
Using accept() Strategies to Improve

Server Performance
by

David Pariag

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c©David Pariag 2004

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

David Pariag

I further authorize the University of Waterloo to reproduce this thesis by photocopying or

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

David Pariag

ii

Abstract

This thesis evaluates techniques for improving the performance of three architecturally

different web servers. We study strategies for effectively accepting incoming connections

under conditions of high load. The experimental evaluation shows that the method used

to accept new connection requests can significantly impact server performance. By modi-

fying each server’s accept strategy, we improve the performance of the kernel-mode TUX

server, the multi-threaded Knot server and the event-driven µserver. Under two different

workloads, we improve the throughput of these servers by as much as 10% – 39% for TUX,

0% – 32% for Knot, and 39% – 71% for the µserver. This thesis provides and in-depth look

at these results, including analysis of throughput, queue drops, response times, and other

server statistics. Interestingly, the performance improvements realized by the user-mode

µserver allow it to obtain performance that rivals that of an unmodified TUX server.

iii

Acknowledgements

I would like to thank my supervisor, Tim Brecht, for his guidance and support throughout

my Masters. Tim has taught me much about computer systems, and research. He has

made my time at the University more enjoyable, and he has been a pleasure to work with.

I am also indebted to Louay Gammo for his assistance and support. I would also like to

thank Peter Buhr and Martin Karsten for their valuable feedback, which has improved the

quality of this thesis.1

I am grateful for the generous funding provided by the Natural Sciences and Engineering

Research Council, the Government of Ontario, the University of Waterloo, and Tim Brecht.

I would like to thank my wife for her understanding nature throughout the program. Lastly,

I thank my family for their encouragement and affirmation.

1Portions of this thesis have been developed from a paper originally published in the USENIX 2004

Annual Technical Conference: General Track, June 2004.

iv

Contents

1 Introduction and Motivation 1

1.1 Thesis Statement . 1

1.2 Motivation . 1

1.3 Contributions . 2

1.4 Outline . 3

2 Background and Related Work 4

2.1 Operating System Improvements . 5

2.2 Server Application Architecture . 9

2.2.1 Threads versus Events . 11

2.3 Establishing a TCP Connection . 12

2.4 Improving Accept Strategies . 15

3 Servers, Workloads and Methodology 18

3.1 The Web Servers . 18

3.1.1 The µserver . 18

3.1.2 Knot . 21

3.1.3 TUX . 23

3.2 Experimental Environment . 25

3.2.1 Web Server Configuration . 26

3.3 Workloads . 27

3.3.1 SPECweb99-like workload . 27

3.3.2 One-packet workload . 28

v

4 Experimental Results 31

4.1 In-Memory SPECweb99-like workload . 32

4.1.1 µserver Performance . 32

4.1.2 TUX Performance . 41

4.1.3 Knot Performance . 46

4.2 One-packet workload . 49

4.2.1 µserver Performance . 50

4.2.2 TUX Performance . 58

4.2.3 Knot Performance . 61

4.3 Summary . 63

5 Comparing the µserver and TUX 65

5.1 Understanding Queue Drops . 67

5.1.1 Categorizing Queue Drops . 69

5.2 Comparing Response Times . 73

5.3 Differences in Workloads and Environment 75

6 Conclusions and Future Work 77

vi

List of Tables

4.1 select statistics for µserver @ 26,000 reqs/sec under the SPECweb99-like

workload . 35

4.2 Accept-phase statistics for µserver @ 26,000 reqs/sec under the SPECweb99-

like workload . 37

4.3 Percentage of time spent in µserver functions under the SPECweb99-like

workload . 38

4.4 Accept-phase statistics for TUX @ 26,000 reqs/sec under the SPECweb99-

like workload . 43

4.5 Pending work statistics for TUX @ 26,000 reqs/sec under the SPECweb99-

like workload . 43

4.6 Workload-specific demand for new connections at 20,000 reqs/sec 51

4.7 select statistics for µserver @ 27,000 reqs/sec under the one-packet workload 54

4.8 Accept-phase statistics for µserver @ 27,000 reqs/sec under the one-packet

workload . 55

4.9 Percentage of time spent in various µserver functions under the one-packet

workload . 56

4.10 Accept-phase statistics for TUX @ 23,000 reqs/sec under the one-packet

workload . 60

5.1 Breakdown of µserver Queue Drops @ 27,000 reqs/sec under the one-packet

workload . 70

5.2 Breakdown of TUX Queue Drops @ 27,000 reqs/sec under the one-packet

workload . 70

vii

List of Figures

2.1 Logical steps required to process a client request. 4

2.2 The TCP three-way handshake . 13

3.1 Phases of operation in the µserver . 20

3.2 Phases of operation in TUX . 24

4.1 µserver throughput under the SPECweb99-like workload 32

4.2 µserver queue drops under the SPECweb99-like workload 34

4.3 Number of select calls/sec made by the µserver under the SPECweb99-like

workload . 35

4.4 Average number of fds returned by select in the µserver under the SPECweb99-

like workload . 36

4.5 Response times for the µserver under the SPECweb99-like workload 40

4.6 TUX throughput under the SPECweb99-like workload 41

4.7 Response times for TUX under the SPECweb99-like workload 45

4.8 TUX queue drops under the SPECweb99-like workload 46

4.9 Knot throughput under the SPECweb99-like workload 47

4.10 Knot queue drops under the SPECweb99-like workload 48

4.11 Response times for Knot under the SPECweb99-like workload 49

4.12 µserver throughput under the one-packet workload 50

4.13 µserver queue drops/sec under one-packet workload 52

4.14 Number of select calls made per second by the µserver under the one-packet

workload . 53

viii

4.15 Average number of fds returned by select in the µserver under the one

packet workload . 54

4.16 Response times for µserver under the one-packet workload 57

4.17 TUX throughput under the one-packet workload 58

4.18 TUX queue drops under the one-packet workload 59

4.19 Response times for TUX under the one-packet workload 60

4.20 Knot throughput under the one-packet workload 62

4.21 Knot queue drops under the one-packet workload 63

4.22 Response times for Knot under the one-packet workload 64

5.1 µserver versus TUX throughput under the SPECweb-like workload 66

5.2 µserver versus TUX throughput under the one-packet workload 67

5.3 Queue drop rates for µserver and TUX under the SPECweb99-like workload 68

5.4 Queue drop rates for µserver and TUX under the one-packet workload . . . 69

5.5 Breakdown of queue drops for TUX and the µserver under one packet work-

load for selected request rates . 72

5.6 Response times for µserver and TUX under the SPECweb99-like workload . 74

5.7 Response times for µserver and TUX under the one-packet workload 75

ix

Chapter 1

Introduction and Motivation

1.1 Thesis Statement

This thesis seeks to explore techniques for improving web server performance while simul-

taneously protecting servers from overload at saturation. To this end, we examine server

strategies for accepting new connections under high loads.

1.2 Motivation

The Internet plays an increasingly important role in modern life. Today, people turn to the

Internet for services like news updates, weather forecasts, current stock prices, and even

driving directions. Many corporations conduct a significant amount of their business over

the Internet. In fact, some businesses (like amazon.com) conduct all their retail business

over the World Wide Web. The Internet has grown in scale and importance, and all signs

indicate that this growth will continue into the near future.

Web servers, which handle Hypertext Transfer Protocol (HTTP) requests, are a key

part of the Internet infrastructure. In fact, a recent characterization of Internet traffic

shows that HTTP requests significantly outnumber all other kinds of requests combined

[32]. As a result, web server performance has been extensively investigated by the research

community. Some of this research (as well as anecdotal evidence) has shown that web

1

servers often do not scale well. Denial of service attacks, news events, and even flash

crowds resulting from the so-called “slashdot effect” can lead to high volumes of traffic.

Such conditions can cause server performance to degrade sharply, and may eventually lead

to a total loss of service. In this sense, many servers are not well-conditioned to overload.

Our goal is to discover strategies that can be used to simultaneously improve the peak

throughput, and overload behavior of a web server.

1.3 Contributions

This thesis examines different strategies for accepting new connections under high load

conditions. We study the accept strategies used by three architecturally different web

servers: the kernel-mode TUX server [30] [18], the event-driven, user-mode µserver [5] [12],

and the multi-threaded, user-mode Knot server [41] [40].

We examine the connection accepting strategy used by each server, and propose mod-

ifications that permit us to tune each server’s accept strategy. We implement our mod-

ifications and evaluate them experimentally using workloads that generate true overload

conditions. Our experiments demonstrate that accept strategies can significantly impact

server throughput, and must be considered when comparing different server architectures.

The experiments presented in this work show that:

• Under high loads, a server must accept new connections at a sufficiently high rate.

• In addition to rapidly accepting new connections, the server must actively service

existing connections. Our results show that the server must balance the accepting of

new connections with the processing of existing connections.

• We demonstrate that accept strategies can be used to significantly improve the per-

formance of three architecturally different web servers.

• Contrary to previous findings, we demonstrate that a user-mode server is able to

serve an in-memory static SPECweb99-like workload at a rate that compares very

favourably with the kernel-mode TUX server.

2

1.4 Outline

Chapter 2 presents related work in the fields of operating systems research and server

architecture. This chapter also discusses the steps that must occur before a client can

establish a connection to a server. Finally, Chapter 2 introduces the notion of an “accept

strategy”, and discusses its relevance to server performance. In Chapter 3, we describe

the architecture of each of the web servers under study. We also introduce our workloads

and explain our experimental methodology. Chapter 4 presents our experimental results

and analysis. Our experiments expose each server to two different workloads. We then

analyze each server’s throughput and response time as load increases. Chapter 5 presents

a direct comparison of the µserver and TUX. Previous research and conventional wisdom

have suggested that kernel-mode servers hold a wide performance advantage over their

user-mode counterparts. Our work shows that this gap may not be as large as previously

reported. Chapter 6 summarizes our work and presents directions for future work.

3

Chapter 2

Background and Related Work

Current approaches to implementing high-performance Internet servers require special tech-

niques for dealing with high levels of concurrency. This point is illustrated by first con-

sidering the logical steps taken by a web server to handle a single client request, as shown

in Figure 2.1. Of course, modern web servers must process hundreds or even thousands of

connections simultaneously. This leads to high levels of concurrency within the server.

1. Wait for and accept an incoming network connection.

2. Read the incoming request from the network.

3. Parse the request.

4. For static requests, check the cache and possibly open and read the file.

5. For dynamic requests, compute the result.

6. Send the reply to the requesting client.

7. Close the network connection.

Figure 2.1: Logical steps required to process a client request.

Note that almost all Internet servers and services follow similar steps. For simplicity,

the example in Figure 2.1 does not handle persistent connections. Several of these steps

can block because of network or disk I/O, or because the web server must interact with

another process. Consequently, a high performance server must be able to concurrently

process partially completed connections by quickly identifying those connections that are

4

ready to be serviced (i.e., those for which the application would not have to block). This

means that high-performance servers must be able to efficiently multiplex several thousand

simultaneous connections [3] and to dispatch network I/O events at high rates.

Research into improving web server performance tends to focus on improving operating

system support for web servers, or on improving the server’s architecture and design. We

now describe related work in these areas.

2.1 Operating System Improvements

Significant research [2] [1] [3] [23] [28] [29] [6] has been conducted into improving web

server performance by improving operating system mechanisms and interfaces for obtaining

information about the state of socket and file descriptors. Some of these studies have

developed improvements to select, poll and sigwaitinfo by reducing the amount of data

copied between the application and the kernel. Other studies have reduced the number of

events delivered by the kernel, for example, the signal-per-fd scheme proposed by Chandra

and Mosberger [6]. All of these studies have been motivated by the high overhead incurred

by select, poll, and similar system calls under high loads. The select call has the

following signature:

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,

struct timeval *timeout);

An fd set is a bitmap that represents the set of available descriptors in the system. Each

descriptor is represented by one bit in the bitmap. The application turns a bit “on” to

declare interest in that descriptor for a particular event. The select system call examines

three fd sets on behalf of the application. The readfds set is examined for descriptors that

are readable (without blocking). Similarly, the writefds set is examined for descriptors that

are writable without blocking. Lastly, the fds represented in exceptfds will be watched for

exceptions. Taken together, these three fd sets represent the set of descriptors and events

5

on those descriptors that the application is interested in. This is often referred to as the

application’s interest set.

Over the years, select has been heavily studied. This research has revealed (and ad-

dressed) many of select’s shortcomings. For example, select has been shown to scale

poorly in WAN environments [2] where the server must handle large numbers of high-

latency connections. In addition, select is notorious for modifying the application’s in-

terest set during each call. As a result, the application is forced to re-declare parts of its

interest set before every select call.

Another drawback of select is that it performs work that depends on the size of the

interest set, rather than the number of events returned. This leads to poor performance

when the interest set is much larger than the active set. Although the poll system call

does not destroy the application’s interest set, it presents many of the same drawbacks as

select including doing work that is proportional to the number of descriptors rather than

the number of events returned. Having summarized the disadvantages of select and poll

we now present a more in-depth examination of the research that has sought to improve

these event notification mechanisms.

Early work by Banga and Mogul [2] found that despite performing well under low-

latency laboratory conditions, popular event-driven servers performed poorly under real-

world conditions. They demonstrated that the discrepancy is due the inability of the

select system call to scale to the large number of simultaneous connections that are

found in WAN environments. In an attempt to remedy this situation, Banga and Mogul

implemented more efficient versions of the select system call. They also noted that the

UNIX algorithm for allocating new file descriptors scaled poorly because it used a linear

scan to find the lowest-numbered free descriptor. Banga and Mogul replaced the linear

scan with a logarithmic-time search using a two-level tree of bitmaps. They found that

the improved select implementation together with the faster file descriptor allocation

algorithm dramatically improved server scalability and throughput.

Subsequent work by Banga et al. [3] sought to further improve on select’s performance

by (among other things) separating the declaration of interest in events from the retrieval

of events on that interest set. Event mechanisms like select and poll have traditionally

combined these tasks into a single system call. However, this amalgamation requires the

6

server to re-declare its interest set every time it wishes to retrieve events, since the ker-

nel does not remember the interest sets from previous calls. This results in unnecessary

data copying between the application and the kernel. Removing the need to repeatedly

declare the interest set significantly reduces the amount of data that is passed between the

application and the operating system.

To this end, Banga et al. implemented two new system calls. The declare interest

system call allows the application to specify which events are of interest on a particular file

descriptor. Subsequently, the get next event call allows the server to retrieve events of

interest for a given file descriptor. They found that this new API significantly outperformed

both classical select, and their previous improved version [3].

The /dev/poll mechanism [37] was adapted from Sun Solaris to Linux by Provos et

al. [28]. This mechanism improved on poll’s performance by introducing a new interface

that separated the declaration of interest in events from the retrieval of events. Their

/dev/poll mechanism further reduced data copying (relative to poll) by using a shared

memory region to return events to the application.

Jonathon Lemon introduced the kqueue event mechanism [17] which addressed many

of the deficiencies of select and poll for FreeBSD systems. In addition to separating

the declaration of interest from the retrieval of events, kqueue allows an application to

retrieve events from a variety of sources including file and socket descriptors, signals, AIO

completions, filesystem changes, and changes in process state.

Lemon’s experimental evaluation of kqueue used a commercial web caching proxy server

and the thttpd [27] web server to compare kqueue, select, and poll. With respect to

select, Lemon found that the kqueue system call consumed a constant amount of CPU

time, regardless of the number of idle connections in the interest set. In comparison,

select’s use of CPU time grew quite sharply as the number of idle connections increased.

Lemon also found that the thttpd web server provided significantly lower response times

when the poll event mechanism was replaced by the kqueue mechanism.

Linux’s epoll event mechanism also separates the declaration of interest in events from

their retrieval. The epoll create system call instructs the kernel to create an event

data structure that can be used to track events on a number of descriptors. Thereafter,

the epoll ctl call is used to modify interest sets, while the epoll wait call is used to

7

retrieve events. Unlike select and poll, the epoll mechanisms do not perform work that

is proportional to the size of the interest set. As a result, they provide performance that

is largely independent of the size of the interest set. Gammo et al. [11] evaluated the

select, poll, and epoll mechanisms under representative workloads. They demonstrated

that (unlike select and poll) epoll scales to large interest sets in which idle connections

outnumber active connections. However, they also noted that select and poll perform

comparably to epoll in the absence of idle connections.

User-mode web servers, which run as applications outside the operating system, usually

invoke several system calls to process each HTTP request. Each system call entails over-

head in the form of a kernel crossing (context switch). In an attempt to reduce the number

of system calls (and kernel crossings) required by user-mode web servers, Rosu and Rosu

[31] have implemented user-level connection tracking. This technique allows the server to

track the state of its connections using a user-level API (instead of the select system call).

The API exports the uselect function, which is a wrapper for the select system call.

User-level connection tracking uses a shared memory region to exchange events between

the application and the kernel. The application is allowed to access this region directly,

without executing system calls. The shared memory region is also used to propogate in-

formation that is not available from select. For example, user-level connection tracking

allows the server to determine how many bytes of data are available for reading in a socket

buffer. Such information allows the server to schedule its I/O more intelligently.

Rosu and Rosu evaluated their mechanism using the Squid web proxy and a forward

proxy workload biased towards cache hits and small files. They find that user-level con-

nection tracking significantly reduces CPU overheads relative to the original Squid (with

select). Although this mechanism was evaluated with a web proxy, it is clearly relevant

to many kinds of Internet servers.

This thesis investigates accept strategies that improve the performance of architec-

turally different servers. Our work complements research into improved event notification

mechanisms. The µserver can be configured to use several different event notification

mechanisms, including select, poll, and epoll. By default, Knot uses poll for its event

notification, although it can be configured to use epoll. Because of its kernel-mode status,

TUX does not use traditional event notification mechanisms. Instead, it retrieves events by

8

directly inspecting operating system data structures. Our work shows that a good accept

strategy can reduce the overhead incurred by the server to retrieve events. More details

on this will be provided in Chapter 4.

Of course, not all relevant operating systems research has focused on improving event

notification mechanisms. Important work by Pai et al. [26] has focused on reducing data

copying costs by providing a unified buffering and caching system (called IO-Lite) that

can be used by the operating system and its applications. IO-Lite uses immutable buffers

encapsulated in a buffer aggregate ADT to provide efficient data sharing between appli-

cations and/or the operating system. Pai et al. demonstrate that eliminating redundant

data copying can improve the performance of a web server by 40% - 80% under realis-

tic workloads. This thesis demonstrates techniques that can improve the performance of

both highly optimized, data-aware web servers, and their less efficient counterparts. The

in-kernel TUX web server provides zero-copy reads and writes through integration with

the operating system. The µserver can be configured to use Linux’s zero-copy sendfile

facility for writing data, although data reads always involve copying. The Knot server

cannot currently use sendfile, so it incurs copying overhead on both reads and writes.

We now turn our attention to an examination of the different architectures that have been

proposed for implementing high performance Internet servers.

2.2 Server Application Architecture

High-performance servers must efficiently transition from connections that will block to

those that are ready to be serviced. One approach is to use a single process event-driven

(SPED) [25] architecture. The SPED model places each socket into non-blocking mode

and only issues system calls on those sockets that will not block. An event notification

mechanism such as select, poll, or Linux’s epoll is used to determine when a system

call can be made without blocking. In multi-processor environments, multiple copies of a

SPED web server can be used to obtain excellent performance [43] [33].

The multi-threaded (MT) [25] model, also known as the thread per connection model,

offers an alternative approach in which each connection is associated with a thread. In this

approach, connections are multiplexed by context-switching from a thread that is about to

9

block to a thread that can continue to execute without blocking. The multi-process (MP)

model is analogous to the MT model, except it uses processes rather than threads and

relies on the operating system for context switching from a blocked process to one that

can execute without blocking.

In the staged event driven architecture (SEDA) [42], applications consist of a network

of event-driven stages connected by explicit queues. Each SEDA stage uses a thread

pool to process events entering that stage. The size of the thread pool is governed by

an application-specific resource controller. While SEDA does not use a separate thread

for each request entering the system, concurrency still requires the use of (possibly large)

thread pools.

The Flash server implements the asymmetric multi-process event driven (AMPED) [25]

architecture, which combines the event-driven approach of SPED with helper processes

dedicated to performing blocking disk I/O. The use of helper processes allows the main

SPED process to continue execution even when one or more of the helpers is blocked. The

AMPED approach attempts to work around the performance penalties incurred by SPED

servers due to lack of support for asynchronous (or non-blocking) disk operations in many

operating systems [25].

In light of the considerable demands placed on the operating system by web servers,

some have argued that the web server should be implemented in the kernel as an oper-

ating system service. The TUX server (also knows as the Red Hat Content Accelerator)

follows this paradigm. It is implemented as a Linux kernel module. TUX’s in-kernel im-

plementation provides many advantages including direct access to kernel data structures

(e.g., a listening socket’s accept queue) without the need to make system calls like select.

The absence of such overheads gives TUX a clear advantage when compared to user-mode

servers. Indeed, recent work[15] suggests that kernel-mode servers can outperform their

user-mode counterparts by a factor of three or more on static, in-memory workloads. Our

findings in this thesis are considerably different as will be discussed in Chapter 5. In addi-

tion, other recent work [33] has shown that user-mode servers can outperform kernel-mode

servers on workloads that contain a large proportion of dynamic requests.

Although, we recognize that each architecture has advantages and disadvantages, our

research is architecture-independent. By carefully tuning accept strategies we are able to

10

improve the performance of the SPED µserver, the multi-threaded Knot server, and the

TUX server whose in-kernel architecture is similar to the AMPED model [19].

This section has discussed architectures for building high performance Internet servers.

A successful server architecture must provide an efficient framework for a server to re-

ceive and process I/O events concurrently. How should the architecture manage such

concurrency? The MT, MP and SEDA architectures make heavy use of threads/processes

for concurrency and performance. In contrast, the SPED architecture eschews the use

of threads in favour of a pure event-driven approach. Lastly, the AMPED architecture

adopts a hybrid approach that makes use of a small number of processes. This range of

approaches highlights an important issue in server design: What are the relative merits of

using multi-threaded versus event-driven models to manage server concurrency? We now

present an overview of the debate surrounding multi-threaded versus event-driven methods

for managing concurrency.

2.2.1 Threads versus Events

The debate surrounding threads versus events has raged for decades. In 1978, Needham and

Lauer [16] divided operating system designs into two categories. Message-oriented systems

are characterized by a small, static number of message-passing processes. Procedure-

oriented systems are characterized by a large, variable number of small processes along

with a process synchronization mechanism. For the purposes of operating system design,

Needham and Lauer argued that neither model was inherently preferable, and that they

were duals.

Since then, the debate has evolved along two lines: ease-of-programming and perfor-

mance. In the programmability debate, proponents of events [24] [9] have argued that

threaded systems are hard to program, harder to debug, and prone to race conditions and

synchronization problems. Thread proponents [40] [41] have countered that event-based

programming leads to complicated control-flow and an unnatural programming style. This

thesis does not contribute to the programmability debate as we believe it is a matter of

personal preference. Instead, we focus on performance issues.

In the arena of high performance web servers, threads have garnered a poor reputation.

Overhead due to thread scheduling, context-switching, and contention for shared locks

11

often combine to degrade performance in threaded applications. In fact, architects of early

systems found it necessary to restrict the number of concurrently running threads [13] [3].

Recent work by von Behren et al. [40] argues that many of the observed weaknesses

of threads are due to poorly implemented threading libraries, and are not inherent to the

threaded model. As evidence, the authors present experiments that compare the Knot

and Haboob [42] web servers. Knot is a multi-threaded server, written in C, that uses the

lightweight, co-operatively scheduled threads provided by the Capriccio threading library.

Haboob is implemented in Java, and is based on the SEDA architecture. Each of Haboob’s

stages contains a thread pool and application logic responsible for part of the processing

required to handle an HTTP request.

Based on an experimental comparison of Knot and Haboob, von Behren et al. conclude

that multi-threaded servers can match or exceed the performance of event-driven servers.

However, they also observe that Haboob context switches more than 30,000 times per

second under their workloads [40]. This is partly due to the fact that a context switch

is required whenever events pass from one SEDA stage to another. As a result, Haboob

suffers from many of the drawbacks that plague MT servers.

This thesis does not contribute directly to the threads versus events debate. Instead,

it presents strategies that can be used to improve the performance of either type of server.

The µserver is event-driven, while Knot is multi-threaded. TUX is event-driven, but can

use multiple threads to improve performance when multiple CPUs are available.

We now shift our focus from server architectures and concurrency issues to strategies

for accepting new connections efficiently. Section 2.3 introduces the basic steps involved

in establishing a connection between a client and a server. Subsequently, Section 2.4

introduces the notion of an accept strategy, and presents relevant related work.

2.3 Establishing a TCP Connection

An HTTP transaction starts with the client establishing a TCP connection to the server.

Such a connection is only established if the TCP three-way handshake [36] completes

successfully. The TCP three-way handshake is illustrated in Figure 2.2.

The server prepares to admit new connections by creating a socket, binding it to a

12

CLIENT SERVER

connect()
listen()

SYN

SYN−ACK

ACK

Network

Accept Queue

SYN Queue

Figure 2.2: The TCP three-way handshake

server address, and executing the listen system call. We refer to this socket as the

listening socket. The client creates its own socket, and initiates communication by issuing

the connect system call. This system call causes the client operating system to send a

SYN packet to the server. This packet informs the server that the client wishes to establish

a connection. The server operating system places a new connection request in the listening

socket’s SYN queue, and acknowledges the SYN packet by replying with a SYN-ACK

packet. The handshake completes when the server receives an ACK from the client in

response to its SYN-ACK.

Upon receipt of the ACK packet, the server’s operating system creates a new socket and

adds it to the listening socket’s accept queue (sometimes referred to as the listen queue).

To exchange data with the client, the server must successfully complete the accept system

call on its listening socket. Each time the server invokes the accept system call a socket

is removed from the front of the accept queue, and an associated file descriptor is returned

to the server application.

As mentioned, the server’s listening socket has an associated SYN queue and an accept

queue. The SYN queue is used to buffer incoming SYN packets. The accept queue holds

13

pending connections that are waiting to be accepted. In current Linux kernels (2.4.20-8

and 2.6.0), the SYN queue is configured to hold a maximum of 1,024 SYN packets. The

length of the accept queue is theoretically determined by the application when it specifies

a value for the backlog parameter to the listen system call. In practice however, the

Linux kernel silently limits the backlog parameter to a maximum of 128 connections. This

behaviour has been verified by examining several Linux kernel versions (including 2.4.20-8

and 2.6.0-test7). In our work, we have intentionally left this behaviour unchanged because

of the large number of installations that currently operate with this limit. We thought it

was best to first try to understand how to best operate within this limit.

If either the SYN queue or the accept queue becomes full, the server kernel is forced

to drop the current packet (SYN or ACK). This is commonly referred to as a queue drop.

Queue drops can occur for a variety of reasons. The main reasons (but not the only reasons)

are:

1. The SYN Queue is 100% full when the SYN arrives.

2. The Accept Queue is full when the SYN arrives.

3. The SYN Queue is more than 75% full when the SYN arrives.

4. The Accept Queue is full when the SYN-ACK arrives.

5. The server operating system runs out of memory.

6. The server operating system is unable to send a SYN-ACK.

Note that SYN packets may be dropped when the SYN queue is either 75% full or 100%

full. If TCP SYNCOOKIES are enabled, then SYNs are dropped when the SYN queue is

completely full. Otherwise, SYNs are dropped when the SYN queue is 3/4 full. The rate at

which the server accepts new connections influences both the queue drop rate (measured

in queue drops per second) and the server’s performance directly. If the server accepts

new connections more slowly than they are arriving, the accept queue (and possibly the

SYN queue) will eventually become full. When the accept queue is full, all new connection

requests are dropped even if there is space in the SYN queue. Such queue drops are

14

problematic for both the client and server. The client is unable to send requests to the

server, and is forced to re-attempt the connection. Meanwhile, the server-side kernel has

invested resources to complete the TCP three-way handshake, only to discover that the

connection must be dropped. For these reasons, the server needs to accept new connections

at a high enough rate.

However, the server could devote too much time (and resources) to admitting new con-

nections. In the extreme case, the server would be so focused on admitting new connections

that it would neglect the processing of already accepted connections. Of course, this would

lead to poor performance.

Every server must choose a policy for accepting new connections. We call this strategy

the server’s accept strategy. This thesis investigates the impact of different accept strategies

on three architecturally different web servers under two different workloads. Our goal is to

demonstrate that a server’s accept strategy can significantly improve its peak throughput

as well as its performance under overload. A secondary goal is to determine which accept

strategies work well for a given server and workload. We now present more background

information on accept strategies and summarize relevant related work.

2.4 Improving Accept Strategies

In early web server implementations, the strategy for admitting new connections was to ac-

cept one new connection at a time (whenever pending connections were available). Recent

work by Chandra and Mosberger [6] introduced improvements to Linux’s POSIX.4 Real

Time signals. The improved mechanism, which coalesces several RT signals into a single

signal, ensures that at most one RT signal is delivered per descriptor. This mechanism

is appropriately called signal-per-fd. Chandra and Mosberger found that the signal-per-

fd mechanism simultaneously decreased the complexity of the server implementation, and

improved its performance and robustness under high network loads.

However, they also found that a small modification to a select-based web-server (with

a stock operating system) outperformed their operating system modifications, as well as

the modifications proposed by other researchers [28]. The server modification was simple;

each time the server learned that one or more new connections was pending, it would accept

15

as many new connections as possible. In essence, the server would repeatedly call accept

until either the call failed (and the errno was set to EWOULDBLOCK) or the limit (defined

by the server or operating system) on the maximum number of open connections was

reached. This heuristic meant that the server periodically drained its entire accept queue.

They referred to the resulting server as a multi-accept server. Chandra and Mosberger’s

experiments demonstrate that this aggressive strategy towards accepting new connections

improved event dispatch scalability for workloads that request a single one byte file or a

single 6 KB file.

The work in this thesis is motivated by the above findings, which demonstrate that

even simple server designs exhibit a wide range of variation in performance that is not

well understood. We believe that not enough emphasis has been placed on understanding

basic Internet server design. Therefore, in this thesis we consider a number of strategies

for accepting new connections under high loads.

In particular, we concentrate on finding accept strategies that allow servers to accept

and process more connections under conditions of high load. Note that this is quite different

from simply reducing the number of queue drops (i.e., failed connections) because queue

drops could be minimized by only ever accepting connections and never actually processing

any requests. Naturally this alone would not lead to good performance. Instead our

strategies focus on enabling us to find a balance between accepting new connections and

processing existing connections.

This thesis builds on Chandra and Mosberger’s work by exploring a wider spectrum of

accept-strategies in three architecturally different web servers under more representative

workloads. We devise a simple mechanism to permit us to implement and tune a variety of

accept strategies, and to experimentally evaluate the impact of different accept strategies

on three server architectures. In each case we are able to show that performance can

be impacted both positively and negatively by the accept strategy. In particular, we find

that certain accept strategies, provide high peak throughput and well-conditioned overload

behaviour.

More recent work [40] [41] has also noted that accept-strategies can significantly impact

performance. Our work specifically examines different strategies used under a variety of

servers in order to understand how to choose a good accept strategy. The next chapter

16

discusses the servers, workloads, and experimental environment used in our research.

17

Chapter 3

Servers, Workloads and Methodology

This chapter provides important details about our experimental techniques, as well as the

hardware and software used in our experiments. Section 3.1 describes each of the three

servers used in our experiments. Section 3.2 describes the hardware used to conduct our

experiments, and provides details on our experimental methodology including server and

operating system configurations. This chapter concludes in Section 3.3 with a discussion

of the two workloads used in our experiments.

3.1 The Web Servers

This section provides background information on each of the servers investigated in this

thesis. We describe the architecture of each server, as well as its procedure for accepting

new connections. Lastly, we describe any modifications we have made to the base server

behaviour.

3.1.1 The µserver

The µserver (pronounced micro-server) [5] [12] is a single process event-driven web server.

Its behaviour can be carefully controlled through the use of more than fifty command-line

parameters, which allow us to investigate the effects of several different server configurations

using a single web-server. In addition, the µserver accumulates several useful statistics,

18

which are printed when it exits. These statistics are used throughout this thesis to explain

the µserver’s behaviour and performance.

The µserver uses either the select, poll, or epoll system call (chosen through com-

mand line options) in concert with non-blocking socket I/O to multiplex among concurrent

connections. The server operates by tracking the state of each active connection (states

roughly correspond to the steps in Figure 2.1). State information for each connection is

explicitly maintained using a simple bitmask. It repeatedly loops over three phases. The

first phase (which we call the getevents-phase) determines which of the connections have

accrued events of interest. In our experiments this is done using select. In the second

phase (called the accept-phase), the server checks if select reported that the listening

socket was readable. A readable listening socket indicates that one or more connections

are pending. If there are pending connections, the µserver will accept one or more of the

waiting connections using the accept system call. If there are no pending connections,

then no new connections are admitted in that accept-phase.

The third phase (called the work-phase) iterates over each of the non-listening connec-

tions which select indicates can be processed without blocking. For connections that are

readable, the server uses the read system call to retrieve the HTTP GET request. If the

bytes returned do not constitute a fully formed HTTP GET request, then the connection

will be read again in subsequent work phases. Once a fully formed HTTP GET request

is obtained, the server parses the request, and updates the connection state to indicate

that the HTTP request has been received. The server also removes the socket from the

read interest set, and adds it to the write interest set. This indicates to select that the

server is no longer interested in reading from the connection, but is interested in writing

the HTTP reply to the connection.

The HTTP reply consists of an HTTP header, and (usually) some HTTP content.

For static requests, the server must check its document cache. If the requested file is

not cached, the server must open the file and read its contents. For dynamic requests,

the server must obtain a computed result. When the HTTP header and any associated

content is ready, the server must send the reply to the client. In our experiments, which

use a static workload, the µserver uses the write system call to send the HTTP header,

and the sendfile system call to send the file contents.

19

Note that the server will only write data to the connection when select indicates that

the socket is writable. Thus, the reading of the request and the writing of the reply usually

occur in separate work phases. If either write or sendfile is unable to write its portion of

the reply in one call, the remainder of the reply will be written in subsequent work phases.

If the request is HTTP 1.0, then the connection is closed once the reply has been written.

For HTTP 1.1 requests, the server will continue to read requests until the client closes the

connection. The three phases of µserver operation are illustrated in Figure 3.1.

call on the current fd_setselect()
getevents−phase

accept−phase

work−phaseProcess connections that

advises will not block

select()

if connections are pending

accept up to
add new connections to fd_set

accept−limit new connections

Figure 3.1: Phases of operation in the µserver

A key point is that for the µserver options used in our experiments the work-phase does

not consider any of the new connections accumulated in the immediately preceding accept-

phase. Instead, the µserver only performs those network operations which select has

indicated can be completed without blocking. In this respect, the µserver differs from the

other servers in our comparison, which attempt to completely process existing connections

before accepting new ones.

The µserver is based on the multi-accept server written by Chandra and Mosberger [6].

That server implements an accept policy that drains its accept queue when it is notified of

a pending connection request. In contrast, the µserver uses a parameter that permits us

to accept up to a pre-defined number of the currently pending connections. This defines

an upper limit on the number of connections accepted consecutively. For ease of reference,

we call this parameter the accept-limit parameter, and refer to it throughout the rest of

this thesis (the same name is also used in referring to modifications we make to the other

servers we examine). Parameter values range from one to infinity (Inf). A value of one

20

forces the server to accept a single connection, while Inf causes the server to accept all

currently pending connections.

Early investigations [5] revealed that the accept-limit parameter could significantly

impact the µserver’s performance. This motivated us to explore the possibility of improving

the performance of other servers, as well as quantifying the performance gains under more

representative workloads. As a result, we have implemented accept-limit mechanisms in

two other well-known web servers. We now describe these servers and mechanisms.

3.1.2 Knot

Knot [40] is a multi-threaded web server which makes use of the Capriccio [41] threading

package. Knot is a simple web server. It derives many benefits from the Capriccio threading

package, which provides lightweight, cooperatively scheduled, user-level threads. Capriccio

also features several different thread schedulers. The resource-aware scheduler attempts

to intelligently schedule threads by tracking their CPU, memory, and file-descriptor usage

patterns [41]. The graph-batch scheduler uses Capriccio’s blocking graph abstraction to

locate blocking points in a thread’s execution path. This scheduler tries to resume all

runnable threads blocked at a particular blocking point before moving on to the next

blocking point. Lastly, the round-robin scheduler simply schedules threads in FIFO order.

Our preliminary investigations revealed that the round-robin scheduler yielded the best

performance under our workloads. As such, Knot was configured to use the round-robin

scheduler in all our experiments.

Knot operates in one of two modes [40]. Both modes use a separate user-level thread to

process each connection. This model is often called the thread-per-connection model. Note

that the number of concurrent connections is governed by the number of active threads in

this model. Knot achieves concurrency by running hundreds or even thousands of threads

concurrently. The main difference between Knot’s modes, which are referred to as Knot-A

and Knot-C, is the manner in which the number of threads is controlled.

Knot-C allows the user to fix the number of threads used at runtime (via a command-line

parameter). Threads are pre-forked during initialization. Thereafter, each thread executes

a loop in which it accepts a single connection and processes it to completion. Knot-A

creates a single acceptor thread which loops attempting to accept new connections. For

21

each connection that is accepted, a new worker thread is created to completely process

that connection. As such, the number of threads used by Knot-A is not fixed at runtime.

Knot-C is meant to favour the processing of existing connections over the accepting of

new connections, while Knot-A is designed to favour the accepting of new connections. By

having a fixed number of threads, and using one thread per connection, Knot-C contains

a built-in mechanism for limiting the number of concurrent connections in the server.

In contrast, Knot-A allows increased concurrency by placing no limit on the number of

concurrent threads or connections.

Our preliminary experiments revealed that Knot-C performs significantly better than

Knot-A, especially under overload where the number of threads (and open connections) in

Knot-A becomes very large. Our comparison agrees with findings by the authors of Knot

[40], and as a result we focus our studies on Knot-C.

We modified Knot-C to allow each of its threads to accept multiple connections before

processing any of the new connections. This was done by implementing a new function

that is a modified version of the accept call in the Capriccio library. This new call loops

to accept up to accept-limit new connections provided that they can be accepted without

blocking. If the call to accept would block and at least one connection has been accepted

the call returns and the processing of these accepted connections proceeds. Otherwise

the thread is put to sleep until a new connection request arrives. After accepting new

connections, each thread fully processes all of the accepted connections before admitting

any more new connections.

Therefore, in our modified version of Knot each thread oscillates between an accept-

phase and a work-phase. There is no getevents-phase in the Knot server. During its

work-phase, Knot uses the read system call in a loop to read HTTP requests. Similarly,

Knot loops calling the write system call to write replies. However, the system calls invoked

by Knot are not traditional Linux system calls. Instead, the underlying threading package

(Capriccio) associates each socket descriptor with a thread, and uses poll to identify

runnable threads. Capriccio provides system call wrappers, which threads invoke in place

of customary system calls. When a thread executes a system call wrapper, Capriccio

ensures that the associated socket is in non-blocking mode and attempts to execute the

system call. If the call would block, Capriccio adds the socket descriptor to the poll

22

interest set and switches to another thread. Later, when poll indicates that system call

will no longer block, the call is completed, and the original thread is resumed.

As with the µserver, the accept-limit parameter ranges from 1 to infinity. With an

accept-limit of 1, our version of Knot behaves identically to an unmodified version of

Knot. The rest of this thesis uses the accept-limit parameter to explore the performance

of our modified version of Knot-C.

3.1.3 TUX

TUX [30] [18] (which is also referred to as the Red Hat Content Accelerator) is an event-

driven, kernel-mode web server for Linux developed by Red Hat. It is compiled as a kernel-

loadable module (similar to many Linux device drivers), which can be loaded and unloaded

on demand. TUX’s kernel-mode status affords it many I/O advantages including true zero-

copy disk reads, zero-copy network writes, and zero-copy request parsing. In addition,

TUX accesses kernel data structures (e.g., the listening socket’s accept queue) directly,

which allows it to obtain events of interest with very low overhead compared to user-level

mechanisms like select. Lastly, TUX avoids the overhead of kernel crossings that user-

mode servers must incur when making system calls. This optimization is important in

light of the large number of system calls needed to process a single HTTP request.

An examination of the TUX source code provides detailed insight into TUX’s structure.

TUX’s processing revolves around two queues, which are illustrated in Figure 3.2. The first

queue is the listening socket’s accept queue. The second is the work pending queue which

contains items of work (e.g., reads and writes) that are ready to be processed without

blocking. TUX’s main loop performs an accept-phase followed by a work-phase. In this

way, TUX alternately processes events from each of these queues in a tight loop.

TUX does not require a getevents-phase because it has access to the kernel data struc-

tures where event information is available. In the accept-phase, the default version of TUX

enters a loop in which it accepts all pending connections (thus draining its accept queue).

In the work-phase, TUX processes all items in the work pending queue before starting the

next accept-phase. Note that new items may be enqueued on either queue even as TUX

dequeues and processes items from that queue.

We modified TUX to include an accept-limit parameter, which governs the number of

23

work_pending Queue

accept−phase
if connections are pending

from the listening socket’s accept queue

Accept up to new connectionsaccept−limit

if there are items in the work_pending

Process all pending work items

queue
work−phase

Listening socket’s Accept Queue

Figure 3.2: Phases of operation in TUX

connections that TUX will accept consecutively. Since TUX is a kernel-loadable module,

it does not accept traditional command line parameters. Instead, the new parameter

was added to the Linux /proc filesystem, in the /proc/sys/net/tux subdirectory. The

/proc mechanism is convenient in that it allows the new parameter to be read and written

without restarting TUX. The new parameter provides a measure of control over TUX’s

accept policy, and allows us to compare different accept-limit values with the default policy

of accepting all pending connections.

Note that there is an important difference between how the µserver and TUX oper-

ate. In the µserver the work-phase processes a fixed number of connections (determined

by select). In contrast TUX’s work pending queue can grow during processing, which

prolongs its work phase. As a result we find that the accept-limit parameter impacts these

two servers in dramatically different ways. This will be seen and discussed in more detail

in Chapter 4.

It is also important to understand that the accept-limit parameter does not control

the accept rate directly, but merely influences it. The accept rate is determined by a

combination of the frequency with which the server enters the accept-phase and the number

of connections accepted while in that phase. The amount of time spent in the other phases

determines the frequency with which the accept-phase is entered. This is discussed in

greater detail in Chapter 4.

24

3.2 Experimental Environment

Our experimental environment is made up of two separate client-server clusters. The first

cluster (Cluster 1) contains a single server and eight clients. The server contains two Xeon

processors running at 2.4 GHz, 1 GB of RAM, a 10,000 RPM SCSI disk, and two Intel e1000

Gigabit Ethernet cards. The clients are identical to the server with the exception of their

disks which are EIDE. The server and clients are connected with a 24-port Gigabit switch.

Since the server has two network cards, we avoid network bottlenecks by partitioning

the clients into different subnets. In particular, the first four clients communicate with

the IP address associated with the server’s first Ethernet card, while the remaining four

communicate using a different IP address linked to the second Ethernet card.

Each client runs Red Hat 9.0 which uses the 2.4.20-8 Linux kernel. The server also uses

the 2.4.20-8 kernel, but not the binary that is distributed by Red Hat. Instead, the Red Hat

sources were re-compiled after we incorporated our changes to TUX. The resulting kernel

was used for all experiments on this machine. The aforementioned kernel is a uni-processor

kernel that does not provide SMP support. The reasons for this are twofold. Firstly, the

Capriccio threading package does not currently include SMP support. Secondly, we find it

instructive to study the simpler single-processor problem, before considering complex SMP

interactions.

The second machine cluster (Cluster 2) also consists of a single server and eight clients.

The server contains two Xeon processors running at 2.4 GHz, 4 GB of RAM, several

high-speed SCSI drives and two Intel e1000 Gigabit Ethernet cards. The clients are dual-

processor Pentium III machines running at 550 MHz. Each client has 256 MB of RAM,

a SCSI disk, and one Intel e1000 Gigabit Ethernet card. The server runs a Linux 2.4.19

uni-processor kernel, while the clients use the 2.4.7-10 kernel that ships with Red Hat 7.1.

This cluster of machines is networked using a separate 24-port Gigabit switch. Like the

first cluster, the clients are divided into two groups of four with each group communicating

with a different server NIC. In addition to the Gigabit subnets, all machines are also

connected to a separate 100 Mbps network which is used for co-ordinating experiments.

Each cluster is completely isolated from other network traffic.

Cluster 1 is used to run all µserver and TUX experiments while Cluster 2 is used to

run all Knot experiments. Because our clusters are slightly different, we do not directly

25

compare results taken from different clusters. Ideally, we would use one cluster for all our

experiments, but the sheer number of experiments required necessitates the use of two

clusters.

3.2.1 Web Server Configuration

In the interest of making fair and scientific comparisons, we carefully configured TUX

and the µserver to use the same resource limits. TUX was configured to use a single

kernel thread. This enables comparisons with the single process µserver, and was also

recommended in the TUX user manual [30]. The TUX accept queue backlog was set

to 128 (via the /proc/sys/net/tux/max backlog parameter) which matches the value

imposed on the user-mode servers. By default, TUX bypasses the kernel-imposed limit

on the length of the accept queue, in favour of a much larger backlog (2,048 pending

connections).

Additionally, both TUX and the µserver allow a maximum of 15,000 simultaneous con-

nections. In the µserver case this was done by using an appropriately large FD SETSIZE.

For TUX this was done through /proc/sys/net/tux/max connections. All µserver and

TUX experiments were conducted using the same kernel.

The Knot server was configured to use the Knot-C behaviour. That is, it pre-forks and

uses a pre-specified number of threads. In our experiments, Knot is configured to use 1,000

threads. We have spent a modest amount of time investigating Knot’s parameter space,

and have found that Knot performs best on our workloads with 1,000 threads and the

round-robin scheduler. Under Knot’s thread per connection architecture, the number of

server threads is an upper bound on the number of simultaneous connections. However, the

accept-limit modification allows Knot to maintain several active connections per thread,

thus raising the upper bound.

Logging is disabled on all servers to avoid unnecessary performance perturbations.

Lastly, we ensure that all servers can cache the entire file set. This ensures that differences

in server performance are not due to differences in caching strategies or cache hit rates.

26

3.3 Workloads

This section describes the two workloads that we use to evaluate server performance.

We emphasize that each workload is able to generate overload conditions. We note that

these two workloads are quite different and will stress different aspects of the server and

operating system. In particular, we note that average transfer sizes and the demand for

new connections varies quite sharply across these two workloads.

3.3.1 SPECweb99-like workload

The SPECweb99 benchmarking suite [35] is a widely accepted tool for evaluating web

server performance. It was developed by the Standard Performance Evaluation Corporation

(SPEC), based on their analysis of server logs taken from several popular Internet servers,

and some smaller web sites[8]. In spite of its careful design and widespread use, the

benchmark does suffer from notable shortcomings. One of the most important problems is

that the SPECweb99 suite is unable to generate overload conditions.

The problem arises because the SPECweb99 HTTP load generator operates in a closed-

loop. This means that the load generator will only send a new request once the server has

replied to its previous request. Banga et al. [4] show that in this naive load generation

scheme, the client’s request rate is throttled by the speed of the server. As such, it is

impossible for a small number of closed-loop load generators to overload a web server.

In fact, Banga et al. demonstrate that several thousand closed-loop generators would

be needed to generate overload conditions. Clearly, this requirement is unreasonable for

modest research efforts.

We address this problem by using httperf, [21], an open-loop load generator that is

capable of generating overload conditions. We note that httperf avoids the naive load gen-

eration scheme by implementing aggressive connection timeouts. Every time a connection

to the server is initiated, a timer is started. If the timer expires before the connection is

established and the HTTP transaction completes, the connection is aborted and retried.

This strategy ensures that the server is sent a continuous stream of requests that is inde-

pendent of the server’s reply rate. In addition, only a single copy of httperf is needed (per

client CPU) to generate sustainable overload.

27

We use httperf in conjunction with SPECweb99 file sets and HTTP traces that have

been carefully constructed to mimic the SPECweb99 workload. Our traces, though syn-

thetic, accurately recreate the file classes, access patterns, and number of requests issued

per (HTTP 1.1) connection that are used in the static portion of SPECweb99. When ex-

amining results obtained with this workload, the reader may wish to remember that each

HTTP 1.1 connection is used to request an average of 7.2 files. Thus, this workload creates

less demand for new connections than a workload that requests fewer files per connection.

As a result, we expect performance under this workload to be less sensitive to changes

in accept strategy, especially when compared to workloads that request fewer files per

connection. As we will see in Section 3.3.2, the SPECweb99 workload may significantly

overestimate the number of requests per connection seen on the World Wide Web. The

mean file size under the SPECweb99-like workload is approximately 15 KB.

We examine server performance using a SPECweb99 file set containing 36 files, and

occupying just over 5 MB of disk space. Obviously, the entire file set can be easily cached,

and the server does little or no disk I/O once the cache has been populated. This avoids

any distortions in server performance due to disk latency. Clearly, a 5 MB file set is not

representative of the server file sets found in production environments. However, the salient

point is that our file set fits entirely in main memory. We claim that our strategy is roughly

equivalent (from a performance point of view) to using a much larger file set (e.g., 256 MB)

that is also completely cacheable. There may be differences in performance because of the

processor’s ability to cache a larger portion of the 5 MB file set. However, we do not

expect these differences to change the qualitative results. The principal advantage of using

a smaller file set is that it is fully cached in only a few seconds. This in turn reduces the

length of each experiment. A larger file set would require a longer “warm up” period before

the entire file set is cached.

3.3.2 One-packet workload

Our second workload is motivated by real-world events. During the September 11th ter-

rorist attacks, CNN.com was subjected to crippling overload [7]. The staff at CNN.com

responded by replacing their main page with a small, text-only page containing the latest

headlines. The new page was sized so the server reply would fit in a single TCP/IP packet.

28

With this in mind, we devised a static workload that simulates the load experienced by

CNN.com on September 11th. The workload is simple; all requests are for the same file,

which is sized so that the HTTP headers and file contents fill a single packet. Each request

is sent over a new HTTP 1.1 connection.

We believe this simple workload tests many aspects of server performance that are

neglected by SPECweb99-based workloads. Nahum [22] analyzes the characteristics of

the SPECweb99 workload in light of data gathered from several real-world web server

logs. His analysis reveals many important shortcomings of the SPECweb99 benchmark.

For example, the SPECweb99 benchmark does not use conditional GET requests. With

conditional GETS, if the requested file has not been modified since the client’s last request,

the server returns a header containing HTTP 304 Not Modifed and zero bytes of file data.

Interestingly, such requests accounted for up to 28% of all requests in some server traces.

With the transmission of only an HTTP header, the server response is quite small, and

easily fits in a single packet.

Nahum also reports significantly greater use (51% – 95%) of HTTP 1.0 than the 30%

used by SPECweb99. He also reports that SPECweb99 significantly overestimates average

transfer sizes. SPECweb99’s median transfer size of 5,120 bytes is an order of magnitude

larger than the transfer sizes captured in the sample logs in his study. In fact, the median

transfer size in one of Nahum’s popular logs was a mere 230 bytes! The combinations of

these observations indicates that the demand for new connections at web servers is likely

to be much higher than the demand generated by a SPECweb99-like workload.

Further evidence for this conclusion is provided in recent work by Jamjoom et al. [14].

They report that in an attempt to minimize user response time, many popular browsers

(on Linux and Windows 2000) tend to issue multiple requests for embedded objects in

parallel. This is in contrast to using a single sequential persistent connection to request

multiple objects from the same server. They report that although there were on average 21

unique embedded objects per page visited, the average requests per connection issued by

the different browsers examined is between 1.2 and 2.7. This is considerably lower than the

average of 7.2 requests per connection used by SPECweb99, and reinforces the conclusion

that SPECweb99 workloads underestimate the demand for new connections seen at many

web servers.

29

While a SPECweb99-like workload is still useful for measuring web server performance,

it is deficient in many respects and should not be used as the sole measure of server

performance. Our one-packet workload highlights a number of phenomena reported in

recent literature (small transfer sizes, a small number of requests per connection). More

importantly, as implemented by CNN.com, this is perhaps the best way to serve the most

clients under conditions of extreme overload. For the purposes of our study, it is useful

because it places high demands on the server to accept new connections.

The next chapter presents and analyzes our experimental results. For each combination

of server and workload we present graphs showing throughput, server latency, and server

queue drops. In many cases, additional graphs and tables are included to aid analysis.

30

Chapter 4

Experimental Results

This chapter presents the results of experiments that subject each of the three servers

to two different workloads. For each experiment, we present graphs showing throughput,

response times, and queue drops. In our graphs, each data point is the result of a two

minute experiment. Trial and error revealed that two minutes provided sufficient time for

each server to achieve steady state execution. Longer durations did not alter the measured

results, and only served to prolong experimental runs.

A two minute delay was used between consecutive experiments. This allowed all TCP

sockets to clear the TIME WAIT state before commencing the next experiment. Prior to

running experiments, all non-essential Linux services (e.g., sendmail, dhcpd, cron etc.) are

shutdown. This eliminated interference from daemons and periodic processes (e.g., cron

jobs) which might confound results.

Prior to determining which accept-limit values to include in each graph a number of

alternatives were run and examined. The final values presented in each graph were chosen

in order to highlight the most interesting accept policies. The following sections present and

analyze our experimental results. The results obtained under the SPECweb99-like workload

are presented first, followed by the results obtained under the one-packet workload.

31

4.1 In-Memory SPECweb99-like workload

4.1.1 µserver Performance

Figure 4.1 examines the performance of the µserver as the accept-limit parameter is varied.

Recall that the accept-limit parameter controls the number of connections that are accepted

consecutively. The line labeled Accept-1 traces the performance of the µserver under the

Accept-1 policy, where the µserver tries to accept a single connection in each accept-phase.

Similarly, the Accept-10 policy causes the server to accept at most 10 connections in each

accept-phase. Lastly, the Accept-Inf policy causes the server to drain its accept queue,

meaning that it accepts all pending connections.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-Inf
Accept-10

Accept-1

Figure 4.1: µserver throughput under the SPECweb99-like workload

Interestingly, all three policies obtain similar peak throughput. However, the Accept-

10 and Accept-Inf policies fare best under overload conditions, with the Accept-Inf policy

posting a slight performance advantage. As Figure 4.1 shows, the Accept-1 policy degrades

under overload. At a target load of 23,000 requests/sec the Accept-Inf policy outperforms

the Accept-1 policy by 32%. At the extreme target load of 30,000 requests/sec, the gap

32

grows to 39%. This graph illustrates that a larger accept-limit can significantly improve

throughput in the µserver under overload conditions.

Statistics collected by the µserver provide insight that confirms the benefits of the high

accept-limit value after overload. At a target load of 30,000 requests/sec, the Accept-Inf

server accepts an average of 1,571 new connections per second In comparison, the Accept-

1 server averages only 1,127 new connections per second (39% fewer). This difference is

especially significant when we consider that each SPECweb99 connection is used to send

an average of 7.2 requests.

The difference in performance is partly explained by examining queue drop rates at the

server. The queue drop rates are obtained by running netstat on the server before and

after each experiment. The number of failed TCP connection attempts and listen queue

overflows are summed and recorded before and after each experiment. Subtracting these

values and dividing by the experiment’s duration provides a rate, which we report in our

queue drop graphs.

Figure 4.2 shows that in most cases the more aggressive accept policy leads to lower

queue drop rates (QDrops/s). The lower drop rates indicate that the µserver is admitting

new connections faster under the more aggressive accept policies. This allows the server

to efficiently amortize the overhead of the select system call.

Figure 4.3 shows the number of select calls made per second by the µserver as the

target load is varied. Under light loads (e.g., 5,000 - 8,000 requests/sec) all three accept

policies call select at a rapid rate. This behaviour is expected, because under light loads

the server spends a lot of its time polling for new work. This means the server calls

select often, hoping to receive notification of pending work. As the server approaches

peak throughput, the number of open connections increases, and the server spends less

time polling and more time servicing open connections. As a result, the select rate falls

dramatically. At request rates of 15,000 requests/sec or higher the select rates for all

three accept policies have stabilized. However, there is a marked difference in the rate at

which the Accept-1 policy calls select.

As Figure 4.3 shows, the Accept-1 policy calls select at a much higher rate than either

of the two other policies. At 26,000 requests/sec, the Accept-1 policy averages 1,248 select

calls per second. In contrast, the Accept-10 policy makes 177 calls/sec, and the Accept-1

33

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-Inf
Accept-10

Accept-1

Figure 4.2: µserver queue drops under the SPECweb99-like workload

policy makes a mere 35 calls/sec. The additional select calls do not improve performance

for the Accept-1 policy, which suffers 28% lower throughput than the Accept-Inf policy. In

fact, it will soon be clear that the extra select calls contribute to the lowered throughput.

Figure 4.4 shows the average number of fds returned by select as the target load

is varied. At low request rates, select returns notification for very few file descriptors,

regardless of the accept-policy.

This is expected since the server is underutilized and is actively polling for work. As

request rates approach 15,000 requests/sec, the server approaches its peak throughput,

and select returns more fds for the Accept-Inf and Accept-10 policies. The Accept-Inf

policy in particular shows dramatic growth in the number of fds returned by select. At

26,000 requests/sec, select returns an average of 885.8 fds under the Accept-Inf policy

compared to 21.6 and 171.3 for the Accept-1 and Accept-10 policies, respectively. This

data is summarized in Table 4.1, which presents select statistics for the µserver. All the

data in Table 4.1 is based on a target load of 26,000 reqs/sec under the SPECweb99-like

workload.

34

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000 30000

N
um

be
r

of
 s

el
ec

t c
al

ls
 /

se
co

nd

Requests/s

Accept-Inf
Accept-10
Accept-1

Figure 4.3: Number of select calls/sec made by the µserver under the SPECweb99-like

workload

select-rate Avg fds from select fd-rate Throughput

Accept-Inf 35 885.8 31,003 12,249

Accept-10 177 171.3 30,320 11,470

Accept-1 1,248 21.6 26,957 8,888

Table 4.1: select statistics for µserver @ 26,000 reqs/sec under the SPECweb99-like work-

load

The select-rate column shows the number of select calls made per second under each

accept policy. The Avg fds from select column lists the average number of file descriptors

returned by a select call under each policy. The fd-rate column is simply the product

of the select-rate and Avg fds from select columns, and gives the rate (in fds per second)

at which fds are returned from select to the application. The rightmost column lists the

server throughput (in replies/sec) for each accept policy.

An analysis of the data for the Accept-1 and Accept-Inf policies provides valuable in-

35

 0

 200

 400

 600

 800

 1000

 1200

 0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

 n
um

be
r

of
 f

ds
 r

et
ur

ne
d

by
 s

el
ec

t

Requests/s

Accept-Inf
Accept-10
Accept-1

Figure 4.4: Average number of fds returned by select in the µserver under the

SPECweb99-like workload

sight. The Accept-1 policy makes approximately 35 times more select calls, but receives

41 times fewer fds per call than the Accept-Inf policy. In the end, despite making more calls

to select the Accept-1 policy receives fd-notification at a lower rate than the Accept-Inf

policy. Clearly, this represents a poor amortization of select overhead. The higher select-

rate represents unnecessary overhead that degrades performance. Because the Accept-Inf

policy is able to more efficiently amortize its select overhead, it achieves significantly

higher throughput. The key to efficient amortization lies in the rate at which new connec-

tions are accepted under the Accept-Inf policy. Table 4.2 presents µserver statistics related

to the accept system call. These statistics were gathered while the server was subjected

to a target load of 26,000 reqs/sec.

The leftmost column shows the number of accept-phases the server completed during

the experiment. The second column, Cavg, shows the average number of successful accept

calls that were completed in each accept-phase. A successful accept call is one that

returns a new file descriptor, as opposed to returning EWOULDBLOCK. Cavg is computed

36

Nphases Cavg Total Accepts Accept Rate Throughput

Accept-Inf 5,202 47.30 246,063 1,670 12,249

Accept-10 26,275 8.81 231,395 1,570 11,470

Accept-1 184,323 0.97 178,061 1,208 8,888

Table 4.2: Accept-phase statistics for µserver @ 26,000 reqs/sec under the SPECweb99-like

workload

by dividing the total number of successful accept calls by the number of accept-phases.

Recall than in the µserver an accept-phase may admit zero new connections. This explains

why Cavg is less than one for the Accept-1 policy. Unsuccessful accept calls (i.e., those

that return EWOULDBLOCK) are not counted in Cavg. The third column lists the total

number of accept calls that were successfully completed during the experiment. The fourth

column gives the average number of successful accept calls completed per second during

the experiment. It is computed by dividing the total number of successful accept calls by

the experimental duration. The last column displays the policy’s throughput under a load

of 26,000 reqs/sec.

The data in Table 4.2 further illuminates the differences between each accept-policy.

This data shows that the Accept-Inf policy is relatively bursty compared to the other

two policies. In particular, the Accept-Inf policy engages in a relatively small number

(5,202) of accept-phases, but accepts a comparatively large number (47.3 on average) of

new connections in each phase. This contrasts sharply with the Accept-1 policy which goes

through many more (184,323) accept-phases, but accepts many fewer (0.97 on average) new

connections in each phase. Overall, the Accept-Inf policy accepts new connections 38.2%

faster than the Accept-1 policy at this request rate. The Accept-10 policy lies between the

two extreme policies. The difference in accept rates explains differences in how each policy

amortizes its select overhead.

The Accept-Inf policy accepts large batches of new connections. As a result, it main-

tains a large number of open connections, and submits large, dense fd sets to select.

Consequently, select returns a large number of fd-notifications with each call. This leads

to an efficient amortization of select overhead. In comparison, the Accept-1 policy aver-

ages only 0.97 new connections per accept-phase. Despite a large number of accept-phases,

37

this policy returns 38.2% fewer new connections. As a result, the server maintains a smaller

number of open connections and submits sparser fd sets to select. These sparse fd sets,

coupled with a large number of select calls, translates into unnecessary select overhead

which hurts performance.

Table 4.3 shows the percentage of time the µserver spends doing key system calls. This

data was gathered by recompiling the µserver to include gprof profiling, and re-running

the experiment at 26,000 reqs/sec.

Function % Time Accept-1 policy % Time Accept-Inf policy Difference

select 39.96 5.49 -34.47

accept 2.41 1.32 -1.09

read 5.92 15.02 9.10

setsockopt 5.66 10.75 5.09

write 3.77 6.66 2.89

sendfile 21.72 43.88 22.16

close 2.17 3.48 1.31

Table 4.3: Percentage of time spent in µserver functions under the SPECweb99-like work-

load

The first (leftmost) column lists the system calls. The second column lists the percent-

age of time spent executing each system call under the Accept-1 policy. The third column

does the same for the Accept-Inf policy. The rightmost column simply subtracts the sec-

ond column from the third, thus highlighting the differences between the two policies. The

system calls are listed in the order they are executed in the main server loop.

The reader may notice that the server executes both the write and sendfile system

calls, and that a significant amount of time is spent in the setsockopt system call. The

sendfile call is used because it allows zero-copy writes. However, sendfile cannot be used

to write HTTP headers. As such, the server uses the setsockopt call with the TCP CORK

flag to force the kernel to buffer any data written to the socket. The server then executes

the write system call to write the HTTP header, followed by the sendfile system call

to write the file data. Lastly, the server uses setsockopt with the TCP UNCORK flag

to direct the kernel to flush all the buffered data. Note that setsockopt is also used to

38

set the TCP NODELAY option, which disables Nagle’s algorithm for aggregating small

packets.

The data shows that the Accept-Inf policy spends 34% less time executing select calls,

and considerably more time reading and writing data. Thus, the server effectively spends

less time getting events of interest, and more time servicing connections. In fact, the server

effectively doubles the amount of time spent in sendfile calls, while nearly tripling the

time spent in read calls. The observed reduction in event notification overhead reinforces

our analysis regarding the efficient amortization of select overhead.

We now turn our attention to the impact of accept policy on client response times.

Response time, also known as server latency, is a widely used measure of server performance

that is directly related to user satisfaction. Figure 4.5 shows the µserver’s average response

time under each accept policy as the load on the server increases. Although it increases

throughput, the aggressive Accept-Inf policy presents a tradeoff in the form of increased

response times. This response time data is obtained by measuring (at the client side) the

time needed to complete each HTTP 1.1 request. The resulting measurements are summed,

averaged and tabulated at the end of each experiment.

Although it is somewhat difficult to discern from Figure 4.5, all three accept policies

offer comparably low latencies at request rates below 13,000 req/sec. At this point, there

is a dramatic increase in response time (regardless of the accept policy). As load increases,

the Accept-Inf policy produces noticeably higher response times than the Accept-10 and

especially the Accept-1 policy. Interestingly, the spectrum of accept policies allows a system

administrator to choose a policy whose throughput versus response time tradeoff best meets

his/her needs. The Accept-1 policy provides low response times and low throughput. More

aggressive policies increase throughput at the expense of response time.

The tradeoff between throughput and response time is worth careful consideration.

Response time often correlates with user satisfaction. However, it cannot be used as the

sole measure of server performance. For instance, a server could trivially obtain stellar

response times by serving only a few requests (and ignoring all others). This would lead

to low average response times and dismal throughput. As such, it is important to con-

sider throughput and average response times together. Increased throughput and lowered

response times are ideal. Increases in throughput that are accompanied by small increases

39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-Inf
Accept-10

Accept-1

Figure 4.5: Response times for the µserver under the SPECweb99-like workload

in response times are often desirable. However, large increases in response time may be

unacceptable.

It is worth noting that even the most aggressive of the accept policies shown here still

provides reasonable average response times. In summary, the Accept-Inf policy outperforms

the Accept-1 policy by as much as 39% on the in-memory SPECweb99-like workload.

Analysis of a variety of server statistics shows that:

• The Accept-Inf policy accepts new connections at a significantly higher rate than the

Accept-1 policy.

• The higher accept rate leads to a larger number of concurrently open connections in

the server.

• With a large number of concurrent connections, the server submits dense fd sets to

select.

• As a result, more readable or writable fds are returned per select call, and fewer

40

select calls are made.

• More file descriptors are processed per select call (i.e.,the work phases are longer).

This represents a superior amortization of select overhead, and leads to increased

throughput.

• Longer work phases lead to more burstiness and higher response times.

4.1.2 TUX Performance

In Figure 4.6 we show that TUX’s performance can be noticeably improved by choosing

the right accept strategy. The Accept-Inf policy forces TUX to drain its accept queue by

accepting all pending connections. This is the accept-policy that an unmodified TUX server

uses. The Accept-50 policy allows TUX to consecutively accept up to 50 connections, while

the Accept-1 policy limits TUX to accepting a single connection in each accept-phase.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-Inf
Accept-50

Accept-1

Figure 4.6: TUX throughput under the SPECweb99-like workload

Figure 4.6 shows that the Accept-1 policy results in a 10% increase in peak throughput

compared to the Accept-Inf policy. Surprisingly, our server-side instrumentation shows

41

that an Accept-1 policy causes TUX to accept connections faster than the higher accept-

limit values. While this behaviour may seem unintuitive, it is important to remember that

TUX’s accept rate is not directly governed by the accept-limit parameter. Rather, the

accept-limit controls the maximum number of connections that are accepted consecutively.

The server’s accept rate is determined by the number of consecutive accepts as well as the

number of times that TUX enters its accept-phase. Equation 4.1 formalizes this simple

mathematical relationship.

AcceptRate =
NphasesCavg

telapsed

(4.1)

In this equation, telapsed denotes the elapsed time for a given experiment, Nphases rep-

resents the number of accept-phases the server completes during the experiment, and Cavg

denotes the average number of new connections accepted per accept-phase. Using these

terms, the accept-limit parameter represents an upper bound on the value of Cavg as shown

in equation 4.2

Cavg ≤ accept-limit (4.2)

In TUX, lowering the accept-limit has two effects. Firstly, Cavg decreases to comply with

equation (4.2). Secondly, Nphases increases dramatically. In our experiments, the increase

in Nphases outweighs the decrease in Cavg and leads to a net increase in the observed accept

rate. This was confirmed by carefully instrumenting and experimenting with a separate

version of TUX. The resulting run-time statistics are presented in Table 4.4. The leftmost

column shows the number of accept-phases that TUX completed during the experiment.

The second column shows the average number of connections that were accepted in each

accept-phase. The third column lists the total number of connections that were accepted

during the experiment. The rightmost column gives the average number of connections

that were accepted per second during the experiment. It is computed by dividing the total

number of accepts by the experimental duration.

This data shows that the Accept-1 policy increases the rate at which TUX accepts

new connections by approximately 17.6% when compared to the default Accept-Inf policy

(1,474 versus 1,734 accepts/sec). The increase arises because Cavg decreases by a factor of

503 (from 503 to 1), while the number of accept-phases increases by a factor of 543 (from

42

Nphases Cavg Total Accepts Accept Rate Throughput

Accept-Inf 430 503.82 216,641 1,474 11,788

Accept-1 233,639 0.99 233,639 1,734 12,710

Table 4.4: Accept-phase statistics for TUX @ 26,000 reqs/sec under the SPECweb99-like

workload

430 to 233,639). According to equation 4.1, this translates into a net increase in accept

rate.

An examination of TUX’s work pending queue is helpful in understanding this be-

haviour. Table 4.5 presents some statistics related to TUX’s processing of its work pending

queue. The left column lists the average number of connections accepted by each policy.

The right column lists the average number of items processed from the work pending

queue in each work-phase. The difference is startling. The Accept-1 policy processes an

average of 46 items in each work-phase, while the Accept-Inf policy averages 11,083 items

per work-phase. These figures show that the Accept-Inf policy has long accept-phases fol-

lowed by even longer work-phases (since each accepted connection generates several work

items). During these long work-phases, no new connections are accepted. In fact, many

connections may be rejected because the relevant operating system queues are full. When

the server enters its next accept-phase, many of the waiting connections may be stale. In

contrast, the Accept-1 policy engages in short accept-phases followed by relatively short

work-phases. This policy avoids bursty processing and is able to re-enter the next accept-

phase in short order. Overall, this translates into a higher accept rate.

Cavg Pending Work items

Accept-Inf 503.82 11,083

Accept-1 0.99 46

Table 4.5: Pending work statistics for TUX @ 26,000 reqs/sec under the SPECweb99-like

workload

Interestingly, the accept-limit parameter affects TUX and the µserver in very different

ways, despite the fact that both are event-driven servers with accept-phases and work-

phases. Because of this similarity, Equation (4.1) applies equally to both servers. In the

43

µserver, lowering the accept-limit parameter lowers Cavg, and increases Nphases. This, is

similar to what was observed for TUX. However, for the µserver the increase in Nphases is

unable to compensate for the decrease in Cavg. As a result, the µserver accept-rate falls

when its accept-limit is lowered.

This analysis shows that although both servers experience an increase in Nphases and

a decrease in Cavg, the magnitude of the changes are quite different for each server. The

difference in magnitude arises because of the getevents-phase that exists in the µserver but

not in TUX. In the µserver each accept-phase is preceded by a getevents-phase (essentially

a call to select). Increasing the number of accept-phases also increases the number

of getevents-phases. This adds an overhead prior to each accept-phase, and limits the

µserver’s ability to perform more accept-phases. In comparison, TUX incurs no overhead

for extra accept-phases.

In addition to improving TUX’s throughput, the Accept-1 policy also reduces request

latency. There are several reasons for this. First, by accepting fewer connections, TUX is

able shorten its work pending queue. As a result, work items endure shorter wait times

and are processed faster. Second, by accepting new connections faster, the Accept-1 policy

reduces the time it takes the server to establish its connection with the client. In fact,

reduced connection-times are a major contributor to lower latencies. Figure 4.7 graphs

TUX’s latency under each accept policy as the load increases.

Although it is somewhat difficult to discern from Figure 4.7, all three accept policies

offer comparably low latencies at request rates below 13,000 req/sec. At this point, all

three policies experience a dramatic increase in client response times. The Accept-1 policy

provides slightly lower latency than the other two policies, especially at higher request

rates. As such, the Accept-1 policy provides moderate improvements to both throughput

and response time when compared to the default Accept-Inf policy.

Figure 4.8 shows the queue-drop rates for all three policies. The graph shows that all

three policies have comparable queue drop rates. This is not surprising for two reasons.

Firstly, Figure 4.6 shows that the differences in performance among these three policies are

not huge. Secondly, the SPECweb99-like workload sends several requests per connection,

which means that fewer connections are established and fewer queue drops will occur.

In summary, the Accept-1 policy increases TUX’s throughput by as much as 12%, and

44

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-Inf
Accept-50

Accept-1

Figure 4.7: Response times for TUX under the SPECweb99-like workload

reduces client response times by 15% to 23%. Our analysis shows that:

• The default Accept-Inf policy causes TUX to accept large batches of connections.

• Long accept phases are invariably followed by long work phases which process thou-

sands of work items.

• During these long work phases, operating system queues fill and connections are

dropped. Long work phases also inhibit the server’s ability to re-enter the accept-

phase.

• The Accept-1 policy remedies these problems by shortening the accept-phase and the

work-phase. As a result, connections are accepted and processed in smaller batches.

• The smaller batches increase TUX’s accept rate, which leads to higher throughput

than the default Accept-Inf policy.

• The reduced batch size reduces TUX’s burstiness, and provides lower latencies.

45

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-Inf
Accept-50

Accept-1

Figure 4.8: TUX queue drops under the SPECweb99-like workload

4.1.3 Knot Performance

For the Knot server, we experimented with a variety of different accept strategies. The

results are summarized in Figures 4.9 and 4.10. Figure 4.9 illustrates the throughput

obtained using three different accept policies. With the accept-limit parameter set to 1,

our modified version of Knot behaves identically to an unmodified copy of Knot.

As a sanity check, we confirmed that the original version and the modified server using

the Accept-1 policy produce results that are indistinguishable. To reduce clutter, the

results for the original version of Knot are omitted.

Higher accept-limits (50 and 100) represent our attempts to increase Knot’s throughput

by increasing its accept rate. Our server-side measurements confirm that we are able

increase Knot’s accept rate. For example, statistics collected by Knot indicate that at a

load of 20,000 requests/sec, the Accept-100 strategy accepts new connections 2.4 times

faster (on average) than the Accept-1 (default) strategy Further evidence is provided in

Figure 4.10 which shows that the Accept-50 and Accept-100 servers enjoy significantly

lower queue drop rates than the Accept-1 policy.

46

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.9: Knot throughput under the SPECweb99-like workload

Unfortunately, the higher accept rates (and lowered queue drop rates) do not improve

Knot’s throughput. To the contrary, performance suffers. To make matters worse, Figure

4.11 shows that average response times are considerably higher (and growing sharply) under

the more aggressive accept policies. It is difficult to gain insights into Knot’s behaviour

because Knot uses multiple user-level and kernel-level threads to perform I/O operations.

As a result, it cannot be profiled with tools like gprof. We have attempted to profile Knot

with the oprofile system profiler. However, at the time these experiments were run,

oprofile only provided flat profiles (as opposed to the more useful call-graph profiles).

The flat profiles only accounted for time spent executing in the body of a function. They did

not accumalate time spent in child functions into the parent’s running total. As a result, the

flat profiles did not provide any insight into Knot’s behaviour. Lastly, we added a number

of counters and timers to Knot in order to help us understand its behaviour. Although

these modifications provided some insight, they did not provide any strong evidence that

would explain Knot’s performance.

With the recent arrival of the Linux 2.6 kernel, oprofile now provides more useful

47

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.10: Knot queue drops under the SPECweb99-like workload

call-graph profiles. We intend to study Knot’s performance using oprofile and the 2.6

kernel in the near future. We also plan to further modify Knot so that it gathers and

reports more statistics about its own behaviour. We hope that these measures will allow

us to better understand and explain Knot’s performance.

One of the run-time statistics gathered by Knot shows that with an accept-limit of 50 or

higher, the number of concurrent connections in the server grows quite sharply compared

to the Accept-1 policy. We suspect that performance degrades with a large number of

connections because of overheads in the Capriccio threading library. As a result, we find

that under this workload, accepting new connections more aggressively does not improve

Knot’s performance. These findings agree with previously published results [40] in which

overly aggressive accepting also hurt Knot’s performance.

This section has examined the performance of the µserver, TUX, and Knot under the

in-memory SPECweb99-like workload. The results presented here have demonstrated that

a more aggressive accept strategy can improve the throughput of the µserver and TUX

both at peak and under overload conditions. For the µserver, the increase in throughput

48

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.11: Response times for Knot under the SPECweb99-like workload

came at the expense of a small increase in average response time. For TUX, the improve-

ment in throughput was accompanied by a decrease in average response time. Increasing

Knot’s accept rate led to decreased throughput under the SPECweb99-like workload. This

demonstrates that a more aggressive accept policy does not always improve performance.

Instead, a server must balance the accepting of new connections with the processing of

existing connections. The next section examines the performance of each server under

the one-packet workload, which emphasizes many phenomena that are neglected by the

SPECweb99-like workload.

4.2 One-packet workload

This section examines the performance of each server under the one-packet workload.

This workload features smaller transfer sizes and fewer requests per connection than the

SPECweb99-like workload. These factors translate into a higher demand for new connec-

tions at the server than was seen with the SPECweb99-like workload.

49

4.2.1 µserver Performance

Figure 4.12 graphs the µserver’s throughput under the one-packet workload using three dif-

ferent accept policies. This graph demonstrates that a well-chosen accept strategy increases

the µserver’s peak throughput from 19,500 replies/sec using the naive Accept-1 strategy

to 22,000 replies/sec using the Accept-10 strategy. This is an improvement of 13%. More

importantly, the Accept-Inf strategy improves performance versus the naive strategy by

as much as 65% at 21,000 requests/sec and 71% at 30,000 requests/sec. Interestingly, the

Accept-10 strategy achieves a slightly higher peak than the Accept-Inf strategy, although

it experiences larger decreases in throughput as the load increases. This suggests that

better performance might be obtained by dynamically adjusting the accept strategy. This

is something we plan to investigate in future research.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-Inf
Accept-10

Accept-1

Figure 4.12: µserver throughput under the one-packet workload

This graph also exhibits a number of interesting features that were not observed un-

der the SPECweb99-like workloads. For example, there is a marked difference in peak

throughput across the accept policies. The Accept-1 policy achieves significantly lower peak

throughput than either the Accept-Inf (7.1% lower) or the Accept-10 (11.4% lower) policies.

50

This constrasts sharply with the results from the in-memory SPECweb99-like workload in

which all three policies achieved similar peak throughputs. This difference arises from

a fundamental difference between the two workloads. Specifically, the SPECweb99-like

workload uses each connection to send an average of 7.24 HTTP 1.1 requests. This aver-

age arises from the request distributions specified in the SPECweb99 documentation. In

comparison, the one-packet workload sends a single request over each connection. As a

result, the one-packet workload generates a much higher demand for new connections than

the SPECweb99-like workload.

Table 4.6 highlights the differences in the demand for new connections across each

workload. The data in Table 4.6 is aggregated from statistics produced by httperf on each

client machine. In this table, the request rate column gives the target request rate in

requests/sec, while the rightmost column gives the rate at which new connection requests

are sent to the server. The data clearly shows that the one-packet workload generates

almost eight times more demand for new connections.

Request Rate Connection Reqs/sec

One-packet workload 20,000 20,000

SPECweb99-like workload 20,000 2,542

Table 4.6: Workload-specific demand for new connections at 20,000 reqs/sec

Another interesting feature of Figure 4.12 is that all three accept policies exhibit signif-

icant degradation in throughput once saturation occurs. At 30,000 reqs/sec, throughput

under the Accept-1 policy falls to 8,741 replies/sec which is a mere 45% of peak through-

put. The Accept-10 and Accept-Inf policies fare somewhat better, degrading to 58% and

71% of their respective peak throughputs at 30,000 reqs/sec. In comparison, degradation

under the in-memory SPECweb99 workload is relatively mild, especially for the Accept-10

(which falls to 90% of peak) and Accept-Inf (which falls to 86% of peak) policies.

Figure 4.13 shows the number of queue drops incurred under each accept policy. Two

features of this graph are interesting. Firstly, we observe that the Accept-1 policy suffers

a relatively early onset of queue drops at 20,000 reqs/sec.

The Accept-10 and Accept-Inf policies avoid significant numbers of queue drops until

23,000 reqs/sec and 21,500 reqs/sec respectively. For each policy, the onset of queue drops

51

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-Inf
Accept-10

Accept-1

Figure 4.13: µserver queue drops/sec under one-packet workload

corresponds to server saturation. At this point, new connection requests are arriving faster

than they can be accepted, and the relevant operating system queues are already full. The

lower queue drop rates incurred by the Accept-Inf and Accept-10 policies demonstrate that

they do accept more aggressively than the Accept-1 policy.

The analysis in Section 4.1.1 showed that improved amortization of select overhead

was a key to improving performance. A similar analysis holds under the one-packet work-

load, although many details are different. Figure 4.14 shows the number of select system

calls made per second by the µserver as the target load increases. Under loads of less than

20,000 reqs/sec, all three policies call select frequently. This is not surprising, since the

server is not saturated (under any of the policies), and spends a lot of its time polling for

new work. This means the server calls select often, hoping to receive notification on fds

that are readable or writable. It is noteworthy that even before saturation the Accept-1

policy calls select at a much higher rate than the other two policies, because select is

called for each connection that is accepted. This does not affect performance since the

server is not yet saturated.

52

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

N
um

be
r

of
 s

el
ec

t c
al

ls
 /

se
co

nd

Requests/s

Accept-Inf
Accept-10
Accept-1

Figure 4.14: Number of select calls made per second by the µserver under the one-packet

workload

After saturation, the select-rate falls dramatically for each policy. However, the Accept-

Inf policy emerges as the clear winner in reducing select calls. The key to success in the

Accept-Inf policy is to get more useful work done with each select call.

Figure 4.15 makes it clear that the Accept-Inf policy makes efficient use of select at

all request rates. This graph shows the average number of fds returned by select as load

increases. Prior to saturation, select calls return few fds regardless of the accept policy

employed. This is reasonable, since the server has relatively few connections to service.

As loads increase (and overload conditions are encountered) the Accept-Inf policy makes

increasingly better use of each select call. At 24,000 reqs/sec, each call returns 107 fds.

This grows to 192 fds/call at 27,000 reqs/sec, and 205 fds/call at 30,000 reqs/sec. In

contrast, both the Accept-10 and Accept-1 policies plateau quickly. The former plateaus

at approximately 26 fds/call, while the latter stays constant at 4 fds/call.

The picture that is emerging shows that the Accept-Inf policy makes relatively few

select calls, and extracts more useful work from each call. This means that the server

53

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

 n
um

be
r

of
 f

ds
 r

et
ur

ne
d

by
 s

el
ec

t

Requests/s

Accept-Inf
Accept-10
Accept-1

Figure 4.15: Average number of fds returned by select in the µserver under the one packet

workload

incurs less overhead from select calls. Table 4.7 emphasizes this by presenting key statis-

tics concerning each policy’s use of select. The select-rate column shows the number of

select calls made per second. The Avg fds per select call column lists the average number

of file descriptors returned by a select call. The fd-rate column is simply the product of

the select-rate and Avg fds from select columns, and gives the rate (in fds per second) at

which fds are returned from select to the application. The rightmost column lists the

server throughput for each accept policy. All the data in Table 4.7 is based on a target

load of 27,000 reqs/sec.

select-rate Avg fds per select call fd-rate Throughput

Accept-Inf 262 191.5 50,173 15,918

Accept-10 1,724 26.4 45,513 13,845

Accept-1 11,372 3.6 40,939 9,442

Table 4.7: select statistics for µserver @ 27,000 reqs/sec under the one-packet workload

54

The table shows that the Accept-Inf policy makes approximately 43 times fewer select

calls than the Accept-1 policy, and 6.5 times fewer than the Accept-10 policy. In spite

of this, the Accept-Inf policy receive event notifications at a higher rate than the other

two policies. The fd-rate column shows that the Accept-Inf policy returns 22.5% more

fds/sec than the Accept-1 policy. As a result, the server obtains event notifications faster

and is able to efficiently amortize select overhead by completing more work (reads and

writes) per select call. This is precisely the pattern exhibited under the SPECweb99-like

workload. In both cases, the Accept-Inf policy is superior because it allows the server to

efficiently amortize the overhead of getting events from the operating system.

As with the SPECweb99 workload, the key to using select efficiently is to submit

large, dense fd sets to select. In return, select returns notification on several active file

descriptors, and increases the amount of real work the server can do with each select call.

Using select as described requires the server to maintain a large number of concurrent

connections. This in turn requires the server to accept new connections aggressively. This

is why aggressive accept policies (like Accept-Inf) are able to significantly reduce their

select overhead. Table 4.8 presents statistics gathered from the µserver that quantify

how aggressively each policy accepts new connections. The column headings in this table

are identical to those in Table 4.2.

Nphases Cavg Total Accepts Accept Rate Throughput

Accept-Inf 32,249 70.43 2,271,144 18,462 15,918

Accept-10 212,087 9.53 2,021,944 16,436 13,845

Accept-1 1,398,961 0.99 1,398,152 11,365 9,442

Table 4.8: Accept-phase statistics for µserver @ 27,000 reqs/sec under the one-packet work-

load

The reader may notice that each policy has an accept rate that is higher than its

throughput. This means that the server accepts connections that it never completes. The

µserver’s statistics show that the µserver is unable to read any data from these connections.

This indicates that the connection has been closed by httperf because the connection timer

has expired. If the µserver is unable to read any data from a connection it simply closes

that connection. This accounts for the discrepancy between the rate at which connections

55

are accepted (the accept rate) and the rate at which they are completed (the throughput).

Table 4.8 shows that the Accept-1 policy performs an enormous number of accept-

phases, but accepts at most one connection in each phase. In contrast, the Accept-Inf policy

performs significantly fewer accept-phases, but averages more than 70 new connections in

each phase. The statistics in Table 4.8 show that this strategy is quite successful; it allows

the Accept-Inf policy to accept 62% more connections than the Accept-1 policy. As a result,

the server manages more concurrent connections during execution. This in turn allows the

server to submit larger fd sets to select. The end result is that the server obtains a large

number of events from each select call, which reduces the number of select calls that

need to be made. As a result the overhead of the select call is reduced, which allows the

server to spend more time servicing its open connections.

Table 4.9 shows the percentage of time the µserver spends doing key system calls. This

data was gathered by recompiling the µserver to include gprof profiling, and re-running

the experiment at 27,000 reqs/sec. The column headings in this table are identical to those

in Table 4.3.

Function % Time Accept-1 policy % Time Accept-Inf policy Difference

select 32.43 15.84 -16.59

accept 6.81 9.78 2.97

read 6.17 19.34 13.17

writev 0.02 0.04 0.02

close 7.36 16.14 8.78

setsockopt 2.11 2.98 0.87

Table 4.9: Percentage of time spent in various µserver functions under the one-packet

workload

The reader may notice that the sendfile and write system calls have been replaced

by the writev system call. This is because under the one-packet workload the overhead

of using setsockopt with TCP CORK and TCP UNCORK is not cost effective. We have

found that the µserver obtains better performance under the one-packet workload if it uses

writev to write both the HTTP header and the file data. We are aware that writev

does not provide zero-copy writes. However, for the small reply sizes required under the

56

one-packet workload the copying overhead is negligible. The data in Table 4.3 confirms

that writev consumes a very small amount of the servers’s execution time. Note that

setsockopt is still used to set the TCP NODELAY option on all newly accepted sockets.

This option disables Nagle’s algorithm for aggregating small packets.

The gprof data shows that the Accept-Inf policy allows the server to simultaneously

reduce the amount of time spent executing select calls, and increase the amount of time

spent accepting and processing connections. The server reduces its select overhead by

nearly 17%. These savings allow the server to spend more time executing accept (9.78%

versus 6.81%), read (19.34% versus 13.17%), and close (16.14% versus 7.36%) system

calls. The server also increases the amount of time spend doing writev calls, although

these account for a small portion of execution time (because of the single-packet reply).

Overall, the changes in where the server spends its time translate into a healthy increase

in measured throughput.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-Inf
Accept-10
Accept-1

Figure 4.16: Response times for µserver under the one-packet workload

We now study the impact of the accept policy on server latency. Figure 4.16 shows the

response times for each accept policy under the one packet workload. Interestingly, the

57

Accept-10 policy simultaneously provides higher peak throughput and lower latency than

the Accept-Inf policy. This is ideal since there is no tradeoff between peak throughput

and latency for the Accept-10 policy. The graph also shows that the Accept-Inf policy has

the highest latency of the three policies. However, all three policies enjoy relatively low

latencies, and the small increase in latency under the Accept-Inf policy is a reasonable price

to pay for the improvement in throughput under overload. We now turn our attention to

the performance of TUX under the one-packet workload.

4.2.2 TUX Performance

Figure 4.17 graphs TUX’s reply rate against the target request rate. Recall that the

Accept-Inf strategy corresponds to the original TUX accept strategy. In this case the

improved Accept-1 strategy results in a peak reply rate of 25,001 replies/sec compared

with the original, whose peak is at 20,457 replies/sec. This is an improvement of 22%.

Additionally there is an improvement of 39% at 25,000 reqs/sec.

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-Inf
Accept-50

Accept-1

Figure 4.17: TUX throughput under the one-packet workload

58

As with the SPECweb99-like workload, limiting the number of consecutive accepts

increases TUX’s accept rate. This can be seen by examining the accept statistics presented

in Table 4.10. The column headings in this table are identical to those in Table 4.2. These

statistics show that (on average) the Accept-1 policy accepts fewer connections in each

accept phase, but performs many more accept phases. On balance, this leads to a higher

net accept rate. In fact, the Accept-1 policy accepts connections 25% faster than the

Accept-Inf policy at a request rate of 23,000 reqs/sec. Further evidence of the higher

accept rate is provided by the queue drop rates in Figure 4.18. This graph shows that

the Accept-1 strategy delays the onset of queue drops, especially when compared to the

Accept-Inf policy. It also maintains the lowest queue drop levels of all three policies,

especially from 20,000 reqs/sec to 27,000 reqs/sec.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-Inf
Accept-50

Accept-1

Figure 4.18: TUX queue drops under the one-packet workload

The Accept-1 policy improves more than just throughput. Figure 4.19 shows that

Accept-1 policy also provides lower response times than its less aggressive counterparts.

The difference is most pronounced from 20,000 reqs/sec to 27,000 reqs/sec. This range is

also where the greatest gains in throughput are realized. The double-benefit provided by

59

Nphases Cavg Total Accepts Accept Rate Reply Rate

Accept-Inf 237,551 9.54 2,266,760 18,430 18,470

Accept-1 2,759,968 0.99 2,759,968 22,980 22,997

Table 4.10: Accept-phase statistics for TUX @ 23,000 reqs/sec under the one-packet work-

load

the Accept-1 policy is quite different from the µserver case, in which there was a tradeoff

between increased throughput and reduced latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-Inf
Accept-50
Accept-1

Figure 4.19: Response times for TUX under the one-packet workload

The reduction in TUX’s latency arises because the Accept-1 policy accepts connections

in small batches (short accept phases), and processes them quickly (short work phases).

As a result, connections receive service quickly, without accruing large amounts of wait

time. In contrast, the µserver under the Accept-Inf policy accepts connections in large

batches (long accept phases), and processes them in large batches (long work phases).

This strategy allows the server to efficiently amortize its select overhead. However, the

connections that are processed later in each work phase accrue long wait times, which leads

60

to higher average response times.

Although we have realized significant gains over TUX’s default performance, we believe

further improvements are possible. However, our simple method of controlling how TUX

accepts new connections does not allow us to accept less than one connection in each accept

phase. Ultimately, we believe that the best way to control the accept strategy used in TUX,

and to control the scheduling of work in general, is to track the number of entries contained

in the accept queue and the number of entries in work pending queue. This information

can be used to make a more informed decision regarding whether to enter an accept-phase

or a work-phase. We also believe that limits should be placed on the amount of time spent

in each phase, possibly by limiting the number of consecutive events that are processed

from each queue. We believe that this approach might be used to further increase the rate

at which the server accepts new connections. The difficulty lies in ensuring that the server

strikes a balance between accepting new connections and processing existing connections.

4.2.3 Knot Performance

Knot benefits from the tuning of its accept policy under the one-packet workload. Figure

4.20 shows an interesting spectrum of accept policies. We observe that the Accept-50

strategy noticeably improves throughput when compared with the original accept strategy.

Firstly, peak throughput increases by 17% from 12,000 to 14,000 replies/sec. Secondly,

throughput increases by 32% at 14,000 reqs/sec, and by 24% at 30,000 reqs/sec.

Interestingly, increasing the accept-limit too much (for example to 100) can result in

poor performance. In comparing the Accept-100 strategy with the Accept-1 strategy (the

default), we observe that the former obtains a slightly higher peak. However, with the

Accept-100 policy throughput degrades sharply once the saturation point is exceeded.

Figure 4.21 shows how the queue drop rates are impacted by the changes in the accept

strategy. Here we see that the Accept-100 version is able to tolerate slightly higher loads

than the original before suffering from significant queue drops. The Accept-50 version is

slightly better, and in both cases peak throughput improves. At request rates of 15,000 and

higher the Accept-50 and Accept-100 strategies do a slightly better job of preventing queue

drops than the server using an accept-limit of 1. Interestingly, queue drop rates for the

accept-limit 50 and 100 options are quite comparable over this range,yet, there is a large

61

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.20: Knot throughput under the one-packet workload

difference in performance. The statistics printed by the Knot server show that at 15,000

requests/sec the Accept-50 policy operates with approximately 25,000 active connections,

while the Accept-100 policy is operating with between 44,000 to 48,000 active connections.

Unfortunately, our efforts to understand how Knot’s behaviour changes as the number of

active connections grows were not successful. However, these experiments highlight that a

balanced accept policy provides the best performance.

Figure 4.22 shows how each accept policy affects the response times seen by the client.

This graph shows that the throughput gains of the Accept-50 policy are accompanined by

a sizeable increase in response times. For request rates of 17,000 reqs/sec (and above),

the Accept-50 policy increases response times by a factor of more than three over the

default Accept-1 policy. By 30,000 reqs/sec, this difference has grown to a factor of four.

The Accept-100 policy provides even poorer response times, but without any gains in

throughput. The Accept-1 policy offers the lowest latencies, although its throughput is

significantly lower than that of the Accept-50 policy. The Accept-50 policy improves

throughput over the Accept-1 policy, but at the expense of request latency. The Accept-100

62

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.21: Knot queue drops under the one-packet workload

policy is inferior as it offers neither low latency nor high throughput.

4.3 Summary

This chapter has examined the impact of accept strategies on server throughput and

latency. We have demonstrated that accept strategies can significantly improve peak

throughput as well as throughput under overload. In particular, we have realized im-

proved performance for the µserver and TUX under the SPECweb99-like workload, and for

all three servers under the one-packet workload. Our experiments have also demonstrated

that accept strategies influence throughput to a greater degree under the one-packet work-

load (as opposed to the SPECweb99-like workload). This arises because the one-packet

workload uses each connection for a single short transfer, while the SPECweb99-like work-

load averages more than seven transfers per connection.

For the µserver, improvements in throughput were realized at the expense of a small

increase in server latency. However, for TUX, improvements in throughput were accompa-

63

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

Accept-100
Accept-50

Accept-1

Figure 4.22: Response times for Knot under the one-packet workload

nied by a decrease in server latency. This is an especially pleasing result. Improving the

performance of Knot under the SPECweb99-like workload proved to be difficult. Despite

significant efforts, we failed to understand Knot’s behaviour under this workload. However,

we were able to improve Knot’s performance under the one-packet workload. The increases

in throughput were accompanied by increases in server latency.

The next chapter presents a direct comparison of the µserver and TUX under both

workloads. We analyze the performance of each server using detailed queue drop counts.

We also demonstrate that the user-mode µserver can rival the performance of the kernel-

mode TUX server, especially under the SPECweb99-like workload. This result defies con-

ventional wisdom, and differs significantly from the results of an earlier comparison of

user-mode and kernel-mode servers.

64

Chapter 5

Comparing the µserver and TUX

Previous work by Joubert et al. [15] compared the performance of modern user-mode

and kernel-mode web servers on Linux and Windows 2000. Their investigation focused

on how data movement, event notification, and communication code path affected the

performance of both user-mode and kernel-mode servers. They measured the performance

of several user-mode and kernel-mode servers using the SPECweb96 [34] and Webstone

[20] benchmarks.

They concluded that kernel-mode servers greatly outperformed even highly-optimized

user-mode servers on their static, in-memory workloads. This chapter presents our own

comparison of user-mode and kernel-mode servers. User-mode servers are represented by

the event-driven µserver while kernel-mode servers are represented by TUX. Like Joubert

et al., we subject the servers to static, in-memory workload. Our workload is based on the

static portion of the SPECweb99 benchmark, and is slightly different from the SPECweb96

workload used by Joubert et al. For example, both workloads are based on four classes

of files with nine files in each class. File sizes within each class are identical. However,

the SPECweb99-like workload uses a Zipf distribution to decide file access patterns, while

SPECweb96 uses a Poisson distribution to determine file access patterns. In addition,

SPECweb96 uses only HTTP 1.0 requests while our SPECweb99-like workload uses HTTP

1.1 requests. These differences are not significant enough to prevent a direct comparison

of data gathered from each workload. This chapter presents such a comparison, and our

findings are remarkably different.

65

Figures 5.1 and 5.2 compare the performance of the TUX server with the performance of

the µserver on the SPECweb99 and one-packet workloads, respectively. These graphs show

that the original version of TUX (TUX Accept-Inf) outperforms a poorly tuned version of

the user-mode µserver (µserver Accept-1) by as much as 28% under the SPECweb99-like

workload, and 84% under the one-packet workload (both at 30,000 requests/sec).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.1: µserver versus TUX throughput under the SPECweb-like workload

However, the µserver’s performance deficit can be ameliorated by adjusting its accept

policy. In fact, the more aggressive Accept-Inf policy allows the µserver to actually out-

perform an unmodified TUX under the SPECweb99-like workload. Under the one-packet

workload, the µserver’s throughput under the Accept-Inf policy is reasonably close to

TUX’s throughput under the (default) Accept-Inf policy. Of course, our work has shown

that a well chosen accept policy can also improve TUX’s performance. Figures 5.1 and

5.2 show that adopting the Accept-1 policy for TUX allows it to regain its performance

advantage over the µserver. However, the performance difference is not as large as was

reported by Joubert et al. In fact, when both servers use a superior accept policy, the

µserver’s throughput under the SPECweb99-like workload is always within 10% of TUX’s

66

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000 30000

R
ep

lie
s/

s

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.2: µserver versus TUX throughput under the one-packet workload

throughput. These results are very promising because they indicate that a well-tuned

user-mode server can closely approach the performance of kernel-mode servers. In addi-

tion, the performance of the two servers (with tuned accept policies) tends to converge as

load increases. We now analyze detailed queue drop statistics that were collected during

our experiments. This analysis will help the reader to understand how each accept policy

affects server behaviour and performance.

5.1 Understanding Queue Drops

Figures 5.1 and 5.2 contrast a superior accept policy with an inferior one for each server.

The performance differences observed in those figures can be partly explained by examining

the queue drop data for each policy. We start by examining Figure 5.3 which compares

the queue drop rates for the µserver and TUX under the SPECweb99-like workload.

This graph shows that queue drop rates are quite comparable for both servers under

this workloads. In fact, the data is tightly clustered at all request rates. However the

67

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.3: Queue drop rates for µserver and TUX under the SPECweb99-like workload

graph does show that accept policy does affect queue drop behaviour. In particular, the

graph shows that the Accept-Inf policy lowers the µserver’s queue drop rate relative to the

Accept-1 policy. For TUX, it is the Accept-1 policy that provides lower queue drop rates.

However, in both cases the more aggressive accept policy successfully lowers the queue drop

rates experienced by the server. Figure 5.4 shows that this qualitative pattern also holds for

the one-packet workload, however the differences between the policies are much more pro-

nounced. In fact, there is a stronger correlation between lower queue drop rates and higher

throughput under the one-packet workload than under the SPECweb99-like workload. This

arises because the one-packet workload sends only one HTTP request per connection, and

generates a much higher demand for new connections than the SPECweb99-like workload.

The data in Figure 5.4 is not tightly clustered, and there are significant differences be-

tween the servers and between the accept policy for each server. As a result, the remainder

of this analysis will focus on the queue drop data obtained from the one-packet workload.

In the next section, we explain the conditions that cause a packet to be dropped, and use

these conditions to introduce a simple taxonomy for queue drops.

68

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5000 10000 15000 20000 25000 30000

Q
D

ro
ps

/s

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.4: Queue drop rates for µserver and TUX under the one-packet workload

5.1.1 Categorizing Queue Drops

Under Linux (kernel version 2.4.20-8) a client’s connection request may be denied by the

server for a variety reasons. The main reasons are listed in Chapter 2. However, the

overwhelming majority of packet drops fall into one of the following categories:

• SynQFull : The SYN queue is full when the SYN packet arrives.

• AcceptQFull : The accept queue is full when the SYN packet arrives.

• DropRequest : The SYN queue is 3/4 full when the SYN packet arrives.

• ListenOverflow : The accept queue is full when the SYN-ACK packet arrives.

SynQFull drops only occur if TCP SYNCOOKIES are enabled. Otherwise, SYNs are

dropped when the SYN queue is 3/4 full (DropRequests). In our experimental environment,

TCP SYNCOOKIES is not enabled. In order to provide a more complete view of how

queue drops impact performance, we added several counters to the Linux kernel’s TCP

69

stack. These counters allow us to count the number of packets that are dropped for each of

the reasons outlined above. For example, we count the number of packets that are dropped

because the Accept queue is full when the SYN packet arrives. Like most kernel counters,

our counters are zeroed when the machine first boots, and they accumulate until the next

reboot. For easy collection, the counters are integrated with the Linux /proc filesystem

(at /proc/net/snmp). As a result, the counter values can be collected with the well-known

netstat utility.

These counters allow us to categorize queue drops into one of the four categories outlined

above. The queue drop data reported in this section was obtained by re-running certain

experiments under our modified kernel. The throughputs obtained under the modified

kernel are comparable to those obtained under the standard kernel, which indicates that

our kernel modifications do not impact performance in a significant way. Tables 5.1 and

5.2 show detailed queue drop counts for TUX and the µserver when subjected to the one

packet workload and a request rate of 27,000 requests per second. At this request rate,

both the µserver and TUX are saturated under the one-packet workload.

AcceptQFull DropRequest ListenOverflow Total

Accept-Inf 2,015,457 681,558 356,740 3,053,755

Accept-1 1,207,341 2,872,130 549,146 4,628,617

Table 5.1: Breakdown of µserver Queue Drops @ 27,000 reqs/sec under the one-packet

workload

AcceptQFull DropRequest ListenOverflow Total

Accept-Inf 1,867,979 524,095 412,237 2,804,311

Accept-1 144,472 704,737 519,474 1,368,683

Table 5.2: Breakdown of TUX Queue Drops @ 27,000 reqs/sec under the one-packet work-

load

Table 5.1 shows results for the µserver. It shows that the Accept-Inf policy reduces

DropRequests by more than a factor of four. This is especially significant since DropRe-

quests are the largest contributor to total queue drops under the Accept-1 policy. Overall,

70

the Accept-Inf policy lowers the total number of queue drops by 34% over the Accept-1

policy. This reduction in wasted work translates directly into a measurable performance

gain. The decrease in the number of dropped SYN packets demonstrates that the Accept-

Inf policy successfully reduces the length of the SYN backlog. However, this reduction is

partially offset by a higher AcceptQFull count. This can be attributed to the bursty nature

of the Accept-Inf policy.

By totally draining the accept queue, the Accept-Inf policy produces large accept-

phases where several hundred connections may be accepted consecutively. These long

accept phases are eventually followed by long work-phases which are needed to process

the new connections. For example, at 27,000 requests/sec the average work-phase under

the Accept-Inf policy processes 192.8 connections. In comparison, the average work-phase

under the Accept-1 policy processes just 3.6 connections. During these long work-phases,

no new connections are accepted and both the SYN queue and the accept queue accumulate

entries. However, it is the much shorter accept queue (128 entries versus 1,024 for the SYN

queue) that fills first, leading to higher AcceptQFull counts. As noted previously, we did

not increase the size of the accept queue because of the large number of installations that

currently restrict the size of this queue to a maximum of 128. We plan to examine the

relationship between the size of the SYN queue and the accept queue in future work.

The relatively short work-phases of the Accept-1 policy also means that the server

does relatively little work per select call. As a result, the server must make many more

select calls to process the same number of connections. Statistics obtained from the

µserver indicate that the Accept-1 policy makes 11,071 select calls per second, compared

to only 251 calls per second for the Accept-Inf policy (both at 27,000 reqs/sec). Clearly, the

Accept-1 policy provides a poor amortization of select overhead, which hurts performance.

In the TUX case, Table 5.2 reveals that the Accept-1 policy reduces TUX’s queue drops

by a dramatic 51%. This decrease is mainly due to an order of magnitude reduction in

AcceptQFull drops. Clearly, this more aggressive accept strategy is successful in keeping

the accept queue relatively empty under the offered load of 27,000 requests/second. As

might be expected, performance is quite good. In contrast, the µserver using the Accept-1

policy is relatively slow at removing entries from the SYN queue and the accept queue, and

offers quite poor performance at the same request rate. In particular, the µserver suffers

71

a high number of DropRequests, indicating that the SYN queue is not being adequately

drained.

Figure 5.5 summarizes the breakdown of queue drops for request rates of 24,000 reqs/sec,

27,000 reqs/sec and 30,000 reqs/sec. Each bar in the chart shows the breakdown of the

total number of queue drops into the three relevant categories.

0

1

2

3

4

5

6

TUX-Inf

TUX-1

userver-Inf

userver-1

TUX-Inf

TUX-1

userver-Inf

userver-1

TUX-Inf

TUX-1

userver-Inf

userver-1

ListenOverFlow
DropRequest
AcceptQFull

24,000 27,000 30,000

(millions)

\

Q
d
r
o
p
s

Figure 5.5: Breakdown of queue drops for TUX and the µserver under one packet workload

for selected request rates

The chart shows that the qualitative pattern observed at 27,000 reqs/sec also holds

at other request rates. An aggressive accept policy is able to improve performance by

reducing the overall number of queue drops. For the µserver the reduction is primarily due

to a marked reduction in the number of DropRequests. This indicates that the Accept-Inf

policy is effective in keeping the SYN queue less than 3/4 full. Note that the decrease

in DropRequests is partially offset by an increase in AcceptQFull drops. For TUX, the

reduction is primarily due to a decrease in the number of AcceptQFull drops, while other

72

categories of queue drop remain largely the same. Clearly, the Accept-1 policy does a

better job of keeping the accept queue from overflowing than the Accept-Inf policy

Previous research has investigated techniques for reducing the overheads associated with

queue drops. The Lazy Receiver Processing (LRP) architecture [10] provides an improved

packet processing model that incorporates early packet demultiplexing, discarding of excess

packets, and a lazy processing model. LRP has been shown to provide stable overload

behaviour, and increased throughput under heavy loads. Other work by Voigt et al. [39],

[38] has investigated kernel-based admission control mechanisms for protecting servers

from overload. Their primary mechanism, called TCP SYN policing, limits the acceptance

of new TCP SYN packets based on connection attributes. Their chief goal is to limit

the amount of new work accepted by the server so as to give priority service to existing

connections. TCP SYN policing drops SYNs at an early stage, before a socket has been

created for the new connection. In fact, TCP SYN policing could provide an efficient,

effective way of controlling a server’s accept rate by governing the rate at which new SYNs

are admitted to the SYN queue. We believe the aforementioned techniques can complement

a well-chosen accept strategy. When used together, they should provide higher throughputs

and more stable overload behaviour.

5.2 Comparing Response Times

Figures 5.6 and 5.7 compare the response times of the µserver and TUX under the SPECweb99-

like and one-packet workloads respectively.

Figure 5.6 shows that under the SPECweb99-like workload both servers provide very

low response times at loads below 14,000 reqs/sec. At loads above 16,000 reqs/sec, it

is the µserver under the Accept-1 policy that provides the lowest response times. How-

ever, we have seen that this policy provides poor throughput. The Accept-Inf policy

improves throughput significantly, at the expense of an increase in average response times.

With TUX, the Accept-1 policy is the clear winner as it provides higher throughput and

marginally lower response times. Interestingly, TUX exhibits little variation in response

time under these two accept policies. The µserver is slightly more sensitive to changes in

accept policy. At 30,000 reqs/sec, average response times range from 3.1 seconds (µserver

73

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.6: Response times for µserver and TUX under the SPECweb99-like workload

Accept-1 policy) to 4.6 seconds (µserver Accept-Inf policy). However, both servers provide

reasonable response times considering the workload and the environment.

Figure 5.7 compares the response times of both servers under the one-packet workload.

This graph presents a few interesting features that were not present in Figure 5.6. Perhaps

most interesting is the fact that TUX under the Accept-1 policy is able to maintain very

low response times at loads up to 25,000 reqs/sec. In comparison, the µserver under either

policy and TUX under the Accept-Inf policy experience sharp spikes in response times at

loads approaching 21,000 reqs/sec.

As was the case with the SPECweb99-like workload, the Accept-1 policy provides better

response times for the µserver, albeit at the expense of sharply degraded throughput. It

is interesting that TUX and the µserver post similar response times under the Accept-Inf

policy. Perhaps most important is the fact that both servers provide average response

times that are less than 650 milliseconds. Additionally, the response time curves for three

of the four policies appear to be converging, and are almost identical by 30,000 reqs/sec.

74

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000 25000 30000

R
es

po
ns

e
T

im
e

(m
se

c)

Target Requests/s

userver Accept-Inf
userver Accept-1
TUX Accept-Inf

TUX Accept-1

Figure 5.7: Response times for µserver and TUX under the one-packet workload

5.3 Differences in Workloads and Environment

Our comparison of user-mode and kernel-mode servers produces considerably different

results than the recent work by Joubert et al.. Their research concludes that kernel-mode

servers perform two to three times faster than their user-mode counterparts when serving

in-memory workloads. Their experiments on Linux demonstrate that TUX (running on a

2.4.0 kernel) achieved 90% higher performance than the fastest user-mode server (Zeus)

measured on Linux. While there are undeniable benefits to the kernel-mode architecture

(integration with the TCP/IP stack, zero copy network I/O, zero copy disk reads, and

eliminating kernel crossings), our comparison of the user-mode µserver with TUX produces

considerably different findings. Like Joubert et al., we evaluate the web servers using static,

in-memory workloads.

Some of the gains in user-mode performance are due to the zero-copy sendfile imple-

mentation that is now available on Linux. In separate work we are attempting to quantify

the improvements due to zero-copy sendfile and the use of the Linux TCP cork and un-

75

cork mechanisms. There are also differences in workloads. Specifically, Joubert et al. used

an HTTP 1.0 based SPECweb96 workload, while we use an HTTP 1.1 based SPECweb99

workload. Lastly, we note the use of different operating system versions, a different per-

formance metric, different hardware, and possibly different server configurations. In spite

of these differences, our work demonstrates that a well chosen accept strategy can greatly

improve the performance of the user-mode µserver. Such gains allow the µserver to closely

rival the performance of a kernel-mode server under representative workloads.

76

Chapter 6

Conclusions and Future Work

This thesis examines the impact of connection-accepting strategies on web server perfor-

mance. We devise and study a simple method for altering the accept strategy of three

architecturally different servers: the user-mode, single process, event-driven µserver, the

user-mode, multi-threaded, Knot server, and the kernel-mode TUX server. In particular,

we modify each of these servers to include an accept-limit that places a strict upper bound

on the number of consecutive connections that can be accepted during an accept phase.

We use this accept-limit to explore a variety of different accept-strategies for each server.

Our experimental evaluation of different accept strategies exposes these servers to two

representative workloads. The SPECweb99-like workload features multiple requests per

connection and relatively large transfer sizes. The one-packet workload features small

transfer sizes, short-lived connections, and stresses the server’s ability to accept new con-

nections. Both workloads involve high connection-rates and genuine overload conditions.

We find that the manner in which each server accepts new connections can significantly

affect its peak throughput and overload performance. Our experiments demonstrate that

an accept policy that balances the aggressive accepting of new connections with the pro-

cessing of existing connections can yield noticeable improvements when compared with the

base approach used in each server. Under two different workloads, we are able to improve

throughput by as much as 10% – 39% for TUX, 0% – 32% for Knot, and 39% – 71% for the

µserver. In addition, we demonstrate that a server’s accept policy can affect the server’s

latency. As a result, we point out that researchers in the field of server performance must

77

be aware of the importance of different accept strategies when comparing different types

of servers.

Lastly, we present a direct comparison of the user-mode µserver and the kernel-mode

TUX server. We show that the gap between user-mode and kernel-mode architectures may

not be as large as previously reported. In particular, we find that the throughput of the

user-mode µserver rivals that of TUX under the SPECweb99-like workload.

The results presented in this thesis have shown that a server’s choice of accept policy

can significantly affect its performance. For example, the Accept-Inf policy improved the

µserver’s throughput under both of our workloads. In contrast, the Accept-1 policy im-

proved TUX’s throughput, while the Accept-50 policy improved Knot’s throughput under

the one-packet workload. It quickly becomes clear that there is no one policy that will

work well for all servers under all workloads. As a result, a server must be able to choose

the accept policy that best suits its architecture and workload conditions.

A good accept policy will allow the server to minimize the amount of wasted work that

it performs. For example, an accept policy performs useless work if it accepts connections

that cannot be completed before they time out. Ideally, the accept policy will admit

connections at a rate that allows the server maximize its throughput without performing

any useless work.

If the server is saturated, then the accept policy should admit connections at the same

rate that the server is completing them. This would allow the server to maintain a roughly

constant number of open connections. If the accept policy admits new connections faster

than they are being completed, then the number of open connections will grow over time.

In this situation, the server will be performing unnecessary work as it admits connections

that cannot be completed before they time out.

However, if the server accepts new connections slower than they are being completed,

the number of open connections will decrease over time. As a result, the server might

not complete enough useful work. Alternatively, if the server accepts new connections too

slowly, the number of concurrent connections in the server will remain quite small. This

was the case with the µserver under the Accept-1 policy. This policy caused the µserver to

incur high amounts of select overhead. Interestingly, if select (or the get-events phase)

had low overhead, the Accept-1 policy might be best for the µserver. There would be no

78

need to amortize the overhead of select, and the µserver could admit new connections

only when there was no useful work to be done. In fact, the µserver would behave quite

similarly to TUX. Unfortunately, select overhead cannot be ignored, and the Accept-1

policy provides relatively poor throughput.

The Accept-Inf policy allowed the µserver to amortize the overhead of select by main-

taining a large number of open connections. However, this policy does not place an explicit

limit on the number of connections that will be accepted in each accept-phase. In our ex-

periments, this was not a problem, because the server operating system used the default

sizes for the SYN queue and the accept queue (1024 and 128 respectively).

However, it is conceivable that the Accept-Inf policy could allow a server to spend a

disproportionate amount of time accepting new connections. Such a situation might arise

under extreme overload if the operating system provided sufficiently large queues for the

buffering of new connection requests.

Under these circumstances, the server may be unable to drain the accept queue be-

cause new connections are added as quickly as they are removed. Under these conditions

an accept-phase would not terminate unless another system limit is encountered. Another

possibility under these conditions is that the Accept-Inf policy would accept new connec-

tions much faster than they are being completed. The policy could cause the server to

spend too much time accepting, and too little time completing useful work.

The shortcomings of the Accept-1 policy (for user-mode servers) and the Accept-Inf

policy suggest that a dynamic policy for determining the accept rate might be best. A

simple example would be an accept policy that accepted new connections aggressively

when the server is not saturated. After saturation, the policy would accept as many

connections as were closed in the previous work phase. This strategy would allow the

server to maintain enough open connections to maximize its throughput, while minimizing

the amount of wasted work performed.

In the future, we plan to investigate such dynamic strategies in the context of the

µserver. The results presented in this thesis show that the µserver offers high performance

(comparable to TUX) from a user-mode server that does not require integration with the

operating system. We expect that a dynamic accept strategy would amortize the overhead

of select while eliminating any wasted work due to overly aggressive accepting.

79

We also hope to examine techniques for making more informed decisions about how to

schedule the work that a server performs. We believe that by making more information

available to the server we can implement both better and dynamic policies for deciding

whether the server should enter a phase of accepting new connections (the accept-phase) or

working on existing connections (the work-phase). For example, a simple modification to

an existing event notification mechanism (e.g., select) would allow the server to determine

how many connections are readable, writable, and pending (waiting to be accepted). Such

information could be inexpensively obtained, and might assist the server in choosing its

next course of action. The server might improve its performance by intelligently scheduling

its workload. In addition, this information might allow the server to react dynamically to

changing workload conditions.

Lastly, we plan to investigate a wider range of workloads, including large file sets that do

not fit in the server’s cache and workloads that involve dynamic computation. We expect

that these workloads will present new challenges, and new opportunities for exploring the

impact of accept strategies on server performance.

80

Bibliography

[1] G. Banga, P. Druschel, and J.C. Mogul. Resource containers: A new facility for

resource management in server systems. In Operating Systems Design and Implemen-

tation, pages 45–58, 1999.

[2] G. Banga and J.C. Mogul. Scalable kernel performance for Internet servers under

realistic loads. In Proceedings of the 1998 USENIX Annual Technical Conference,

New Orleans, LA, 1998.

[3] G. Banga, J.C. Mogul, and P. Druschel. A scalable and explicit event delivery mech-

anism for UNIX. In Proceedings of the 1999 USENIX Annual Technical Conference,

Monterey, CA, June 1999.

[4] Gaurav Banga and Peter Druschel. Measuring the capacity of a web server. In Pro-

ceedings of the USENIX Symposium on Internet Technologies and Systems (USITS),

Monterey CA, December 1997.

[5] T. Brecht and M. Ostrowski. Exploring the performance of select-based Internet

servers. Technical Report HPL-2001-314, HP Labs, November 2001.

[6] A. Chandra and D. Mosberger. Scalability of Linux event-dispatch mechanisms. In

Proceedings of the 2001 USENIX Annual Technical Conference, Boston, 2001.

[7] Computer Science and Telecommunications Board. The Internet Under Crisis Con-

ditions: Learning from September 11. The National Academies Press, 2003.

[8] Standard Performance Evaluation Corporation. SPECweb99 frequently asked ques-

tions, 2000. Avaliable at http://specbench.org/web99/docs/faq.html.

81

[9] Frank Dabek, Nickolai Zeldovich, M. Frans Kaashoek, David Mazires, and Robert

Morris. Event-driven programming for robust software. In Proceedings of the 10th

ACM SIGOPS European Workshop, pages 186–189, September 2002.

[10] Peter Druschel and Gaurav Banga. Lazy receiver processing (LRP): A network subsys-

tem architecture for server systems. In Proceedings of the 2nd Symposium on Operating

Systems Design and Implementation, Seattle, Washington, October 1996.

[11] Louay Gammo, Tim Brecht, Amol Shukla, and David Pariag. Comparing and evaluat-

ing epoll, select, and poll event mechanisms. In 6th Annual Ottawa Linux Symposium,

Ottawa, Canada, July 2004.

[12] HP Labs. The µserver home page, 2004. Available at http://hpl.hp.com/research/-

linux/userver.

[13] J. Hu, I. Pyarali, and D. Schmidt. Measuring the impact of event dispatching and con-

currency models on web server performance over high-speed networks. In Proceedings

of the 2nd Global Internet Conference. IEEE, November 1997.

[14] Hani Jamjoom and Kang G. Shin. Persistent dropping: An efficient control of traffic

aggregates. In Proceedings of ACM SIGCOMM 2003, Karlsruhe, Germany, August

2003.

[15] Philippe Joubert, Robert King, Richard Neves, Mark Russinovich, and John Tracey.

High-performance memory-based web servers: Kernel and user-space performance. In

Proceedings of the USENIX 2001 Annual Technical Conference, pages 175–188, 2001.

[16] H.C. Lauer and R.M. Needham. On the duality of operating systems structures. In

Proceedings of the 2nd International Symposium on Operating Systems, IRIA, October

1978.

[17] Jonathon Lemon. Kqueue – a generic and scalable event notification facility. In

Proceedings of the USENIX Annual Technical Conference, FREENIX Track, 2001.

[18] C. Lever, M. Eriksen, and S. Molloy. An analysis of the TUX web server. Technical

report, University of Michigan, CITI Technical Report 00-8, Nov. 2000.

82

[19] Chuck Lever, Marius Eriksen, and Stephen Molloy. An analysis of the TUX web

server. Available at http://citeseer.ist.psu.edu/lever00analysis.html.

[20] Mindcraft Inc. Webstone - the benchmark for Web servers. http://-

www.mindcraft.com/webstone.

[21] D. Mosberger and T. Jin. httperf: A tool for measuring web server performance. In

The First Workshop on Internet Server Performance, pages 59—67, Madison, WI,

June 1998.

[22] Eric Nahum. Deconstructing SPECWeb99. In Proceedings of the 7th International

Workshop on web Content Caching and Distribution, August 2002.

[23] M. Ostrowski. A mechanism for scalable event notification and delivery in Linux.

Master’s thesis, Department of Computer Science, University of Waterloo, November

2000.

[24] J.K. Ousterhout. Why threads are a bad idea (for most purposes), January 1996.

Presentation given at the 1996 USENIX Annual Technical Conference.

[25] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable

web server. In Proceedings of the USENIX 1999 Annual Technical Conference, Mon-

terey, CA, June 1999.

[26] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. IO-Lite: a unified I/O buffering

and caching system. ACM Transactions on Computer Systems, 18(1):37–66, 2000.

[27] J. Poskanzer. thttpd. Available at http://www.acme.com/software/thttpd.

[28] N. Provos and C. Lever. Scalable network I/O in Linux. In Proceedings of the USENIX

Annual Technical Conference, FREENIX Track, June 2000.

[29] N. Provos, C. Lever, and S. Tweedie. Analyzing the overload behavior of a simple web

server. In Proceedings of the Fourth Annual Linux Showcase and Conference, October

2000.

83

[30] Red Hat, Inc. TUX 2.2 Reference Manual, 2002.

[31] Marcel-Catalin Rosu and Daniela Rosu. Kernel support for faster web proxies. In

Proceedings of the USENIX Annual Technical Conference, San Antonio, Texas, June

2003.

[32] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and

Henry M. Levy. An analysis of Internet content delivery systems. In Proceedings of the

5th Symposium on Operating Systems Design and Implementation (OSDI), Boston,

MA, December 2002.

[33] Amol Shukla, Lily Li, Anand Subramanian, Paul A.S. Ward, and Tim Brecht. Eval-

uating the performance of user-space and kernel-space web servers. In Proceedings of

the 14th Annual IBM Center for Advanced Studies Conference (CASCON), Toronto,

Canada, October 2004.

[34] Standard Performance Evaluation Corporation. SPECWeb96 Benchmark. http://-

www.specbench.org/osg/web96.

[35] Standard Performance Evaluation Corporation. SPECWeb99 Benchmark, 1999.

http://www.specbench.org/osg/web99.

[36] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison Wesley, 1994.

[37] Sun Microsystems. The /dev/poll interface. http://docs.sun.com/db/doc/816-0222/-

6m6nmlt1h?a=view.

[38] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Kernel mechanisms for service differ-

entiation in overloaded web servers. In Proceedings of the USENIX Annual Technical

Conference, Boston, June 2001.

[39] Thiemo Voigt and Per Gunningberg. Handling multiple bottlenecks in web servers

using adaptive inbound controls. In Proceedings of the International Workshop on

Protocols For High-Speed Networks, Berlin, Germany, April 2002.

84

[40] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a bad idea for high-

concurrency servers. In 9th Workshop on Hot Topics in Operating Systems (HotOS

IX), 2003.

[41] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.

Capriccio: Scalable threads for Internet services. In Proceedings of the 19th ACM

Symposium on Operating Systems Principles, 2003.

[42] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-conditioned,

scalable Internet services. In Proceedings of the Eighteenth Symposium on Operating

Systems Principles, Banff, Oct. 2001.

[43] Nickolai Zeldovich, Alexander Yip, Frank Dabek, Robert T. Morris, David Mazieres,

and Frans Kaashoek. Multiprocessor support for event-driven programs. In Proceed-

ings of the USENIX 2003 Annual Technical Conference, June 2003.

85

