight our contributions. Then we discuss directions for

future research. Finally, we present concluding remarks and discuss the potential impact of our

work.

6.1 Summary and Contributions

The goal of our research is to understand HTTP streaming video workloads and to potentially

use that knowledge to increase the throughput of video web servers. In this thesis, we investigate

two HTTP streaming video workloads from YouTube and Netflix. Between them, these two

services account for more than half of peak fixed-line Internet traffic in North America [83].

The catalogs offered by these services are huge (for example, the Netflix catalog is more than

2 PB in size), and user interest in titles has a long-tail distribution. For these reasons, relatively

cheap high-capacity hard drives are typically used to store the long tail of the catalog that is

viewed infrequently. Web servers should be able to achieve high throughput when servicing

these streaming video workloads using hard drives because the requests issued by the clients are

highly sequential, and hard drives provide their highest throughput when accessed sequentially.

Given our understanding of HTTP streaming workloads and the performance characteristics

of hard drives, it is surprising that our experiments reveal that popular web servers have low

aggregate throughput when servicing streaming video workloads. As we discover, this is be-

cause hundreds or thousands of streaming video clients issue relatively small requests to a web

128

server concurrently, and as a result, the requests issued from clients are interleaved and appear

as though they are random reads to the server. Therefore, our approach to improving web server

implementations is to devise algorithms that recognize and exploit the high spatial locality of

HTTP streaming video workloads. That is, to modify the web server so that it transforms the

random workload it receives into a more sequential workload when reading content from a hard

drive.

6.1.1 Workload Methodology and YouTube-like Benchmark

To test web server implementations, we require a benchmark to generate representative HTTP

streaming video workloads, but prior to our work in this thesis, such benchmarks did not exist.

To remedy this situation, in Chapter 3, we introduce a methodology for creating benchmarks

from workload specifications. However, all the workload characterizations available at the time

that the methodology was created describe a workload that consists of requests issued to multi-

ple servers, and not the workload of an individual server, which is the information we need to

specify the workload for our methodology. Therefore, we combine the information from several

studies that characterize the workload of the YouTube service to infer the workload specification

for an individual server. Then, using that workload specification, we construct a YouTube-like

benchmark that is used to conduct experiments on web servers.

In Chapter 4, we conduct carefully-designed experiments to reveal that two widely used web

servers (Apache and nginx) and a high performance research web server (the userver)

have throughput that is much lower than expected from the rated sequential throughput of the

hard drive used in the server. We improve the throughput of the userver by implementing

aggressive prefetching. This is not a simple task because the kernel interleaves concurrent disk

I/O and thereby limits the size of requests issued to the hard drive. Therefore, we devise the

ASAP architecture (Asynchronous Serialized Aggressive Prefetching) for web servers, which

uses a single helper thread per disk to perform prefetches, thereby serializing access to each disk

and preventing the kernel from interleaving I/O to each disk. We find that implementing the

ASAP architecture on its own is not sufficient to improve throughput, we find it is also necessary

to ensure that title content is stored in a single file (as demonstrated in Section 3.7.2), rather than

the alternative of dividing content into chunks that are stored in multiple files. After modifying

the userver to implement ASAP, and storing each title as a single file, we find that using

a prefetch size of 2 MB more than doubles throughput compared to an unmodified “vanilla”

userver, Apache, and nginx web servers.

129

6.1.2 Determining Prefetch Sizes

A prefetch size of 2 MB increases throughput, but it is unclear if 2 MB is the best prefetch size. In

Chapter 4, we study the problem of choosing the best prefetch size. We conduct a systematic and

time-consuming series of experiments, using a series of different prefetch sizes, to determine the

highest failure-free throughput that is possible for each prefetch size. We show that the choice of

the best prefetch size depends on: 1) the amount of system memory, 2) the popularity distribution

of the titles requested, and 3) the characteristics of the hard drive.

Because the best prefetch size depends on so many different factors, that can potentially

change, we devise an algorithm that dynamically and automatically adjusts the prefetch size. Our

algorithm monitors both cache hits and the time required to service disk transactions in order to

balance between maximizing the throughput of disk I/O and ensuring that the prefetched data is

not evicted before it is used. The automated algorithm is able to choose prefetch sizes that are

equivalent to the best found using our manual procedure. By combining the automated algorithm

and the ASAP architecture, it is possible to improve userver throughput by up to 5.2 times

compared to the vanilla userver (see Section 4.5.3), without requiring changes to the kernel

and without the need for system administrators to perform tedious and time-consuming manual

tuning.

Prefetch Sizes for Mixed Bit Rate Streams

The automated prefetch algorithm uses a single prefetch size (which is changed dynamically) to

service client requests. This is a reasonable strategy when the same bit rate is used for all content,

but for many streaming video services, content is viewed and requested at multiple different bit

rates because viewers use different devices and access video services over a variety of networks.

Using a single prefetch size results in more frequent prefetching for high bit rate content than

for low bit rate content, which is not necessarily optimal. We used Lagrange analysis to show

that for a workload consisting of finite streams with a variety of bit rates, when there is a limited

amount of system memory available for storing prefetched data, then the prefetch sizes should be

proportional to the square root of the title bit rate. To verify this analysis, we conduct experiments

to compare our method to other alternatives, including using the same prefetch size regardless

of bit rate, and using prefetch sizes that are proportional to the video bit rate (suggested by Gill

and Bathen [37]). We find that our algorithm of using prefetch sizes that are proportional to the

square root of the bit rate obtains the highest throughput.

130

6.1.3 Characterize Netflix Server Workload

Our workload characterization of an individual Netflix server is, to our knowledge, the first char-

acterization of an individual web server used to service an HTTP streaming video workload. We

study this workload because Netflix accounts for a large fraction of total Internet traffic and be-

cause the Netflix workload has significantly different characteristics than YouTube. In particular,

information about rate adaptation was not available at the time we created the YouTube speci-

fication and benchmark. We are interested in whether aggressive prefetching will increase the

capacity of Netflix servers, and whether a more detailed understanding of the specific character-

istics of the Netflix workload could be used to improve prefetching.

In Chapter 5, we analyze the server log files obtained from two production Netflix servers

to characterize the Netflix workload, including the characteristics needed to create a workload

specification that could be used in the future to construct a Netflix-like benchmark. To analyze the

wide variety of different requests made by the many types of client devices supported by Netflix,

we introduce two abstractions: chains of sequential requests, and phases of client behaviour,

The chain abstraction is helpful for analyzing the spatial locality of the workload, and we

find two specific characteristics of chains we can use to predict the length of chains: 1) chains

that start at a file offset of 0 tend to be short, and 2) there is a power-law relationship between a

given chain length and the percentage of chains in the workload that are longer than that given

length. We propose prefetch algorithms that exploit these characteristics.

Algorithms for Choosing Prefetch Sizes Based on Workload Characteristics

We analyze five different prefetch algorithms that make use of workload characteristics such as

the bit rate of the content being requested and the offset of the first request in a chain. We com-

pare these algorithms by simulating the servicing of all the chains in the workload to compute

the utilization percentage of the hard drives and the consumption of system memory. We show

that prefetch algorithms that make use of our findings about servicing mixed bit rate workloads

and workload-specific chain characteristics have lower disk utilization and lower memory con-

sumption than an algorithm that has no information about the workload and uses a fixed prefetch

size.

6.2 Future Work

We now discuss avenues for future research. In the following sections, we describe the additional

effort required to experimentally evaluate service algorithms for the Netflix workload. We also

131

discuss potential ideas for improving the implementation of web servers for HTTP streaming

video workloads.

6.2.1 Constructing a New Benchmark

In Section 5.5, we describe the necessary steps to create a Netflix-like workload specification,

to then be used to create a Netflix-like benchmark. Our experiments with the YouTube-like

benchmark were helpful for discovering important implementation issues that we had to address

before our prefetch algorithm would work as expected. The patterns of requests in the Netflix

workload are considerably more complicated than those used for the YouTube-like benchmark.

It is possible that characteristics of those requests, such as the difference between open-ended

requests and chunk requests, the use of parallel TCP connections, and the potential for out-of-

order requests will need to be accommodated in web server implementations. One consideration

for conducting experiments with a Netflix-like benchmark is that Netflix servers contain many

hard drives, so the equipment used to simulate client demand will have to be scaled-up to utilize

the capacity of multiple hard drives.

6.2.2 Testing Prefetch Algorithms with New Benchmark

After a Netflix-like benchmark has been created, it would be possible to implement and evaluate

the workload-specific prefetch algorithms, such as square-root and first-grow, that are described

in Section 5.6.1. Either the userver or another web server such as nginx could be modified to

implement the alternative algorithms. One reason for implementing and testing the prefetch al-

gorithms is to validate the chain-based simulation we use to evaluate algorithms in Section 5.6.3.

The simulations take much less time to run than experiments, and if the results from experiments

are sufficiently similar to the results from the simulation, it will be possible to rapidly evalu-

ate many alternate prefetch algorithms and variations in server hardware (e.g., different types of

storage devices) using simulation.

Additionally, the ASAP architecture serializes access to storage devices and therefore by-

passes the disk I/O scheduling that is normally performed by the kernel. The current implemen-

tation of ASAP implements a FCFS (first come, first serve) scheduling algorithm for prefetches,

and it may be possible to decrease hard drive seek times by reordering prefetch requests at the

application level.

132

6.2.3 Multiple disks

Because of a lack of published information about how title content is distributed over multiple

hard drives in large-scale production web servers, for our experiments, we evaluated a web server

with only a single hard drive. However, the catalogs offered by streaming video services are often

very large, making it necessary to configure streaming video servers with the maximum amount

of storage capacity possible. Servers can also contain different types of storage devices. For

example, Netflix storage servers contain 36 hard drives and 6 SSDs. In order to make the best

use of a server with multiple, possibly heterogeneous hard drives and SSDs, we would investigate

the following issues:

Provisioning Given the anticipated workload on the server, we need to determine the number

and types of storage devices that are necessary to store the titles. Servers must be provisioned

with enough storage devices that aggregate throughput is high enough to satisfy the maximum

aggregate demand from clients (which is limited to the total Internet bandwidth of the server).

Servers must also be provisioned with enough storage capacity. Hard drives have the lowest

cost per TB, but may not provide sufficiently high throughput. SSDs have higher throughput but

are more expensive, and the new NVMe (Non-Volatile Memory express) interface enables even

higher throughput from flash devices, at an added cost. Finally, servers must be provisioned with

enough system memory to support the large prefetch sizes necessary to obtain high throughput

from hard drives.

File Placement Once the storage devices are provisioned, files need to be placed, based on

characteristics of the titles and of the storage devices. The titles that are popular, but not popular

enough to be cached in system memory should be placed where throughput is the highest: on

NVMe or SSDs, or at low block addresses on hard drives, where the transfer rate is higher (e.g.,

see Table 3.4). It may also be beneficial to migrate titles between different storage devices or

servers when popularity changes or when the catalog contents are changed.

Load Balancing Files are placed based on anticipated demand, and if that demand is not esti-

mated correctly, some drives may become hot spots. This may affect the clients that are down-

loading content from the hot spot hard drive, and may result in a lower quality of experience for

users because either the client devices will have to switch to lower bit rate content which results

in playback with lower quality, or the client devices will be forced to freeze playback and re-

buffer. One method to reduce the load for a hot spot drive is to copy files that are in high demand

onto other storage devices with excess capacity, from the very busy hard drive to an underutilized

hard drive, or to faster NVMe, SSDs, or system memory.

133

6.2.4 Investigate Memory Management

In this thesis, we have chosen to implement changes at the web server application level to ensure

the portability of our algorithms. We rely on the default kernel algorithms for caching con-

tent and managing system memory. The memory manager must balance the amount of system

memory allocated between caching and prefetching. Memory can be used to increase hard drive

throughput via prefetching, and to reduce the amount of data read from hard drives by caching

content. The page replacement algorithms in the kernel should be designed to avoid both cache

pollution and evicting prefetched data before it is requested.

In our experiments in Section 4.5.2, we show that the benefits of caching depend on the

popularity distribution of titles; the cache hit rate was about 3% for α = 0.6, 15% for α = 0.8,

and 42% for α = 1.0. For the Netflix workload popularity distributions in Section 5.2.1, the α
values are approximately 0.6 and 0.5, making it unlikely that the existing approach used by the

kernel for caching will be very effective for these Netflix servers. However, it is possible that a

different cache algorithm, like interval caching [31] might provide a higher cache hit rate.

6.3 Concluding Remarks

We analyze the characteristics of two different HTTP streaming workloads, and show that we

can greatly increase aggregate throughput for both workloads by using aggressive prefetching.

We show that throughput could be further improved by making use of workload-specific char-

acteristics such as the bit rate of the content being requested. Although the implementation was

done in the userver, our work could be easily used in other servers, such as nginx.

We believe the results of this thesis will have significant and immediate impact. Netflix is

currently studying these findings and is considering adopting some of the strategies we have

devised into their nginx web servers. Specifically, Netflix is investigating: 1) the use of larger

prefetch sizes, 2) the use of different prefetch sizes for different bit rates (e.g., setting prefetch

sizes proportional to the square root of the bit rate), and 3) the use of information about the

client’s progress to potentially moderate aggressive prefetching when clients are in a transient

phase. We believe the ideas and tools in our thesis can be adapted for use with other web servers

and operating systems, and can be used to increase the capacity of HTTP streaming video servers

which are the source of the majority of Internet traffic.

134

References

[1] A. Abhari and M. Soraya. Workload generation for YouTube. Multimedia Tools and Appli-

cations, 46(1):91–118, 2010.

[2] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z. L. Zhang, M. Varvello, and M. Steiner. Mea-

surement study of Netflix, Hulu, and a tale of three cdns. IEEE/ACM Transactions on

Networking, 23(6), Dec 2015.

[3] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz Steiner,

and Zhi-Li Zhang. Unreeling Netflix: Understanding and improving multi-CDN movie

delivery. In Proc. IEEE INFOCOM, 2012.

[4] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang. Vivisecting

YouTube: An active measurement study. In INFOCOM, 2012 Proceedings IEEE, 2012.

[5] Akamai Corporation. The State of the Internet, Q2, 2011. http://www.akamai.com/dl/-

whitepapers/akamai soti q211.pdf.

[6] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An experimental evaluation of

rate-adaptation algorithms in adaptive streaming over HTTP. In Proceedings of the second

annual ACM conference on Multimedia systems, 2011.

[7] Shane Alcock and Richard Nelson. Application flow control in YouTube video streams.

SIGCOMM Comput. Commun. Rev., 2011.

[8] Pablo Ameigeiras, Juan J. Ramos-Munoz, Jorge Navarro-Ortiz, and J.M. Lopez-Soler.

Analysis and modelling of youtube traffic. Transactions on Emerging Telecommunications

Technologies, 23(4).

[9] K. S. Anderson, J. P. Bigus, E. Bouillet, P. Dube, N. Halim, Z. Liu, and D. Pendarakis.

Sword: Scalable and flexible workload generator for distributed data processing systems.

In Proc. Winter Simulation Conference, 2006.

[10] Martin Arlitt and Carey Williamson. Understanding web server configuration issues. Soft-

ware: Practice and Experience, 34(2), 2004.

[11] Athula Balachandran, Vyas Sekar, Aditya Akella, and Srinivasan Seshan. Analyzing the

potential benefits of CDN augmentation strategies for Internet video workloads. In Proc.

ACM IMC, 2013.

135

[12] Ali C. Begen, Tankut Akgul, and Mark Baugher. Watching video over the web: Part 1:

Streaming protocols. IEEE Internet Computing, 15(2):54–63, 2011.

[13] S. Bhatia, E. Varki, and A. Merchant. Sequential prefetch cache sizing for maximal hit rate.

In Proc. MASCOTS, 2010.

[14] Youmna Borghol, Siddharth Mitra, Sebastien Ardon, Niklas Carlsson, Derek Eager, and

Anirban Mahanti. Characterizing and modelling popularity of user-generated videos. Per-

formance Evaluation, 68(11), 2011.

[15] Andrew Brampton, Andrew MacQuire, Michael Fry, IdrisA. Rai, NicholasJ.P. Race, and

Laurent Mathy. Characterising and exploiting workloads of highly interactive video-on-

demand. Multimedia Systems, 2009.

[16] T. Brecht, D. Pariag, and L. Gammo. accept()able strategies for improving web server

performance. In Proc. USENIX Annual Technical Conference, 2004.

[17] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and performance

of integrated application-controlled file caching, prefetching, and disk scheduling. ACM

Trans. Comput. Syst., 14, 1996.

[18] Emmanuel Cecchet, Veena Udayabhanu, Timothy Wood, and Prashant Shenoy. Benchlab:

an open testbed for realistic benchmarking of web applications. In Proc. USENIXWebApps,

2011.

[19] M. Cha, H. Kwak, P. Rodriguez, Y. Y Ahnt, and S. Moon. I tube, you tube, everybody

tubes: Analyzing the world’s largest user generated content video system. In Proc. ACM

IMC, 2007.

[20] X. Che, B. Ip, and L. Lin. A survey of current youtube video characteristics. IEEE Multi-

Media, 22(2), Apr 2015.

[21] Liang Chen, Yipeng Zhou, and Dah Ming Chiu. Video browsing - A study of user behavior

in online VoD services. In Proc. International Conference on Computer Communications

and Networks (ICCCN), 2013.

[22] Yishuai Chen, Baoxian Zhang, Yong Liu, and Wei Zhu. Measurement and modeling of

video watching time in a large-scale Internet video-on-demand system. IEEE Transactions

on Multimedia, 15(8), 2013.

[23] X. Cheng, C. Dale, and J. Liu. Statistics and social network of YouTube videos. In IEEE

International Workshop on Quality of Service, IWQoS, pages 229–238, 2008.

[24] Xu Cheng. Understanding the characteristics of Internet short video sharing: YouTube as a

case study. In Proc. ACM IMC, 2007.

[25] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, and Chita R. Das. A multi-threaded pipelined

web server architecture for SMP/SoC machines. In Proceedings of the 14th international

conference on World Wide Web, 2005.

[26] Shaiful Alam Chowdhury and Dwight Makaroff. Characterizing videos and users in

YouTube: A survey. In Proc. Seventh International Conference on Broadband, Wireless

136

Computing, Communication and Applications, 2012.

[27] Cisco Inc. Cisco visual networking index: Forecast and methodology, 2014-2019,

2014. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next--

generation-network/white paper c11-481360.pdf.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud

serving systems with YCSB. In Proc. ACM SoCC, 2010.

[29] Cristiano P. Costa, Italo S. Cunha, Alex Borges, Claudiney V. Ramos, Marcus M. Rocha,

Jussara M. Almeida, and Berthier Ribeiro-Neto. Analyzing client interactivity in streaming

media. In Proc. 13th International Conference on World Wide Web, 2004.

[30] A. Dan, D. M. Dias, R. Mukherjee, D. Sitaram, and R. Tewari. Buffering and caching

in large-scale video servers. In Proc. of the 40th IEEE Computer Society International

Conference, 1995.

[31] Asit Dan and Dinkar Sitaram. A generalized interval caching policy for mixed interactive

and long video workloads. In Readings in Multimedia Computing and Networking. 2001.

[32] Florin Dobrian, Asad Awan, Dilip Joseph, Aditya Ganjam, Jibin Zhan, Vyas Sekar, Ion

Stoica, and Hui Zhang. Understanding the impact of video quality on user engagement. In

Proc. ACM SIGCOMM, 2011.

[33] Jeffrey Erman, Alexandre Gerber, K. K. Ramadrishnan, Subhabrata Sen, and Oliver

Spatscheck. Over the top video: The gorilla in cellular networks. In Proc. SIGCOMM

Internet Measurement Conference, 2011.

[34] A. Finamore, M. Mellia, M. Munafo, R. Torres, and S.G. Rao. YouTube everywhere:

Impact of device and infrastructure synergies on user experience. In Proc. ACM IMC,

2011.

[35] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate limiting

YouTube video streaming. In Proc. USENIX ATC, 2012.

[36] Debasish Ghose and Hyoung Joong Kim. Scheduling video streams in video-on-demand

systems: A survey. Multimedia Tools Appl., 2000.

[37] Binny S. Gill and Luis Angel D. Bathen. Optimal multistream sequential prefetching in a

shared cache. Trans. Storage, 3(3), 2007.

[38] Binny S. Gill and Dharmendra S. Modha. SARC: sequential prefetching in adaptive re-

placement cache. In Proc. USENIX ATEC, 2005.

[39] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characterization: A view from the

edge. In Proc. ACM IMC, 2007.

[40] Ashif Harji, Peter Buhr, and Tim Brecht. Our troubles with Linux and why you should care.

In Proc. 2nd ACM SIGOPS Asia-Pacific Workshop on Systems, 2011.

[41] Ashif Harji, Peter Buhr, and Tim Brecht. Comparing high-performance multi-core web-

server architecture. In Proc. SYSTOR, 2012.

[42] Ashif S. Harji. Performance Comparison of Uniprocessor and Multiprocessor Web Server

137

Architectures. PhD thesis, University of Waterloo, 2010. http://uwspace.uwaterloo.ca/-

bitstream/10012/5040/1/Harji thesis.pdf.

[43] HP Labs. The userver home page, 2003. Available at http://hpl.hp.com/research/linux/-

userver.

[44] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari.

Confused, timid, and unstable: Picking a video streaming rate is hard. In Proc. ACM

Conference on Internet Measurement Conference, 2012.

[45] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A

buffer-based approach to rate adaptation: Evidence from a large video streaming service.

In Proc. SIGCOMM’14, 2014.

[46] Song Jiang. DULO: An effective buffer cache management scheme to exploit both temporal

and spatial localities. In USENIX FAST, 2005.

[47] Shudong Jin and Azer Bestavros. GISMO: A generator of internet streaming media objects

and workloads. ACM SIGMETRICS Perf. Eval. Rev., 29(3):2–10, 2001.

[48] X. Kang, H. Zhang, G. Jiang, H. Chen, K. Yoshihira, and X. Meng. Measurement, mod-

eling, and analysis of Internet video sharing site workload: A case study. In Proc. IEEE

ICWS, 2008.

[49] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul Min, Yookun Cho, and

Chong Sang Kim. A low-overhead high-performance unified buffer management scheme

that exploits sequential and looping references. In Proc. OSDI, 2000.

[50] Tracy Kimbrel, Andrew Tomkins, R. Hugo, Patterson Brian, and Bershad Pei Cao. A trace-

driven comparison of algorithms for parallel prefetching and caching. In Proc. OSDI, 1996.

[51] Michel Laterman. Netflix and twitch traffic characterization. Master’s thesis, University of

Calgary, 2015.

[52] B. Laurie and P. Laurie. Apache: The Definitive Guide, 2nd Edition. O’Reilly, February

1999.

[53] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic adaptive streaming

over HTTP dataset. In Proc. MMSys, 2012.

[54] Cheng Li, Philip Shilane, Fred Douglis, Darren Sawyer, and Hyong Shim. As-

sert(!defined(sequential i/o)). In 6th USENIX Workshop on Hot Topics in Storage and File

Systems (HotStorage 14), 2014.

[55] Chuanpeng Li and Kai Shen. Managing prefetch memory for data-intensive online servers.

In Proc. USENIX FAST, 2005.

[56] Chuanpeng Li, Kai Shen, and Athanasios E. Papathanasiou. Competitive prefetching for

concurrent sequential I/O. In Proc. EuroSys ’07, 2007.

[57] Mingju Li, Elizabeth Varki, Swapnil Bhatia, and Arif Merchant. TaP: Table-based prefetch-

ing for storage caches. In Proc. USENIX FAST ’08, 2008.

[58] W. Li, W. B. Zheng, and X. H. Guan. Application controlled caching for web servers.

138

Enterp. Inf. Syst., 1(2), 2007.

[59] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui

Zhang. A case for a coordinated Internet video control plane. In Proceedings of the ACM

SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols

for computer communication, 2012.

[60] Yao Liu, Qi Wei, Lei Guo, Bo Shen, Songqing Chen, and Yingjie Lan. Investigating redun-

dant Internet video streaming traffic on iOS devices: Causes and solutions. IEEE Transac-

tions on Multimedia, 2014.

[61] M. Mansour, M. Wolf, and K. Schwan. Streamgen: A workload generation tool for dis-

tributed information flow applications. In Proc. ICPP, 2004.

[62] Ahmed Mansy, Mostafa Ammar, Jaideep Chandrashekar, and Anmol Sheth. Characterizing

client behavior of commercial mobile video streaming services. In Proc. Workshop on

Mobile Video Delivery, MoViD’14, 2013.

[63] J. Martin, Yunhui Fu, N. Wourms, and T. Shaw. Characterizing Netflix bandwidth con-

sumption. In Consumer Communications and Networking Conference (CCNC), 2013 IEEE,

2013.

[64] Siddharth Mitra, Mayank Agrawal, Amit Yadav, Niklas Carlsson, Derek Eager, and Anir-

ban Mahanti. Characterizing web-based video sharing workloads. ACM Trans. Web, 2011.

[65] D. Mosberger and T. Jin. httperf: A tool for measuring web server performance. In Proc.

1st Workshop on Internet Server Performance, 1988.

[66] AntoineN. Mourad. Issues in the design of a storage server for video-on-demand. Multi-

media Systems, 4(2), 1996.

[67] Clément Nedelcu. Nginx HTTP server second edition. Packt Publishing Ltd, 2013.

[68] Netflix. ISP partnership options. https://openconnect.itp.netflix.com/deliveryOptions/-

index.html.

[69] Netflix. Open connect appliance hardware. https://openconnect.itp.netflix.com/hardware/-

index.html.

[70] Netflix. Netflix content delivery summit keynote. May 2013. Avail-

able at http://blog.streamingmedia.com/wp-content/uploads/2014/02/2013CDNSummit-

Keynote-Netflix.pdf.

[71] Netflix. Q1 16 letter to shareholders. April 2016. Available at http://ir.netflix.com/-

results.cfm.

[72] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. The LRU-K page replacement

algorithm for database disk buffering. ACM SIGMOD Record, 1993.

[73] B. Ozden, R. Rastogi, and A. Silberschatz. Buffer replacement algorithms for multimedia

storage systems. In Proc. Multimedia Computing and Systems, 1996.

[74] Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. On the design of a low-cost video-on-

demand storage system. MULTIMEDIA SYSTEMS, 1996.

139

[75] V.S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable Web server. In

Proc. USENIX, 1999.

[76] G. Panagiotakis, M.D. Flouris, and A. Bilas. Reducing disk I/O performance sensitivity for

large numbers of sequential streams. In Distributed Computing Systems, 2009. ICDCS ’09.

29th IEEE International Conference on, 2009.

[77] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla. Comparing the performance of web

server architectures. In Proc. ACM EuroSys, 2007.

[78] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetch-

ing and caching. In Proc. SOSP ’95, 1995.

[79] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and Walid Dab-

bous. Network characteristics of video streaming traffic. In Proc. Seventh COnference on

Emerging Networking EXperiments and Technologies, CoNEXT ’11, 2011.

[80] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network protocols. SIG-

COMM Comput. Commun. Rev., 27(1):31–41, 1997.

[81] Yaoping Ruan and Vivek S. Pai. Understanding and addressing blocking-induced network

server latency. In Proc. USENIX Annual Technical Conference, 2006.

[82] Sandvine Inc. Global Internet phenomena report – spring 2011, 2011.

[83] Sandvine Inc. Global Internet phenomena – Africa, Middle East & North

America, Dec 2015. https://www.sandvine.com/downloads/general/global-internet-

phenomena/2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf.

[84] Priya Sehgal, Vasily Tarasov, and Erez Zadok. Evaluating performance and energy in file

system server workloads. In Proc. FAST’10, 2010.

[85] Elizabeth AM Shriver, Christopher Small, and Keith A Smith. Why does file system

prefetching work? In Proc. USENIX ATC, 1999.

[86] I. Sodagar. The MPEG-DASH standard for multimedia streaming over the Internet. Multi-

Media, IEEE, 18(4), April 2011.

[87] Thomas Stockhammer. Dynamic adaptive streaming over HTTP –: standards and design

principles. In Proc. MMSys, 2011.

[88] Storage Review. Hitachi deskstar 5k4000 review. http://www.storagereview.com/-

hitachi deskstar 5k4000 review.

[89] Jim Summers, Tim Brecht, Derek Eager, and Alex Gutarin. Characterizing the workload of

a Netflix streaming video server. In Proc. IISWC, 2016, in press.

[90] Jim Summers, Tim Brecht, Derek Eager, Tyler Szepesi, Ben Cassell, and Bernard Wong.

Automated control of aggressive prefetching for HTTP streaming video servers. In Proc.

SYSTOR, 2014.

[91] Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong. Methodologies for generating

HTTP streaming video workloads to evaluate web server performance. In Proc. SYSTOR,

2012.

140

[92] Jim Summers, Tim Brecht, Derek Eager, and Bernard Wong. To chunk or not to chunk:

Implications for HTTP streaming video server performance. In Proc. ACM NOSSDAV,

2012.

[93] W. Tang, Y. Fu, L. Cherkasova, and A. Vahdat. Medisyn: A synthetic streaming media

service workload generator. In Proc. ACM NOSSDAV, 2003.

[94] Rajeev Tiwari. Mpeg-dash support in YouTube, 2013.

[95] Fengguang Wu. Sequential file prefetching in Linux. Advanced Operating Systems and

Kernel Applications: Techniques and Technologies, pages 218–261, 2009.

[96] Hongliang Yu, Dongdong Zheng, Ben Y. Zhao, and Weimin Zheng. Understanding user

behavior in large-scale video-on-demand systems. In Proc. ACM EuroSys, 2006.

[97] M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch global, cache local: YouTube network

traffic at a campus network - measurements and implications. In Proceedings of SPIE - The

International Society for Optical Engineering, volume 6818, 2008.

[98] M. Zink, K. Suh, Y. Gu, and J. Kurose. Characteristics of YouTube network traffic at a

campus network - measurements, models, and implications. Computer Networks, 53(4),

2009.

141

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Goals
	Contributions
	Methodology for Creating Benchmarks
	Creating a YouTube-like Benchmark
	Understanding and Improving Web Server Implementations
	Netflix Server Workload Characterization

	Chapter Summary

	Background and Related Work
	Background
	Video Delivery Methods
	Video Client Implementation
	Video Server Implementation
	Video Control Plane

	Related Work
	Workload Studies
	HTTP Streaming Video Implementation Details
	Streaming Video Benchmarks
	Improving Server Implementations

	Chapter Summary

	Workload Methodology
	Overview of the Methodology
	Workload Specification
	Title Characteristics
	Session Characteristics
	Client Network Characteristics

	YouTube-like Benchmark
	Experimental Environment

	Client Configuration
	Server Configuration
	Determining File Placement
	File Set Generation
	File Set Locations
	Potential File System Performance

	Running Web Server Experiments
	Steady-state Behaviour
	Bandwidth-Limited Clients
	Effect of Pacing
	Duration and Repeatability

	Baseline Server Performance
	Implementing Asynchronous Serialized Aggressive Prefetching
	Effect of Chunk Size
	Effect of Request Size

	Chapter Summary

	Selecting a Prefetch Size
	Motivation
	Automatic Prefetch Sizing
	Algorithm for Adjusting Prefetch Size
	Slowly Adjusting Prefetch Size
	Prefetch Algorithm in Action

	Handling Multiple Bit Rates
	Changes to Experiments
	Server Configuration
	Workload Characteristics
	Experiment Procedure

	Experimental Evaluation
	Effect of System Memory
	Effect of Popularity Distribution
	Effect of Hard Drive Characteristics
	Effect of Multi-Bitrate Workloads

	Discussion
	Chapter Summary

	Netflix Server Workload
	Background
	Netflix Servers
	Data Collected
	Netflix Clients

	Netflix Workload Characteristics
	Catalog Contents
	Viewing Sessions
	Example Sessions
	Request Statistics

	Chains
	Lengths of Chains
	Chains Starting at Offset Zero
	Chain Survival Distances

	Phases
	Request Patterns During Phases
	Phases at the Start of Sessions
	Transient Phases
	Stable Phases
	Inactive Phases
	Impact on Sequentiality

	Creating a Workload Specification
	Evaluation of Workload-specific Prefetch Algorithms
	Prefetch Algorithms
	Evaluation Methodology
	Evaluation Results

	Chapter Summary

	Conclusions and Future Work
	Summary and Contributions
	Workload Methodology and YouTube-like Benchmark
	Determining Prefetch Sizes
	Characterize Netflix Server Workload

	Future Work
	Constructing a New Benchmark
	Testing Prefetch Algorithms with New Benchmark
	Multiple disks
	Investigate Memory Management

	Concluding Remarks

	References

