
Time-lined TCP: a Transport Protocol for Delivery

of Streaming Media over the Internet

by

Biswaroop Mukherjee

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2000

c
�

Biswaroop Mukherjee 2000

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

2

The University of Waterloo requires the signatures of all persons using or photocopy-

ing this thesis. Please sign below, and give address and date.

3

Contents

1 Introduction 2

1.1 Problem Statement . 2

1.2 Motivation . 2

1.2.1 Streaming Media . 3

1.2.2 Data Transport . 4

1.3 Proposed Approach . 5

1.4 Contributions . 6

1.5 Outline . 7

2 Background and Related Work 9

2.1 Streaming Media . 10

2.2 Challenges in Creating a Streaming Media System 11

2.2.1 Continuous Media Data Encoding 12

2.2.2 Transport Protocol . 14

2.3 Congestion Control in the Internet . 15

4

2.3.1 TCP . 15

2.3.2 TCP-friendliness . 17

2.3.3 Congestion Control for Streaming Media 18

2.3.4 Spectrum of TCP-friendliness 25

3 Time-lined TCP 26

3.1 Design Principles . 27

3.1.1 Congestion Control . 27

3.1.2 Fairness . 28

3.1.3 Time-sensitive Data Delivery 28

3.2 Functioning of TLTCP . 29

3.2.1 The Sender . 30

3.2.2 Lifetime Timer . 31

3.2.3 The Receiver . 32

3.2.4 ACKs for Obsolete Data . 33

3.2.5 Handling Lost Packets . 35

3.3 Applications . 39

3.3.1 Streaming Media Using TLTCP 39

3.3.2 The TLTCP API . 43

4 Simulations 46

4.1 Time-lined Data Transfer . 47

5

4.2 TCP-friendliness . 50

4.2.1 The Metrics . 50

4.2.2 The Methodology . 52

4.2.3 Varying the Number of Flows 53

4.2.4 Varying the Maximum Window Size 56

4.2.5 Varying the Propagation Delay 60

4.2.6 Varying the Deadlines . 62

5 Conclusions and Future Work 65

5.1 Conclusions . 65

5.2 Future Work . 67

Bibliography 71

6

List of Tables

4.1 Default simulation parameters. 53

7

List of Figures

1.1 Time-lined data. 6

2.1 Example of a streaming media system. 10

3.1 The structure of a node in the linked list of data deadlines. 30

3.2 Pseudo code of the actions taken on the expiry of lifetime timer. 32

3.3 Example of a loss in obsolete data. 36

3.4 Example of a pseudo-retransmission. 37

3.5 Example of a TLTCP missing a packet loss in the obsolete data. 38

3.6 MPEG-1 frame dependencies. 41

3.7 The msg header structure at the sender and the receiver. 45

4.1 Topology used for simulations. 48

4.2 Data sending characteristics of TLTCP as compared to TCP operating

under the same network conditions. 49

4.3 Varying the number of competing flows. 54

4.4 Varying the maximum receiver window sizes. 57

8

4.5 Varying delay. 61

4.6 Varying data deadlines. 63

9

Abstract

This thesis introduces time-lined TCP (TLTCP). TLTCP is a protocol designed to

provide TCP-friendly delivery of time-sensitive data to applications that are loss-tolerant,

such as streaming media players.

Previous research into the unicast delivery of streaming media over the Internet pro-

poses using UDP and performs congestion control at the user level by regulating the

application’s sending rate [6] [26] [31] (attempting to mimic the behavior of TCP in or-

der to be TCP-friendly). TLTCP, on the other hand, is intended to be implemented at the

transport level and uses window based congestion control of TCP with modifications to

support time-lines. TLTCP sends data in a similar fashion to TCP until the deadline for

a piece of data has elapsed; at which point the now obsolete data is discarded in favor

of new data. As a result, TLTCP supports TCP-friendly delivery of streaming media by

retaining much of TCP’s congestion control functionality.

We use extensive simulations to examine the behavior of TLTCP and find that under a

wide range of network conditions TLTCP flows share bandwidth equally with competing

TCP flows and performs time-lined data delivery. Moreover, those scenarios under which

TLTCP appears to be unfriendly are those under which TCP flows competing only with

other TCP flows do not share bandwidth equitably.

We also describe an API for TLTCP that involves augmenting the recvmsg and

sendmsg socket calls. The API allows the sender to associate data with deadlines and

the receiver is not only handed the received data but also informed of the gaps in the data

sequence.

1

Chapter 1

Introduction

1.1 Problem Statement

The goal of this thesis is to create a transport protocol for time-sensitive data

streams that compete fairly with existing traffic in the Internet.

1.2 Motivation

The Internet has seen phenomenal growth since its creation. It is used for information,

entertainment, business transactions and as means of communication by a large popula-

tion of users. The World Wide Web (WWW) [3] in particular, has emerged as the single

largest application on the Internet [5]. Initially the WWW was based on text and pic-

tures but recently powerful desktop computers, better encoding technologies and faster

networks have resulted in the emergence of streaming media as an important component

of the WWW as well as the Internet.

2

CHAPTER 1. INTRODUCTION 3

1.2.1 Streaming Media

Streaming media is gaining popularity both in terms of the number of users as well

as the variety of applications. For instance, streaming media is being deployed on an

increasing number of web-pages for enhancing information presentation. Live streaming

media is being used for creating collaborative work environments and distance education.

Streaming media is also being used to provide audio and visual entertainment over the

Internet.

To highlight the increasing popularity of streaming media among the users of the

Internet we quote the statistics provided by the vendor of a popular suite of streaming

media applications, Real Networks [24]. According to the data released on December

7, 1999, there are approximately 500,000 web-pages, more than 1,750 radio stations and

100 TV stations that provide streaming media content over the Internet. In addition, there

are over 92 million unique users that play back this content over the Internet.

It is clear that streaming media has a growing user base and is being used for a

variety of purposes; from business presentations to entertainment. Streaming media is

a powerful technology and it is expected [12] that in the near future, new and more

demanding applications will emerge and usage will increase many-fold. Consequently,

we expect that in the future streaming media will become a vital part of the Internet.

Therefore, it is not surprising that streaming media systems have stimulated research

as well as commercial interest [24]. There are a number of challenging issues that must

be addressed in building such a system. One of the outstanding issues and the motivation

for our work is the problem of data transport.

CHAPTER 1. INTRODUCTION 4

1.2.2 Data Transport

A vital function of data transport protocols that operate over best-effort networks like

the Internet is congestion control. It is widely believed [4] [31] [10] that congestion

control mechanisms are critical to the stable functioning of the Internet. Presently the

vast majority (90-95%) of Internet traffic uses the TCP protocol [7] which incorporates

congestion control [16] [38]. However, due to the growing popularity of streaming media

applications and because TCP is not suitable for the delivery of time-sensitive data, a

growing number of applications are being implemented using UDP. For instance, the

popular streaming audio system (Real Audio) which is distributed by Real Networks

[24] uses UDP [21].

Since UDP does not implement any form of congestion control, protocols or appli-

cations that are implemented using UDP should detect and react to congestion in the

network. Ideally, they should do so in a fashion that ensures fairness when competing

with the existing TCP traffic in the Internet (i.e., they should be TCP-friendly). Otherwise

such applications may obtain larger portions of the available bandwidth than TCP-based

applications. Moreover, the wide-spread use of protocols that do not implement conges-

tion control or avoidance mechanisms could result in a congestive collapse of the Internet

[10] similar to the one that occurred in October, 1986 [16].

On one hand, most systems in the Internet do not provide mechanisms suitable for the

delivery of time-sensitive data that a streaming media application can use. On the other

hand, there is a valid concern that streaming media applications may perform improper

congestion control, if any, and compete unfairly with the existing traffic on the Internet.

The work described here is motivated by these concerns. From the perspective of the

application there is a need for a protocol that is designed for transporting data with dead-

lines over a network that provides no quality of service (QoS) guarantees. From the per-

CHAPTER 1. INTRODUCTION 5

spective of the network there is a need for a protocol that generates streams that compete

fairly with the existing traffic and performs congestion control using robust mechanisms.

To this end we have created a new protocol, called time-lined TCP (TLTCP) designed to

support the TCP-friendly delivery of time-sensitive data over the Internet.

1.3 Proposed Approach

We propose a new protocol, called Time-lined TCP (TLTCP), that is intended to be im-

plemented at the transport level and is based on TCP with modifications to support time-

lines.

Although using TCP will ensure that an application is TCP-friendly, it is unsuitable

for streaming media applications because it will potentially send obsolete data that would

no longer be useful to the receiving application. TLTCP on the other hand, operates

under the assumption that the application is loss-resilient and the data is time sensitive.

In accordance with the requirement of media applications TLTCP trades reliability in

favor of timely data delivery.

Conceptually the working of TLTCP may be described as follows (a detailed de-

scription can be found in Chapter 3). When using TLTCP, in addition to specifying the

memory location of the data and its size an application includes a deadline after which

the transport protocol should stop trying to send that data. TLTCP attempts to send the

data until the deadline has expired, at which point it is presumed that the data would be

obsolete by the time it would reach the receiver. Once a deadline has expired, TLTCP

abandons the obsolete data in favor of new data that is associated with later deadlines.

TLTCP uses most of the congestion control mechanisms of TCP with modifications to

support data with deadlines. Like TCP, data sends are regulated by a congestion window

and ACKs from the receiver. But unlike TCP, as time progresses obsolete data in the

CHAPTER 1. INTRODUCTION 6

window is replaced by current data. TLTCP also regulates its window size and reacts to

congestion using mechanisms that are similar to TCP. As a result, under most situations

a TLTCP sender sends data in a manner that is similar to a TCP sender.

Associating data with deadlines allows the transport protocol, TLTCP, to deliver time-

sensitive data for streaming media applications. Such applications are time-sensitive

because data that arrives after the deadline by which it was meant to be played is not

useful and will simply be ignored. Therefore, late data is no more useful than lost data.

Conceptually as time progresses, the playback application requires new data as the old

data becomes obsolete. In essence, what data is relevant depends upon the progression

of time.

Figure 1.1 shows an example of how one might associate deadlines with data in order

to create a time-line. Issues related to the implementation and interface are discussed in

more detail in Chapter 3 and Section 3.3 respectively.

struct deadlines {
void *data;
int length;
Deadline expires;

} time_line[SIZE];

Figure 1.1: Time-lined data.

1.4 Contributions

The contributions of the thesis are as follows:

� We have created a new transport protocol, called time-lined TCP (TLTCP), for

CHAPTER 1. INTRODUCTION 7

delivering time-sensitive data over the Internet. We have devised a way for TLTCP

to use the robust window-based congestion control of TCP without requiring that

the data be delivered reliably. As a result, TLTCP competes fairly with TCP flows

(and is TCP-friendly) over a wide range of network conditions. TLTCP associates

each section of data with a deadline and does not treat all data as a byte-stream.

We have created a novel time-lined data delivery mechanism in TLTCP that uses

these deadlines to keep track of the sections of data that are obsolete and ensures

that no obsolete data is sent.

� TLTCP provides an interface that is more suited to continuous media applications

than a simple end-to-end byte stream. We propose augmenting the present socket

API that allows a sending application to specify a deadline when handing a section

of data to TLTCP. The API also allows TLTCP to inform the receiving application

of the gaps in the data being delivered. Note that the proposed changes do not alter

but extend the semantics of the present socket API.

� We have performed extensive simulation experiments to evaluate TLTCP. The ex-

periments show that TLTCP indeed performs data delivery in a time-lined fash-

ion. Furthermore, using data from our simulations we have quantified the effect of

TLTCP flows on competing TCP flows. Our simulation results show that TLTCP

is indeed TCP-friendly over a wide range of network conditions. In addition, the

circumstances where TLTCP seems to be TCP-unfriendly are those under which

TCP is unable to share bandwidth equitably.

1.5 Outline

The remainder of this thesis is organized as follows.

CHAPTER 1. INTRODUCTION 8

In Chapter 2, we present an overview of the issues related to streaming media and

emphasize the problem of data transport. In this context we discuss TCP and its reli-

able data delivery mechanism as well as several schemes proposed in the literature for

performing streaming media data transport over the Internet. We further highlight the

drawbacks of these proposals and describe how we overcome them in TLTCP.

In Chapter 3 we first explain our design principles and then go on to describe the com-

ponents of TLTCP in detail. Moreover, we describe how TLTCP operates under different

scenarios using illustrative examples. Section 3.3 describes how our protocol would be

used in conjunction with streaming media applications and Section 3.3.2 describes the

proposed API.

We then use the ns-2 network simulator [42] to determine the extent to which TLTCP

is able to share bandwidth equally with competing TCP flows. The experiments con-

ducted and our results are described in Chapter 4. This is followed by conclusions and a

few directions for future work in Chapter 5.

Chapter 2

Background and Related Work

In this chapter, we provide the reader with a brief description of the background assumed

in the rest of the thesis and outline some previous work that is relevant to the problem ad-

dressed. We begin by outlining the functioning of a typical streaming media system and

the challenges involved in implementing one. We then discuss the aspect of a streaming

media system that is the subject of our research — transport of continuous media data

over Internet. We further elaborate on a crucial aspect of the streaming media transport

protocol, end-to-end congestion control, and how it may impact the competing traffic

on the Internet. We also describe the concept of TCP-friendliness [17] that attempts to

quantify this impact. Window based congestion control has been widely used in TCP

for reliable data delivery over the Internet. TLTCP adapts the window based congestion

control mechanism to deliver streaming media data by removing its reliability require-

ment. As part of the background, we outline the working of window-based congestion

control in a popular flavor of TCP, TCP-Reno. In Chapter 3 we describe the additional

mechanisms that TLTCP incorporates so that window-based congestion control can be

used for time-sensitive data transport. We finally describe other proposals for solving

9

CHAPTER 2. BACKGROUND AND RELATED WORK 10

the problem of congestion control in streaming media applications and highlight their

differences from our approach.

2.1 Streaming Media

Streaming media is the technology that allows a client to commence playback, as data

is being delivered to it, before all of the media content has been received. An example

architecture for creating, serving and presenting streaming media to the end user is shown

in Figure 2.1.

Internet

Live media

Media on demand

Streaming media server

Heterogenous streaming
media clients

Media data storageContent Creation

Media encoder

Figure 2.1: Example of a streaming media system.

Content from a microphone (audio samples) or a camera (video frames) [13] is en-

coded to create a digital representation [23] and since most streaming media systems are

bandwidth constrained [12] the encoder typically compresses the data before transmis-

sion. The media data upon creation, may be sent directly to the client across the network

for live playback (referred to as live streaming media [35]) or it may be stored in a media

server [13] and be served to the clients upon demand (referred to as streaming media on

CHAPTER 2. BACKGROUND AND RELATED WORK 11

demand). Data may be sent individually to all the clients (unicast), or it may be sent to

an address that represents a group of clients (multicast) [35]. Since multicast is still an

evolving technology in the Internet, we confine our work to the common case of unicast.

Upon receiving a request from a client, the server calculates a transmission schedule

[33]. The schedule determines which section of the data (encoded video frames or audio

samples) is to be sent at a given point in time, during playback. Note that this schedule

may be adapted, according to the changing network conditions, during the playback. In

order to deal with unexpected delays in the data delivery, the client buffers some data

before commencing playback [13]. The playback application periodically selects the

appropriate chunk of data (from the buffer), decodes it and presents the content to the

user. Further details of the functioning of the streaming media server and the playback

client are presented in Section 3.3. In the next section we outline some fundamental

issues that are involved in creating such a system.

2.2 Challenges in Creating a Streaming Media System

There are several challenges involved in creating streaming media systems. For instance,

a streaming media server needs to serve data at high rates. Specialized schemes for data

storage and retrieval are thus needed to support uninterrupted media playback over fast

networks. Several such disk storage schemes are described by Gemmell et al. [13]. The

need for augmenting an operating systems and its subsystems in order to support data and

computation intensive multimedia applications has been discussed by Steinmetz [37].

Operating systems for streaming media applications need process management functions

that deal with soft and hard real-time restrictions in addition to resource reservations and

guaranteed timing delays for memory access. An overview of these and other issues in-

volved in building a streaming media application can be found in an early paper by Furht

CHAPTER 2. BACKGROUND AND RELATED WORK 12

[12]. However, the major issues in creating a transport protocol like TLTCP is designing

suitable congestion control mechanisms and if possible exploit the error-resilience and

time-sensitive nature of the media data. We elaborate on these two aspects of a streaming

media system in the next section.

2.2.1 Continuous Media Data Encoding

Streaming media systems deal with audio and video data, which is often collectively

referred to in the literature as continuous media data. Continuous media is so named

because it is comprised of media sections that are useful to the user only when presented

continuously in time [13]. A set of continuously recorded video frames or audio sam-

ples may be considered as media sections (also referred to in the literature [13] as media

quanta). In order to be useful, each section needs to be presented to the user at a partic-

ular time relative to the start of the playback. We refer to such data as time-lined data

because the presentation of sections follows a continuous time-line. Our proposed trans-

port protocol is designed with this time-lined behavior of continuous media data in mind

and hence the name, Time-lined TCP (TLTCP).

Digitization and encoding of continuous media content is an important aspect of

streaming media. An encoding scheme should be designed to minimize the bandwidth

required while the required codecs should be computationally inexpensive. Several pop-

ular encoding schemes for audio and video have been standardized, e.g., MPEG 1, 2, 4

and 7 [32], Motion JPEG, H.261 [1] and Dolby AC-3. Moreover, in order to utilize the

present best-effort infrastructure of the Internet the encoded data should be error-resilient

so that media applications are able to cope with the delays and losses in transmission over

the Internet. Since the arrival times of various sections cannot be predicted with accu-

racy, it is important that playback continue (at a lower quality) even if some of the data

CHAPTER 2. BACKGROUND AND RELATED WORK 13

is lost or late. This property of continuous media data is referred to as error-resilience or

loss-tolerance.

For instance, an encoding technique designed for scalable transmission over the In-

ternet is layered encoding [20], where a media stream consists of a base layer and several

enhancement layers. To perform playback a client must receive at least the base layer

and to progressively improve the quality of the media presentation it may scale up the

number of enhancement layers it receives. The base-layer can be served uniformly to a

set of heterogeneous clients and depending upon the network bandwidth available to a

particular client or its decoding capability, it receives data from the enhancement layers

to enhance the quality of its presentation. Examples of layered encoding schemes for

audio and video are discussed by McCanne [20] and Turletti [41].

TLTCP exploits the property of error-resilience, since it does not guarantee reliable

data delivery. It also attempts to adhere to the time-lined nature of the continuous media

data by keeping track of and discarding obsolete data. All the encoding schemes de-

scribed above are error-resilient and time-lined and can therefore be used in conjunction

with TLTCP in a streaming media system. For instance consider an encoding scheme

like MPEG1 video that has frames with different degrees of importance. When handing

frames to the TLTCP sender for delivery, the frames are written in the order of priority

with appropriate deadlines according to the transmission schedule. TLTCP then starts

sending the most important frame for the earliest deadline and goes on to the less im-

portant frames, if the deadline has not expired. But if the deadline does expire before

it can send the less important frames, TLTCP discards them and starts sending the most

important frames associated with the earliest deadline that has not expired. In Section

3.3 we describe in detail how TLTCP delivers MPEG video and layered media data.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

2.2.2 Transport Protocol

The component of a streaming media system that this work investigates is the data trans-

port protocol. The problems that need to be addressed are as follows:

� The proposed protocol must be able to perform unreliable but timely delivery of

media data from the server to the playback client.

� The congestion control mechanisms for the proposed protocol must be robust over

a wide range of network conditions.

� The data flows should compete fairly with the existing traffic on the Internet.

The temporal characteristics of continuous media are such that in order to be useful

for playback at the client data delivery may be unreliable but must take into account

the time-lines specific to the application. This is the guiding principle for the time-lined

delivery mechanisms of TLTCP, which are described in Chapter 3. Another crucial aspect

of the data transport protocol is congestion control. In a network like the Internet, where

no traffic policing is done, improper congestion control mechanisms may endanger the

stability of the network itself [10] and in the worst case congestion collapse may occur.

Furthermore, the media traffic generated should compete fairly with the existing traffic

in the Internet. In a network like the Internet, where congestion control is performed

end-to-end, the way a stream competes with others is determined by its behavior under

congestion. The reason for this is as follows. All flows are expected to react to congestion

by appropriately reducing their data rates. If a flow competes unfairly it may not reduce

its data rate and as a result may obtain a greater share of the bottleneck bandwidth.

TLTCP’s congestion control mechanisms are robust and ensure that it competes fairly

with the existing traffic on the Internet.

CHAPTER 2. BACKGROUND AND RELATED WORK 15

In the next section we examine the issues related to data transport over the Internet in

greater detail. We begin by describing the congestion control principles of TCP and high-

light the merits that prompt us to base the congestion control mechanisms of TLTCP on

TCP. We then compare our approach with several other congestion control mechanisms

proposed in the literature for streaming media systems.

2.3 Congestion Control in the Internet

2.3.1 TCP

TCP is a protocol that guarantees reliable data delivery over the Internet. It is also the

most popular protocol used in the Internet today (90-95%)[5]. TCP was designed with

the best-effort service offered by the IP layer in mind and performs end-to-end congestion

control. In practice the congestion control mechanism of TCP has been widely used

over the Internet and is regarded as the single most important reason for the stability

of the Internet [4]. Our proposed protocol TLTCP, is based on TCP and uses the same

mechanisms to discover bandwidth, send data in the steady state and react to congestion

as TCP. As described by Jacobson et al. [16], not only does TCP use sound congestion

control mechanisms but it also achieves excellent throughput. Hence, it is expected that

TLTCP will also achieve good throughput and be robust under congestion. In Chapter

4 we show by means of simulation that TLTCP does indeed achieve throughput similar

to competing TCP streams and performs appropriate congestion control. In addition,

as a result of inheriting most of the data sending functionality of TCP, TLTCP’s data

sending characteristics are very similar to that of TCP. In other words, a TLTCP sender

sends packets at similar times as a TCP sender would if it were operating under the same

conditions. As a result, TLTCP interacts with competing TCP streams and reacts to

CHAPTER 2. BACKGROUND AND RELATED WORK 16

congestion in a fashion that is similar to another TCP stream as just another TCP stream

and reacts to congestion in a similar fashion. Therefore, it competes with the TCP traffic

in a TCP-friendly fashion. We elaborate on TCP-friendliness in the next section. The

following are the salient features of the congestion control mechanisms of TCP, that

TLTCP adopts.

TCP’s congestion control behavior is dictated primarily by how the size of its sliding

window is controlled. The sender’s window keeps track of all the unacknowledged data

and is an efficient way of ensuring reliability. It ensures reliability, because the sending

window keeps track of all the unacknowledged packets and retransmits the packet if it

detects a loss; it is efficient because it allows a full window’s worth of data to be in

transit, thereby utilizing all the bandwidth available. Even though the sliding window is

vital for ensuring reliability in TCP, more importantly for the purpose of this thesis, it

can be used as a tool for congestion control.

The size of the sender’s window represents the amount of data in transit. A sender

that is maintaining a full window of packets releases a packet into the network only

when it receives an acknowledgement for the receipt of a packet within the window,

because the ACK signals the removal of a packet from the network. This rule, referred

to as the principle conservation of packets [16] attempts to ensure that the number of

outstanding packets in transit is kept constant. Using this principle, a robust and self-

regulating congestion control mechanism is created by maintaining a window size that

is approximately equal to the capacity of the network in terms of the amount of data

in transit. This is the underlying principle of TCP’s (and TLTCP ’s) congestion control

mechanism. In TLTCP data reliability is not essential as it is meant to serve loss-tolerant

media applications. Upon determining that some data in the (logical) sending window is

obsolete, the sender may replace it by newer data without altering the size of the (logical)

window. In this way TLTCP is able to adhere to the principle of conservation of packets

CHAPTER 2. BACKGROUND AND RELATED WORK 17

but it is still able to send time-sensitive error-tolerant data.

Other mechanisms that TLTCP adopts from TCP include slow-start, additive-increase

multiplicative-decrease of the window size and fast-retransmit and fast-recovery. TCP’s

slow start mechanism allows it to begin utilizing all the available bandwidth quickly, by

doubling its window size every round-trip time, thus providing good throughput, with-

out a large wait while discovering bandwidth. After discovering the available band-

width, TCP attempts to avoid congestion by additively increasing its congestion window

when there are no packet losses, and by multiplicatively reducing its congestion window

when a packet loss is detected. Fast-retransmit and fast-recovery allow TCP to recover

from single packet losses by waiting for three duplicate ACKs, retransmitting the lost

packet (fast-retransmit) and then resuming normal sends with half the window size (fast-

recovery). Details of TCP’s mechanisms can be found in the paper by Jacobson et al.

[16] and a book by Stevens [39].

2.3.2 TCP-friendliness

In the previous section we saw the principles of congestion control that are employed

by TCP streams. While the careful design affords TCP the stability and flexibility to

effectively use the Internet, it leaves TCP vulnerable to bandwidth stealing by UDP based

flows or even flows resulting from improper TCP implementations. To date, popular

applications in the Internet like web browsers and file transfer programs use TCP flows

to transfer data. But as pointed out in the previous chapter new applications that are

gaining popularity, such as streaming media, use UDP. Potentially such applications can

act in a TCP-unfriendly manner by using less stringent methods for congestion control,

thereby unfairly acquiring more bandwidth than competing TCP flows.

There is a concern in the research community that several applications that use UDP

CHAPTER 2. BACKGROUND AND RELATED WORK 18

for transferring large amounts of data across the Internet do not use appropriate mecha-

nisms for congestion control [4]. In view of the damage that this can cause to both the

Internet and the applications that use the Internet, there has been a concerted effort [17]

in the research community to promote the use of TCP-friendly mechanisms for applica-

tions that use UDP. These applications are expected to perform appropriate congestion

control and compete with TCP in a fair manner.

The basic idea behind TCP-friendliness is that if two flows are operating along the

same path, a non-TCP flow should not adversely impact a competing TCP flow any more

than another competing TCP flow would [17]. In several studies [6] [31] [26] this has

been interpreted and measured by the ability of non TCP-based applications to equally

share bandwidth with TCP-based applications. This is typically measured by observing

the throughput obtained by several flows (both TCP and non-TCP) simultaneously op-

erating over the same bottleneck, under the same conditions, and determining the band-

width shares of the flows of the different protocols.

2.3.3 Congestion Control for Streaming Media

In the Section 2.3.1, we saw the congestion control mechanism of TCP. We now turn

our attention to the proposals for congestion control in streaming media applications

that do not require data reliability and therefore typically use UDP. A streaming media

system that uses UDP is at liberty to choose any mechanism for congestion control that

it desires (including none). As described in the previous section, in a best-effort shared

network like the Internet, the congestion control mechanisms of such a stream would

impact its fairness when competing with other streams. Therefore, it is imperative for

UDP-based streams to function in a TCP-friendly manner. Previous work has recognized

the importance of and created several schemes for, performing TCP-friendly congestion

CHAPTER 2. BACKGROUND AND RELATED WORK 19

control for such UDP streams.

Previous work [6] [36] [26] [31] has examined rate-based algorithms for implement-

ing TCP-friendly congestion control. In each case the sender throttles the rate at which

it injects packets into the network in order to perform congestion control. To compete

fairly with TCP the sending rate is regulated in an attempt to achieve the same throughput

as a TCP stream would, if it was operating under the same conditions.

These approaches are based on models that attempt to characterize TCP’s congestion

control mechanisms [17] [19] [25]. Models with varying degrees of complexity and ac-

curacy have been proposed, from a simple steady state model of TCP [17] to models that

take into account correlated losses and timeouts [25]. These models are represented as

equations and are used at the sender to control the sending rate. As data is sent, the ap-

plication measures or estimates values for the various parameters required by the model

based on receiver reports such as packet loss rates, round-trip times and timeout values.

Using these parameters and the model the sender periodically recomputes the appropriate

sending rate. In general, if there are no packet losses the sending rates are increased. Oth-

erwise, depending upon the loss rates the equation is used to recalculate a lower sending

rate. The time between two recomputations is referred to as the recomputation interval.

In the following we discuss several drawbacks inherent in rate-based approaches that

may reduce their practical significance.

� A fundamental problem in trying to model TCP is that its behavior differs signif-

icantly under different conditions. As a result an equation that accurately charac-

terizes TCP under one set of conditions may fail under others. For instance, as

pointed out by Padhye et al. [25], the model for TCP that they propose is not able

to characterize TCP under certain conditions (e.g., TCP over modem connections

with large dedicated buffers). Even if the rate equation is accurate for the particular

CHAPTER 2. BACKGROUND AND RELATED WORK 20

operating conditions, rate-based schemes have several critical parameters that need

tuning for different scenarios. For instance, the value of the recomputation interval

needs to be tuned carefully. If the sending rate is recalculated too frequently, the

loss rates observed between the short time intervals may not be meaningful. How-

ever, if the sending rate is not recalculated frequently enough the flow will not be

responsive to changes in network conditions [26]. This means that parameters need

to be tuned not only for every new connection setup, but potentially the parameters

may also need to be adapted in each connection as the network conditions change

during playback. The later may introduce further errors in the models because of

lagged response. To date, this issue has been observed by previous work but no

satisfactory solution has been proposed. In most cases the authors have tuned the

parameters statically [26] for every scenario. We expect this to be a major problem

in the practical use of TCP models.

� Because TCP is an ACK-clocked protocol we believe that it will be difficult for a

rate-based scheme to mimic it. Indeed, as pointed out by Rejaie et al. [31] there

seems to be a consensus in the Internet research community about this. This is

because the robust conservation of packets mechanism cannot be easily recreated

and used without a sending window. In the rate-based mechanisms a sending rate

is calculated every recomputation interval without keeping track of the amount of

data in transit (as there is no sending window). This may lead to oscillations in the

case of rapidly varying network conditions. In TCP and TLTCP on the other hand,

every packet sent is ACK-clocked and as a result the number of packets in transit

is maintained close to the data capacity of flow path. For instance, if the bandwidth

available to a flow decreases, new ACKs arrive at the sender less frequently thereby

automatically adapting the data rate to the available bandwidth.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

� Future changes to TCP or its operating environments may require reworking and

reevaluating new models and resulting protocols. On the other hand, if there is a

change in the popular version of TCP used in the Internet, we expect to be able

to add the new functionality into TLTCP while retaining its mechanisms to keep

track of data deadlines, thereby creating a version of TLTCP which is similar to

and friendly with the new version of TCP.

� Rate-based protocols rely on the accuracy of operating system timing functions in

order to accurately measure the parameters required by the model, such as data

rate and loss rate. A rate-based protocol also relies on an accurate timer to inject

packets into the network (since it does not use ACK-clocking) and to schedule re-

computations at time intervals specified by the model. Most rate-based proposals

use UDP and are implemented at the user level. As a result of the inaccuracy of

timing functions at the user level such mechanisms will be disadvantaged. For

instance consider the common case of a sender attempting to measure round-trip

times at the user level by measuring the time between sending a message and re-

ceiving an acknowledgement for it. The measured time will include the time the

message and its acknowledgement has spent in the kernel buffers, the overhead of

system calls and the inaccuracy in the timing function (e.g., gettimeofday()).

Even if we assume that the error introduced will be small, it has been shown that

small errors can have a significant impact on rate-based congestion control because

of their heavy dependence on accurate timing. Ramesh et al. [29] point out several

factors that can result in inaccurate packet loss estimates in the model developed

by Padhye et al. [25]. They further show that these inaccurate estimates can lead

to under or over-allocation of bandwidth to non TCP flows.

Given the popularity of streaming media and the significance of its possible impact

CHAPTER 2. BACKGROUND AND RELATED WORK 22

on the Internet, it is not surprising that several congestion control mechanisms have been

proposed for them. In the following we first list the proposed IETF (Internet Engineering

Task Force) standards that relate to streaming media. We then discuss the pros and cons

of various other congestion control proposals for streaming media in the Internet.

The IETF has proposed protocols for real-time transport over the Internet —

RTP/RTCP [34]. These protocols specify packet header fields including sending se-

quence numbers, timestamps and receiver reports that are meant for use by a rate-based

congestion control mechanism at the application level. One such application level mech-

anism specifically designed to use the RTP/ RTCP reports is proposed by Sisalem et al.

[36]. However as pointed out before, applications are not in the best position to per-

form congestion control and may use improper mechanisms, if any. TLTCP on the other

hand proposes incorporating robust congestion control mechanisms at the transport level

in the kernel, thereby freeing the application from that responsibility. The IETF has

also proposed an application level protocol that is meant to be used by streaming media

applications, called RTSP [35]. RTSP is designed to fulfill the control part of the client-

server interaction such as, synchronization, connection setup and tear-down, and several

remote-control like features, like pause and play.

Sisalem et al. [36] propose a rate-based mechanism for congestion control that is

meant to be implemented by applications that use the RTP/ RTCP [34] specifications

on top of UDP. Their scheme dynamically computes an additive increase rate and also

performs backoff by multiplicatively reducing the data rate. Experiments conducted with

RED gateways are reported and show that their scheme does not share bandwidth equally

under situations with low loss rates. Our simulation experiments show that TLTCP is

stable over a wide range of network conditions and shares bandwidth equitably under

conditions of low loss rates.

RAP [31] is a rate-based protocol that employs a relatively simple additive-increase

CHAPTER 2. BACKGROUND AND RELATED WORK 23

multiplicative-decrease (AIMD) model of TCP’s congestion control mechanism and is

able to obtain relatively TCP-friendly behavior when competing for bandwidth with TCP

Sack flows [8]. While it is friendly when competing with TCP Sack flows over RED [11]

switches, it is not able to share bandwidth fairly with the popular implementations of

TCP in the Internet today [8], TCP Tahoe or TCP Reno [30]. A significant advantage of

TLTCP is that it is based on, and therefore competes fairly with TCP Reno, which is the

most widely used TCP implementation in the Internet today [27] [28]. Furthermore, as

explained previously, it will be fairly simple to adapt TLTCP to the new flavors of TCP

if the need arises as a result of the new flavors gaining popularity.

Padhye et al. [26] describe and evaluate a rate-control protocol based on a more de-

tailed model of TCP throughput [25] than the proposals above. Although the simulation

results reported show that their protocol is TCP-friendly under a variety of network con-

ditions, the recomputation interval is chosen using a different method for the different

experiments shown. Therefore, the method to calculate the best recomputation interval

may vary across different network conditions. No algorithm for choosing the appropri-

ate method automatically is mentioned. This may limit the benefits of this scheme when

used in practice. Padhye et al. also point out that the proposed scheme does not en-

sure equitable sharing of bandwidth with TCP streams when bottleneck link delays are

too small or too large since it makes accurately estimating loss rates difficult. On the

other hand, our simulation results show that TLTCP is friendly across a wide range of

bottleneck link delays.

Cen et al. [6] describe a streaming control protocol (SCP), that uses a congestion

window along with rate equations for sending data. While their approach is similar to

ours in many respects, they are not faithful to TCP in order to improve smoothness in

streaming. SCP does not have time-lined data delivery mechanisms and as a result just

relies on a no-retransmission policy to avoid delays. The experimental results reported

CHAPTER 2. BACKGROUND AND RELATED WORK 24

using an implementation of SCP on top of UDP show that the packet rates of TCP flows

competing with SCP flows are significantly lower under a variety of network configura-

tions, indicating TCP-unfriendly behavior.

Another scheme reported by Jacobs et al. [15] attempts to mimic TCP’s congestion

window in user space. The window size is used to estimate bandwidth which is then

used to drive a media pump at the sender that uses UDP to send data to the receiver.

Attempting to mimick the congestion window of TCP at the user level is likely to be

inaccurate. As explained before, the fact a message is written to the UDP socket does not

mean that the packet has been released into the network. A mechanism in the user space

would have no means of knowing if the message or its acknowledgement is waiting in the

kernel buffers or traversing a link. TLTCP does not use a media pump to regulate its data

sends but instead it uses a sliding window protocol like TCP. TLTCP also does not use

UDP and is meant to be implemented in the kernel by making changes to the TCP stack.

Furthermore unlike the schemes proposed in past, TLTCP uses the time-lined nature of

continuous media to drive its data sends. Further details of the scheme are not provided

and it is unclear how TCP-friendly such an approach would be.

In light of the drawbacks of the rate-based approaches and the advantages of the

window-based congestion control enumerated above, we decided to create a window-

based mechanism that allows for time-lined delivery of streaming media data over the

Internet, but does not guarantee data reliability. Our goal is to retain the robust congestion

control mechanisms of TCP and add time-lined data delivery mechanisms to it. This

approach is suitable for providing service to streaming media applications that do not

require reliability and are unwilling to tolerate unpredictable delays in data delivery and

thus presently resort to rate-based approaches over UDP. When designing a streaming

media system it is important to consider the pros and cons of all the proposals. We like

to view the approaches in this area as a part of a spectrum of TCP-friendliness, which we

CHAPTER 2. BACKGROUND AND RELATED WORK 25

describe next.

2.3.4 Spectrum of TCP-friendliness

One view of TCP-friendliness is that there is a spectrum of possible approaches to being

TCP-friendly. At one extreme one might use aggressive UDP applications that com-

pletely ignore congestion in order to obtain larger portions of the available bandwidth.

Clearly such an approach is not TCP-friendly and its widespread use could have serious

consequences. TCP is located at the other end of the spectrum. Although it may not share

bandwidth fairly under a variety of conditions (e.g., when flows have different round-trip

times [14] or when there are a large number of flows [22]), TCP can be viewed as the

reference point for (or definition of) TCP-friendliness. Streaming media applications that

are implemented using TCP will be TCP-friendly (by definition) but their performance

may suffer because TCP’s data delivery is driven by the reliability requirement.

Between these extremes lie a number of different approaches which vary in their

ability to be TCP-friendly. Techniques that are less TCP-friendly are likely to provide

benefits to the application because they will be stealing bandwidth from other TCP appli-

cations. We believe that TLTCP provides an important point on this spectrum in that it is

very close to TCP in terms of friendliness but offers significant performance advantages

to streaming media applications when compared with TCP.

In the next chapter, we describe the principles behind the design and the operating of

the proposed protocol, TLTCP.

Chapter 3

Time-lined TCP

In this chapter we describe the functioning of the proposed protocol, Time-lined TCP

(TLTCP) and how it supports time-sensitive applications. We start by listing our design

principles and discuss how these principles have influenced our approach. We then de-

scribe the details of the time-lined data delivery mechanisms of TLTCP and its operation.

We also describe how TLTCP deals with lost data and its impact on its TCP-friendliness.

We argue that TLTCP’s approach of associating data with deadlines is natural to continu-

ous media data. We then describe in brief, the working of a streaming media application

that uses TLTCP. Finally we present augmentations to the present socket API, that we

propose for use with TLTCP and streaming media applications.

26

CHAPTER 3. TIME-LINED TCP 27

3.1 Design Principles

3.1.1 Congestion Control

TLTCP is meant to function over the Internet, which is a network that depends upon

end-to-end congestion control. As mentioned in Chapter 2, the absence of suitable

mechanisms for congestion control may have a negative effect on existing traffic and

in the worst case may cause congestion collapse. Hence a key design principle for the

proposed protocol is that the congestion control mechanisms must ensure fairness and

network stability, two of our primary goals.

For the purpose of congestion control, TLTCP uses the window-based, ACK-clocked

mechanism of TCP, because it is robust, adapts quickly and competes fairly with TCP

flows.

A window-based protocol is robust, as described in Chapter 1, because in its steady

state it attempts to maintain a constant number of packets in transit, where the number

of packets is an estimate of the capacity of the network. ACK-clocked data sending is

a feedback scheme that adapts quickly with the traffic changes in the round-trip path.

For instance when the bandwidth available to an ACK-clocked stream increases the data

packets and ACKs can traverse the path quickly, resulting in a faster arrival rate for the

ACKs and implicitly causing a faster rate of packet sending. Similarly, if there is a

reduction in the bandwidth share available to the stream due to increased traffic at the

bottleneck, the rate of sending data slows down quickly in response to a slowdown in

the rate of arrival of ACKs. Thus, ACK-clocked data sending is an appropriate feedback

mechanism for the Internet. Therefore, TLTCP uses a congestion window with ACK-

clocking to regulate its data sends but augments its operation to make it suitable for

time-lined data delivery.

CHAPTER 3. TIME-LINED TCP 28

3.1.2 Fairness

The Internet is a shared network where the users are expected to coexist with each other.

It is possible for a flow that sends packets more aggressively than the others, to obtain

more than its fair share of the bandwidth.

Most of the traffic in the Internet is due to TCP flows (90-95%) [7]. These flows in

their steady state increase their data rate additively in the absence of packet losses and

back off exponentially in the event of congestion. If a new protocol such as a stream-

ing media transport protocol is introduced in the Internet that increases its sending rate

more aggressively than TCP and does not reduces its data rate during congestion as

quickly, it will obtain more bandwidth than competing TCP flows and is regarded as

TCP-unfriendly. This is clearly an undesirable situation from the perspective of fairness.

Thus, an important design consideration when creating a new protocol for the Internet

is fairness when competing with TCP traffic. This property of a protocol is often called

TCP-friendliness.

TLTCP retains TCP’s congestion control mechanisms; it increases its sending rate

and responds to congestion in the same way as TCP. Additionally, the mechanisms to

support time-lines are designed such that, when possible, a TLTCP sender would send

data in the same fashion as a TCP sender operating under similar conditions. As a result

of these measures, TLTCP flows are TCP-friendly over a wide range of conditions and

can be expected to compete fairly with existing traffic on the Internet.

3.1.3 Time-sensitive Data Delivery

The proposed protocol is designed to deliver time-sensitive and error-resilient data. This

implies that not all of the data needs to be sent and the data that is sent must arrive in

time to be useful for playback at the receiver.

CHAPTER 3. TIME-LINED TCP 29

With these requirements in mind we design TLTCP by excluding the strict reliability

requirement of TCP. In TLTCP each section of time-sensitive data is associated with a

deadline. TLTCP sends a section of data and performs retransmissions for it as TCP

would but only until the deadline associated with that section has expired. In order

to keep track of deadlines associated with data sections a timer is added to TLTCP to

keep track of the current section. When the unsent data becomes obsolete due a deadline

expiry, TLTCP replaces it with new data. Another way to view this mechanism is in terms

of the progression of the sliding window. In addition to the ACK-based progression of

the sliding window that is present in TCP the deadline expiry of a section of the data in

TLTCP causes the window to move beyond the obsolete data, even if that data has not

been sent or acknowledged.

Note that deadlines are defined to be relative to the sender. For best-effort service, the

present scheme could be easily extended to make the deadlines relative to the receiver.

Under a receiver relative scheme the TLTCP transport layer would use round-trip time

(RTT) estimates in order to predict whether or not the current section of data to be sent

would arrive at the receiver prior to the deadline. It would then discard data that would

be unlikely to be delivered prior to the deadline.

3.2 Functioning of TLTCP

In this section we describe how TLTCP operates, highlighting the mechanisms that sup-

port the delivery of time-sensitive data. To clarify how TLTCP the function under dif-

ferent scenarios we use illustrative examples. As discussed previously, except for the

additional mechanisms to support time-lines, the functionality and thus the data send-

ing characteristics of TLTCP are similar to TCP. The following description of TLTCP is

based on TCP-Reno. We assume that the reader is familiar with TCP-Reno (for more

CHAPTER 3. TIME-LINED TCP 30

information see Section 2.3.1) and we use TCP to refer to TCP-Reno.

3.2.1 The Sender

The TLTCP sender accepts time-sensitive data from the application via the TLTCP API

(described in Section 3.3.2). Each section of data is associated with a deadline by which

it should be sent. The sender maintains a linked list, called time-line list, that stores

the deadlines for the time-lined data. Figure 3.1 shows a node in this list that stores the

deadline and starting sequence number for the associated section of data. Note that the

data itself is stored in the kernel buffers as TCP and the lowest seqno field of the list

node points to the first data byte of a section in the buffer.

struct time_lined_data {
int lowest_seqno; // lowest seq # for this section
time deadline; // deadline for this section

time_lined_data *next;
};

Figure 3.1: The structure of a node in the linked list of data deadlines.

The sender performs data sends as a normal TCP sender would until the expiry of the

lifetime timer which indicates that the deadline for the current section of data has expired.

It then selects the next section of data to be sent from the list and sets the lifetime timer

to the deadline for this section. All of the data up to the lowest sequence number of the

new section of data is discarded.

CHAPTER 3. TIME-LINED TCP 31

3.2.2 Lifetime Timer

In addition to the TCP timers TLTCP has a timer called the lifetime timer. This new

timer keeps track of the deadlines associated with the oldest data in the sending window

(the minimum of the receiver’s advertised window and the congestion window). The

lifetime timer counts down in the same fashion as the TCP timers. When a lifetime timer

expires any data associated with that deadline that has not already been sent is considered

obsolete and is discarded from the sending window. In other words, in response to a

deadline expiry the sending window is moved forward to sequence numbers that are not

obsolete. TLTCP then attempts to send the data associated with the next deadline and the

lifetime timer is set to that deadline. Furthermore, upon expiry of the lifetime timer the

time-line list is updated to contain only entries for the data sections that are not obsolete.

Figure 3.2 shows the sequence of actions that are taken after expiry of the lifetime timer.

All of the data that is handed to a TLTCP sender is considered to be a continuous se-

quence of bytes divided into data sections with deadlines associated with each of them.

Due to expiry of the deadlines some data sections may not be delivered completely leav-

ing gaps in the sequence of bytes that is delivered to the receiver. We call these disconti-

nuities in the delivered sequences, gaps.

Let us consider an example that illustrates how a TLTCP sender transports continuous

media data to a receiver. Suppose that the sender has a send window size of 10 bytes.

For simplicity assume single byte payload for all packets. The sender can then send 10

consecutive packets. Further assume that an application has specified the deadlines for

sequence numbers 10 to 19 and 20 to 29, as
���

and
���

respectively, where
�������	�

(i.e.,

the deadline for packets 10 to 19 will expire before the deadline for packets 20 to 29).

TLTCP sets the lifetime timer to the deadline
�
�

and commences sending. Now suppose

that when deadline
���

expires only packets 10 to 14 have been sent. At this point TLTCP

CHAPTER 3. TIME-LINED TCP 32

if (Lifetime_timer has EXPIRED) {
// Remove obsolete data from the buffers and from
// the timeline list
remove_expired_data(timeline_list, &buf);
if (!timeline_list_empty()) {

// Get lowest seq of unexpired
// data and move the window accordingly
current_node = get_current_node(timeline_list);
store_unacked_seqno();
move_window(current_node.lowest_seqn);

// Set the lifetime timer for the deadline
// of the new data
set_lifetime_timer(current_node.deadline);

}
}

Figure 3.2: Pseudo code of the actions taken on the expiry of lifetime timer.

will abandon the sending of all the sequences from 10 to 19 and 20 will be the next

packet to send. It will also set the lifetime timer to
� �

and continue to keep track of the

unacknowledged packets from the obsolete data. This is done in order to preserve the

semantics of the congestion window mechanism (for a detailed explanation see Section

3.2.4).

3.2.3 The Receiver

Upon expiration of the lifetime timer the sender discards all data associated with the

current deadline that has not yet been sent. However, if the receiver is not informed

of this it would consider the discarded data to be lost and reject packets from the new

section because they are beyond its receive window. Note that the sequence numbers

CHAPTER 3. TIME-LINED TCP 33

that a receiver is willing to accept is determined by the next expected sequence number

and the size of the receive window. The receiver would continue to acknowledge the last

received sequence number, which is now obsolete. On the other hand, since the sender

has already discarded the obsolete data it would continue to send the current data and a

deadlock would result.

In order to prevent this deadlock, when data is discarded the TLTCP sender explicitly

notifies the receiver of the change in its next expected sequence number. The expected

sequence number update notifications also allow the receiver to keep track of the gaps

in the stream. Information about where the gaps are located (along with the data) will

eventually be passed to the application when it attempts to read the data (this is explained

in more detail in Section 3.3.2).

Expected sequence number notifications are included with every packet by using 32-

bits of the available TCP-options. We call this 32-bit field, seq update. The receiver

knows that it needs to skip sequence numbers whenever it receives a packet containing

a seq update value that is greater than its next expected sequence number and ad-

justs its next expected sequence number to the sequence number contained in the field

seq update.

3.2.4 ACKs for Obsolete Data

Besides accepting time-lined data from the sending application the sender needs to keep

track of acknowledgments for obsolete data. This allows TLTCP to ensure that the

sender’s send window is correctly sized and is permitted to advance as ACKs arrive

for the obsolete data.

Reconsider the example described in Section 3.2.2, when the deadline
� �

expires,

packets 10 to 14 have already been sent. At this point TLTCP keeps track of the fact

CHAPTER 3. TIME-LINED TCP 34

that it might receive ACKs for packets 10 to 14 and removes packets 10 to 19 from its

buffer. The sender then continues by sending data associated with the next deadline
�
�

.

Packets 20, 21, 22, 23 and 24 are sent and the send window is full. Once the window is

full, no more data can be sent until outstanding ACKs arrive. One way to logically view

the current situation is to imagine the obsolete data occupying slots in the current send

window. Thus the send window could be thought of as
�
10, 11, 12, 13, 14, 20, 21, 22, 23,

24 � . When ACKs for obsolete data arrive, the sender’s window is moved by the amount

of data that is ACKed, thus allowing new sends. For example, if an ACK is received for

sequence number 12 the window will move ahead by 3 sequence numbers (since ACKs

are cumulative) and the sender may send three new packets 25, 26, 27. Thus keeping

track of ACKs for obsolete data is necessary because these ACKs allow the window to

move forward. In the example above, the logical window moves forward upon the receipt

of the ACK for sequence number 12.

In order to recognize ACKs for obsolete data, TLTCP uses a vector to store the high-

est sequence sent and the last ACK received for each obsolete section that has unac-

knowledged data. The size of the vector is bounded by the window size. As the ACKs

for obsolete data arrive the entries in the vector are freed and as more unacknowledged

data becomes obsolete, new entries are added. Note that even though TLTCP keeps track

of the sequence numbers of the unacknowledged data that is obsolete, it never resends

obsolete data. When there is a loss detected in obsolete data the TLTCP sender a sends a

packet containing current data, instead of resending the lost data that is now obsolete. In

the next section we describe in detail some packet loss scenarios and how TLTCP deals

with them.

CHAPTER 3. TIME-LINED TCP 35

3.2.5 Handling Lost Packets

If a lost packet is detected prior to the deadline expiry for that data TLTCP will retransmit

the lost packet. Thus, TLTCP attempts to reliably deliver data prior to the expiry of the

deadline associated with the data. On the other hand, if the lost packet is obsolete, TLTCP

sends the lowest unacknowledged packet that is current. This is similar to the actions

that would be taken by TCP, except that TLTCP would transmit current data rather than

retransmit (possibly) obsolete data as in the case of TCP.

To clarify how this works reconsider the above example but now suppose that the

window size is 5. Assume that packets 10 to 14 have been sent and then due to a deadline

expiry packets 10 to 19 are deemed obsolete. Now imagine that packet 10 is lost and this

is detected by the sender either because of three duplicate ACKs or a retransmit timeout.

The TLTCP sender would then send the next unacknowledged packet, in this case 20.

This may result in behavior that is close to but not identical to TCP.

In order to further illustrate this scenario we now compare the actions that TLTCP

would take with those of TCP under the same conditions. The scenario is depicted in

Figure 3.3. If this is the first time that packet 20 is sent then TLTCP behaves the same

as TCP. When we say that TLTCP behaves the same as TCP, we mean that it sends a

packet when TCP does. However, the sequence number of the data being sent may be

different in each case. If in the case of TLTCP, the packet sent and ACK for the sequence

number 20 are not lost and if in the case of TCP, the packet that TCP resends and its ACK

are not lost then TLTCP’s ACK for 20 would arrive at the same time as TCP’s ACK for

10. These ACKs would clock the subsequent sends at the same time for both TCP and

TLTCP .

However, as shown in Figure 3.4, if packet 20 has already been sent (because of a

window size greater than 5) and the ACK for it has not been received, TLTCP sends it

CHAPTER 3. TIME-LINED TCP 36

14

10

16 ACK

detected
Loss

10

14

20

10

21 ACK

10 ACK

Sender Reciever Sender RecieverTLTCPTCP

10 ACK

Deadline
expiry

obsolete
data retransmistted

current
data transmitted

Figure 3.3: Example of a loss in obsolete data.

again. We refer to this as a pseudo-retransmission since TLTCP is retransmitting data

that may not require retransmission in order to ensure that a packet is sent when TCP

would send a packet. If the ACK for the original send of packet 20 arrives prior to an

ACK for the pseudo-retransmission then that ACK will clock TLTCP’s subsequent send

sooner than it would be clocked with TCP.

Deviation from the behavior of TCP may also occur because of pseudo-

retransmissions and a seq update message. The loss of an obsolete packet, besides

triggering a pseudo-retransmission, could cause subsequent losses of obsolete packets

to be ignored. A simplified depiction of such a scenario is shown in Figure 3.5 and

described below.

CHAPTER 3. TIME-LINED TCP 37

14

10

15 10 ACK

10 ACK

16 ACK

Loss

next send
TCPs

10

14

20

20

21
TLTCPs
next send

10

pseudo
retransmit

21 ACK

10 ACK

21 ACK

Sender Reciever Sender RecieverTLTCPTCP

Deadline

detected

expiry

Figure 3.4: Example of a pseudo-retransmission.

Suppose in the original example of Section 3.2.2, packet 14 is lost in addition to

packet 10. Under this scenario TCP would retransmit the lost packet and reduce its rate of

sending by halving ssthresh [38] as a result of three duplicate ACKs or by reducing its

congestion window due to a timeout. However, TLTCP’s pseudo-retransmission would

include a seq update that would cause the receiver to move its receive window beyond

packets 10 to 19 and request packets 20 and beyond, therefore missing the fact that packet

14 is lost. In general, if before a packet loss is detected a new seq update is received at

the receiver, the receiver will ignore the missing data and request for data seq update

onwards. As a consequence, as shown in the example, TLTCP would be unable to detect

the loss of packets subsequent to a pseudo-retransmission and would not experience the

CHAPTER 3. TIME-LINED TCP 38

14

10

14

10

Sender Reciever Sender RecieverTLTCPTCP

of 10Loss
detected

current
2010

21 ACK14 ACK

14

resend lost packet

resend lost packet

TCP detects

but TLTCP
misses it

loss of 14
normal sends continue

data transmistted

Figure 3.5: Example of a TLTCP missing a packet loss in the obsolete data.

second slowdown.

In our simulation experiments reported in Chapter 4 we test TLTCP under a variety of

packet loss conditions and describe how the scenarios described here affect the behavior

of TLTCP flows.

CHAPTER 3. TIME-LINED TCP 39

3.3 Applications

3.3.1 Streaming Media Using TLTCP

A class of applications that is gaining popularity on the Internet and thus significance are

streaming media applications. TLTCP supports the delivery of time-sensitive data and

can thus support such applications.

In Chapter 1 we have described the overall architecture of a streaming media system

and the concept of time-lined data delivery, upon which TLTCP is based. In the context of

this chapter the components of interest are the server and the client that are connected by

the proposed transport protocol, TLTCP. In a simple scenario, upon receiving a request

for a particular continuous media file from the client, the server calculates a transmis-

sion schedule depending upon the temporal distribution of media sections, the network

bandwidth available and the buffering at the client. Since the network conditions and the

amount of data buffered at the client may change over time, feedback from the client is

used to adaptively change the transmission schedule. Note that feedback from the client

is not used for congestion control as in the UDP-based approaches described in Chapter

2 but is used at the application level and thus does not need to be as frequent or precise.

The application can rely on TLTCP to manage all the data transport functionality, in-

cluding congestion control. TLTCP is suited for continuous media data because instead

of treating all data as a byte stream, it exploits the temporal nature of continuous media

data by distinguishing between individual sections of data and associating deadlines with

them.

Recall that the server typically starts by creating a TLTCP data connection to the

playback client and then calculates a schedule for the transmission of data. Each section

of data to be sent (e.g., sequence of video frames, layers of video, or audio samples) are

CHAPTER 3. TIME-LINED TCP 40

assigned a deadline that is determined by the schedule. Then the application passes a few

sections of media data to the TLTCP sender, adapts the transmission schedule according

to the feedback from receiver if necessary and then write the next few sections according

to the new schedule. The TLTCP sender would use the deadlines specified for the given

sections to send as much of a section as it can before the deadline expiry and then move

on to the next section.

As pointed out before, the sending application receives periodic feedback from the

playback application about the state of the playback, amount of data buffered and the

network throughput and uses it to adapt the transmission schedule. For instance if the

effective data rate reduces during the playback because of increased contention in the

network, the server may modify the transmission schedule to send every alternate media

section so that each of the media sections get more time to get delivered. TLTCP on its

part, only attempts to deliver the sections of data that are not obsolete.

The client would begin playback after first receiving and buffering a few of the initial

sections of the data. During playback appropriate sections of data are read from the

buffer, decoded and presented to the user. If the sender is not able to send all the data

in a section before the deadline associated with the segment expires, the receiver will

continue with a lower quality playback. The quality of the playback depends upon the

application’s ability to tolerate lost data.

As an example, consider a hierarchical layered encoding scheme consisting of a base

layer and several enhancement layers (for a more detailed description of layering see

Chapter 2). A layered media stream can be represented as,

� � ���� � ���� � �� � �
�
� � �

�
��� � ���� � �� � �

�
� ������� �

where for section � , �
	 � is the base layer and
�
	 �

,
�
	� and

��	� are the enhancement lay-

ers. The sending side of the application computes a schedule and associates a dead-

CHAPTER 3. TIME-LINED TCP 41

line,
� 	

, with each section (
� � 	 � � � 	 � � � 	 � � � 	� � � 	 �). The sender writes several sections

(e.g., � � � ��� � � ��� �������) along with their corresponding deadlines, (
� 	 � � 	�� � � � 	�� � �������

)

to TLTCP. TLTCP attempts to deliver all the data in section � in the order written (i.e,
� � 	 � � � 	 � � � 	 � � � 	� �). Once the deadline for section � expires the data is obsolete and is dis-

carded. TLTCP then continues by attempting to deliver section � �	� . What is presented

to the user at the receiving end (i.e., the quality of the playback) will depend on what

portion of section � � � 	 ��� � 	 ��� � 	 � � � 	� � arrived prior to the playback time of section � , the

encoding scheme and the application’s ability to tolerate loss.

Similarly, MPEG-1 video [32] has frames with varying degrees of importance for the

playback application. The frames are of three types I, P and B in the respective order of

importance. Roughly speaking, the I frames can be displayed independently while the P

frames can only be displayed if the previous I or P frames has arrived. The B frames are

bidirectionally encoded and cannot be displayed unless the previous non-bidirectionally

encoded (I or P) frame as well as the next non-bidirectionally encoded (I or P) frame are

delivered. Figure 3.6 shows an example of the dependencies.

I P B P I

Figure 3.6: MPEG-1 frame dependencies.

Because of the bidirectional dependencies, the display order of frames differs

CHAPTER 3. TIME-LINED TCP 42

from the order in which it is stored in a file or transported. For instance the

display order of an MPEG-1 video may be.
� � � ��� �� ��� � ��� �� � � � ��� � ��� � � � � ������� � .

However, the order in which this sequence is stored in an MPEG file will be
� � � ��� �� ��� �� � � � ��� � ��� � � � � ��� � ������� � .

TLTCP sections are created form an MPEG-1 file in the same order as it is stored, but

the deadlines are assigned according to the order of display. Hence the same deadline

is assigned to an I frame, the P frames directly dependent on the I frame, the P frames

that are dependent on the P frames that depend on the I frame an so on. The B frames

are assigned the same deadlines as the earlier of frames it is dependent upon, but sent

after the later of the frames it is dependent upon. In this manner the order in which

TLTCP is handed the frames is the same as it is stored but the deadlines depend upon the

order in which the frames are to be displayed. Thus in the example above the deadline

assignments would be as follows.

� � � � ��� �� ��� �� ������� �

The sending application can start by handing all the encoded frames in the way described

above. TLTCP would try to deliver the sections in the order written. If however the

available bandwidth is not sufficient to deliver all of
� � � ��� � ��� �� � TLTCP will discard

�
�
�

at the expiry of
� �

and start sending the more important frame,
�
�

since it is associated

with the later deadline
� �

. In other words, if the bandwidth is insufficient TLTCP will

discard the less important data and instead attempt to deliver more important data that still

has a chance of reaching the receiver for playback. Note that, if the available bandwidth

decreases further (due to congestion), the sending application upon receiving feedback

from the playback application may decide to change its transmission schedule and just

send the I and P frames or even just the I frames so that the important frames have more

time to get delivered. Reusing the example above, the data sections handed to TLTCP

CHAPTER 3. TIME-LINED TCP 43

in the reduced bandwidth cases would look like
� � � � ��� �� ��� �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � ������� � and
� ������� � respectively. The MPEG

receiver on the other hand, will be able to continue playback but the quality of playback

would worsen as more frames are skipped.

3.3.2 The TLTCP API

The API for TLTCP has two main functions. First, the sending application needs to be

able to specify to TLTCP segments of data along with their associated deadlines. Second,

the receiving end needs to be able to deliver to the client application the received data

along with information about where gaps are located.

We propose augmenting the UNIX socket calls of recvmsg and sendmsg [40]

for this purpose. A time-line data send is flagged by a new flag, MSG TL. The scatter

gather I/O vector msg iov is used to indicate the data to be sent and the associated

deadlines are provided in an ancillary data message of type TL DEADLINE. Similarly, on

the receiver side the delivery of time-lined data would be indicated by the flag, MSG TL.

The received data is placed by TLTCP into the msg iov and ancillary data is used

distinguish the data TL DATA from the gaps TL GAP. Note that these changes allow the

socket calls to retain their semantics while incorporating the new functionality of TLTCP.

To see a more detailed example of how the API would be used consider the following

example. The server process first creates a SOCK STREAM socket and connects it to the

receiver to establish the data connection. Then the various fields of the msg header

structure are filled in before calling sendmsg with a MSG TL flag used to indicate time-

lined data. Figure 3.7(a) depicts the fields of the msg header data structure that is

passed as an argument to the sendmsg call. Pointers for each of the data sections to

be sent by TLTCP are stored in an array of msg iov structures. These are made up

CHAPTER 3. TIME-LINED TCP 44

of a pointer to the data, iov base and the size of the data, iov len. The size of

the msg iov array is equal to the number of sections being written and is stored in the

msg iovlen field of the msg header. Deadlines corresponding to the data sections

are provided using an ancillary data message. The value of the deadlines are stored in

msg control field of msg header, with the message type (cmsg type) specified

as, TL DEADLINE. The length cmsg len, is again equal to the number of data sections.

At the receiver end when recvmsg is called the MSG TL flag indicates that the data

received is time-lined. Figure 3.7(b) depicts the msg header structure after the call

to recvmsg has completed. The receiver can then read the ancillary data pointed to

by msg control, in order to distinguish between the data and gaps. If a field in the

ancillary data contains TL DATA then the corresponding field of the msg iov structure

points to valid data and the application can store the pointer in order to retrieve the data

later. On the other hand the ancillary data contains TL GAP then the application needs to

make a note of the size and location of the gap and take this into account during playback.

In this chapter we have described how TLTCP operates and how applications would

use it. In the next chapter we study the characteristics of TLTCP under a variety of

simulated network conditions and see how the mechanisms described in this chapter

shape TLTCP’s behavior.

CHAPTER 3. TIME-LINED TCP 45

msghdr{}

iovec{}

msg_controllen

msg_flags

ms_iovlen

msg_control

msg_iov

iov_base

iov_base

iov_base

iov_len

iov_len

iov_len

cmsghdr{}

cmsg_len

cmsg_type

{MSG_TL}

{3}

{TL_DEADLINE}

{deadline_1}

{deadline_2}

{deadline_3}

{3}

data_sections{}

(a) sendmsg

msghdr{}

iovec{}

msg_controllen

msg_flags

ms_iovlen

msg_control

msg_iov

iov_base

iov_base

iov_base

iov_len

iov_len

iov_len

{MSG_TL}

{3}

data_sections{}/gaps

cmsghdr{}

cmsg_len

cmsg_len

cmsg_type

cmsg_type

cmsg_type

cmsg_len

{TL_DATA}

{TL_GAP}

{TL_DATA}

{gap}

{data}

{data}

{3}

(b) recvmsg

Figure 3.7: The msg header structure at the sender and the receiver.

Chapter 4

Simulations

In this chapter we evaluate the behavior of TLTCP using simulations. In particular, ac-

cording to our goal, we intend investigate if TLTCP is able to perform time-lined data

sends and measure its TCP-friendliness. There are several reasons why simulation ex-

periments are more suitable than live Internet experiments for our purposes.

� One of our primary goals was to create a transport protocol that shares bandwidth

equitably with competing TCP traffic. In order to quantify TLTCP’s performance

on this count we need to measure the effect of TLTCP traffic on TCP streams,

discounting the impact of all other factors such as background traffic. In a live

Internet scenario these factors are beyond our control and in most cases add sig-

nificant noise to the experimental results. On the other hand, with simulations

impact due to the other factors can be eliminated or factored into the results. Fur-

thermore, we need to compare the impact of TLTCP streams on competing TCP

streams, with a baseline (control) case where only of TCP streams compete against

each other. For the measurements obtained in the baseline case to be meaningful

the experiments must be run under the same conditions as the original experiment.

46

CHAPTER 4. SIMULATIONS 47

Because the conditions of a simulation are reproducible, the baseline experiments

can be run and valid measurements for comparison can be easily obtained.

� TLTCP is a new protocol and in order to test it thoroughly we need to vary several

network parameters in a controlled fashion. Using simulations we are able to study

the effect of varying several parameters over a wide range, one at a time, in order

to quantify the effect of each one of them. In a live Internet experiment most of

the network parameters, such as the number of flows competing at the bottleneck,

are beyond our control while others like link delays and bottleneck bandwidth are

difficult to vary.

We have implemented TLTCP in the ns-2 simulator [42] and have conducted several

experiments. The goal of the experiments is to study TLTCP’s time-lined data transport

behavior and to quantify its TCP-friendliness. Our experimental results show that TLTCP

is a protocol that performs time-lined data delivery in a robust, TCP-friendly fashion

over a wide range of simulated Internet conditions, thereby satisfying our goal. In the

following sections we first show that the data transfer in TLTCP is indeed time-lined and

then quantify the TCP-friendliness of TLTCP over a wide range of network conditions.

4.1 Time-lined Data Transfer

Using a simulated network as shown in Figure 4.1 we begin two simultaneous data trans-

fer sessions between a TCP sender and receiver and a TLTCP sender and receiver. We

keep track of packet arrivals of both the streams in order to compare their data sending

characteristics when operating under the same network conditions. In particular we want

to determine, if the TLTCP sender stops sending sequences from the current section at

the expiry of the specified deadline and if it then begins to send the sequences for the

CHAPTER 4. SIMULATIONS 48

next section. The TCP sender on the other hand is expected to send a continuous stream

of data sequences. For the sake of clarity in Figure 4.2, we use constant sized data sec-

tions of 700,000 bytes each associated with constant deadlines of 1 second, in order to

ensure that the whole section cannot be delivered within the given deadline. The other

parameters used in this simulation are shown in Table 4.1 and justification for the values

is provided in the next section.

Bottleneck

Link

Senders Receivers

Figure 4.1: Topology used for simulations.

Shown in Figure 4.2 is a plot of sequence number verses time where each sequence

number represents a 1,500 byte data packet. Let us make some observations before we

provide explanations for them. It can be seen that the sequence numbers of the packets of

the TLTCP session are discontinuous unlike that of the TCP session. It can also be seen

that in the case of the TLTCP flow data is sent sequentially for the duration of one second

(which is the deadline set for all sections of the data). At the end of the deadline there is a

visible jump in the sequence number (to the next multiple of 467) and sequential sending

resumes again for another second. Also note that the slopes of the continuous sections

of the TLTCP plot and the TCP plot are the same. In fact, the lines are almost coincident

if the discontinuities of the TLTCP trace are masked.

The observed discontinuities in the sequence number of the TLTCP stream stems

CHAPTER 4. SIMULATIONS 49

Sequence Number Plots

TCP

TLTCP

Sequence Number x 103

Time (seconds)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0.00 5.00 10.00 15.00

Figure 4.2: Data sending characteristics of TLTCP as compared to TCP operating under

the same network conditions.

from the fact that at the expiry of the deadlines TLTCP stops sending data from the

expired section and starts sending a new section of data. New sections of data in this

experiment begin with sequence numbers that are multiples of 467 (
��������������� �	� ����
�

��� �
). That is why at the end of every second the next sequence sent is a multiple of 467,

indicating that TLTCP is starting to send a new section. Throughout our experiments this

pattern of data sending is observed in TLTCP; namely, at the end of the specified deadline

the TLTCP sender stops sending data from the expired sections and starts sending data

from newer sections. It can thus be inferred that TLTCP indeed performs data transfer in

CHAPTER 4. SIMULATIONS 50

a time-lined manner. Note that to an external observer the TLTCP and TCP streams are

similar if the discontinuities in the sequence numbers are ignored.

The fact that the slopes of the continuous sections of TLTCP’s packet trace and that

of TCP are the same implies that they consume equal bandwidth. It can be seen from the

graphs that each of the streams consume approximately half of the 1.5 Mbps bandwidth

(
� ����� �	� ������� � � � � ��� � � � � � � �

, where approximately 900 packets of 1500 bytes

are delivered in 14 seconds by each stream). Fairness in sharing the available bandwidth

is an important goal for TLTCP and in the next section, we investigate this further by

measuring the TCP-friendliness of TLTCP.

4.2 TCP-friendliness

4.2.1 The Metrics

In several studies [6] [31] [26] TCP-friendliness has been interpreted and measured by

the ability of non-TCP flows to equally share bandwidth with TCP flows. This is typ-

ically measured by observing the throughput obtained by several flows (both TCP and

non-TCP) simultaneously operating over the same bottleneck link and determining the

bandwidth shares of each flow.

We consider two main metrics for examining the extent to which the flows share

bandwidth equally. The friendliness ratio [31] [26], � , is the ratio of the mean throughput

observed by non-TCP flows (TLTCP flows in our case), �	��
����� , to the mean throughput

obtained by TCP flows, ������ .

� � ����
������� ������

CHAPTER 4. SIMULATIONS 51

Since the friendliness ratio does not expose variations in observed bandwidth in in-

dividual flows we also consider the ratio of the maximum observed bandwidth to the

minimum observed bandwidth [26]. We call this the separation index,
�

. We examine

the separation index across all flows in an experiment. In the experiments with both TCP

and non-TCP flows we call this measure
�������

, whereas in the experiments where only

TCP flows are present we call it
� ���� .

In all of our experiments we use a total of � flows with an equal number of competing

TLTCP and TCP flows (� � �). As a baseline for comparison we also run experiments

under the same conditions with all � flows being TCP flows. In order to produce a

metric similar to � when only TCP flows are considered we compute the ratio of the

mean throughput of one half of the TCP flows to the mean throughput of the other half.

The value of � will vary depending upon which of the � � � flows are chosen for each

half.

Therefore, we compute and consider two extremes for � , �	��
����� and �������� . ����
�����
computes the worst possible value of � as the ratio of the mean bandwidth of the � � �
highest bandwidth flows to the mean bandwidth of the � � � lowest bandwidth flows.

����
������ � �������! �#" �%$�$�&'$�(*),+*- � � ��. �/ �0" �1$�$�&2$�(*),+*-

�����3��� on the other hand, computes the best possible � . This is done by sorting the

flows by bandwidth and dividing the flows into two groups, odd ranked (
(� � &2$�(*),+

) and

even ranked flows (4/5%4/. &2$�(*),+). Then we compute the ratio of the maximum of the mean

of the odd and even flows
����� " (��� &'$�(0)�+ � 4/5%4/. &'$�(*),+!- , to the minimum of the mean of

the odd and even flows
� �. " (��� &'$�(*),+ � 4/5%4/. &'$�(0)�+!- .

�����3��� �6����� " (��� &'$�(*),+ � 4/5%4/. &2$�(*),+!- � � �. " (��� &'$�(0)�+ � 4/5%4/. &'$�(*),+!- .
Note that in order to ensure that the partitions

(��� &'$�(*),+
and 4/5%4/. &2$�(*),+ and

���7�2�/ �

CHAPTER 4. SIMULATIONS 52

and
� �. �/ � are of equal sizes we keep the total number of flows, � , even in all our

experiments.

4.2.2 The Methodology

In order to examine the extent to which TLTCP is TCP-friendly we conduct several

experiments using the ns-2 simulator [42]. Since the TCP flows themselves do not share

bandwidth equally if their round-trip times are not equal [18] [9], we consider � sources

configured symmetrically (as shown in Figure 4.1) such that the end-to-end delays of all

the streams are equal. In all of our experiments each sender is continuously sending data

to the corresponding receiver. We choose our initial set of simulation parameters, which

is shown in Table 4.1, to be representative of Internet traffic. Later experiments consider

the impact that changes to some of these parameters have on the TCP-friendliness of

TLTCP.

The bottleneck link has a bandwidth of 1.5 Mbps, which is representative of a T1

link. We use a 1,500 byte packet size, which is a common size of packets seen in the

Internet [7]. A maximum receiver window of 10 packets (15,000 bytes) is used which is

near the higher end of the default values used for typical TCP implementations [39]. We

assume that all the data transfers are unidirectional and therefore set the ACK size to 40

bytes, which is the size of a TCP ACK with no payload. The source and destination hosts

connect to the bottleneck link with a 10 Mbps link which represents a local area network.

Previous simulation results [22] suggest that for TCP to share bandwidth evenly among

a large number of flows a bottleneck router queue needs to be provisioned to hold 10

times as many packets as the number of flows. Therefore, in order to ensure that TCP

shares bandwidth equally we heavily provision the queue at the bottleneck router to hold

400 packets. All the experiments are run for a simulated time of 500 seconds and data

CHAPTER 4. SIMULATIONS 53

collection begins after the first 50 seconds to avoid the transient effects of startup.

The TLTCP flows are given sections of 700,000 bytes each and the deadlines for

these sections are set at 5 seconds. This corresponds to a maximum data rate of 1.12

Mbps. This is intentionally chosen to be high in order to thoroughly exercise the time-

line specific mechanisms of TLTCP.

Parameter Value

Packet size 1,500 bytes

ACK size 40 bytes

Bottleneck link BW 1.5 Mbps

Bottleneck link delay 20 ms

Router buffer size 400 pkts

Source/Dest link BW 10 Mbps

Source/Dest link delay 2 ms

Receiver max window size 10 pkts

Simulated time 500 sec

Size of TLTCP sections 700,000 bytes

Deadlines for TLTCP sections 5 sec

Total number of flows 30

Table 4.1: Default simulation parameters.

4.2.3 Varying the Number of Flows

In our first set of experiments we vary the total number of flows and examine our metrics

for TCP-friendliness. As mentioned before, an important design goal is that the TLTCP

CHAPTER 4. SIMULATIONS 54

flows should share bandwidth with TCP-flows over the bottleneck link in an equitable

fashion. The object of this set of experiments is to progressively increase contention at

the bottleneck by increasing the number of competing flows in order to study the resource

sharing behavior of the TLTCP flows.

Figure 4.3(a) shows the variation in the friendliness ratio while the Figure 4.3(b)

shows the variation in the separation indices when the total number of flows (�) are

varied. Recall that in all our experiments, of the total � flows half (� � �) are TCP and

the other half (� � �) are TLTCP. The X-axis in both the figures represents the number of

flows. The height of the bars (Y-axis) in the Figure 4.3(a) represents the values for the

parameters � , �����3��� and ����
����� respectively. Similarly the height of the bars in Figure

4.3(b) represent the values of the separation indices
����� �

and
� ���� respectively. In

both the figures, the closer the values of � , � ���3��� , ����
����� , � ��� � and
� ���� are to 1 the

more equally the bandwidth is being shared. Section 4.2.1 gives a detailed description of

the above metrics.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Friendliness Ratio

2 4 10 20 30 40 50 Number of
flows

F
F best
F worst

(a) Friendliness ratios.

0.0

0.5

1.0

1.5

2.0

2.5
Separation Index

2 4 10 20 30 40 50 Number of
flows

S mix
S tcp

(b) Separation indices.

Figure 4.3: Varying the number of competing flows.

CHAPTER 4. SIMULATIONS 55

As seen in Figures 4.3(a) and 4.3(b) across the range of flows used in the experiments

TLTCP obtains good friendliness ratios and separation indices except when a total of 50

flows is reached. This can be seen in �	��
����� and �����3��� in Figure 4.3(a) and
� ���� in Figure

4.3(b), where the value are not close to 1. While TLTCP does not share bandwidth fairly

at this point, it is important to notice that in the baseline case, 50 TCP flows competing

amongst themselves under the same conditions do not share bandwidth fairly. By ex-

amining the traces for the experiment we see that in the case of 50 flows many of the

TCP flows obtain half the throughput of the rest of the competing flows (both TCP and

TLTCP).

The situation where a number of TCP streams compete over a single bottleneck router

has been studied previously by Morris [22]. He has observed that if there are a large

number of competing flows, TCP’s congestion control mechanisms fail to ensure fair

sharing of the bottleneck bandwidth. As a result of the high packet loss rates that occur

in this situation and subsequent timeouts, the bandwidth obtained by competing flows is

highly variable. This is also seen in our experiment with 50 flows and is illustrated by

����
������ in Figure 4.3(a) and
� ���� in Figure 4.3(b). Morris suggests that when the number

of flows exceeds 10 times the queue size of the bottleneck router TCP does not share

bandwidth equally. In our experiments, with a bottleneck buffer queue of size 400, the

fairness ratios and separation indices are close to the ideal value of 1 for up to 40 TCP and

TLTCP flows (
� ��� � � �). However, with a total of 50 flows the amount of buffer space is

less than 10 packets per flow (
� � � � ��� � � �) and thus the flows (TLTCP and TCP) do not

share the bandwidth equitably. For still larger number of flows TCP’s fairness detoriates

further and thus the notion of TCP-friendliness looses its meaning. We therefore do not

consider larger number of flows.

TLTCP’s congestion control mechanisms are based on TCP. It is thus expected that

the sharing behavior of TLTCP would be no better than that of TCP. It can be seen from

CHAPTER 4. SIMULATIONS 56

Figures 4.3(a) and 4.3(b) that in the experiments with a mix of TCP and TLTCP flows,

higher values for the friendliness ratio and separation index are observed as compared to

the baseline experiment with just TCP flows. This indicates that some TLTCP flows ob-

tain larger throughput than the rest of the flows. This is because in the experiments above

TLTCP flows do not reduce their data rates as much as the competing TCP flows during

congestion. As described in Section 3.2.5, TLTCP performs a pseudo-retransmission in

response to a loss of obsolete data and cannot keep track of subsequent losses in the ob-

solete data. In the case of 50 competing flows, due to heavy contention at the bottleneck,

the packet loss rates are high and the data rates are low (this was also observed by Morris

[22]). As a result, there is a greater likelihood of multiple losses for obsolete data in

some TLTCP flows. Since these TLTCP flows are unable to detect some of these losses

they do not reduce their sending rates during congestion as much as the competing TCP

flows, thereby obtaining a larger share of the bandwidth. By examining the individual

flows we observe that during the simulation run there are fewer retransmissions for most

of the TLTCP flows than the competing TCP flows, confirming that the TLTCP flows

indeed miss some of the packet losses and as a consequence do not reduce their data rate

as often as the competing TCP streams.

Unless otherwise stated we use a total of 30 flows for our remaining experiments.

This ensures that the bottleneck router has sufficient buffer space and therefore decreases

the likelihood that TCP flows will not share bandwidth equally.

4.2.4 Varying the Maximum Window Size

In this section, we consider the impact of increasing the maximum receiver window sizes

on the TCP-friendliness of TLTCP. A large receiver window size would allow the flows

to potentially utilize a large send window size (up to the receiver window size). As noted

CHAPTER 4. SIMULATIONS 57

in Section 3.2.5, the scenarios that cause the behavior of TLTCP to deviate from that of

TCP occur when there are multiple packet losses in the obsolete data. There is a greater

likelihood of this occurring with larger window sizes, since there is a possibility of more

unacknowledged obsolete data in this case. Moreover, note that in both TCP and TLTCP

large receiver windows increase the possibility of greater variations in send window sizes

among competing flows. Therefore, we expect to see an inequitable distribution of band-

width for larger window sizes.

In the Figures 4.4(a) and 4.4(b) the Y-axes represent the friendliness ratios and sepa-

ration indices respectively while the X-axes show window sizes of 5, 10, 20, 40 and 80

packets. These represent windows of 7,500, 15,000, 30,000, 60,000 and 120,000 bytes

respectively. The sizes 7,500 and 15,000 were chosen to loosely correspond to default

window sizes commonly used in TCP implementations [39]. The remaining values were

chosen to significantly exceed these commonly used sizes.

0.0

0.5

1.0

1.5

2.0

2.5
Friendliness Ratio

3 5 10 20 40 80 Window Size
(packets)

F
F best
F worst

(a) Friendliness ratios.

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Separation Index

3 5 10 20 40 80 Window Size
(packets)

S mix
S tcp

(b) Separation indices.

Figure 4.4: Varying the maximum receiver window sizes.

CHAPTER 4. SIMULATIONS 58

The results of these experiments demonstrate that under the conditions used for these

simulations TLTCP and TCP share bandwidth fairly when the receiver window size is

within the ranges typically used as defaults in current TCP implementations.

However when the maximum window size is 20 packets, there is unequal sharing of

the bandwidth. In the experiment with only TCP flows and a window size of 20, the

friendliness ratio is seen to be close to 1 but the separation index is close to 2. This is

an instance where the separation index is a valuable metric in uncovering unfriendliness.

With a mix of TCP and TLTCP flows all with the maximum window size of 20, we see

that the value of � is close to 2 and the value of
����� �

is close to 2.5. It can also seen from

Figure 4.4(a) that the friendliness ratios in both of these cases (i.e., with just TCP flows

and the with a mix of TLTCP and TCP flows) improve considerably when the receiver’s

window size is further increased to 40. Again, even though the friendliness ratios for the

TCP only cases (with maximum window sizes of 40 and 80) are close to 1 the separation

indices indicate that there are disparities in the throughput of the individual streams. It is

also observed that the results for the window size of 80 are fairly similar to those for 40.

It is unclear to us why the flows are less fair with a window size of 20 than with

larger window size of 40 and 80. We speculate that the increase in unfriendliness when

the window size is 20 is because a larger window size may cause the bandwidth sharing

to be unequal.The sender’s congestion window in all the flows varies from a minimum

of 1 segment to a maximum of the receiver’s advertised window. Ideally when all the

flows are in equilibrium they would have equal window sizes and would thus achieve

the same throughput. But this equilibrium is not reached because the congestion control

mechanisms of both TCP and TLTCP keep changing the size of the congestion window

by additively incrementing it when there are no losses and multiplicatively decrementing

it when a loss is inferred. Note that this dynamic behavior is essential for the flows

to adapt to the changing network conditions in the Internet (e.g., when the number of

CHAPTER 4. SIMULATIONS 59

competing flows changes). Additionally, since packets are forwarded in routers using

a FIFO discipline (instead of per flow forwarding) some flows may experience bursty

losses while others may experience no losses at all. The flows that experience the losses

reduce their congestion window while others keep incrementing it, thus resulting in the

disparity in observed throughput. A large receiver window (such the ones used in these

experiments) increases the disparity among the flows as it allows the flows without losses

to increase their window size to a larger extent (up to the large receiver window limit).

We also believe the reason that the results for the window sizes of 40 and 80 are

similar and indicate increased friendliness is that the trend towards unfairness is likely

to be self-limiting. That is, after a point increasing the receiver window size is not likely

to result in an appreciable difference in the friendliness metrics observed for both TCP

and TLTCP. The reason for this is that, a flow with a larger sending window size is more

likely to experience packet losses than a flow with a smaller window. Thus in most

cases, a flow will be able to increase its window to a limited size before experiencing

a packet loss and consequently reducing it. As a result, most flows would not be able

to significantly increase their sending windows to sizes much larger than the average

as they would experience packet losses before reaching the limit. By examining the

traces from our experiments we find out that in spite of doubling the maximum possible

window size in each step, the average acquired window sizes across the flows in each of

the experiments are indeed similar.

In the experiments with a mix of TLTCP and TCP flows, by examining the traces

we observe that the TLTCP flows are the ones that obtain greater bandwidths. This is

because of the fact that TLTCP cannot infer multiple packet losses in obsolete data. If

a TLTCP flow has a large window size as in this experiment, it is likely to have more

obsolete data in the sending window. This in turn means that there is a larger likelihood

of multiple packet losses in obsolete data. Thus, with a larger receiver window such a

CHAPTER 4. SIMULATIONS 60

TLTCP stream is likely to increment its window more than a TCP stream and would

continue to do so until a loss is detected. Therefore on an average TLTCP streams obtain

greater throughput with large maximum receiver window sizes. But note that the extent

of the disparities in the throughput is not expected to get much worse for still larger

windows because of self-limiting nature of the unfairness described above.

4.2.5 Varying the Propagation Delay

It is known that different flows between different pairs of hosts in the Internet would

encounter a wide variety of round-trip delays; from the large delay of an intercontinental

satellite connection to the small delay of a cross-campus connection. It is thus important

that a transport protocol be able to function properly across a wide range of round-trip

delays.

Dealing with a large range of round-trip delays has been reported as a problem with

existing rate-based streaming media protocols. In their work on TFRCP, a rate-based

protocol, Pahdye et al. [26] report that with small round-trip delays TFRCP behaves

aggressively as compared to TCP, therefore obtaining a larger share of the bottleneck

bandwidth than the competing TCP flows. They explain that this is likely because a rate-

based protocol may not able to react to traffic fluctuations as quickly as TCP. They also

point out that with large round-trip delays and comparatively small rate recomputation

intervals, TFRCP is unable to accurately estimate loss rates and as a result its perfor-

mance is highly variable.

An advantage of TLTCP when compared with rate-based protocols is that it is ACK-

clocked and it uses the ACK-based round-trip timing mechanisms of TCP. Therefore, we

expect that TLTCP will be able to more quickly react to traffic fluctuations and provide

stable behavior over a wider range of operating conditions than rate-based protocols.

CHAPTER 4. SIMULATIONS 61

In the next set of experiments we study TLTCP’s behavior over a large range of bottle-

neck delays. Figures 4.5(a) and 4.5(b) show the friendliness ratios and separation indices

respectively, in their Y-axes while the X-axes represent the range bottleneck delays, form

0.0

0.2

0.4

0.6

0.8

1.0

Friendliness Ratio

5 10 20 40 80 160 Delay
(milliseconds)

F
F best
F worst

(a) Friendliness ratios.

0.0

0.2

0.4

0.6

0.8

1.0

Separation Index

5 10 20 40 80 160 Delay
(milliseconds)

S mix
S tcp

(b) Separation indices.

Figure 4.5: Varying delay.

5 milliseconds to 160 milliseconds. It can be seen from the figures that the friendliness

ratios and separation indices obtained for TLTCP are very close to 1, as are those ob-

tained for TCP. This indicates that under the conditions used in this experiment TLTCP

is able to operate in a TCP-friendly fashion for a wide range of delays. Moreover, the

observation that TLTCP and TCP flows are able to share the bandwidth equitably over

a wide range of bottleneck delays indicates that the lifetime timer expiry events in the

TLTCP flows do not significantly affect the accuracy of round-trip timing mechanisms.

In addition, by examining the traces of our experiments we saw that, on average, the

round-trip estimates of the TLTCP flows are close to that of the TCP flows.

CHAPTER 4. SIMULATIONS 62

4.2.6 Varying the Deadlines

In the same way that large window sizes increase the likelihood that the behavior of

TLTCP deviates from that of TCP the time-line chosen can also impact TLTCP. Clearly

with large enough deadlines it will be possible to send all the packets of a section prior

to its deadline and TLTCP will operate in a manner that is identical to TCP. However, as

deadlines become smaller the likelihood of having to deal with obsolete data increases,

as does the potential for handling larger amounts of obsolete data. Therefore, in the next

set of experiments we examine the impact of a range of deadlines on the friendliness of

TLTCP.

Figure 4.6 shows fairness ratios and separation indices for a variety of deadline in-

tervals, from 0.5 seconds (which corresponds to the resolution of timers in common

implementations of TCP) to 62.5 seconds. The amount of data that the application asso-

ciates with each deadline is kept constant at 700,000 bytes. Note that for the same section

size of 700,000 bytes, the experiments reported in Sections 4.2.3, 4.2.5 and 4.2.4 use the

deadlines of 5 seconds while the experiment reported in Section 4.1 uses the deadline of

1 second. Since there is no notion of time-lines in TCP, we compare the results of an

experiment with 15 TLTCP flows and 15 TCP flows to another experiment where all the

30 flows are TCP.

The results show that TLTCP operates fairly over a large range of deadlines. How-

ever, for very short deadlines TLTCP is not able to share bandwidth equitably. In this

case the deadline interval is 0.5 seconds which corresponds to a data rate of 11.2 Mbps

per stream (with 30 such streams) over a 1.5 Mbps link. It is interesting to note that in

this instance TLTCP streams obtain lower throughput than the competing TCP streams,

unlike the other experiments where the TLTCP streams obtain higher throughput.

The reason for this is the twofold impact of short deadlines on TLTCP’s data sends.

CHAPTER 4. SIMULATIONS 63

0.0

0.5

1.0

1.5

2.0

2.5
Friendliness Ratio/ Separation Index

0.5 2.5 12.5 62.5 Deadlines
(seconds)

F
S mix

Figure 4.6: Varying data deadlines.

First, very few packets are sent in sequence before the deadline expires and data from

the next section needs to be sent. Second, seq update messages are sent frequently

because the deadlines expire frequently. Note that the seq update messages are a part

of the new data packets that are sent.

The actual number of packets sent for a section of data depends on the bandwidth ob-

tained by the stream. But with small deadlines of 0.5 seconds we observe that a TLTCP

sender is able to send very few packets before the next jump in data sequence is indi-

cated by a seq update message. Since there are just a few packets being sent in each

section, if a loss occurs, there is a high likelihood that before three subsequent packets

are received at the receiver a seq update message will reach the receiver. This re-

sults in only a few instances of fast-retransmit and fast-recovery because at least three

duplicate ACKs are needed to trigger fast-recovery. If less than three packets reach the

receiver after a loss and before a seq update, the fast-recovery mechanisms will not

be triggered. Therefore, due to the small number of packets in each section that reach the

receiver TLTCP streams are not able to reduce their sending rate by using fast recovery.

This is confirmed by examining the trace files where we found that far fewer instances

CHAPTER 4. SIMULATIONS 64

of fast-retransmit and fast-recovery are observed in the experiment with the deadlines of

0.5 seconds (where the TLTCP flows obtain less throughout than the rest of the flows)

than with deadlines of 2.5 seconds (where the average throughput are approximately the

same). So instead of reducing their congestion window by half using fast recovery, the

TLTCP flows experience timeouts that abruptly reduce their sending window to one seg-

ment. This is why with very small deadlines TLTCP streams obtain a smaller portion of

the available bandwidth.

Note that in the scenario described above (with a deadline of 0.5 seconds) only a

small number of packets are actually sent while most of the packets are discarded at the

sender because of the expiry of the corresponding deadline. This is clearly undesirable

for a real application and indicates that the deadlines are not set properly. An application

using TLTCP would attempt to maximize the amount of data that reaches the receiver and

reduce the dropping of packets. In a situation where there is a lot of data being dropped

the application is expected to set larger deadlines or reduce the size of the section. There-

fore, the unfairness observed in the experiment with the deadlines of 0.5 seconds (Figure

4.6) is unlikely to occur when TLTCP is being used by a real application.

We conclude the chapter by noting that TLTCP not only transports data in a time-

lined fashion but does so in a TCP-friendly manner over a wide range of window sizes,

deadlines, round-trip times and competing traffic. Furthermore, most of the conditions

under which TLTCP flows appear to be unfair to TCP flows are the conditions under

which TCP itself is unable to share bandwidth equitably.

Chapter 5

Conclusions and Future Work

We conclude this thesis by summarizing the problem studied and the proposed solution,

TLTCP. As with most research, this thesis has led us to think about several related re-

search problems which we outline in the future work section.

5.1 Conclusions

This thesis proposes a new transport protocol, called Time-lined TCP (TLTCP), that is

designed for the transport of streaming media over the Internet. Remaining within the

confines of TCP’s window-based congestion control, TLTCP incorporates new mecha-

nisms that allow it to deliver time-sensitive data without requiring data reliability.

There are two main issues to be addressed in designing such a protocol. Firstly, since

the data being transported is time-sensitive, data that arrives late is no more useful than

lost data. As a result, at any point in time during playback the protocol must attempt

to deliver only the data that is still relevant for playback at the client and should avoid

sending obsolete data. Secondly, since the protocol is meant to operate over the Inter-

65

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 66

net, it should incorporate robust end-to-end congestion control mechanisms that ensure

equitable sharing of the network bandwidth with the existing traffic. Since most of the

current traffic in the Internet is TCP, the property of being fair to the existing traffic is

called TCP-friendliness.

The problem of ensuring TCP-friendliness has been the focus of much recent re-

search. Most of these approaches have proposed rate-based congestion control, a mech-

anism that has some inherent flaws. We choose to investigate an alternative approach

that uses window-based congestion control for the delivery of streaming media data. Be-

cause streaming media data is error-resilient and time-sensitive, we have introduced new

mechanisms in TLTCP that allow time-lined delivery of data but does not require relia-

bility. Most of the mechanisms of TLTCP are based on TCP. However, instead of treating

all data as a byte stream, TLTCP requires that each section of streaming media data be

associated with a deadline. A TLTCP sender, upon expiry of the deadline for a section

of data discards it and starts sending data from the next section whose deadline has not

expired.

We have implemented TLTCP in the network simulator ns-2. In our first experiment

we show that the TLTCP sender, upon expiry of a deadline, skips the sequences for obso-

lete data and starts sending data from newer sections. Thus we verify that TLTCP indeed

performs data delivery in a time-lined manner. Furthermore, in order to accurately mea-

sure the impact that TLTCP flows have on competing TCP flows we perform extensive

experiments simulating a wide range of network conditions. We use two metrics for

quantifying TCP-friendliness that are based on the throughput obtained by the compet-

ing streams, the separation index and the friendliness ratio. Our simulation results show

that TLTCP competes fairly with TCP over a wide range of network conditions and in

most of the scenarios where it is not TCP-friendly, TCP itself does not share bandwidth

equitably. We have used simulations because it allows us to discount external factors that

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 67

may have introduced noise in our measurements in live Internet experiments. In addi-

tion, simulations facilitate the testing of TLTCP over a wide range of scenarios that are

difficult to produce and control in live Internet experiments.

TLTCP is designed to serve streaming media applications. In a streaming media sys-

tem the server creates a sending schedule for the media file requested. The schedule

specifies parts of media data that are needed for playback before specified deadlines.

TLTCP’s API exploits the characteristics of streaming media data by requiring that the

server associate deadlines with each section of media data as per the sending schedule.

At the client end the TLTCP API, not only delivers data but also informs the playback

application of the holes in the delivered sequences, facilitating reconstruction and play-

back of application data. The TLTCP API itself does not introduce new socket calls but

involves augmentating to two existing socket calls, recvmsg and sendmsg.

5.2 Future Work

During the research described in this thesis we have come across a number of issues that

would be interesting topics for future research. Some of these are natural extensions to

our present work, while others pose new challenges. The following is a list of possible

directions for future research.

� In this thesis, our investigation of the behavior of TLTCP is restricted to simulation

experiments. While this allowed us to measure the friendliness metrics accurately

and over a wide range of network conditions, live Internet experiments with a full

kernel implementation are necessary in order to validate our simulation experi-

ments. Not only would live Internet experiments allow the testing of TLTCP under

realistic traffic conditions but operating from a real kernel implementation would

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 68

illustrate the impact of non-network elements (e.g., scheduler latency [2] and vari-

able packet sizes).

� The experiments reported in Chapter 4 are not driven by a real application. In-

stead we send dummy data at unrealistically large data rates, in order to stress test

the time-line mechanisms of TLTCP. An important next step would be to create

a real streaming media player that uses TLTCP. This could be done using a soft-

ware codec for a particular streaming media format and the proposed TLTCP API.

Using such a streaming media application, the impact of using TLTCP on a real

application can be measured in terms of application performance and compared

with the performance of other streaming media systems. Furthermore, by mea-

suring the application’s performance and friendliness with competing traffic at the

same time one can better evaluate the tradeoff between application performance

and TCP-friendliness discussed in Section 2.3.4.

� Some changes to the TLTCP protocol may facilitate its wide use and deployment

on the Internet. For instance, if the protocol can be modified in such a way that

only the server’s network stack needs to be modified to deploy TLTCP then a

TLTCP server would be able to provide streaming media over the Internet to all the

unmodified TCP clients. With this in mind, TLTCP is designed to require minimal

changes to the TCP receiver. We believe that by modifying the sequence numbers

at the server in such a way that the discarded data is masked a TLTCP server can

operate with an unmodified TCP receiver. The drawback of this approach is that

the receiver would not be aware of the gaps in the data sequence. Thus it may

require additional complexity in the playback application which would potentially

decrease performance. However, most existing streaming media applications are

not informed of data losses by the transport layer and incur this overhead.

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 69

� While the points above are in spirit close to the proposed protocol (TLTCP), we be-

lieve there are several other approaches to the general problem of streaming media

data transport that require further investigation. Although there exists an abun-

dance of literature on rate-based mechanisms for congestion control in streaming

media systems [36] [26] [31], possibilities for using the more robust window-based

mechanisms have not been adequately explored for unreliable data transport. Our

work on TLTCP explores the use of TCP’s window-based mechanisms for the

transport of streaming media data. The next step would be to deviate from the

window control mechanisms used by TCP in order to provide better support for

streaming media. One possible avenue is to incorporate window management

mechanisms that improve smoothness in data transport. This may require less

buffering at the client and thus lead to an improvement in the performance of a

streaming media application. The new mechanisms should however ensure that

the fundamental principle of window-based congestion control, such as the con-

servation of packets, is not be violated.

� There are several emerging trends in the area of networking that can potentially

change the structure and composition of the Internet as we know it today. In order

to apply TLTCP in these new environments existing mechanisms of TLTCP may

require modification. One of the emerging trends in the area of networking has

been that of wireless networks. Although a lot of work has been done to improve

reliable data transport over wireless networks, we believe that there is room for

further work especially in the area of unreliable data delivery, such as streaming

media over wireless networks. It would be interesting to explore the window-based

mechanisms of TLTCP in this context.

� Another emerging trend is that of multicast networks. While there is currently little

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 70

support for multicast data delivery in the Internet, more mechanisms are expected

to be deployed in the near future. TLTCP in its present form is designed for unicast

transport. To take advantage of the multicast mechanisms that may be deployed,

TLTCP needs to be extended to support multicast. Congestion control in multicast

streams is an involved problem in itself and is currently an active area of research.

It is believed that the simple ACK based scheme of TCP may not scale for mul-

ticast. It would be a challenging problem to create a multicast equivalent of the

robust congestion control mechanisms of TCP.

Bibliography

[1] H.261 recommendation – video codec for audiovisual services at p*64kbp/s. Tech-

nical report, International Telecommunication Union, March 1993.

[2] M. Allman and A. Falk. On the effective evaluation of tcp. ACM Computer Com-

munications Review, 29(5), 1999.

[3] T. Berners-Lee, R. Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The world-

wide web. Communications ACM, 37(8):76–82, August 1994.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker,

J. Wroclawski, and L. Zhang. Request for comments: 2309, April 1998.

[5] CAIDA. Traffic workload overview, http://www.caida.org/Learn/Flow/tcpudp.html.

[6] S. Cen, C. Pu, and J. Walpole. Flow and congestion control for Internet streaming

applications. In Multimedia Computing and Networking, 1998.

[7] K.C. Claffy. Internet measurement and data analysis: topology, work-

load, performance and routing statistics. In NAE 1999 Workshop, 1999.

http://www.caida.org/Papers/Nae/.

71

BIBLIOGRAPHY 72

[8] K. Fall and S. Floyd. Simulation-based comparisons of Tahoe, Reno, and SACK

TCP. Computer Communication Review, 26(3):5–21, July 1996.

[9] S. Floyd. Connections with multiple congested gateways in packet-switched

networks, Part 1: One-way traffic. ACM Computer Communications Review,

20(5):30–47, 1991.

[10] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the

Internet. IEEE/ACM Transactions on Networking, to appear.

[11] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-

ance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[12] B. Furht. Multimedia systems: An overview. IEEE Multimedia, 1(1):47–59, 1994.

[13] J. Gemmel, H. Vin, Kandlur, V. Rangan, and L.A. Rowe. Multimedia storage

servers: A tutorial and survey. IEEE Computer Magazine, 28(5):40–49, 1995.

[14] T.R. Henderson, E. Sahouria, S. McCanne, and R.H. Katz. On improving the fair-

ness of tcp congestion avoidance. In Proceedings of Globecomm, 1998.

[15] S. Jacobs and A. Eleftheriadis. Streaming video using dynamic rate shaping and tcp

congestion control. Journal of Visual Communication and Image Representation,

9(3):211–222, September 1998.

[16] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM, pages 314–

329. ACM Press, August 1988.

[17] J. Mahdavi and S. Floyd. TCP-friendly unicast rate based flow control, January

1997. http://www.psc.edu/network-ing/papers/tcp friendly.html.

BIBLIOGRAPHY 73

[18] A. Mankin. Random drop congestion control. In ACM SIGCOMM, pages 1–7,

1990.

[19] M. Matthis, J. Semke, J. Mahdavi, and T. Ott. The macroscopic behavior of the

TCP congestion avoidance algorithm. Computer Communication Review, 27(3),

July 1997.

[20] S. McCanne. Scalable Compression and Transmission of Internet Multicast Video.

PhD thesis, University of California, Berkeley, December 1996.

[21] A. Mena and J. Heidemann. An empirical study of real audio traffic. In Proceedings

of IEEE Infocom, Tel-Aviv, Israel, to appear. IEEE.

[22] R. Morris. TCP behavior with many flows. In IEEE International Conference on

Network Protocols (ICNP), October 1997.

[23] K. Nahrstedt and R. Steinmetz. Resource management in networked multimedia

systems. IEEE Computer Magazine, 28(5):52–63, 1995.

[24] Real Networks. Real networks press release, December 7 1999.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A

simple model and its emperical valiations. In ACM SIGCOMM, 1998.

[26] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A model based TCP-friendly rate

control protocol. In IEEE NOSSDAV, June 1999.

[27] V. Paxson. Automated packet trace analysis of TCP implemenations. In Proceed-

ings of SIGCOMM, 1997.

[28] V. Paxson. End-to-end Internet packet dynamics. In Proceedings of SIGCOMM,

1997.

BIBLIOGRAPHY 74

[29] Sridhar Ramesh and Injong Rhee. Issues in TCP model-based flow control. Tech-

nical Report TR-99-15, North Carolina State University, 1999.

[30] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate based congestion

control mechanism for real-time streams in the Internet. Technical Report 98–681,

University of Southern California, 1998.

[31] R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate based congestion

control mechanism for real-time streams in the Internet. In IEEE Infocomm, March

1999.

[32] A. Rowe, K. Patel, B.C. Smith, and K. Liu. Mpeg video in software: Represen-

tation, transmission and playback. In Proceedings of IST/SPIE 1994 International

Symposium on Electrical Imaging: Science and Technology, San Jose, CA, Febru-

ary 1994.

[33] J. Salehi, Z. Zhang, J. Kurose, and D. Towsley. Supporting stored video: Reducing

rate variability and end-to-end resource requirements through optimal smoothing.

In ACM SIGMETRICS, 1996.

[34] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. Request for comments:

1889, January 1996.

[35] H. Schulzrinne, A. Rao, and R. Lanphier. Request for comments: 2326, April 1998.

[36] D. Sisalem and H. Schulzrinne. The loss-delay adjustment algorithm: A TCP-

friendly adaptation scheme. In International Workshop on Network and Operating

System Support for Digital Audio and Video (NOSSDAV), July 1998.

[37] R. Steinmetz. Analyzing the multimedia operating system. In IEEE Multimedia,

April 1995.

BIBLIOGRAPHY 75

[38] W. Stevens. Request for comments: 2001, January 1997.

[39] W.R. Stevens. TCP/IP Illustrated, Volume 1. Addison Wesley, 1994.

[40] W.R. Stevens. UNIX Network Programming, Volume 1. Prentice Hall, 2nd edition,

1998.

[41] T. Turletti, S. F. Parisis, and J-C. Bolot. Experiments with a layered transmission

scheme over the internet. Technical Report 3296, INRIA, Sophia Antipolis, France,

November 1997.

[42] UCB/LBNL/VINT. Network simulator – ns (version 2), http://www-

mash.CS.Berkeley.EDU/ns/.

