Babylon: A Java-based Distributed Object

Environment

Matthew Izatt

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements
for the degree of

Master of Science

Thesis Supervisor: Dr. Tim Brecht
Graduate Programme in Computer Science
York University

Toronto, Ontario

July 10, 2000

Babylon: A Java-based Distributed Object Environment

Matthew Izatt

A thesis submitted in conformity with the requirements
for the Degree of Master of Science
Graduate Programme in Computer Science

York University

Abstract

This thesis reports on the building of a system in Java, designed to handle dis-
tributed objects. A fully functional prototype system, named Babylon, has been built
which implements the infrastructure to support distributed Java objects. By leverag-
ing the security and portability features of Java, Babylon allows interested parties to
contribute heterogeneous hardware resources to a shared computing system, without
concern for security. While other Java-based distributed systems exist, we believe
Babylon represents an improvement over other systems because of the combination
of features supported by Babylon.

Babylon is composed of class libraries which are written entirely in Java and that
run on any standard compliant Java virtual machine. These class libraries implement
and combine several key features that are essential to supporting distributed and
parallel computing using Java. Such features include the ability to:

v

e casily create objects, which require no special programming, on remote hosts
and interact with those objects through either synchronous or asynchronous

remote method invocations,

e freely migrate objects to heterogeneous hosts at any point in time,

e request console, file or socket input and/or output on the originating host,

regardless of the location of the object,

e seamlessly handle the arrivals and departures of compute servers to and from

the system.

We report on a system comprised of class libraries, which enables programmers to
easily interface both new and pre-existing objects with independent Babylon server
objects, which manage the physical resources available to complete the computation.
Experimental results are included which demonstrate the overheads involved in each
feature. Drawing from these results, and from experience using Babylon, we conclude

with a discussion of Babylon’s strengths and weaknesses.

Acknowledgments

The Babylon Project was a dream given form. I'd like to thank Dr. Tim Brecht for
his supervision. His suggestions, comments and famous red pen made this a better-
written and more comprehensive thesis. Also thanks to Dr. Richard Paige, Dr. Franck
van Breugel and Dr. Rene Fournier for serving on my examining committee.

This research (and other personal items) was funded in part by a scholarship from
the Natural Sciences and Engineering Research Council of Canada.

This thesis would not have been possible without the love, support and provision-
ing of food from my parents. In addition, I’d like to thank my colleagues in the grad
program (Rick, Behrad, Leyla and Andrew) for their inspiration, help and friendship.

“G’Quan wrote: ‘There is a greater darkness than the one we fight. It
is the darkness of the soul that has lost its way. The war we fight is not
against powers and principalities, it is against chaos and despair. Greater

than the death of flesh is the death of hope, the death of dreams. Against
this peril we can never surrender.””

— G’Kar in Babylon 5:Z°ha’dum

“The past tempts us, the present confuses us, and the future frightens
us. And our lives slip away, moment by moment, lost in that vast terrible
in-between.”

— Centauri Emperor Turhan in Babylon 5:The Coming of Shadows

“No boom?”

“No boom.”
“No boom today. Boom tomorrow. There’s always a boom tomorrow.
Boom, sooner or later. BOOM!”

— Babylon 5:Grail. Also quite applicable to software development.

vi

Contents

Page
Abstract iv
Acknowledgments vi
List of Figures xii
List of Tables xiii
CHAPTER
1 Introduction 1
1.1 Motivation 2
1.2 Objectives e 4
1.3 Contributions e, 5)
1.4 Outline of the Thesis 8
2 Background and Related Work 10
2.1 The Java Language Lo 10

vii

2.2

2.3

2.1.1 Remote Method Invocation 11

2.1.2 Object Serialization 13
2.1.3 Classloading oo 14
2.1.4 Reflection 15
2.1.5 Security Manager oo 15
2.1.6 Distributed Garbage Collection 16
Related Worko 17
221 JavaPartyo o 17
222 Javelino 18
223 Charlotte o 19
224 Java/DSM 20
225 ARMI 20
2.2.6 Transparent Migration 21
2.2.7 Java-based Mobile Agent systems 22
228 Voyagero 23
229 ABCH+ . . . e 24
Ajents L 24
2.3.1 Remote Object Creation 25
2.3.2 Ajents Server 26
2.3.3 Asynchronous Remote Method Invocation 26
2.3.4 Remote Object Migration 28

viii

2.3.5 Features not adapted for Babylon 28

236 ParaWeb 29

2.4 Discussiono e e e e 30

3 Babylon Architecture 32
3.1 Imtroductiono 33
3.1.1 Terminology 33

3.1.2 A Short Programmer’s Guide 35

3.2 Object Hierarchy Design 39
3.3 Remote Class Loading 44
3.4 Migration Lo 47
3.4.1 Overview of Object Migration 49

3.4.2 Checkpointing Lo 52

3.4.3 Migrating a Checkpointed Object 55

3.4.4 Reference Updating o6

3.5 Additional Architectural Issues 59
3.5.1 Design of Babylon’s Remote Method Invocation 59

3.5.2 Exception Handlingin RMI 63

3.5.3 Notes on Garbage Collection 66

4 Remote I/0 68
41 Issuesin Remote I/O Lo L. 69

X

4.2

4.3

4.4

4.5

4.6

4.2.1 A Short Programmer’s Guide
4.2.2 Object Hierarchy Design with I/O
4.2.3 Babylon’s I/O Design Issues

Console I/O o

5 Scheduling

5.1

5.2

Issues in Scheduling o o o000
5.1.1 Babylon Information

Design o

6 System Evaluation

6.1

6.2

Performance Evaluation,
6.1.1 Testbed,
6.1.2 Benchmarks

6.1.3 Applicationso Lo

Discussion

7 Conclusions and Future Work

87

88

91

94

97

97

97

98

104

109

114

7.1 Conclusions s 114

7.2 Future Worko 117

A Babylon User API 120
A.1 babylon.core.Babylon 120
A1l Methods L 120

A.2 babylon.core.Future o 121
A21 Methods 122

A.3 babylon.core.RemoteObj 122
A31 Methods 122

A.4 babylon.sched.SchedulerImpl 122
A41 Methods L 122

A.5 babylon.io.RemotelOImpl 123
A51 Methods L 123

B Sample Babylon Application - Serialized Matrix Multiply 125
B.1 Matrix.javao 125
B.2 MultiplyMatrix.java.o Lo 127
B.3 TestMatrixMult.java oo 129
Bibliography 131

xi

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

4.3

4.4

4.5

4.6

A Simple Example of Babylon’s Referencing Structure 34
Code Example of a Remote Object 36
Code Example of Remote Object Creation 37

Code Example of Synchronous and Asynchronous Remote Method In-

vocationsl e e e e e 38
Example of Code Performing Object Migration 39
Object Hierarchy Design 40
Remote Method Invocation After Third Party Migration 58
Internal Path for Remote Method Invocation 60
Code Example of Remote I/O Use in a Remote Object 72
Object Hierarchy Design with I/O 74
Code Example of a Babylon I/O Wrapper Class 75
Remote I/O Design L 76
FileI/O Diagram 82
Socket I/O Diagram 85

xii

List of Tables

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7.1

Remote Method Invocation Times 99
Remote Object Migration Times 100
Checkpointing Performance Results 101
Object Output Results 103
Matrix Multiplication: Execution Time Comparison and Speedup . . 105

Serial Matrix Multiplication Times with and without Migration Over-

headso 107
File Display Results oo 108
Object Restrictions in Order to Utilize Babylon Features 117

xiii

Chapter 1

Introduction

Babylon is a system comprised of class libraries, which enables programmers to im-
plement distributed objects in Java. We believe that Babylon’s range of features,
combined with its ease of use, make Babylon a powerful system for distributed pro-
gramming and an improvement on other Java-based distributed systems. In addition,

its implementation in standard Java makes it available to the widest possible audi-
ence.

In this chapter, we discuss the motivation behind implementing distributed sys-
tems in Java; we list the objectives of the Babylon project; and we summarize the
contributions this thesis makes to the area of Java-based distributed systems. Finally,

we outline the organization of the remainder of the thesis.

1.1 Motivation

The rapid rise of the public Internet, as well as smaller organizational intranets, has
been due to the seamless access they provide to information that is distributed in
remote locations across the network. The sharing of information is currently the
major factor in the growth of networks due to improved accessibility.

This thesis describes the design, implementation and experimental evaluation of
a system, called Babylon, which aims to make distributed computing resources as
easily available as distributed information. A basic requirement is that the imple-
mentation of a system for distributed computing should benefit from the extra power
and resources of the many computing devices located on large networks. In order to
accomplish this, the varied computational resources available on wide area networks
must be able to communicate with each other. Just as the invention of HTML created
a language to facilitate the sharing of information, the invention of Java [17] created
a language which allows the sharing of computational resources among heterogeneous
computing systems.

The most compelling reason for implementing distributed and parallel applications
in Java is that compiled Java programs produce byte-code! which can be executed or
interpreted on any machine that implements the Java Virtual Machine (JVM) [26]. As

well, since each Java virtual machine, which may be executing on different architec-

1Other programming languages can also be compiled into Java compatible byte-code.

tures, implements an identical machine, the programmer need not be concerned with
problems due to differences in architecture that traditionally plague heterogeneous
distributed and parallel applications. Such problems include differences in: sizes of
data types, byte orderings and structure alignment. By providing a standard virtual
machine, the difficulty of programming for heterogeneous systems is not only greatly
reduced but it also provides for new opportunities to migrate executing objects to

different hosts.

Another standard Java feature is dynamic class-loading. This provides the foun-
dation upon which objects, which may not be known to the JVM at start-up, may be
loaded and executed. This is important in order for distributed objects to be instanti-
ated on any host, at any time. Additionally, Java provides a security manager which
can be used to control access to resources in the system. This is especially important
in a distributed system where untrusted user programs are granted permission to
execute on unrelated hosts. Finally, Java provides a useful implementation of remote
procedure calls. Java’s Remote Method Invocation (RMI) [42] provides a useful tool
for simplifying distributed programming. By taking advantage of built-in features
designed to support RMI, such as serialization, it is possible to create projects of
greater complexity than is possible in languages without this support.

In summary, the Java language is important due to its popularity and platform in-
dependence. This single advantage ensures that Babylon is available to a potentially

large audience. In addition, Java provides standardized tools such as remote method

invocation, object serialization and reflection, that greatly simplifies distributed pro-
gramming. Thus, the advantages of Java motivate creating a Java-based system to

support distributed objects.

1.2 Objectives

While Java provides an excellent base for creating applications, the features available
for distributed object programming are limited. These features, and their limitations
will be discussed in greater detail in Chapter 2. The goal of this project is to improve
and extend an existing set of Java class libraries for distributed object programming,
named Ajents [7], which is further discussed in Chapter 2. Babylon seeks to provide
more powerful support for distributed objects, while simplifying the programmer’s
tasks and maintaining 100% Java compatibility.

In order to meet these goals, certain basic features are required in order for the

resulting system to be effective.

e The system must allow users to seamlessly create objects on various machines.

Users must be able to access these objects in a fashion similar to local objects.

e Remote objects must be mobile. Babylon is envisioned as a system which
allows for continual changes in the availability of computing resources. Mobile
objects are required in order for objects to be migrated between servers, should

computing resources depart, or become overloaded. Mobility is also required

4

for mobile agent applications.

e Remote objects should be able to communicate with external objects, devices
and networks through means other than method invocations. This includes con-
sole and file input/output, and network (socket) communication. Additionally,

Babylon should be able to support communication interleaved with migration.

e The system should have techniques for handling the arrival and departure of
servers and be able to adequately provide a link between client objects and

servers available in the system.

e The system should not pose a security threat to those who contribute resources,

in the form of servers.

e The system must be easy to use for experienced Java programmers.

Finally, we seek to demonstrate through performance benchmarks and qualitative

analysis that the system features are functioning, useful and efficient.

1.3 Contributions

Babylon contributes new features and approaches to the area of distributed object
computing in Java. However, the key contribution of Babylon is the integration of

both new, and previously researched features, into a single comprehensive system.

While other systems implement some of the same features in different ways, none
combine the breadth of features with the ease of use of Babylon.

Other existing systems for building distributed programs in Java almost univer-
sally include special non-standard keywords or other changes to the Java language
specification in order for distributed objects to work properly while making program-
ming reasonably easy. In Babylon, no modifications are made to the Java language
and no preprocessors, special compilers, or special stub compilers are required. There-
fore, Babylon and any programs written for it, can be executed on any standard Java

virtual machine.

Another main contribution of Babylon is that it allows almost any Java object
to be used in a distributed context. To our knowledge, all other distributed object
systems require that participating objects use special keywords, extend pre-defined
classes or otherwise be programmed in a special fashion. In Babylon, any object may
be created remotely and its methods invoked remotely. To take advantage of migra-
tion, objects must be serializable, while to take advantage of I/O requires inheritance
from a specific object. While the Babylon class libraries rely upon RMI to execute
remote methods, objects need have no knowledge of this. This also means that ex-
isting objects for which only byte-code (i.e., no source) is available, can be remotely
created, and methods can be remotely invoked. If the object is serializable, it can

even be migrated.

An additional contribution of Babylon, and this thesis, is in the area of object
migration in Java. The most notable contribution is support for the immediate mi-
gration of objects, including objects currently executing a method invocation. The
methods used to implement this type of migration in Babylon, notably the use of
checkpointing and rollback, are, to our our knowledge, new to Java-based distributed
systems.

The use of remote method invocations often limits interaction with a remote object
to method invocations, parameters and return values. Traditionally, remote objects
(and other existing Java based systems that we are aware of) are only able to provide
output to the host upon which they are executing. Babylon includes built-in support
for remote input and output to and from consoles, files and sockets. This is done in
a manner which is relatively simple to use, fully satisfies security requirements, and
operates seamlessly even when objects are migrated.

In addition to the combined features listed above, this thesis also contributes
towards the eventual creation of a hierarchical scheduling system which can combine
the power of distributed objects with the approaches of workload management to
effectively utilize available resources. This is done by providing simple mechanisms
upon which scheduling policies can be built.

Babylon contributes several features which are unavailable in existing Java based

systems, in ways that ensure that it is effective yet easy to use. In addition, this

thesis includes experimental results which show that: good speedup is achieved in an
example parallel application; the overheads introduced by Babylon’s implementation
do not adversely affect remote method invocation times; and perhaps surprisingly,
the execution time of objects used in our experiments is not greatly impacted by the

cost of migration.

1.4 QOutline of the Thesis

The remainder of the thesis is organized as follows.

Chapter 2 discusses work related to Babylon. The relative strengths and weak-
nesses of other Java-based systems for distributed computing are discussed. This
includes Ajents, the system from which portions of Babylon’s infrastructure evolved.

Chapter 3 describes the architecture of Babylon and discusses the mechanisms
implemented. This chapter covers the overall design strategy, and the resulting object
hierarchy. It then continues to describe the important features of the infrastructure,
including remote class loading, and the various forms of object migration supported
by Babylon.

Chapter 4 reports on the methods used to implement remote input and output in
Babylon. Effectiveness, ease of use considerations, and pitfalls of the approach used

are also reviewed.

Chapter 5 discusses the requirements for scheduling a distributed system support-

ing migration and details the scheduling mechanisms that have been implemented in

Babylon.

Chapter 6 evaluates the performance of several of Babylon’s key components as
well as the performance of some example applications that have been implemented
using Babylon. Following these results, we discuss the strengths and weaknesses of
Babylon.

Finally, Chapter 7 draws conclusions about the success and failures of Babylon.

In addition, the opportunities for future work are discussed.

Chapter 2

Background and Related Work

Considerable work has been completed in the field of Java-based parallel and dis-
tributed programming. In this chapter, we consider research related to Babylon and
discuss respective strengths and limitations.

Section 2.1 describes the features provided by the Java language which are vital
to the implementation of Babylon components. Section 2.2 describes research done
on mechanisms and complete systems which are related to Babylon. Section 2.3
describes Ajents [7], a project which predates Babylon, and from which portions of
Babylon have evolved. Finally, Section 2.4 concludes the chapter with a discussion of

the related work.

2.1 The Java Language

The Java platform [43] supports a great number of features on top of the language

specification [16]. As part of Java’s standard API [43], Java includes features specif-

10

ically designed to aid with distributed systems programming. Babylon takes advan-
tage of a number of built-in high-level Java features such as remote method invocation
(RMI), object serialization, reflection, the Java security manager, and classloader to
produce a system which would be far more difficult to create with other languages,
lacking these features. To our knowledge, no other programming language supports
all of these features as part of the language standard. In this section, we describe the

Java features which serve as important building blocks for implementing Babylon.

2.1.1 Remote Method Invocation

Java’s version of Remote Method Invocation [42] provides a level of abstraction which

allows a user to utilize a remote reference in the same manner as a local reference.

This is an object-oriented version of a Remote Procedure Call (RPC). In order to
accomplish this level of transparency, Java adds a layer of complexity to remote

object programming. RMI programming requirements and limitations include:

e Instance variables of remote objects are inaccessible, even if they are labeled

public.

e Remote invocations can not be invoked on static methods, nor can remote

methods access static variables.

e An interface must be declared for the remote object, which must include every

method available for remote invocation.

11

e All remotely accessible methods must be declared public, as well as throw a

RemoteException.

e Remote objects generally extend one of RMI’s classes, e.g., UnicastRemote-
Object. Java only allows single inheritance, thus prevents remote objects from

being sub-classes of other related objects.

An additional requirement is that the remote object must be compiled using a special
stub compiler (rmic) which produces two extra layers of code. These are: a skeleton
for the remote object which runs on the server side, and is responsible for dispatching
calls to the remote object, and a stub for the remote object which runs on the client

side and forwards method invocations to the server side. The remote reference held

by the client is a reference to that stub, rather than a direct reference to the remote
object. In addition to handling the method invocations, stubs and skeletons also
serialize/deserialize parameters and return values.

RMI in Java is limited to synchronous method invocations. However, this lim-
itation is overcome in Ajents [7] and ARMI [35]. Java RMI is also limited by the
requirement that remote objects must be created by a server program which runs all
the time. However, no such server program is provided with the JDK. Thus the Java
standard provides no methods for the dynamic creation of remote objects. Ajents
implements an interactive server program in order to provide remotely accessible

dynamic object creation.

12

Activation

Java 1.2 introduces Activatable objects [44]. An activatable object describes an
object which is statically registered with a daemon, but is not actually created until a
remote method is invoked upon the object. Registering with the daemon is completed
by using a “setup” class, which must be executed on the remote host. Later, upon
receiving the first RMI request to the registered object, the daemon instantiates
the object. While this reduces the need to have remote objects permanently active
(whether they are currently in use or not), it still does not provide the flexibility
of dynamic on-demand object creation. Activation is mainly intended as a means
of improving resource control rather than for supporting remote object creation. In
Babylon, only the Babylon server must be started on a remote host and once it is

running it provides the facilities necessary to create any user defined remote object.

2.1.2 Object Serialization

Java provides a standard method [41] for objects to be converted into a format where
they may be stored as a sequence of bytes. This process is called serialization, and in
the context of other languages is sometimes referred to as marshaling. Serialization
is vital for the transfer of objects between hosts, or in order to implement persistence
(via saving objects to disk). Object serialization occurs transparently when an object

is passed as a parameter in a remote method invocation or when an object is passed as

13

a parameter through an I/O stream. In order to ensure that programmers are aware of
this feature, objects which may be serialized must implement the serializable interface.
Since Babylon’s implementation of migration relies upon object serialization to move
objects between hosts, it is therefore impossible to migrate any objects that are not
serializable using a standard Java virtual machine. It should be noted that some
core Java API objects are not serializable. This includes most of the graphical user
interface as well as the Java thread package. Thus, an executing Java thread is not

migratable, because it is not serializable.

2.1.3 Classloading

Most programming languages and environments require that all code be statically
compiled and linked as a single step in creating an application. Java, however, sup-
ports dynamic class loading [17]. This means that code that is used to implement an
object is only loaded when required (i.e., when that class is first encountered during
execution). Dynamic class loading implies the ability to reference and instantiate ob-
jects which are unknown to the application at compile-time. This makes it possible
for a Babylon server to be executing, and users to request remote object creation,
without the Babylon server having any prior knowledge about the objects which are

to be created.

14

2.1.4 Reflection

Java provides a feature, called reflection [43], which allows the object to determine
type information from an object instance, and to create an object instance from
type information. This feature is vital to portions of Babylon. Reflection allows
instances of objects to be created even if the class name is not known until run-time.
For example, a user-provided class name (e.g. ‘ca.yorku.cs.myClass’’) can be

used to create an instance of that class. Reflection can also used to determine the

methods and fields of objects that are dynamically created. For example, given an
object named myObject, of class myClass and the method (as a string) ¢ ‘getName’’,

reflection can be used to invoke myObject.getName ().

2.1.5 Security Manager

The Java security manager [43] is a class which allows applications to implement a
security policy, which defines which Java features, objects are allowed to access. To
enforce this, as the first step in performing many Java API methods (e.g., file open,
process creation), a security manager method is called to check whether the current
application is allowed to access that method. The security manager allows Babylon to
ensure security for those who provide computing resources by restricting object access
to those API features which do not affect the host. This also provides flexibility, as

each server application may alter the security manager to their own specifications.

15

For example, on a trusted internal network, users may be allowed access to the file
system, while on the public Internet, objects should not have any access to the file
system. Babylon uses a default RMI Security Manager which prevents remote objects
from accessing all potentially dangerous functions!'. It is possible to change these

restrictions, by extending the RMI Security Manager class.

2.1.6 Distributed Garbage Collection

In addition to garbage collection done on a single host, Java also supports distributed
garbage collection [42]. Tt does this through a reference-counting algorithm, which
keeps track of all live references, local and remote. When references are created to
objects, that object’s reference count is increased. Similarly, when remote references
are deleted, the reference count is decremented. When the object has no remaining
references, it may then be garbage collected. This method implies that creation and
deletion of remote references involves some number of network messages. Thus, the
creation and transfer of remote references should be done as sparingly as possible, to
avoid performance degradation. Java support for local and distributed garbage col-
lection simplifies the Babylon implementation by minimizing the amount of attention

that needs to be paid to garbage collection.

!See the Java API [43] description of the RMI Security Manager for a complete list.

16

2.2 Related Work

A number of systems for distributed computing in Java have been developed either
concurrently with Babylon or prior to it. These systems also leverage the Java virtual
machine in order to provide distributed or parallel computing platforms in heteroge-
neous computing environments. This section concentrates on research most directly
related to Babylon, primarily those which support Java-based distributed computing.
Specialized work has been completed in many of the techniques and mechanisms that
are used in Babylon (such as migration and checkpointing). However, this section
restricts itself to the most directly related work, mainly dealing with complete sys-
tems for Java-based distributed computing. Research into general scheduling and
I/O issues is covered in Chapters 4 and 5. Readers interested in Java parallel and
distributed computing research are also refered to the Java Grande Forum [21] web

site, which has links to all the major Java related conferences.

2.2.1 JavaParty

JavaParty [34] is an extension of Java designed to support transparent remote ob-
jects. It introduces the remote class modifier to the Java language. Adding this new
keyword to the class definition denotes that the class should be used in a distributed
fashion. To accomplish this, JavaParty uses a preprocessor which converts remote

classes into pure Java code utilizing RMI. The change to the language is designed

17

to simplify RMI programming, placing the burden of creating and handling remote
proxies upon the preprocessor. The main drawback is that it introduces modifications
to the Java language and therefore necessitates the use of the JavaParty preproces-
sor. This greatly simplifies the programming task, but results in increased complexity
in the actual Java code produced by the preprocessor. JavaParty creates ten Java
byte-code files for every single JavaParty class. Overall, the focus of JavaParty is on
simplifying distributed RMI Java programming, at the expense of source code porta-
bility. Babylon provides mechanisms to allow objects to be created remotely and

their methods invoked, without modification to either object source or byte-code.

2.2.2 Javelin

Javelin [8] (previously titled SuperWeb [1]) implements a “global computing infras-
tructure” which brings together three types of entities: clients, brokers and hosts.
Clients, who seek computing resources, register with a broker and submit their work
in the form of an applet. Hosts, who are willing to donate resources, contact the bro-
ker and run the applets. This work emphasizes methods for bringing together clients
and hosts, and focuses on ways of bartering for CPU time. Support is concentrated
on programs which can be divided into and run in Java applet form. Due to the
reliance upon applets, Javelin does not support object interactivity (in the form of
remote method invocations), or advanced features like migration.

Javelin++ [29], is the most recent extension of Javelin. This research concentrates

18

on issues related to the broker, the entity that connects the clients and hosts. The
two key issues addressed are how to ensure the scalability of the broker network, and
how to schedule work. Javelin++ introduces a distributed broker network, designed
to overcome single broker bottlenecks, and to scale on a global basis. Javelin++ also
compares two different schemes of work distribution, a deterministic scheduler, and a
probabilistic work-stealing scheduler. The results provided are promising and suggest
that their hierarchical scheduling scheme performs well on a scale larger than existing
projects, including Babylon. Babylon does not implement advanced scheduling algo-
rithms or mechanisms, and the Javelin++ research may be quite applicable to future
Babylon scheduling infrastructure and algorithm work. Javelin4++, as with Javelin,
is still designed around dividing computational jobs into defined pieces rather than

distributed interactive objects, and does not support object migration.

2.2.3 Charlotte

The goal of Charlotte [4, 22] is to support distributed shared memory on top of the
Java virtual machine. It provides classes which encapsulate the behavior of a dis-
tributed shared memory system (DSM). All accesses to shared objects must be done
through the provided interface (e.g., myInt.get ()). Charlotte provides an abstraction
of DSM, with fine-grained support for distributed work. Charlotte is an interesting
approach to distributed object programming. However, the variable access meth-
ods adds extra programming complexity to accessing shared variables, in addition

19

to the overhead required to keep shared memory consistent across nodes. Babylon
avoids these complexities, providing distributed object access through remote method

invocations rather than shared memory.

2.2.4 Java/DSM

Java/DSM [47] parallelizes the virtual machine itself, by making the virtual machine
a TreadMarks [23] client. This work allows for distributed shared memory (DSM)
applications in Java. In order for Java/DSM applications to work correctly, they
must include annotations to assist the underlying system in keeping memory consis-
tent across machines. TreadMarks is a DSM system which is heavily dependent on
operating system and architectural support. Thus, the modified virtual machine is

limited by the homogeneous machine requirements of TreadMarks.

2.2.5 ARMI

Previous work has considered mechanisms for implementing asynchronous remote
method invocations [35]. In this work a modified Java RMI stub compiler (armic)
is used to implement asynchronous remote method invocations. If the user chooses
to use armic (instead of the usual rmic), all stub classes created will be modified so
that (synchronous) RMI calls are made by a separate thread resulting in asynchronous

behavior by the calling object. The user is provided with the option of allowing all

20

RMI calls within a class to be either synchronous or asynchronous, but not both.
Babylon overcomes this problem by providing two distinct interfaces for synchronous
and asynchronous remote method invocations. An additional benefit of Babylon’s
approach is that Babylon does not require users to compile their classes using any

stub compilers (not even rmic).

2.2.6 Transparent Migration

Fiinfrocken [13] presents a technique that allows Java programs to migrate both object
state and program counter position transparently. This is done by preprocessing the
Java source code. Code is added that saves the runtime state at certain points
(dividing the code up into regions), making it possible to restore this state at the
same point. Restoration to the proper point is done by creating an artificial program
counter. Each region is surrounded by if-statements which increment the program
counter prior to migration, and checks the artificial program counter after migration,
to ensure code previously executed is not repeated.

Fiinfrocken’s approach requires access to all source code; thus program libraries
can not be instrumented. Support is not provided to ensure that local references such
as files handles work correctly after migration. Finally, there is significant overhead:
file size space penalties for the increase in source code size (a factor of 4 in their

results), a memory space penalty to store a copy of all local variables, and compile

21

and runtime time penalties.

Babylon’s implementation of transparent migration bears some similarities. Baby-
lon stores object state and program counter position at the method invocation level,
rather than at artificial points within the program. Due to this, Babylon does not
require any source code pre-processing, and thus does not increase source code size.
Fiinfrocken’s approach checkpoints and saves state more often than Babylon, thus los-
ing less computation after any migration, and restart. However, while Babylon loses
more computation after migration, rollback and restart, Babylon’s fewer checkpoints

approach means less overhead than Fiinfrocken’s approach.

2.2.7 Java-based Mobile Agent systems

Agent-oriented Java systems, some examples of which include Mole [40] and Aglets
[25], are designed to support Java-based autonomous software agents. Remote objects
(agents) may be created, and are provided with mechanisms for mobility and com-
munication. This independence allows objects independence, but limits ties to the
original client who created the object. Typically, these agent-oriented systems do not
provide references to outside objects, thus limiting the user’s ability to easily perform
remote method invocations. Generally, agent-oriented systems concentrate upon the
independent movement of objects, while providing less support for interaction and

control by the object’s creator. In such systems, in order for agents to behave intel-

22

ligently, yet independently, their behavior must be programmed. For example, it is
typical for such systems to require a stop method to be called, before migrating an ob-
ject. Therefore, each agent must be programmed to handle a stop method in which it
prepares to migrate, including ensuring that it reaches a steady state. The agent also
must be programmed to handle a restart method after migration is complete. This
type of intelligent behavior places the burden upon the programmer, rather than the
system. Babylon, on the other hand, is targeted towards easily building distributed
object applications and as a result emphasizes programming simplicity and object
control. Unlike existing agent-oriented systems, Babylon objects are not expected to

exert self-control (such as stop methods), or interact with the system.

2.2.8 Voyager

ObjectSpace’s Voyager [32, 15] is an extensive commercial product line which includes
an object request broker, application server and other products. Voyager’s distributed
systems toolkit supports remote object creation, asynchronous remote method invo-
cation and migration as well as substantial features beyond what Babylon supports
such as multi-casting, name spaces, servlets, timers and CORBA support. Similar
to Babylon, Voyager allows any class to be remote-enabled without modification, in-
cluding third party classes without source. As with Babylon, Voyager requires no
extra stub creation utilities as all the “distributed glue” is generated at run-time.
As a private commercial package, Voyager does not provide any details of how their

23

“distributed glue” is constructed, thus not allowing any implementation comparison
with Babylon. Unlike Babylon, Voyager’s migration facilities do not support migra-
tion with checkpointing and rollback, a key feature of Babylon. In addition, Voyager
provides no support for distributed I/O using files and sockets, instead supporting

messages for distributed communication.

2.2.9 ABCH++

ABC+++ [3], is a library designed for concurrent object-oriented parallel programming
in C++. It has influenced the design of Babylon’s (and previously Ajents’) interfaces
for remote object creation and asynchronous RMI. ABC++ does not support object
migration, nor does it include special features for heterogeneous computing. ABC++
is limited by the homogeneous nature of compiled C++ code, as well as the lack of
fully standardized high-level features in C++4, as compared to Java, such as object

serialization, dynamic class-loading and distributed garbage collection.

2.3 Ajents

Babylon retains parts of the underlying mechanisms used in Ajents [7], a previous
project completed by Patrick Chan. Ajents provides portions of the codebase for this
project, as well as some of the basic ideas which are extended in Babylon. The Ajents’

subsystems which are reused and/or extended for Babylon are described here.

24

2.3.1 Remote Object Creation

While the definition of Java used for Ajents and Babylon (JDK 1.1) provides support
for remote method invocation, the methods must be invoked upon existing objects
that have been statically created. Ajents implements remote servers which handle
requests for remote object creation. This allows an Ajents user to dynamically create
objects on remote machines.

Remote object creation is supported by the Ajents class libraries by using a class,
AjentsObj, which must be extended to create an object which executes on a remote
host. AjentsObj and classes which extend AjentsObj are Java RMI classes and
must satisfy Java’s RMI programming constraints (detailed in Section 2.1). The
key mechanisms used for remote object creation are implemented inside the Ajents
server. Once a program calls Ajents.remoteNew(object name, class name, ser-
ver name), the method call is translated into an RMI call to a remote Ajents server.
There, using Java reflection mechanisms [43], the requested class can be loaded into
a Class object at the remote host and then instantiated. The Ajents server then
adds the new object to its object table, and returns a remote reference to the calling
object.

Because the Ajents0bj is itself an extension of Java’s RMI mechanisms [42], this
method of creating a Remote object and returning a reference to it takes advantage

of the distributed garbage collection built into the Java RMI implementation. That

25

is, once the remote reference is no longer used, both the reference, and the remote
object will be garbage collected. Babylon does not require objects to extend any Java
RMI classes, thus freeing the programmer from knowing and following the details
and limitations of Java’s RMI specification. However, Babylon is still able to take

advantage of Java’s distributed garbage collection mechanisms.

2.3.2 Ajents Server

The role of the Ajents server is to provide a point of contact for creating objects on the
host on which the Ajents server resides. When remote object creation is requested, the
Ajents server instantiates the requested object based upon the class name provided.
In Ajents, the byte-code for this class must reside on the server. Babylon introduces
remote classloading so that users may create objects remotely, even if they do not
have direct access to any remote hosts.

In addition, the Ajents server keeps track of objects currently residing on it. This
permits the server to keeps track of a forwarding address in the form of a new reference

which points to the new location of the object, if the object gets migrated.

2.3.3 Asynchronous Remote Method Invocation

Existing standard Java techniques for remote method invocation [42] cause the execu-
tion of the requesting object to be suspended until the remote machine is contacted,

the method is invoked, and notification of method completion is received (usually in

26

the form of a return value). Ajents provides a means for performing asynchronous
remote method invocations thus enabling applications to overlap communication and
computation.

In Ajents, when the user performs an asynchronous RMI, a separate thread is
created which performs the RMI. As a result, the original object is only blocked
during the creation of the thread, and thereafter continues execution. Meanwhile,
the new thread performs a regular synchronous RMI.

To support return values, Ajents uses the concept of a future. In essence, the
Future object is a temporary receptacle for the return value. The return value (which
may be an object) is held inside the Future object until a get () request is made by
the program. When a call to get() is made, the result of the asynchronous RMI
is returned to the calling object. If the result is not yet available (i.e., if the get ()
request is made before the remote method invocation has completed), the object will
block until the result is available, at which point the object is automatically unblocked

and execution continues.

Ajents does not support the return of exceptions from remote methods to the

calling thread. This feature is added in Babylon.

27

2.3.4 Remote Object Migration

Ajents leverages Java features to provide support for a simple means of migrating Java
objects between different operating systems and even different architectures. Some
of the mechanisms required in order to migrate Java objects are partially provided
in current Java implementations in the form of object serialization [41], classloading
[17], and the standardization of the Java virtual machine [26].

Ajents supports a basic method for migrating idle objects (i.e., objects with no
remote methods currently executing). The migration of idle objects is fairly simple
since we do not need to concern ourselves with the possibility that they will be mod-
ified during or after migration. This is accomplished by using the java.io package’s
readObject () and writeObject () serialization methods in combination with socket
connections. In the case of an object currently executing a method, the migration
request blocks until the execution is complete. Following completion of the method,
the object is migrated, while further remote method invocations are blocked until the

migration is complete.

2.3.5 Features not adapted for Babylon

In addition to the previously listed features, Ajents also includes two other main
features. These are not applicable to the work done for Babylon, and thus are not

adapted for or included in Babylon.

28

Ajents supports active objects by associating a thread with each remote object
designated as active. Fach time a remote active object is created, a new thread is
also created. Active objects may override a run() method, which is invoked upon
creation by the thread. This allows the object to complete its own tasks, independent
of any method invocations. Objects not designated as active do not have their own
thread of control, and can only be affected through method invocations.

Support for active objects is not adapted for Babylon because it is not possible
to migrate threads in Java?. For this reason, active object support is not part of
Babylon, in favour of complete support for migration.

Ajents also includes a Remote Object Monitor. This feature serves as a graphical
tool to display the servers in the system, as well as the names of the objects residing
on each server. While this feature could be adapted to Babylon, it is not considered

a priority and therefore has not been updated to work properly with Babylon.

2.3.6 ParaWeb

Much of the impetus for the design of Ajents came from experience with ParaWeb
[5], a Java-based environment for parallel computing. ParaWeb was designed and
implemented before remote method invocation [46] and object serialization [37] were

added to Java. Hence, objects communicate through the awkward sockets interface.

2With modifications to the virtual machine, or through careful alterations to the user’s program,
limited thread migration is technically possible [13].

29

In addition, ParaWeb does not support remote object creation and remote method

invocation is accomplished using remote thread creation.

2.4 Discussion

As a language, Java provides an excellent base for implementing an object-oriented
distributed system. Primary among Java’s advantages are its platform independence,
and its high-level support for distributed programming, as described in Section 2.1.

This advantage has lead to research into systems which, as described in Section 2.2,
take many approaches to distributed computing using Java. While sharing many of
the same goals as the systems discussed, we believe Babylon has fewer restrictions
upon its use. Babylon is built entirely upon the existing distribution of Java tools in
the JDK. No modifications to the virtual machine are necessary, the Java language
has not been changed, and we do not require the use of modified compilers, stub
compilers or preprocessors. We believe that Babylon is capable of supporting most
of the features included in other, similar systems. While not completely transparent
to the programmer, Babylon does provide these features more transparently in some
cases and in other cases with fewer restrictions than existing systems.

We note that research into Java-based systems is a fairly young field, and some
of the issues Babylon seeks to address have not been examined in a Java context

before. For example, no other Java-based distributed system, that we are aware of,

30

incorporates remote object I/O into their system. In fact, providing users with remote
I/O operations for general parallel and distributed programming has received little
attention [10]. In Chapter 4 we provide a brief survey of related work on distributed
I/O operations, while Chapter 5 provides an overview of related scheduling research

which could influence Babylon’s further development.

31

Chapter 3

Babylon Architecture

In this chapter, the architectural design and implementation of Babylon is described.
Detailed in this chapter are the goals of the project, the system architecture that is
the result of these goals as well as a discussion of the compromises that were required
in order to obtain these goals.

One over-riding goal which impacts every design decision is the desire to create
a system which requires no special tools, altered virtual machines, or additions to
the language specification. To achieve this goal, Babylon consists entirely of native
Java applications and class libraries, written in pure Java, compiled using standard
compilers. By restricting Babylon to native Java applications and class libraries, it
may be used by anyone with access to a standard Java virtual machine. Thus Babylon

is available for use by the vast majority of computer users.

32

3.1 Introduction

The design and implementation of Babylon involved making many decisions and
trade-offs in order to achieve a useful distributed object system. In order to bet-
ter understand the low-level details of Babylon, this section first presents a broader
high-level view. First, some terminology is introduced, which is used throughout the

thesis, then Babylon’s features are described from a user’s perspective.

3.1.1 Terminology

In order to provide a more clear picture of how Babylon works, we describe a simple
example of the object relationship between a main program, a remote object, created
by the main program, and a scheduler when used in conjunction with Babylon.

The system upon which the user runs their main program is referred to as the
originating host. This is the only host the user needs access to. All interaction
between the user and Babylon takes place on the originating host. This includes the
execution of the main program and all input to and output from remote and local
objects. Additionally, the originating host can serve as the source for the byte code
used to implement the remote objects. This host and the main program executing
upon it are often referred to in this thesis as the client, in a client-server relationship.

A system upon which one or more remote objects are created and execute is

referred to as a remote host. Remote object creation and migration is facilitated

33

through a Babylon server. Remote objects can be created, and execute on any host
which is running a Babylon server.

The system upon which a scheduling server runs is referred to as the scheduling
host. The scheduling server may be contacted by both the originating host and the

remote hosts, since it provides the user with a reference to an available Babylon

server.

Scheduling
Server
IEd w> |
Scheduling Host
BabylonObj obj;/. .
Originating Host Remote Host

Figure 3.1: A Simple Example of Babylon’s Referencing Structure.
Arrows represent the referencing structure, with the source being the remote reference,
and the destination being the referenced object.

Figure 3.1 provides a high-level graphical representation of basic relationships
between hosts and objects. The main program on the originating host contains refer-
ences to the scheduling server, and to any remote objects it has created. The Babylon
server contains references to all objects currently residing on it, as well as a reference

to the scheduling server. The scheduling server contains references to all available

34

Babylon servers.
Note that it is possible for a single physical machine to act as the originating,

remote and scheduling hosts.

3.1.2 A Short Programmer’s Guide

This section presents short examples of how Babylon’s main features are used by
programmers. It demonstrates Babylon’s features from a user’s perspective. The
mechanisms which implement these features are explained in greater detail in the

following sections of this chapter.

Remote Objects

Figure 3.2 contains an example of an object which may be created as a remote object
in Babylon. Remote objects in Babylon need no special code or compilation in order
to be created or have their methods invoked. The object in the figure implements
serializable, which means it may have its state serialized or deserialized. This also

means that the object may be migrated by Babylon.

Remote Object Creation

In order for objects to take advantage of Babylon’s features, objects must first be
created by Babylon. Figure 3.3 shows an example of how a user creates the remote

object defined in Figure 3.2. In the example, the user initially registers with the

35

1 public class NewObj implements Serializable {

2 private String name;
3 NewObj(O {
4 name = new String("default");
}
5 boolean setName(String newName) {
6 name = newName;
7 return true;
7 String getName() {
8 return name;
}
}

Figure 3.2: Code Example of a Remote Object
Note that this is a completely standard Java object. Nothing special is, or need be,
added for it to be used as a Babylon remote object.

Babylon system in order to obtain a reference to a scheduler which is later consulted
in order to access an available server. Schedulers are further explained in Chapter 5.
Four parameters are passed to the Babylon.new method. These represent (1) the
fully qualified class name, (2) a user-specified name for the object, (3) the location of
the source code on the originating host!, and (4) a Babylon server for the object to
be created on. Note that the BabylonObj returned to the user is only a proxy object,
which contains the object’s real remote reference. Section 3.2 further describes the
relationship between the BabylonObj and Babylon’s internal representation of the
remote object. The Babylon server and scheduling server, although accessed by the

user, are started by the administrators of those hosts.

1One could implement mechanisms to obtain the source code from any available host. However,
this is not currently implemented in Babylon.

36

// Register to get a scheduler object
// which knows about available servers
1 BabylonScheduler sched = Babylon.register();

// Create a remote object on an available server
2 BabylonObj obj = Babylon.new('"babylon.tests.NewObj", "NewObjl",
"/home/babylon/tests/myobjs. jar", sched.AvailServer());

Figure 3.3: Code Example of Remote Object Creation
Remote Method Invocations

Communication with an object is completed primarily through remote method invo-
cations (RMIs). Like Ajents, Babylon supports both synchronous and asynchronous
remote method invocations (ARMIs). Babylon also handles exceptions for both RMI
and ARMI (explained in Section 3.5.2).

Figure 3.4 demonstrates examples of Babylon.rmi() and Babylon.armi() invo-
cations, and exception handling with ARMI. Line 1 demonstrates a synchronous RMI
call made by invoking Babylon.rmi(). The parameters to this method represent (1)
the object reference (originally obtained as shown in Figure 3.3), (2) the method
name, and (3) optional method parameters, in this case a single String parameter.
The result of the method is returned synchronously. That is, execution will block
until the result is available. Line 3 demonstrates an asynchronous RMI call made
by invoking Babylon.armi(). The parameters to Babylon.armi() are identical to
those for Babylon.rmi(). However, a Future object is returned immediately, and

execution continues. The result is not known until line 4, where the get () method

37

of the Future object is called. This method blocks until the result of the ARMI call

is available.

try {
// Make synchronous RMI call to the method setName
result = Babylon.rmi(obj, "setName", "NewObj2");

} catch (Exception ex) { ... }

N =

// Make asynchronous RMI call to the method getName
3 Future future = Babylon.armi(obj, "getName");

// Use futures to get the results. armi exceptions are caught here.
try {

String name = (String) future.get();
} catch (Exception ex) { ... }

o1

Figure 3.4: Code Example of Synchronous and Asynchronous Remote Method Invo-
cations

There is a notable difference in how exceptions are handled between RMI and
ARMI calls. RMI exceptions are thrown and caught immediately (line 2), while
ARMI exceptions are not thrown and caught until the Future object is accessed

(line 5).

Migration

Migration, which will be discussed in detail in Section 3.4, is accessible to the user
using the syntax shown in Figure 3.5. In this example, an object, previously created
in Figure 3.3, is migrated (line 1). Following migration, checkpointing is enabled
(line 2) in order to support migration during execution. An asynchronous method

is then invoked (line 3) and the object is migrated a second time (line 4). Finally,

38

a return value is obtained from the future (line 5). This example demonstrates the
use of migration as well as the fact that migration occurs transparently to the pro-
grammer. They may still use the same Babylon0Obj after migration and are unaware
of whether the second migration occurred before, or after, completion of the asyn-
chronous remote method invocation. It is possible the ARMI call was interrupted,
the object’s checkpointed copy migrated, and the method restarted. However, the

user still receives a correct result.

// Migrate "obj" to a different host
// Parameters: object, new host
1 Babylon.migrate(obj, sched.AvailServer());

// Turn checkpointing on
2 Babylon.setCheckPoint(obj, true);

// obj is checkpointed and method is invoked
3 Future future = Babylon.armi(obj, '"getName");

// Migrate obj, possibly before armi completes
4 Babylon.migrate(obj, "tiger.cs.yorku.ca");

5 result = future.get();

Figure 3.5: Example of Code Performing Object Migration

3.2 Object Hierarchy Design

The design of the object hierarchy within Babylon is based upon a simple vision: to
provide a system through which clients can easily and seamlessly create and interact
with remote objects. This section presents Babylon’s primary internal object hierar-

chy, and describes how the object hierarchy design aids in implementing Babylon’s

39

features.

Figure 3.6 demonstrates the object hierarchy, using the class names used in Baby-
lon. The client’s point of access to their remote object within Babylon is the Babylon-
Obj. This object contains a reference to an RObject on the remote host. The RObject
stores within it the user’s remote object, as well as some state information for use
by the Babylon Server. The remainder of this section describes the purpose of each

object within the hierarchy.

BabylonObj

Originating Host Remote Host

Figure 3.6: Object Hierarchy Design.
Arrows represent the referencing structure, with the source being the remote reference,
and the destination being the referenced object.

40

BabylonObj

The BabylonObj represents the user’s reference to their remote object. Rather than
using a direct reference to the remote object stored on the remote host, the Babylon-
Obj is a proxy object returned by Babylon.new() (as described in Section 3.1.2). All
internal details of the BabylonObj are hidden from the user. The class contains a
reference to an RObject on a remote host, as well as methods to update the RObject
reference. Updating may be required because the RObject reference refers to the R-
Object object’s last known residence. If the RObject object is migrated, the reference
will require updating. Using a proxy object (BabylonObj), rather than allowing the
user direct access to the reference, provides certain advantages for Babylon. By
preventing the user from directly accessing the remote object, all interaction with
that object must be completed through designated Babylon interfaces. This ensures
that Babylon is aware of all methods invoked upon an object. As well, the use of a
proxy allows the RObject reference to be altered by Babylon without involving the
user. These features of the proxy object are vital to providing transparent third party
migration, checkpointing, and rollback, as is described in Section 3.4.

This approach also has disadvantages. Because the BabylonQObj is unaware of the
remote object’s interface, invoking remote methods in Babylon can not be done us-
ing the traditional object.method(optional parameters) interface. Instead the

interface described in Section 3.1.2 is used (e.g., Babylon.rmi(object, method,

41

optional parameters). Thus the interface for creating and interacting with remote
objects is different from local objects. This requires the application programmer to
keep track of which objects are local and which are remote and to ensure that the
proper interface is used for remote objects. This is not considered a large disadvan-
tage since it forces programmers to remember which method invocations are remote
when performance is an issue.

An additional disadvantage of the Babylon RMI interface is that the method and
parameters passed as parameters to the RMI call can not be checked at compile time,
nor can the types of the parameters that are to be passed to the specified method.
As a result it is not possible to detect errors that might otherwise be detected at
compile time, such as invoking a non-existent method, or invoking a method with
incorrect arguments types, or an incorrect number of arguments. Babylon detects such
problems at run-time and throws an exception appropriate for the error. However,
we believe that these tradeoffs are outweighed by the advantages of using a proxy,

and the desire to maintain 100% Java compatibility.

RObject

The RObject is a (Java RMI) Remote object. It exists as a container object for the
user’s remote object. In addition to storing the user’s object, the RObject also keeps
track of other information about objects required in order for Babylon to implement

several features. The data members of the RObject class are presented here, although

42

their uses are described in greater detail later in this thesis.

e The object’s current status (idle, executing, migrating).

An identification object (in the current version of Babylon, this is simply a user

defined name).

The server upon which the object resides.

The thread currently executing a method of this object, if any.

The object’s byte code.

A checkpointed copy of the object (if one exists).

A boolean representing whether checkpointing is active or not.

All remote methods are invoked through the RObject class’s remote method
rmi (). This provides Babylon with an opportunity to intercept method invocations.
This, in turn, allows Babylon to complete other tasks before (e.g., checkpointing) and

after (e.g., redirecting exceptions) the actual method invocation.

User Object

This level of the object hierarchy represents the user’s object. An example user
object was provided in Figure 3.2, The user’s object is not restricted by any required

keywords, interfaces, exceptions or special compilation requirements. Any object may

43

be created as a Babylon remote object, including objects for which only byte-code
is available, and have its methods invoked remotely. The only limitation is that
objects wishing to take advantage of Babylon’s migration facilities must implement
Serializable.

This lack of restrictions is possible because the user’s object is a member variable
of the RObject class. The RObject class maintains an Object reference?, which
references the user’s object, once that object has been created using new. In Ajents,
the user’s object is inherited from a Java RMI class, and thus also inherited all
the requirements and limitations of Java RMI. In Babylon, all remote methods are
invoked upon the RObject object, which in turn, uses reflection to invoke methods of

the user’s object.

3.3 Remote Class Loading

One of the strengths of Java is dynamic class loading. This is the ability to load
byte-code when required, at run-time, rather than the traditional requirement that
class code be compiled directly into an application. This is especially important for
Babylon, since Babylon servers create objects which are unknown at server start-up
time. The classes for these objects must therefore be loaded dynamically and on

demand.

2Since all objects in Java are, by definition, subclasses of the Object class, we can simply assign
the user’s object to this reference.

44

In order for the Java virtual machine to load the byte-code for a class, it accesses an
environment variable (CLASSPATH) which provides a directory search path in order to
find the appropriate file. By default, the system classloader is only able to dynamically
load class files available through a locally accessible disk. The JDK also includes an
RMIClassLoader class which supports network based classloading for RMI objects
and parameters to methods of RMI objects. The dynamic class loading described in
the Java RMI specification [42] requires that all class files be located either locally,
in the CLASSPATH, or at a specified URL. This was deemed insufficient for Babylon,
where the goal is to allow objects to be created on arbitrary participating machines. In
order to utilize remote resources, Babylon users should not be required to place their
class files on an accessible WWW server nor are they expected to have accounts on, or
physical access to all participating hosts in order to preload a copy of the byte-code.
Babylon requires the user to specify a Java Archive (JAR) file which must contain all
the class files which may be required by the remote object. No special placement of
this file in a specific directory, or upon a WWW server is needed. However, the Jar
file must be available on the originating host®. This allows users without access to a
WWW server to utilize Babylon.

In order to allow classloading to occur from sources unsupported by the default

classloading options, Babylon implements its own remote classloader class (named

3This is an implementation detail, rather than a design limitation. Accessing the Jar file from a
remote site is possible, but not implemented in the current Babylon implementation.

45

RemoteClassLoader), by extending java.lang.ClassLoader. In addition to allow-
ing Babylon to directly load classes from the Jar archive, this allows Babylon to
directly access the cache of Class* types contained within the classloader. These
Class objects are used to instantiate remote objects upon Babylon servers, using re-
flection mechanisms. Since the Babylon classloader is just an extension of the default
classloader, the same rules are applied for classloading®.

The mechanics of remote classloading can be described by these basic steps. Dur-
ing remote object creation one of the parameters to the Babylon.new() method is
the location of the Jar file containing the relevant byte-code. This file is read by a
Codebase class object. The Codebase class stores the Jar file in a byte array, and
creates a hashtable containing the names and sizes of the class files contained within
the archive. The information in the hashtable is determined upon the initial reading
of the Jar file, and is stored in the Codebase object for reuse. Babylon then transfers
the Codebase object (through an RMI call) to the Babylon server upon which the
new object will be created. On the Babylon server, the RemoteClassLoader associ-

ated with the server loads all the classes contained within the Jar file stored in the

Codebase object. Once the classes are loaded, the remote classloader can instanti-
ate a remote object of the requested type. The Codebase object is then stored as a

member variable of the RObject object. This way, the Codebase object is available

*java.lang.Class is a class which encapsulates all typing information about an object.
SFor example, classes must have distinct names. This is the primary reason for using the package
statement, and applies to Babylon classloading the same as normal JVM classloading.

46

to be migrated along with the actual remote object, rather than requiring that the
originating host be contacted for code retrieval prior to every migration.

A scenario similar to that outlined above occurs upon migration. The Codebase
object is transferred from the current host to the new host prior to the actual object.
The Codebase’s copy of the Jar file is then used to load the classes into the remote
classloader. Following this, the user’s remote object is transferred, since the remote
classloader is now aware of the types of the objects that are being migrated. These
steps occur in order for the receiving server to complete classloading prior to object

arrival.

3.4 Migration

An important feature that is not readily available in many systems designed for im-
plementing distributed applications is the ability to easily migrate computation, es-
pecially in heterogeneous environments. Because there is no easy means for compiling
and executing a single application on multiple architectures, implementing applica-
tions such as mobile agents is extremely difficult (although heterogeneous migration
is possible [38]).

The difficulty of migrating processes causes serious problems in a network of work-
stations environment where multiple individual workstations (usually located in peo-
ple’s offices) are shared among a number of users. The main problem occurs in such
environments when the owner of the workstation returns to their office and wants to

47

use their workstation, only to find that its resources are being utilized by someone
else. Current approaches to this problem include suspending the intruding job until
the user is no longer using the machine or in rare instances migrating the process to
another machine of the same architecture. Babylon is able to take advantage of Java’s
platform independence to solve this problem through heterogeneous migration.
Babylon supports the immediate migration of idle objects, as well as two forms of

migration for executing objects:

I. delayed migration (i.e., the migration is postponed until all executing methods

have completed),

II. immediate migration, using checkpointing and rollback when necessary.

Inherited from Ajents [7] is the immediate migration of idle objects, and the de-
layed migration of executing objects. The use of checkpointing and rollback for the
immediate migration of executing objects is unique to Babylon.

The basic core of migration is largely unaltered from the technique used by Ajents.
A socket connection is opened between the current server and a specified new server,
the object is written by the current server and read by the new server. One challenge,
as previously described in Section 3.3, involves ensuring that the receiving server
obtains and loads the relevant class files prior to the arrival of the object. This
basic structure has been enhanced in Babylon to enable servers to migrate objects
independently. This improves upon object migration in Ajents, which is only designed

48

for a client-initiated migration. In Babylon, migration does not require any updating
of user references, establishing a transparency that is lacking in Ajents. Finally,
any remote objects in Babylon may be migrated, as long as they are Serializable.
These are improvements over the alternate systems described in Chapter 2, including

Ajents.

3.4.1 Overview of Object Migration

While Ajents supports two forms of migration, that of idle objects and delayed migra-
tion, there are limitations. Ajents only supports the basic case of allowing migration
by the user who created the object. Babylon allows for third parties (servers, or other
users) to request migration. This is especially important in allowing server-initiated
migration to occur independently of any user, should the server no longer be available
for use by Babylon. Another Ajents limitation was the requirement that the user’s
reference to their remote object be updated following migration.® As demonstrated
in Section 3.2, Babylon uses a proxy object, which permits the same object to be
used by programmers across migrations.

The new form of migration implemented in Babylon involves the ability to migrate
an object at any time, regardless of the object’s current state. This is important,

because object migration will often occur at the request of the Babylon server, because

6The interface to migration in Ajents had the following syntax: obj = Pcontrol.migrate(obj,
machine) ;. The main program is forced to update its obj reference with a new reference returned
by the migrate function.

49

the remote host may be required for use by its owner, or because the host has simply
become overloaded. This new form of migration adds to, but does not replace the
forms supported in Ajents. Idle objects continue to be migrated immediately, while
objects executing methods may now be migrated immediately, or wait until after the
method is complete. Delayed migration continues to be supported in Babylon because
it has efficiency advantages that can not be overcome by immediate migration.

Delayed migration and immediate migration with checkpointing and rollback are
supported because Java does not provide for the ability to save and restore the state of
an executing thread (e.g., there is no access to the program counter or stack). There-
fore, it is not possible to support the migration of active threads without modifying
the implementation of the virtual machine (i.e., the interpreter) [36]. As a result,
immediate migration of objects which are currently executing methods is supported
through checkpointing and rollback, rather than thread migration. Delayed migration
is included in Babylon because it does not require the overhead of checkpointing or
rollback. However, because it is unknown exactly how long the delay will be (i.e.,
until the method completes its execution), it is expected that Babylon’s immediate
migration features will be the primary form of migration used.

Babylon is able to accomplish the immediate migration of executing objects by
taking advantage of Java features to: maintain a record of the objects state before ex-

ecuting each method invocation (checkpointing); interrupt execution when migration

a0

is requested; migrate the object in its pre-method invocation state; and re-execute

the method invocation.

We now outline each of the steps involved in migration using checkpointing and

rollback in more detail:

1. Checkpointing (making a copy of the state of an object), is done using Java
serialization. This creates a deep copy of the object, meaning all member vari-
ables are themselves copied, rather than just their references. Babylon does
this by intercepting each remote method invocation (at the server side) in order
to checkpoint the object before allowing the method to execute. Babylon also
stores a reference to the thread which will be executing the method (in order
to interrupt the thread if necessary). The method name and parameters, how-
ever, do not need to be stored on the server side, because any method restart
is accomplished through a re-invocation of the method on the client side. This

is further demonstrated in Section 3.5.1.

2. Upon receiving a migration request the Babylon server interrupts the cur-
rently executing thread (using java.lang.Thread.interrupt()). This inter-
rupt causes an exception, which is then caught by Babylon internally, instead of
being returned to the user. Babylon is thus able to gain control of the currently

executing thread and can then proceed with object migration.

3. Once execution of the thread has been halted, the object is in a static state,

ol

however, there is no way to determine where the thread is executing or the state
of the stack. As a result, we migrate the state of the object as it was at the

time of the last checkpoint.

4. Following migration, we re-execute the interrupted method. This is done with-
out user intervention, on the client side. The steps involved in re-invoking the

method, without user intervention are demonstrated in Section 3.5.1.

The issues involved in designing migration using checkpoint and rollback are dis-

cussed in greater detail in the following subsections.

3.4.2 Checkpointing

Babylon allows for checkpointing prior to the start of any method invocation. This
is done on the server side, and the serialized copy of the checkpointed remote object
is kept within the same object (RObject) as the actual remote object. In order to
create a deep copy of the object, Java serialization is used. The object is serialized
(copied) into a byte array, and stored for later use, if necessary. The standard Java
technique of using clone() is ineffective because the clone() method only creates
a shallow copy. It only copies references within an object, not the actual objects
pointed to by those references. Serialization is used by Babylon to create a copy of
the entire object graph. At the same time as the object is checkpointed, a reference

to the thread executing the remote method invocation is stored. This information is

92

vital for stopping method execution when migration is requested, as will be seen in
the following subsections.

Control over whether checkpointing occurs, lies in the hands of the user program
which has remotely created the object and wishes to call its methods. The user may
choose to enable (Babylon.setCheckPoint(object,true)) or disable (Babylon.-
setCheckPoint (object,false)) checkpointing for each object, at any time. Or
they may wish to override the current setting prior to individual method invocations.
Allowing the user this flexibility allows for the object to be checkpointed only at key
method invocations, or for checkpointing to be avoided when consecutive read-only
methods are being executed. Since the overhead involved in creating a duplicate copy
of large objects can be significant, user control over checkpointing is vital to Babylon’s
efficiency. Furthermore, the overhead of checkpointing is only needed (and justified)
for long-running jobs. For these cases, checkpointing occurs relatively infrequently,
and substantial roll backs can be incurred without significantly impacting overall
execution time. Benchmarks demonstrating the overhead incurred as a result of
checkpointing are presented and discussed in Chapter 6.

Additional user control is provided by allowing the user to create a checkpoint
at any time. As well, Babylon provides an interface for the user to request a copy
of the checkpointed object. This feature is provided as a mechanism for supporting

persistent remote objects and fault tolerance, which are projects for future work with

23

Babylon.

Babylon’s checkpointing procedures contain some limitations. These limitations,
minor as well as serious, are now discussed.

Because we rely on the object serialization primitives provided in Java, there are
some limitations on the type of objects which may be checkpointed and/or migrated
by Babylon. Any object which is not serializable falls into this category, and may not
be migrated by Babylon. This includes core Java API features such as threads and
the Abstract Window Toolkit (AWT). We feel this limitation is reasonable since the
serialization (and migration) of threads is impossible in the current JDK, and we can
find little reason to want to migrate any part of the AWT.

A potentially more serious problem arises in Babylon and other systems which im-
plement checkpointing for distributed and parallel applications. This problem arises
when a remote object A invokes a method, M, of object B which modifies that object’s
state. If object A is checkpointed, then it invokes method M of object B and it is later
migrated and restarted on a different server, A’s execution will be rolled back to the
checkpoint and continued from that point. Thus method M of object B will be called
twice (rather than once). This potentially causes serious problems if method M altered
object B. This is called the checkpointing consistency problem and is a well known
problem [31, 45]. One intractable approach to ensuring checkpoint consistency would

be to checkpoint all objects that object A could possibly interact with each time object

o4

A is checkpointed. Unfortunately, it is not possible to keep track of and checkpoint
all such objects because some objects may not be known by or controlled by Babylon
(e.g., local objects, objects that are communicated with using standard Java RMI or
using a socket). Thus, Babylon does not solve this problem, but exists with the lim-
itation that objects which are to take advantage of checkpointing and rollback must
be objects which do not alter, directly or indirectly, external (non-member variable)
objects. Programmers must be aware of this limitation and program defensively to

avoid it.

A final disadvantage of checkpointing lies in the significant memory usage required
in order to create a copy of a remote object. With checkpointing enabled, objects
effectively take up twice as much memory. While there is no obvious way to avoid

this, it is an additional consideration in deciding when to activate checkpointing.

3.4.3 Migrating a Checkpointed Object

Once execution has been halted by interrupting the executing thread, the migration
is ready to occur. At this step, a decision is made whether to migrate the serialized
copy of the object or the original object. Babylon checks to see if a copy was made.
If so, the copy is migrated. Otherwise the original object is migrated. This method
works accurately because the copied object is deleted following the completion of the
method invocation. Thus, no copy will exist except when one has been requested and

a method is currently executing.

95

Babylon is also careful to minimize the information that gets transferred upon
migration. Since the (RObject) object being migrated contains information important
only to the current Babylon server, this information relevant only to a single Babylon
server is declared transient” so that it will not be transferred. This helps Babylon
minimize object transfer times as much as possible.

Another challenge immediately prior to migration is to be able to halt any threads
executing a remote method of the object at the time immediate migration is requested.
Since all method invocations are intercepted (as described in Section 3.5.1), Baby-
lon uses this opportunity to store a reference to the thread executing the method.
Upon receiving an immediate migration request, Babylon will interrupt the execut-
ing thread, causing it to throw an InterruptedException. This exception is not
returned to the user, but rather is caught internally as an indication that the object

is being migrated.

3.4.4 Reference Updating

Since objects may be migrated by Babylon servers, or other third parties, Babylon
implements a scheme to ensure that references held by the user (through BabylonQObj
objects) still function after migration has been completed.

As in Ajents, each Babylon server keeps track of all objects that are residing

"The transient keyword indicates fields that should not be serialized, and will be null upon
deserialization.

26

upon that server. In addition, objects which have been migrated still remain on the
server while remote references to them remain. After migration, these objects only
contain a reference to the new host of the object that has been migrated. All other
internal references are changed to null. The reference to the new host of the object
is maintained so that migration can be implemented in a way that is transparent to
any object that has a reference to a remote object that has been migrated. This
is in contrast to other approaches (e.g., Mole [40]) where the user program receives
an exception and must update any references to the remote object that has been
migrated.

Figure 3.7 shows the steps taken by Babylon to update object references and ensure
transparency after an object has been migrated twice without the client’s knowledge
(e.g., by the server or another object). These steps are followed to restart an inter-
rupted remote method invocation, as well as for the first remote method invoked after
a third party migration. In this figure, (1) the BabylonObj uses its remote reference
to Obj1 on Host A to remotely invoke a method of Obj1 that previously resided on
Host B. Obj1 had been previously migrated twice, first to Host C and then to Host
D, where it now resides. (2) Since the reference is outdated, the Babylon server on
Host B throws a MovedException, which returns to the originating host a new refer-
ence to what it believes to be the new object location (Host C). (3) The BabylonQb]

updates its internal remote reference and re-invokes the remote method, using the

57

new reference to the object on Host C as the target. (4) Again, the reference is out-
dated, and a new reference is returned, this time to the object on Host D. Finally, the
correct reference has been found. (5) The BabylonObj updates its internal remote
reference, and re-invokes the remote method of 0bj1 using the new reference which
correctly points to the new location, Host D. Babylon does all of this internally and it
is therefore completely transparent to the user, whose contact with the remote object
is entirely through the BabylonObj (i.e., references to remote objects that have been

migrated continue to work).

Babylon/~ Objl
Server migrated)
IR

Host B h Host C I HostD -~
S @new !/ (4) new
(1) RMI ., reference /! reference)
SO QRMIESS -~ (B RMI
\ o
BabylonObj
Host A

Figure 3.7: Remote Method Invocation After Third Party Migration

Updating remote references in this fashion is a form of lazy updating, since the
references are not updated until they are used. An eager update approach would
involve updating all references to a remote object immediately upon migration. This
is not a reasonable choice for Babylon for two reasons. First, it would require remote

objects to keep track of all objects containing references to themselves (the remote ob-

28

jects). This would be difficult to maintain, in addition to causing cycles which might
degrade the effectiveness of the garbage collection system. Second, eager updating

may update references that are no longer being used, thus wasting effort.

3.5 Additional Architectural Issues

3.5.1 Design of Babylon’s Remote Method Invocation

This section is provided to demonstrate the flow of a remote method invocation
request through Babylon. Figure 3.8 provides an overview of the path taken once a
method invocation request is submitted through a Babylon.rmi() call.

The diagram begins with a user making a method call through the Babylon.rmi ()
interface. As previously described in Section 3.1.1, this method is passed two manda-
tory parameters®. These represent the object reference, and the method name.
As the object reference (the BabylonObj) is only a proxy, the first step taken by
Babylon.rmi() is to access the real RObject reference. This reference is then used
to make a Java RMI call (RObject.rmi()), to the remote object. If the method
executes successfully, Babylon.rmi() will simply return the result. However, if some
other event occurs (e.g., migration, method returns an exception, method does not

exist), then Babylon.rmi() must handle an exception.

8 Additional optional parameters are not shown.

29

Main Program
(Start) (Babylon.rgmi(o?oj,method)

'

Babylon.rmi(BabylonObj, method) {
1: RObject Robj = obj.getRef();
try {

return (Robj.rmi(method))

catch (Exception) {

Moved Exception:
Update BabylonObj reference

goto 1:
InvocationTargetException:

convert to a RemoteMethodException

re-throw exception.
MethodNotFoundException:
re-throw exception.

Interrupted Exception:

¢

~ RObject.rmi(method) {

if (object was migrated)
throw MovedException (new reference)
Checkpoint (if requested)
try {
result = Function call

finaly {
delete Checkpointed copy (if neccessary)

(object was migrated) }return result
goto 1:
} L
Babylon Class RObject class
Originating Host Remote Host

Figure 3.8: Internal Path for Remote Method Invocation.
While a goto is used to simplify the diagram, there are no goto statements in Babylon.

RObject.rmi()

On the remote host, the RObject handles the RMI request through the following
sequence. Initially it checks to see if the actual remote object still exists on this host,
or if it has been migrated elsewhere. If the remote object has been migrated, all that
will remain is a “forwarding address” in the form of a reference to another RObject
on another server. This will be returned to the Babylon class through a Moved-
Exception. If the object still exists on the current remote host and checkpointing is

active, a checkpoint is done. Following checkpointing, the method name is used to call

60

the appropriate method, using Java reflection techniques®. If the method throws an
exception, it is not caught within the RObject.rmi() method, thus getting returned
to the Babylon.rmi() method which will handle the exception. Finally, once the
method completes execution, the copy of the object created for checkpointing purposes
is deleted, since the actual copy of the object is once again in a static state. Deletion

of the checkpointed copy will occur even if an exception was thrown by the method.

Babylon.rmi() catch clause

The Babylon.rmi() method has a number of catch clauses to handle the following

possible exceptions.

MovedException: This indicates that the object has been moved and the reference
used to make the method invocation is no longer valid. The exception returns
a new reference to the object. The new reference is used to update the user’s
BabylonObj and then the remote method is reinvoked using the new updated

reference.

InvocationTargetException: This indicates that an exception has occurred within
the method(e.g., ClassCastException), and the exception should be returned
to the user. The exception is embedded in a RemoteMethodException, and

returned to the user. More details about how and why this is done are found

9This was originally done in Ajents and is not further described here.

61

in Section 3.5.2.

MethodNotFoundException: This indicates that the method requested by the
user did not exist. It is returned to the user program, where it may be caught,

if desired.

InterruptedException: This indicates that the method was interrupted. This is
the approach used to halt execution of the thread executing the remote method.
Such interruption is required for immediate migration. Thus, it also indicates
that the remote object no longer exists on this remote host, as it has been
interrupted and is being migrated elsewhere. The Babylon.rmi() method
is repeated so that it will find the object’s new location (through multiple
MovedException’s if necessary, as in Figure 3.7), and then re-invoke the remote
method. Note that a MovedException is not used in this case because at the

time the method was interrupted, migration had not yet begun.

It should be noted that this design is effective in reducing the remote method
invocation overhead imposed by Babylon as much as possible. Only a single RMI
call is required for successful method invocations. Additionally, the use of exceptions
for passing information between the originating and the remote host only occurs in
uncommon situations (i.e., migration requests, unsuccessful method invocations). In
other words, Babylon has been optimized for the common case which is the execu-
tion requests that are successful. While the minority of cases which require special

62

handling will be less efficient as a result of this compromise, these situations already
produce overhead in excess of a standard RMI call, so additional Babylon overhead
will not impact these situations significantly. Thus we believe this to be an efficient

implementation of RMI.

3.5.2 Exception Handling in RMI

Although synchronous and asynchronous remote method invocations are supported
in Ajents, the Ajents’ versions of RMI and ARMI do not return exceptions in remote
methods to the user. Babylon is able to incorporate exception handling into RMI
and ARMI by using the existing Babylon architecture for the remote invocation of

methods.

There are two main concerns in designing an exception handling mechanism.

e The exceptions should be produced in a way which is similar to the standard
Java model for exception handling. This allows the user to handle exceptions

in a familiar manner.

e The exception model should not force the user to handle all possible exceptions
if their method throws a limited subset of exceptions. This is a concern because
the Java language requires advance declaration of all potential exceptions. Since
Babylon.rmi() may call a method which may potentially throw any exception,

Babylon can not be certain, in advance, which exceptions might be thrown.

63

Babylon addresses these concerns by creating a single exception type Remote-
MethodException which extends RuntimeException. RuntimeException is a class
of exceptions which are not required to be explicitly handled. Unlike the standard
case where potential exception throwing code must be located within a try/catch
block, code which throws a RuntimeException need not have a try/catch block. The
Babylon class RemoteMethodException contains, as a member variable, the exception
object which was thrown. This permits exceptions to be handled by simply accessing
the exception within the RemoteMethodException through a getTargetException()
method. RemoteMethodException is similar to the standard Java API Invocation-
TargetException, with the exception of the former being a subclass of Runtime-
Exception. By subclassing RuntimeException, Babylon provides the user with the
option of catching exceptions. If the user is aware that the method being called can
not produce exceptions, then no try/catch block is necessary. However, if excep-
tions may occur, they can be handled in a familiar manner. A disadvantage of this
approach is that it places an additional burden upon the programmer to be aware
of potential exceptions, without relying upon the compiler to double check that all
possible exceptions have been handled.

The method of returning exceptions thrown during a synchronous remote method
invocation was detailed in Section 3.5.1. Returning an exception to a user program

when the exception was thrown during an asynchronous remote method invocation is

64

more challenging. Initially, the user calls Babylon.armi() to execute a method of a
remote object. This method (using the technique implemented in Ajents) spawns a
separate thread which executes the remote method invocation, and provides a Future
object in which the return value is stored. The steps executed on the remote host,
identical for rmi or armi calls, involve RObject .rmi () processing the method invo-
cation as previously described in Section 3.5.1. In the case when an exception is
thrown, RObject.rmi() throws an exception rather than returning a return value.
This exception is caught by the thread which invoked the remote method, and the
exception is stored in place of the return value within the Future object. At some
point later, the user calls Future.get (). This method checks to see if the object
contained within the future is an exception. If it is an exception, the exception is
thrown, for the user to catch. Otherwise, the object returned by the remote method
is returned from the Future.get () method, as shown in Figure 3.4.

One drawback of this design is that exceptions caused by methods invoked asyn-
chronously are only caught when the get () method is invoked upon the future object.
An alternative approach is to attempt to return an exception to the thread which in-
vokes Babylon.armi() (which may not be the same thread as invokes future.get()).
However, this is technically challenging. Since Java lacks signal handling methods,
there is no simple way to throw arbitrary exceptions at arbitrary points in time, which

would not be expected by the code being executed at that time. Even worse, it is

65

possible the thread may no longer exist by the time the method completes.

3.5.3 Notes on Garbage Collection

While the Java remote method invocation specification [42] describes procedures for
the garbage collection of distributed objects, Babylon can not blindly rely upon these
techniques, but rather must assist them to be as effective and efficient as possible.
As mentioned in Section 2.1, the Java virtual machine keeps track of all references on
any hosts to remote objects. As Babylon features objects that are both mobile, and
potentially long-lived, the abilities of the garbage collection system to keep references
properly updated may be stressed. The default distributed garbage collection system
was built for a virtual machine which does not provide migration or other features
provided by Babylon. Additionally, it is important that memory is reclaimed by
servers in a timely fashion when an object departs (either through migration, or the
completion of the client program).

Passing remote object references between machines involves increased activity in
the garbage collector when compared to the passing of standard objects. Not only
must the reference be serialized, transfered, and deserialized, but the object reference
count must be updated. Therefore, the machine upon which the object lives must
also be contacted in order to update this count. Babylon endeavors to minimize the

number of times this task must be completed. Object references are transfered only

66

when required. This occurs solely during migration, when the object is moved, and
references to the new location must be made available. However, by doing a lazy
update of references, as described in Section 3.4, these updates only occur when and
if required.

In addition to minimizing reference passing, Babylon also tries to ensure that
dangling references are eliminated. This is a key step after migration. A careful
elimination of unused references is necessary because of the forwarding system used
by Babylon migration. Since the RObject is still required in order to forward remote
references (as described in Section 3.4), it can not be garbage collected until all refer-
ences to it are no longer in use. However, the RObject contains other variables which
use up memory and/or contain references to additional objects. Eliminating the now
unused references is done by nulling out all variable references contained within the
RObject from which the remote object was migrated. By assigning references to null,
the garbage collector is then immediately able to determine that the objects which
were formerly in use by the RObject, are now unused, and available for collection.
Thus, eliminating these references is necessary in order to reclaim memory, and to
keep accurate reference counts for other objects.

By keeping these considerations in mind, Babylon is able to assist the distributed

garbage collection mechanism in the efficient completion of its task.

67

Chapter 4

Remote 1/0

Babylon relies upon Java security measures, such as a security manager object, to
prevent remote objects from affecting hosts in an undesired manner. Operations dis-
allowed by the security manager include all standard Java forms of I/0, including
console, file, and socket operations. Thus, interaction with objects executing upon
remote hosts is limited to method invocations. In addition to limiting the usefulness
of Java based distributed systems, a failure to provide I/O facilities also makes de-
bugging distributed and mobile programs more complicated. To our knowledge, this
limitation exists in all other existing Java based systems, including all the systems
described in Chapter 2.

Babylon includes features designed to allow input and output to be processed by
remote objects, using an API that is similar to standard forms of Java I/0. Addi-
tionally, from the perspective of the user on the originating host, the remote object

produces output and requests input as if it were actually executing upon the origi-

68

nating host.

4.1 Issues in Remote I/0

As can be seen in the coverage of related work in Chapter 2, there has been little
attention paid to equipping distributed Java systems with remote I/O features. In
fact, providing user programs with the ability to perform I/O operations remotely
has received little attention in general [10]. We present here some of the issues that
need to be addressed in implementing remote I/O, and some related work.

As identified by Dick [9], there are two issues that must be addressed by remote
I/O systems: identifying the origin of the data, and data input and output syn-
chronization. Data origin identification is an issue when multiple remote objects are
producing data into a single buffer on the originating host. For debugging, and other
purposes, users may wish to identify which remote host was the source of the output.
While Dick and others (such as PVM [14]) transparently append source-host infor-
mation, Babylon leaves this task up to the user, providing a method which will return
the object’s current host name, so that objects may choose whether to append origin
information!. The other issue is the synchronization of input from a single source
to multiple remote objects requesting input, and the reverse, synchronizing output

from multiple remote objects into a single destination on the originating host. For

'Remote objects would implement the following example: Babylon.println(this.getHost ()
+ OutputString);

69

reasons of simplicity, Babylon does not address this issue, leaving all synchroniza-
tion to the user. We note, however, that this does not cause any potential system
dangers, because the underlying Java I/O methods are themselves thread-safe. An
additional, often unwritten, issue that must be addressed is ease of use. Babylon
addresses this by ensuring that all Babylon I/O methods perform identically to their
Java I/O counterparts. As will be discussed, this is done through the use of wrapper

classes.

The reader is referred to Dick [9] for a lengthier discussion of other distributed and
parallel I/O systems; we summarize other approaches here. PVM [14], a widely used
library for parallel programming, provides only console output facilities for remotely
executing jobs, input to these jobs is not allowed. MPI [39], a popular message
passing interface for parallel programming, does not define any standard for remote
I/O, although newer standards attempt to address this issue. For both PVM and
MPI, deficiencies lie in their lack of an easy to use interface, and lack of support for
I/O on arbitrary user-defined objects. Dick [9] addresses these concerns through an
extension to the C++ iostream classes. Remote Unix [27], an implementation of a
cluster load-sharing facility, implements I/O facilities similar to Babylon, in that it
intercepts all I/O method invocations made by the remote object and transparently
moves them onto the originating host. Another cluster load-sharing facility Utopia

[48] addresses console I/O issues in the same manner as Remote Unix, but eliminates

70

problems with remote file I/O by requiring that all remote hosts share a common file
system.

Although Babylon’s emphasis on Java-based parallel and distributed objects ad-
dresses much different areas than the systems above, it shares the same concerns as
those systems: ensuring that remote objects have access to I/O facilities that look

and act the same as if the objects were executing locally.

4.2 Design

The design of Babylon’s I/O subsystem can be described from different points of view.
We begin with an example of a user-created remote object which takes advantage of
remote 1/O, then describe how the object hierarchy from Section 3.2 is altered in

order to provide these features. Finally, we discuss the issues involved in this design.

4.2.1 A Short Programmer’s Guide

Figure 4.1 is an example of a remote object which includes a method programmed
to read data from a file, do some computation and then print output to the console.
In order to take advantage of Babylon’s I/O features, remote objects must extend
RemoteObj. This is shown in line 1. To access I/O, a RemoteI0 reference is returned by
the getI0() method (line 4). The RemoteIO object referred to by this reference lives

on the originating host, and includes methods to create new instances of each type of

71

I/0O supported by Babylon. In the figure, a new RemoteBufferedReader?

object is
created (on the originating host), with a file name on the originating host passed as a
parameter, which will serve as the input source (line 5). The RemoteBufferedReader
object reads from the file (line 6) which is then processed (line 7). The output
produced is then printed to console through io.println() (line 8). Console actions
are done directly through the RemoteIO object. The reasons why console actions are

done directly through the RemoteI0O object while file actions require their own objects

will be explained in Section 4.3.

[

public class SimpleObj extends RemoteObj implements Serializable {

2 public void useFile() {

3 String line, output;

4 RemoteIO io = getIO(Q);

5 RemoteBufferedReader rbf = jo.newRemoteBufferedReader
("/home/izatt/SampleFile") ;

6 while ((line = rbf.readLine()) !'= null){

7 output = doComputation(line);

8 io.println(ouput) ;

}
}

Figure 4.1: Code Example of Remote I/O Use in a Remote Object

4.2.2 Object Hierarchy Design with I/0O

As mentioned, in order to access Babylon’s I/0 facilities, remote objects must extend
RemoteObj. This class provides access to a remote reference which refers to an I/O

object (RemoteIO) created upon the originating host during Babylon’s initialization.

2Babylon.io.RemoteBufferedReader is a wrapper class around java.io.BufferedReader.

72

By using the getI0() method (inherited from RemoteObj), remote objects can access
this RemoteI0 object and the I/O facilities contained within. The RemoteI0 object
is a Java RMI object which provides a point of contact for access to all of Babylon’s
I/O systems (console, files and sockets).

Extending RemoteObj adds another layer to the object hierarchy displayed in
Figure 3.6. Figure 4.2 shows the object hierarchy design for those objects which
extend RemoteObj. The BabylonObj and RObject objects serve the same purposes
as described in Section 3.2, as a user held proxy, and Java RMI object, respectively.
The object hierarchy changes begin at the user object level. The remote object
created by the user (represented by RemoteObj in the figure), inherits a reference to
the RemoteIO object located upon the originating host. It is through this RemoteIO
object that all contact with Babylon’s I/O system occurs.

In order to best emulate the functionality of regular Java I/O, Babylon creates
wrapper classes around the basic input and output classes offered by Java. The key
difference is that Babylon’s wrapper classes are defined as Java RMI objects. An
example implementation of a Babylon wrapper class is shown in Figure 4.3. All
objects created using these wrapper classes execute upon the originating host once
created, only providing a remote reference to the user, through which they may be
accessed. Standard Java provides an interface for users to access each class’s methods

and Babylon copies this by providing a similar interface, accessible through remote,

73

BabylonObj

RObject

/~ Remote .
/ Obj

| " RemotelO -
A\ reference .,

Remotel O
Object

Originating Host Remote Host

Figure 4.2: Object Hierarchy Design with I/0.
Arrows represent the referencing structure, with the source being the remote reference,
and the destination being the referenced object.

rather than local references. This is discussed in more detail in the next section.

Figure 4.4 provides a demonstration of how the internal wrapper objects are cre-
ated and accessed. In the figure, a remote object wishes to access files, and thus
wishes to create a RemoteBufferedReader object. To accomplish this, 4 steps are
taken. (1) The RemoteIO reference, located upon the remote host, invokes a new-
RemoteBufferedReader () method on the RemoteIO object, located upon the origi-
nating host. (2) This method creates a RemoteBufferedReader object and returns a
remote reference to it. (3) This reference is returned to the remote object to provide
it with a point of contact with the RemoteBufferedReader object. (4) The reference

may then be used to directly contact the RemoteBufferedReader object and obtain

74

services from it.

public interface RemoteBufferedReader extends Remote {
public int read() throws RemoteException, IOException;
public String readLine() throws RemoteException, IOException;

}

public class RemoteBufferedReaderImpl extends UnicastRemoteObject
implements RemoteBufferedReader, Serializable {

BufferedReader in;

public synchronized int read() throws
RemoteException, I0Exception {
return in.read();

}

public synchronized String readLine() throws
RemoteException,I0Exception {
return in.readLine();

}
}

Figure 4.3: Code Example of a Babylon 1/O Wrapper Class.
This is Babylon.io.RemoteBufferedReader which is a wrapper around java.io.Buffered-
Reader. The code shows both the interface class, and the implementation class.

4.2.3 Babylon’s I/0O Design Issues

The decision to use RMI to support I/O within Babylon was made for a couple
of reasons. The most important is that remote method calls provided by RMI are
fairly simple to use. In accessing I/O, objects operating on remote hosts will wish to
contact sub-systems (file, terminal or network) operating on their originating host,
and that contact will occur synchronously (i.e., through method invocations). These

75

BabylonObj
- "RObject -

\ L./
~ _reference .-

RemotelO
Object

it

Remote-
Buffered-
Reader

(©]

Originating Host

@

RObject

/" Remote .
K Obj)
- RemotelO -/

Remote Host

Figure 4.4: Remote 1/O Design

to the correct location.

Babylon’s I/O subsystem is designed to satisfy ease of use, security, and trans-

76

requirements are precisely those for which RMI was designed and implemented. A
second key reason involves the location transparency of remote RMI references. This
is vital because the remote object, which contains a remote reference to an I/O
object on the originating machine, could itself be migrated. With RMI references,
the reference is still valid, even after the remote object (along with the RemoteIO
reference) gets migrated. An alternative architecture might require us to design and

implement a method to ensure that after migration, remote I1/O references still refer

parency concerns. The issues of ease of use, and transparency have been partially
demonstrated in Figure 4.1. The object programmer is aware of the remote nature of
the I/O being performed, and must expend only a small additional amount of effort
altering class names, and accessing the RemoteI0 object in order to create direct I/O
facilities. However, the amount of extra programming is small. Once I/O objects are
created (such as RemoteBufferedReader), the techniques for accessing them are as
simple and direct to use as the techniques in the java.io classes. Additionally, once
they are created, accessing remote I/O classes is done transparently. No additional
programming effort is required and security is provided by using the security manager
to disallow any object from accessing I/O without going through Babylon’s specified

interface.

One important consequence of requiring objects to extend RemoteObj in order to
access 1/0 is that objects that want to use Babylon’s I/O features can not extend any
other objects. This problem is a consequence of Java’s lack of support for multiple
inheritance. An alternative method would be to have objects include a member
variable containing the features of RemoteObj, rather than inherit from it. Technically,
this approach is feasible, but it has other advantages and disadvantages. Inheritance
is generally simpler to use and program. Since the parent object (RemoteObj in this
case) is known by the Babylon system, the system can access member variables and

independently set and change them. This means that the RemoteI0 reference can be

7

initialized by the system without user intervention. If this reference were held inside
a member variable of the remote object, the remote object would have to include code
to explicitly complete all initialization currently handled internally by the RemoteQbj
object. Thus inheritance hides the internal structure of RemoteObj object features,
resulting in simpler programming of remote objects.

While the RemoteObj object is currently used primarily for storing the reference
used to access Babylon’s I/O features, it could easily be expanded to provide other
features. Any system features which must be accessed by the remote object may be
added using this approach, without affecting previously written objects, or adding
complexity to user objects. For example, Babylon also provides an interface through
the RemoteObj class which allows a remote object to access data about its current
location. This, and other future additions are simple to implement using the current
design, and are reflected to the user object through a changed API. However, if user
objects were forced to implement and initialize their own references to data provided
by Babylon, every addition to the Babylon API would result in an increase in the
amount of code required on the part of the user.

Additionally, the use of inheritance allows Babylon to determine whether remote
objects are going to be using the features contained in RemoteObj. By using Java’s
instanceof method, Babylon is able to determine whether an object has extended

RemoteObj. This can be of use in determining whether features like I/O are going

78

to be used, and making optimizations based upon that knowledge. For example, if
Babylon knows that remote I/O will not be used, then it does not need to instantiate
a RemoteIO0 object for the corresponding remote object.

The following sections (Sections 4.3 - 4.5) describe the challenges found in imple-

menting this design for the types of I/O that are supported.

4.3 Console I/0

Supporting reads from and writes to the console introduces challenges that are dif-
ferent from file accesses because of the atomic nature of the console. While multiple
objects may simultaneously open the same file, and a single object may hold mul-
tiple different references to a single file, Java does not allow this behavior with the
console. Only a single point of access to the console is possible per Java virtual ma-
chine. In other words, even if multiple objects hold a reference to the console, they
would be sharing the same reference, while with files, they each could be holding a
unique reference. This is represented by the static variables System.in, System.out
and System.err, which provide user programs with access to standard input, output,
and error respectively.

Babylon duplicates this behavior by allowing access to the console through the
RemoteI0 object. Although multiple RemoteI0 objects may exist upon a single host

(Babylon creates one for each remote object), the RemoteIO class contains static

79

references to the System variables, thus preventing multiple instances of RemoteI0
from each trying to bind a new I/O stream onto the console. Thus, only single
instances of console variables can ever exist under Babylon, mirroring the situation
in standard Java. Finally, whereas file I/O requires instantiation of a remote wrapper
class, console I/O avoids this step by using the RemoteIO object, thus, reducing

overhead.

4.4 File I/0

Supporting file I/O is straightforward, once the over-all I/O design is considered.
This is because there are no file system access issues that arise in remote situations
as opposed to local situations. In most parallel and distributed systems, issues arise
surrounding synchronization of multiple, potentially remote, processes attempting
to access a single file. However, standard I/O in Java is already designed to work
correctly in a multi-threaded environment. By designing access to the file system
through wrapper classes designed to be accessed remotely, file access through Babylon
occurs in the same manner as in standard Java. Multiple accesses to the same file,
by the same or different objects, is allowed in both standard Java and in Babylon.
In both cases, the underlying virtual machine and operating system take care of
synchronization issues.

As a result of this design, Babylon supports only independent (rather than shared)

80

file access. That is, if multiple remote objects wish to access the same file, they may
do so, but each must separately open the file and use its own file pointer. They may
not share a single file pointer. Thus, if it is important to synchronize writes to a file,
some external synchronization technique must be used.

In Figure 4.5, we provide an example of how Babylon is able to ignore file synchro-
nization issues. The figure demonstrates how two remote objects are each holding
a reference to a RemoteBufferedReader object on the originating Host (1). Each
RemoteBufferedReader holds a reference to some file on the originating host (2). File
system integrity is maintained by the operating system and the Java virtual machine.
Meanwhile, any additional synchronization between the objects is left to the program-
mer, rather than enforced by Babylon. Synchronization is the type of task for which

enabling socket use by remote objects might be required.

4.5 Socket I/0

Supporting socket I/O in Babylon involves supporting the following key attributes.
Remote objects must be able to open sockets which connect to arbitrary hosts. The
reverse must also be true. Remote objects must be able to create sockets which accept
connections from arbitrary hosts. In addition, socket connections should remain valid
even if the remote object migrates.

The challenge in creating sockets is that there exists an external host in addition

81

Remote-

Buffered- Object #1
o
v File
H /(2) Object #2

Buffered-
Reader

Originating Host : Remote Host

Figure 4.5: File I/O Diagram.

This diagram demonstrates two remote objects accessing the same file, each through
its own RemoteBufferedReader object.

to the originating and remote hosts. This third host should be able to open a socket,
and communicate with a remote object, without any knowledge of the “remote” or
migratory nature of the object it is communicating with. In Babylon, it is possible
for a remote object to create a socket, wait for a connection from a third party,
communicate through the socket, migrate, and then continue communicating. In
addition, the third party is unaware that the remote object has migrated, or even

that the remote object does not live on the originating host. Thus, there are no

special requirements on the part of the program running on the external host.

82

It is the overall design of remote I/O in Babylon that makes it possible to ensure
that sockets work correctly even after migration. Sockets in Babylon are implemented
identically to the other forms of I/O. That is, wrapper classes have been created
around java.net classes, where the the Babylon versions are remote (RMI) versions
with identical methods. This forces the actual socket to be created on the originating
host, which is why third party transparency is possible. In order to allow reading
from and writing to the socket, we reuse the same I/O stream wrapper classes used
for files and demonstrated in Section 4.2.1 (e.g., RemoteBufferedReader). In this
case, the stream source for the RemoteBufferedReader would come from a socket,

instead of a file.

The first problem to solve is the question of which host does a third party contact
in order to set up the socket. By making this the originating host, a single, stationary
host serves as the point of contact for the remote object. This ensures that the
third party is unaware of migration, since the socket always remains connected to the
originating host. A second problem solved revolves around the remote object’s ability
to access the socket on the originating host even after the object has been migrated.
However, because RMI is used, the remote object retains an RMI reference to the
socket wrapper class. This RMI reference operates correctly after migration, thus
ensuring that access to the socket continues. It is these problems that led to rejection

of the possibility of having sockets connect directly to the remote host. Such a design

83

would not be able to transparently handle migration because the sockets would need
to be closed upon one host and then re-established on a second host after migration.
Clearly, this solution would not be transparent, as the third party would have to
become involved in re-establishing the socket connection.

Figure 4.6 provides a diagramatic example of how two objects communicate with
each other through a socket. Initially, object #1 creates a server-socket using Baby-
lon’s RemoteServerSocket class. Object #2 connects to this socket using Babylon’s
RemoteSocket class (1). Note that object #2 uses the originating host as the host
to which it’s socket will connect, and object #1’s server-socket will report that it
has been connected to by a socket on the originating host. Finally, the sockets may

exchange information (2,3) in the same manner as if they were regular Java sockets.

4.6 1I/0 Limitations

While Babylon’s design supports the forms of remote I/O described, there are some
limitations placed upon I/O by this design.

While remote objects that use I/O can be migrated, and their I/O references will
continue to work correctly after migration, this is not always the case with one form
of migration. The immediate migration of executing objects can cause problems when
used in concert with I/O. The problem here is identical to the checkpoint consistency

problem (previously referred to in Section 3.4). The problem arises if a remote ob-

84

Remote-

Server- Object #1
Socket
(3)l T(Z)
(S)l T @ Object #2
Remote-
Socket
Originating Host : Remote Host

Figure 4.6: Socket 1/O Diagram.

This diagram demonstrates two remote objects communicating through sockets.

ject is invoking a method which involves I/O, and gets interrupted, migrated, and
restarted. The I/O may then be repeated, potentially causing a consistency problem
if such repetition is unexpected.

Another drawback with the current implementation of remote I/O is the use of
RMI. While using RMI simplifies the implementation of remote I/0O, it also means
that additional RMI overheads are added to every I/O access. Thus, it is important
for programmers to keep this in mind, and choose larger data transfer sizes where
possible.

Babylon’s 1/O support is partly provided through wrapper classes based upon

85

standard Java classes. This means that for every type of I/O stream that Java
provides, an equivalent Babylon wrapper class must be created. The current imple-
mentation of Babylon does not include a complete set of wrappers; a sufficiently large
enough subset?® is supported in order to successfully test and demonstrate console,
file and socket implementations. As demonstrated in Figure 4.3, completing the full
set, of wrapper classes is a straightforward exercise. In fact, it could be generated

automatically.

3Specifically, the following java.io classes have Babylon.io equivalents: BufferedReader,
ObjectInputStream, ObjectOutputStream, PrintWriter, ServerSocket, Socket.

86

Chapter 5

Scheduling

Although Babylon’s primary contribution is made in providing a wide range of fea-
tures for use by distributed objects, Babylon would be useless without mechanisms to
connect user objects requiring resources with remote hosts offering resources, in the
form of a scheduling system. A complete scheduling system consists of both mecha-
nisms for controlling and policies for governing the allocation of resources, and would
have to implement client-server connection mechanisms, as well as handling relation-
ships between multiple scheduling servers. In addition, the scheduling infrastructure
would have to scale properly, potentially on an Internet-wide scale.

Developing a complete scheduling system is beyond the scope of this thesis. In-
stead, Babylon implements a basic scheduling substructure intended to function ade-
quately for the purposes of testing the features implemented in Babylon thus far. The
current Babylon scheduling system implements a simple scheduling server, as well as

mechanisms to provide references to available Babylon servers that have identified

87

themselves to the scheduling server. In addition, Babylon’s scheduling system seam-

lessly and transparently handles the dynamically changing availabilities of Babylon
servers.

In this chapter we discuss the implementation of the simple scheduling system
and the areas in which additional scheduling research and development is required.
Section 5.1 is an overview of the different scheduling issues that must be considered by
distributed systems such as Babylon, and provides references to other work in areas
relevant to Babylon. As well, we discuss how other scheduling research and systems
can be combined with Babylon. Section 5.2 discusses the scheduling infrastructure
currently implemented in Babylon. The current infrastructure operates on a very
basic level, with a simple scheduling server acting as a single point of contact for
clients and Babylon servers. The Babylon scheduling server currently implements a

simple round-robin strategy for distributing requests among available servers.

5.1 Issues in Scheduling

Babylon contributes two main features to the area of load-balancing systems: the
ability to create objects on arbitrary remote hosts, and the ability to migrate these
objects to other arbitrary remote hosts. In order to make object location and re-
location transparent, these abilities are entirely controlled by internal Babylon struc-
tures, with no information provided by the user. Thus, in order for load-balancing

to be successful, Babylon’s scheduling system must define three main policies and

88

support the infrastructure to implement these policies.

I. A location policy, which defines what host should be selected as the host for

objects being created and/or migrated.

IT. A migration policy, which defines what objects should be migrated and at what

point.

ITI. An information-sharing policy, which defines what information should be shared
between Babylon servers and the scheduling servers, and how accurate this

information must bel.

While Babylon does not define or implement any of these policies, we provide a brief
discussion of work related to these issues.

Utopia [48] is a load sharing facility designed for large heterogeneous distributed
systems. The system is designed to distribute tasks among a group of eligible ma-
chines, given some a priori knowledge of the task. Utopia implements a system
whereby machines are divided into virtual clusters, so that scheduling is done ac-
curately and efficiently within clusters, but less accurately and efficiently between
clusters. While this design works quite well, it relies upon significant user input and
set-up, which are designed to be minimal in Babylon. Utopia defines both location

and information-sharing policies, but explicitly avoids allowing migration or defining

!The classic trade-off here is between gathering large amounts of information and sharing it
frequently, which is very accurate but inefficient, versus minimizing sharing, which is efficient but
inaccurate.

89

a migration policy.

The justification for disallowing migration in Utopia draws from a paper by Eager,
Lazowska and Zahorjan [12], which shows that the benefits of preemptive migration
for load balancing are small, compared with schemes which load balance only upon the
start of a task. However, these results have been challenged by Downey and Harchol-
Balter [11] who argue that Eager ef. al used a weak model to describe the workload
encountered by distributed load-balancing systems. Downey and Harchol-Balter also
complete a study [18], demonstrating the “performance benefits of preemptive, im-
plicit load balancing strategies that assume no a prior: information about processes”.
This study describes very closely the workload that Babylon can expect. All load-
balancing in Babylon is done by the system, with no user input to provide insight
as to resource requirements such as CPU or I/O usage. As well, Babylon has no fu-
ture job knowledge, such as arrival times, to allow schedulers to make more informed

decisions.

More recent work examines in greater depth the ways in which objects should
be scheduled for migration. FarGo [19] is a system which implements the idea of
complets. A complet is a grouping of objects which have close relationships. FarGo
allows the designation of relationships among complets so that not only are objects
within a complet always migrated together, but the user may define multiple complets

which must always be or are suggested to be, co-located.

90

A final issue in deciding what host to locate objects on involves deciding how
to compare the load on heterogeneous hosts, where all of the resources on the hosts
may be incomparable. Utopia [48] relies upon user input in order to define which
clusters are high-powered CPU clusters, and which are designed for heavy I/O use.
Amir et. al [2] define algorithms for converting multiple heterogeneous resources into
a single numeric value which defines the availability of a host, and the cost of putting
additional objects on that host. They demonstrate that this method can be used to
minimize the cost among a group of heterogeneous hosts, such as a collection Babylon

servers forming a cluster.

5.1.1 Babylon Information

As a result of Babylon’s design, useful information about object size and lifetime can
be provided to any Babylon scheduling server in order to make appropriate scheduling
decisions. Because all remote method invocations are intercepted, and because the
Babylon server is also involved in handling all object creation and migration requests,
Babylon could keep track of a number of statistics related to the remote objects re-
siding on the Babylon server. The following information could be collected for use
by a scheduling policy. Note that collection of these statistics is not currently imple-
mented. In order to determine the best destination for newly created or migrating

objects, Babylon could measure the following items.

91

e In order to determine the least loaded server through a measure of computa-
tional demands being placed by individual objects upon the Babylon servers,

Babylon could measure:

— the number of remote objects executing methods per unit time.

— the amount of time (percentage or aggregate) a remote object spends ex-

ecuting methods.

e In order to determine the relative memory requirements being placed upon the
Babylon server, Babylon could measure the number of objects residing on a
Babylon server at any time, or the number of objects resident over a period of
time. A larger number of objects resident may indicate greater memory usage,
although this hypothesis requires studying. As well, for migrated objects, it is
possible to determine their actual memory footprint by checking the size of the

serialized object at the time of migration.

e In order to provide a measure of object lifetimes, the aggregate amount of time
a remote object has resided within the Babylon system could be measured. This
would serve as a guide to the likelihood that this object will continue to reside

on the server in the future (and could be compared relative to other objects).

e To consider the effects of migration, Babylon could measure the number of

times individual objects have been migrated. This could serve as a guide in

92

deciding which objects should be migrated, if the Babylon server needs to reduce
the number of objects resident upon it. Objects which have previously been
subjected to migration costs are better candidates for future migration since

the relative cost of migration versus object lifetime is less for these objects.

While this list is not complete, in our opinion it represents the some of the most
important statistics Babylon could collect, and acts as guide to the type of measure-
ments that can be made obtained using Babylon. Downey and Harchol-Balter [18]
conclude that process lifetime distribution, a measurement which Babylon can simu-
late by tracking object lifetime distribution, can be used as the deciding measure for
process migration. That is, when choosing a job to migrate, always choose the one
which has lived the longest. This is because the longest job is most likely to be the
one which will live the longest into the future and because it is the job which will
suffer the least (relatively) consequences from migration overhead.

It would also be possible for Babylon to require certain information about Baby-
lon servers be obtained as part of start-up (e.g., as part of a configuration file). For
example, with knowledge of which Babylon servers have greater memory or compu-
tational resources, objects which are memory or CPU intensive can be allocated to
these servers. This would be similar to the implementation of Utopia, which relies
upon user input to define which hosts serve what purposes, and which types of hosts

objects should have an affinity for.

93

5.2 Design

Ajents, from which Babylon descended, lacked sophisticated scheduling mechanisms.
Objects found servers by examining a file and then trying to connect to the server.
This was considered unacceptable for Babylon and thus a scheduling system was
implemented, with the primary design goal being a simple, functional scheduling
system. The design revolves around a scheduling server which is a point of contact,
providing references to available Babylon servers upon request. The scheduling server
maintains an updated internal database of available servers which is used to fulfill
requests for available servers. In order to allow access to be completed through remote
method invocations, the scheduling server is implemented as a Java RMI object. This
offers simple transparent access to the remotely-located scheduling server.

The scheduling server makes the following methods publicly available to clients:

availServer(): This method returns a remote reference to an available Babylon
server. Currently, the available Babylon servers are stored in a list, and round-
robin ordering is used to decide which available server is returned for use by
the calling application. Improved scheduling policies would be implemented by

modifying this method.

registerServer (BabylonServer reference): This method is used by Babylon ser-
vers in order to add themselves to the list of available servers maintained by the
scheduler. As part of the initialization of every Babylon server, this method is

94

invoked.

unRegisterServer (BabylonServer reference): This method is used by Babylon

servers in order to remove themselves from the list of available servers main-

tained by the scheduler. This method is invoked as part of the shut-down

procedure of every Babylon server.

getServerReference(String serverName): This method returns a reference to an
available Babylon server if one matches the host name. This allows for objects
to request creation on, or migration to, a specific Babylon server by specifying

a host name.

In order to ensure that all server arrivals and departures are known to the schedul-
ing server, the registerServer()/unRegisterServer() steps are built in to the
Babylon servers. In order to contact the scheduling server, Babylon servers require a
parameter upon start-up representing the host name of the scheduling server. Note
that currently, if a Babylon server should fail, the scheduling server would not be
informed. This is a limitation imposed by the lack of fault tolerance features imple-
mented in the current version of Babylon.

In order to enable scalable and fault tolerant scheduling in the future, all data
contained in the scheduler (and thus, the scheduling server object itself) is serializ-
able, and thus migratable. This allows for references to available Babylon servers,

and Babylon server state information to be migrated to another scheduler, should

95

a scheduler become overloaded. Scalable scheduling has been considered by many
other systems, such as Javelin++ [29] and Utopia [48]. A scheme similar to that
implemented in Utopia could be implemented, whereby all scheduling information is
replicated onto a backup scheduler. Thus, if the primary scheduler fails, the backup
will be capable of replacing it immediately. However, the current implementation of

Babylon does not include any scalable scheduling or fault tolerant infrastructure.

96

Chapter 6

System Evaluation

6.1 Performance Evaluation

In order to demonstrate the practical relevance of Babylon we have evaluated the
performance of Babylon using several micro-benchmarks and three simple distributed
applications. These results show that the overheads introduced in using Babylon are

not, prohibitive.

6.1.1 Testbed

All experiments were conducted using a cluster of 8 SUN Ultra-1 workstations as
Babylon servers. Each is equipped with a 143 MHz UltraSparc CPU and 64 MB of
memory, and runs Solaris 2.5. The client (originating host) is an additional SUN
Ultra. However, it is located on a different subnet from the Babylon server cluster.
This is done so that the client does not share a file system with the Babylon servers,

thus requiring class files to be remotely loaded at the time of remote object creation

97

or migration. All machines are connected with a 10 Mbps Ethernet network. All
experiments were conducted using SUN’s JDK, Version 1.1.6. This version includes
a just-in-time compiler which was activated for all experiments. Checkpointing was
not activated (the Babylon default), except where specified.

While all of our performance testing was done in a homogeneous environment,

Babylon does successfully run on a variety of platforms!.

6.1.2 Benchmarks

In this section, we demonstrate the overheads incurred by each of Babylon’s main
features. This is done through a series of benchmarks, wherein individual Babylon

features are tested.

Remote Method Invocations

We expect that Babylon will be commonly used to distribute long-lived objects among
available machines, with remote execution requests occurring far more frequently than
object creation or migration requests. Thus, it is vital that Babylon is able to perform
RMI requests efficiently. Table 6.1 shows the results of our RMI request benchmark.
A remote method was invoked repeatedly, passing an integer array of a specified size
as a parameter (the size of this array is changed for each experiment). The results

show the average time to complete a single remote method invocation (and thus

!Babylon has been tested on: Solaris, IRIX, Linux and Windows.

98

differences may not be statistically significant). These results demonstrate that while
there is overhead involved in making remote method invocations using Babylon, it is

not significantly greater than that incurred when performing a regular Java RMI call.

Parameter Array Size (ints) [1 1k 10k 100k

Time per RMI - Babylon (ms) |9 11 46 400
Time per RMI - JDK RMI (ms) |4 7 42 397

Table 6.1: Remote Method Invocation Times

The results in Table 6.1 demonstrate that the design of Babylon’s remote method
invocations does not add significant overhead. By performing only a single Java
RMI call, and handling error situations through exceptions, Babylon’s remote method
invocations approach a simple Java RMI call in efficiency. This is in contrast to Ajents’
design, which involves multiple Java RMI calls in order to preemptively determine if

non-standard conditions (such as object migration) exist.

Migration

A major feature of Babylon is the ability to migrate remote objects. Table 6.2 shows
the times to migrate remote objects of various sizes. In conducting this experiment,
we migrated an object which is composed of a single integer array (the size of this
array is changed for each experiment). The object was migrated 64 times using 8
different machines (the 8 machines were used repeatedly in the same order). These

results were then averaged to produce the results shown in the table.

99

Object Size (ints) [1 1k 10k 100k
Time per migration (ms) | 334 334 397 769

Table 6.2: Remote Object Migration Times

We can see by comparing these results with those in Table 6.1 that there is a
significant increase in cost for object migration when compared with a remote method
invocation. This can be accounted for by several factors. Migrating an object requires
that objects to be serialized, transfered to the target host and then deserialized.
References to the object then need to be updated, including those needed by the
Babylon server, the client, and the garbage collector. Additionally, when the object
is migrated to a new host, classloading may be required. One final factor involved is
that migration involves multiple RMI requests. An available Babylon server must be
provided, either by contacting the scheduler, or by resolving a host name provided
by the user. The object must then be contacted in order to obtain a reference to
the object’s current server. This current server must be sent a migration request and
the destination server must also be contacted in order for it to prepare to receive the
object. Each of these steps involves an RMI, and the passing of parameters, each of
which must be serialized /deserialized.

Despite the number of fixed costs inherent in the method used for migration,
the results in Table 6.2 are reasonable. Migration is an activity which should not

occur frequently, and thus the overhead involved in migration should not be a major

100

inefficiency.

Checkpointing

As previously described in Section 3.4, the use of checkpointing in Babylon enables the
use of the checkpointing and rollback form of migration. However, the checkpointing
of objects preceding a remote method invocation has an obvious negative impact on
performance. Table 6.3 displays the results of a simple checkpointing benchmark de-
signed to provide an idea of the costs involved in checkpointing. For this benchmark,
an empty remote method was invoked repeatedly on an object whose sole member
variable is an array of integers (the size of this array is changed for each experiment).
The first two rows show the average time to complete a single remote method invoca-
tion, with checkpointing enabled, and without checkpointing enabled. The last row
in the table shows the time difference between these two experiments. It represents

the overhead added to an RMI call when checkpointing is enabled.

Object Size (ints) [1 1k 10k 100k
No-Checkpointing (ms) |6 6 6 6

Checkpointing (ms) |8 9 19 115
Checkpointing Cost (ms) |2 3 13 109

Table 6.3: Checkpointing Performance Results

The results presented in Table 6.3 show that the overhead of Babylon’s check-
pointing method is not extravagant, and as expected the overhead increases with the

size of the object being checkpointed. Since the costs are considerably lower than mi-

101

gration costs (as shown in Table 6.2), the same relatively coarse grained applications
whose execution times are not significantly impacted by migration would also not
be significantly impacted by checkpointing. Our target applications are those whose
method invocations made through Babylon will have a running time measured in sec-
onds and minutes (as in the matrix multiplication case), and thus the overheads due
to checkpointing will not be significant for these cases. However, checkpointing will
have a considerable impact when there are a large number of invocations on methods
with relatively short execution times.

A potentially more prohibitive cost of checkpointing is memory usage. Since check-
pointing creates a complete copy of an object, memory usage for the checkpointed
object effectively doubles. This can be an issue when dealing with large objects, such

as matrices where object size is measured in megabytes.

Object Output

In order to demonstrate that the overheads involved in remote I/O are not severe,
we conducted an I/O benchmark. Table 6.4 shows the results of our object output
benchmark. In conducting this experiment, we save a remote object, which is com-
posed of a single integer array (the size of this array is changed for each experiment),
from memory to disk on the originating host. Note that in the Babylon version,

this means that the object resides in memory on a remote host, but is saved to disk

102

on the originating host. Thus it must be contacted, a save-to-disk method invoked,
and then the integer array object must be transferred by Babylon to the originating
host to be saved. These extra steps, not required on the local version, account for
the overhead presented in the table. Measured in Table 6.4 is the time required to
invoke a method of the object which saves the object to disk. In the Babylon case,
this method is remotely invoked. The final line in Table 6.4 reports the difference

between the Babylon version, and a local version.

Object Size (ints) | 1 1k 10k 100k
Local (ms) | 1 2 13 110
Babylon Remote (ms) |25 25 70 500
Overhead (ms) |24 23 57 390

Table 6.4: Object Output Results

The overhead presented in Table 6.4 are greater than, but on the same order of
magnitude, as those presented in Table 6.1 for RMI. In each case, the majority of
the cost is due to the serialization and transfer of the integer array. In this case, the
Babylon version involves an RMI to request that the object saves itself to disk, as
well as an additional RMI when the remote object transfers its data to the originating
host. In addition, this benchmark involves disk overhead. Thus, the results presented
in Table 6.4 approximately match expected estimates computed using the data in

Table 6.1.

103

6.1.3 Applications
Parallel Matrix Multiplication

Table 6.5 shows the results of experiments conducted using a simple (non-blocked)
matrix multiplication benchmark. While this is clearly not the most efficient im-
plementation of matrix multiplication, the same implementation is consistently used
in all cases in order to provide a fair comparison. The times reported measure the
time to complete the matrix multiplication. In addition, the time required in order
to transfer input and output data to/from the Babylon servers is included, where
applicable. The first two rows of this table show the sequential execution times of
versions of this program written in C and in Java (the columns show the results for
different matrix sizes in integers). We note that across all matrix sizes the execution
times of the Java version compares reasonably well with results obtained using C. The
Java version is slower, by roughly a factor of 2. Although the Java version is slower,
we believe that for a number of programmers and coarse-grained applications the
benefits obtained from the ease with which Babylon programs can be implemented
and executed across a wide variety of platforms will outweigh the costs of decreased
execution times (relative to applications implemented in C).

The third row of Table 6.5 shows the execution time of the parallel version of
the matrix multiplication program when executing using one remote server. By com-

paring the second and third rows of the table we see that the overheads incurred

104

by Babylon, in switching from a simple sequential matrix multiply to a single-server

Babylon version, is low.

Matrix Size (N)[200 500 640 800 1024
Sequential C Time (s) | 4.0 67 139 280 601
Sequential Java Time (s) | 7.5 131 286 574 1272
Time on 1 Server (s) | 7.7 134 292 580 1305
Time on 8 Servers (s) | 1.5 20 40 78 172
Speedup 51 6.7 73 74 7.6

Table 6.5: Matrix Multiplication: Execution Time Comparison and Speedup
Speedup is the time on 8 servers versus sequential Java time.

The last two rows of Table 6.5 show the execution times for each matrix size when

using all eight servers, and the corresponding speedups. The speedups obtained
in these experiments are quite typical of those obtained in similar loosely coupled
environments. While speedup is acceptable for smaller problem sizes, it continues to
improve as the problem size grows, with a speedup of 7.6 obtained using 8 machines
and a matrix size of 1024 x 1024 integers. That the speedup approaches linear as the
problem size grows indicates that Babylon’s overhead is largely a fixed cost versus

computation and memory overhead costs.

Serial Matrix Multiplication with Migration

A key feature of Babylon is that we seamlessly integrate object migration and the
execution of remote methods. Babylon was built to support objects which may be

long-lived and as a result might be migrated many times during their lifetimes. While

105

previous experiments show the cost of remote method invocation and object migration
in isolation, it is also important to consider the overheads incurred by real applica-
tions that utilize these facilities. Therefore, we conducted experiments in which a
sequential matrix multiplication is run and after completing a portion of its compu-
tation (in this case one eighth), all three matrices and the computation are migrated
to a new machine?. This is repeated eight times. Matrix multiplication was chosen
as a benchmark application because it is both data and computationally intensive.
That is, it runs for a reasonable amount of time but also needs a significant amount
of data to be migrated.

The results of these experiments, shown in Table 6.6, compare the execution
times of the sequential matrix multiplication (done on a single Babylon server) with
a sequential matrix multiplication forced to migrate to eight different machines. The
first two rows of the table show the execution times for different problem sizes, while
the last row shows the inflation factors for the different problem sizes (i.e., the ratio
of the execution time including the migrations over the execution time without the
migrations). The results show that even for matrices of moderate size the overheads
associated with migrating the matrix objects a number of times does not significantly
increase the total execution time. We found these results to be surprisingly good,
especially because the computations involving a 1024 x 1024 matrix of integers must

serialize, transfer and deserialize at least 12 MB of data during each migration (4 MB

2The source code for this application is provided in Appendix B.

106

for each of the three matrices, assuming four bytes for each integer). Admittedly,
these objects are not very complex and may be faster to serialize and deserialize than
more complex objects. However, even with an increase in object migration times the

advantages of migration will still outweigh the disadvantages for some applications.

Matrix Size (N) | 200 500 640 800 1024
Time with 1 Server (s) | 7.7 134 292 580 1305
Time with 8 Servers (s) | 20.3 165 344 666 1402
Inflation Factor 264 123 1.18 1.15 1.07

Table 6.6: Serial Matrix Multiplication Times with and without Migration Overheads

We also believe that an inflation factor of 2.64 for the 200 x 200 matrix is not

excessively large, considering that an additional job added to the same machine would
result in an inflation factor of 2 (assuming round-robin scheduling with no overhead).

We expect that this test represents a worst case scenario: a computationally in-
tense job using large objects. In the majority of cases, the number of migrations
per unit time will be less than in our simulation. Objects will often be idle, allow-
ing migration to occur between RMI calls, with negligible effect on execution times.
We believe that the 7% inflation achieved for the longer running matrix multiplica-
tions is a positive result, and it justifies our belief that Babylon will perform well in

environments requiring both efficient execution and mobility from objects.

107

File Display

As an example of the performance of Babylon’s remote I/O facilities, a version of the
common UNIX utility cat was implemented in Java. Our version is designed to echo
text files, reading input and writing it to the console, line by line. While this is not
the most efficient method of designing such a program, it is the most natural way
of dealing with text files. Table 6.7 presents the results of this experiment. As the
Babylon version runs remotely, the 6 ms overhead per line reflects the two remote
method invocations that must be made per line. Read from file, and write to screen

are both remote methods.

File Size | 150 lines (6427 bytes)

Local total 85 ms
per line 0.5 ms
Babylon | total 970 ms
per line 6.5 ms

Table 6.7: File Display Results

While these results clearly indicate that remote I/O in Babylon can not compare in
performance to local I/O, we believe they are reasonable. I/O is still very valuable for
debugging purposes, and for human interactive use, where performance requirements
are not as stringent. In these areas (debugging and human interaction), there is no
comparable way of completing tasks remotely without I/O features such as those

provided by Babylon. Thus, remote I/O is not a replacement for, nor in competition

108

with, local I/O. It is a feature which provides an important function, rather than one

which improves the speed of high performance computing.

6.2 Discussion

Having detailed the design and implementation of Babylon, and presented a range of
performance results, we now discuss issues relating to the Babylon project as a whole.

The current design and implementation has been greatly influenced by our over-
riding goals to produce a system that is as transparent as possible while ensuring
that we do not modify the language or use preprocessors. We want to ensure that
Babylon, and applications that use Babylon, are compatible with existing Java tools,

and the Java virtual machine. As a result, compromises have been made in other
areas.

Babylon’s Java compatibility is achieved by making the synchronous and asyn-
chronous RMI interface less transparent than approaches used by SUN’s RMI [46] or
JavaParty [34]. The mechanisms provided by Babylon for creating and interacting
with remote objects (Babylon.{new(), rmi(), armi(), migrate()}) are clearly
different from similar mechanisms for local objects. This requires the application
programmer to keep track of which objects are local and which are remote and to
ensure that the proper interface is used for remote objects. However, this lack of

transparency has its advantages, since it may be helpful for programmers to remem-

109

ber which method invocations are remote when performance is an issue.

An additional disadvantage of the Babylon RMI interface is that the method
and parameters passed as parameters to the Babylon.rmi() call can not be checked
at compile time, nor can the types of the parameters that are to be passed to the
specified method. As a result it is not possible to detect errors that might otherwise
be detected at compile time, such as invoking a non-existent method of an object,
or invoking a method with incorrect arguments types, or an incorrect number of
arguments. Unfortunately, in Babylon such problems can only be detected at run-
time (Babylon throws an exception appropriate for the error). However, we believe
that these tradeoffs are warranted in order to maintain 100% Java compatibility.

While we believe the overheads introduced by Babylon are reasonable, it is clear
that the total costs are still high compared to existing high performance distributed
computed systems such as Treadmarks [23]. As can be seen by examining the over-
heads incurred when invoking remote methods (Table 6.1) and performing object
migration (Table 6.2), Babylon is clearly designed for use with coarse-grained ap-
plications. Even with improvements in Java virtual machine implementations, it is
unlikely that Babylon will be used for fine-grained computations in a clustered work-

station environment.

Although costs are relatively high at the present, we foresee the potential for sig-

nificant improvements in Babylon’s performance. The introduction of, and improve-

110

ments to, just-in-time compiler technology has greatly improved Java performance
in recent years, as shown by a comparison between ParaWeb and Ajents [20]. Tt is
also possible that dynamic and/or hot-spot compilation techniques will further re-
duce the gap in execution times. Another large source of overhead in Babylon is
its heavy reliance on RMI. While Java RMI is a very useful tool, it has significant
costs. In addition to the method invocation costs, every RMI involves the serializa-
tion of parameters. Object serialization times are also an issue in migration. The
performance of Babylon could be significantly improved through more efficient RMIs
and/or improved object serialization [33, 30, 28, 24]. Recently published research by
Phillippsen et al. [33] shows that object serialization takes between 25% and 50%
of the time needed for a remote invocation and that this time can be improved by
81% to 97% [33]. Another paper by Phillippsen et al. [30] implements techniques to
improve RMI times by a median of 45%. There is also the potential for improvements
in Babylon’s implementation. While some features, such as RMI, have been tuned for
performance, other features, such as object migration are untuned. For example, it
may be possible to reduce the number of messages and/or remote method invocations
being used to implement migration.

Our personal experience with programming benchmarks and test applications have
provided insight into the ease of programming for Babylon. While the use of a non-

transparent interface requires minor extra coding and debugging, the interface is

111

still relatively easy to use for experienced Java programmers. For example, a simple
client-server socket-based Knock-Knock joke program from Sun’s Java tutorial [6] was
ported to Babylon in a very short time (roughly 10 minutes), with minimal changes
required. No changes were required to the client side, while two types of changes were
required for the server. One, a “bootstrap” program (about 5 lines long) was written
to remotely create the remote Knock-Knock server object, and to remote invoke its
“run” method. Two, the server object was slightly edited to change all socket and

stream classes to remote socket and stream classes?.

While Babylon supports a significant number of features, it is not free of lim-
itations. Checkpointing and rollback are only seriously viable for methods which
perform self-contained computation. Methods which alter external objects, through
method invocations or I/O, are at risk from consistency problems, should they be
interrupted, a checkpointed copy migrated, and rolled back.

Another limitation with respect to immediate migration involves remote methods
which create additional threads. In order for immediate migration to proceed, Baby-
lon halts threads related to remote method invocations. However, Babylon is only
aware of the single thread that is executing a remote method invocation, and does
not know about any additional threads that might be created during the execution

of this method. Thus, during immediate migration, Babylon is not able to halt any

3For example, changing the declaration “ServerSocket serverSocket;” to “RemoteServer-
Socket serverSocket;”.

112

additional threads that might have been created. A possible solution, currently unim-
plemented, would involve requiring remote objects to create threads using a Babylon
specific interface. Babylon would then be able to retain a reference to these threads,
and halt all threads related to a remote object, once an immediate migration request

is made.

113

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Babylon is a system which provides constructs designed to aid distributed object
programming in Java. To provide these constructs, Babylon improves upon features
included in class libraries initially created for Ajents, and implements a number of

new features.

Babylon makes three main contributions to the area of Java-based distributed

object programming.

e Unlike a number of other existing systems, Babylon is 100% Java compatible.
No non-standard keywords, compilers, stub compilers or virtual machines are
required. No changes to the Java language specification or the Java virtual

machine are required.

e Babylon allows any Java object to be used in a distributed context and remote
methods to be invoked upon that object. No special programming techniques

114

are required including no added keywords, exceptions or variables.

e Babylon includes a significant number of features, which, to our knowledge, have
not been combined into a single Java-based distributed environment. These
features include extensions to features originally included in Ajents, as well as
newly implemented features. Features added to the original version of Ajents

[7] include:

— Ajents requires class files to be located upon any host where the object
might reside, either because it is created there, or migrated there. Babylon
provides a remote class loading mechanism, so that class files need only be
located upon the originating host, and the system ensures that these class

files reach the appropriate destination.

— Babylon adds support for exceptions to synchronous and asynchronous

remote method invocations. This is not supported in Ajents.

— Babylon adds support for the immediate migration of executing objects.

Ajents only supports the migration of idle objects.

Features newly implemented for Babylon are as follows.

— Babylon implements a new internal object design, and a new remote me-

thod invocation design.

115

— Babylon implements the use of checkpointing, rollback and restart as a

means of immediately migrating objects.

— Migration in Babylon occurs transparently. References to remote objects
continue to work after migration, and remote methods which were inter-

rupted by migration are transparently re-invoked.

— Babylon provides a means of communication with remote objects through
console and file I/O, and socket communication. Remote I/O works cor-

rectly with remote objects before and after migration.

— Babylon provides basic infrastructure for a scheduling system, including

the ability to seamlessly handle the arrival and departure of servers.

In order to access Babylon features such as migration and remote 1/O, objects
are required to implement or extend certain classes. These requirements are sum-
marized in Table 7.1. Object creation, and remote method invocation (synchronous
and asynchronous) can be performed using any Java object. This includes objects for
which no source is available. Only remote objects that implement serializable can
be migrated. Using Babylon’s remote I/O facilities requires that the object extend
RemoteI0. For remote creation, RMI, migration and remote 1/O, Babylon provides
a special application programming interface which must be used in order to access

those features.

Babylon supports features that have not, to our knowledge, been previously im-

116

Babylon Feature ‘ Object Restrictions

Object Creation and RMI None
Object Migration must implement serializable
Remote I/0O must extend RemoteIO

Table 7.1: Object Restrictions in Order to Utilize Babylon Features

plemented in a Java-based distributed system. In addition, Babylon’s combined range
of features is more extensive than any other Java-based distributed system that we
are aware of. Finally, we have shown that the mechanisms used to implement these
features perform in a reasonable fashion, and that future improvements in Java tech-
nology will positively impact Babylon. Thus, we believe that Babylon provides an

excellent basis for building distributed object systems in Java.

7.2 Future Work

Babylon provides support for distributed object programming in Java. However, it
is certainly not a finished product. There are additional research areas which would
continue our work towards creating a system which autonomously allocates resources
to objects while retaining ease of use and reasonable performance. The major areas

available for future improvements and research related to Babylon are listed below.

Performance Improvements: Babylon has not been extensively tuned. Thus, we
can not definitively state, for example, which parts of the migration process are

slowest, and whether the most efficient programming techniques have been used

117

in every case. An in-depth analysis, as well as adoption of new, more efficient
Java routines for RMI [30, 28, 24] and object serialization [33] could result in

greatly improved performance.

Scheduling: While Babylon provides a basic scheduling infrastructure, no scheduling
policies are implemented or tested. Policies are required which can distribute the
work equitably among the available processors, despite the limited information
available. Not only is there the classic scheduling problem of unknown future
job requirements, but future resource availability are also unknown. A second
scheduling issue involves analyzing different approaches to hierarchical structur-
ing, in order to learn how to effectively group large collections of servers and to
handle object placement requests effectively and efficiently. Efficient scheduling

mechanisms are vital in order for Babylon to scale over a large network.

Fault Tolerance: In any computing environment, there is the potential for hardware
or software failure. Thus Babylon can not depend upon the absolute reliability
of all Babylon servers. Fault tolerance is often a key requirement in distributed
computing, and an investigation and application of fault tolerance schemes is
required before Babylon can be considered complete. The checkpointing facil-
ities provided in Babylon should provide a good base for implementing fault

tolerance schemes.

118

Security: Babylon’s reliance on Java’s internal security mechanisms safeguards Ba-
bylon servers from malicious users. However, Babylon does not implement any
security policy for remote objects. Currently, anyone may obtain a reference,
and invoke methods upon remote objects. There is no authentication of the
source of remote method invocation requests, neither are these requests en-
crypted while traveling over the network. As well, there is no protection for
remote objects from malicious Babylon server hosts. The level of security re-
quired, and how to implement these security features is an important future

step.

Remote Classloading Improvements: Babylon’s remote classloading implemen-
tation meets basic requirements, but is not as efficient and flexible as possible.
Aglets [25] implements a very similar classloading scheme, and many of their
improvements could be adapted to Babylon. For example, Aglets caches an
object’s codebase to avoid repeated transfers, if the object migrates to the same

host multiple times.

In this thesis, we have made significant contributions towards the development of
distributed system features in Java and the integration of those features into a single
Java-based distributed environment. We believe that Babylon forms a solid basis for

future research into a complete system for distributed programming in Java.

119

Appendix A

Babylon User API

Listed here is the API for the methods which Babylon makes public for programmers
to make use of. Babylon’s internal API and structures are documented within the
source code and not listed here for the sake of brevity.

These API’s are also available at: http://www.cs.yorku.ca/ izatt/babylon/api

A.1 babylon.core.Babylon

public class Babylon extends java.lang.Object

A.1.1 Methods

public static java.lang.Object rmi(BabylonObj obj,
java.lang.String method,
java.lang.Object[] arguments)
throws MethodNotFoundException,
java.lang.RuntimeException,
RemoteExecException

public static java.lang.Object rmi(BabylonObj obj,

java.lang.String method)
throws MethodNotFoundException,

120

java.lang.RuntimeException,
RemoteExecException

public static Future armi(BabylonObj obj,
java.lang.String method,
java.lang.Object[] arguments)

public static Future armi(BabylonObj obj,
java.lang.String method)

public static boolean migrate(BabylonObj obj,
java.lang.String host)
throws NotMovableException

public static boolean migrate(BabylonObj object,
RemoteObjectServer toServer)
throws NotMovableException

public static BabylonObj remoteNew(java.lang.String className,
java.lang.String instanceName,
java.lang.String jarFile,
RemoteObjectServer ros,
RemoteIO io)

throws RemoteInstantiationException,

java.io.I0OException,
java.io.FileNotFoundException

public static Scheduler register()
public static Scheduler register(java.lang.String schedulerAddress)
public static void setCheckPoint(BabylonObj obj,

boolean check)
throws java.rmi.RemoteException

A.2 Dbabylon.core.Future

public class Future extends java.lang.Object

121

A.2.1 Methods

public java.lang.Object get()
throws MethodNotFoundException,
RemoteExecException,
java.lang.RuntimeException

A.3 babylon.core.RemoteObj

public class RemoteObj extends java.lang.Object implements java.io.Serializable
A.3.1 Methods
public final RemoteIO getIO()

public final java.lang.String getLocation()

A.4 Dbabylon.sched.SchedulerImpl

public class SchedulerImpl extends java.rmi.server.UnicastRemoteObject implements
Scheduler

A.4.1 Methods

public RemoteObjectServer AvailServer()
throws java.rmi.RemoteException

public boolean registerServer (RemoteObjectServer ros,
java.net.InetAddress addr)
throws java.rmi.RemoteException
public boolean unregisterServer(RemoteObjectServer ros,
java.net.InetAddress addr)

throws java.rmi.RemoteException

public RemoteObjectServer getServer(java.lang.String serverName)
throws java.rmi.RemoteException

public static void main(java.lang.String[] args)

122

A.5 babylon.io.RemotelOImpl

public class RemotelOImpl extends java.rmi.server.UnicastRemoteObject implements
RemotelO, java.io.Serializable

A.5.1 Methods

public void println(java.lang.0Object obj)
throws java.rmi.RemoteException

public void print(java.lang.Object obj)
throws java.rmi.RemoteException

public java.lang.String readLine()
throws java.rmi.RemoteException,
java.io.I0OException

public RemotePrintWriter
newRemotePrintWriter (java.lang.String fileName)
throws java.rmi.RemoteException,
java.io.IOException

public RemoteObjOutStream
newRemoteObjOutStream (java.lang.String fileName)
throws java.rmi.RemoteException,
java.io.I0Exception

public RemoteObjInStream
newRemoteObjInStream (java.lang.String fileName)
throws java.rmi.RemoteException,
java.io.I0Exception

public RemoteBufferedReader
newRemoteBufferedReader (java.lang.String fileName)
throws java.rmi.RemoteException,
java.io.I0Exception

public RemoteServerSocket

newRemoteServerSocket (int port)
throws java.rmi.RemoteException,

123

java.io.I0OException

public RemoteSocket newRemoteSocket(java.lang.String host,
int port)
throws java.io.IOException,
java.rmi.RemoteException

public RemoteSocket newRemoteSocket(java.net.InetAddress address,
int port)
throws java.io.IOException,
java.rmi.RemoteException

124

Appendix B

Sample Babylon Application -
Serialized Matrix Multiply

Listed here is the source code for the serialized matrix multiply application used in

Section 6.1.3.

B.1 Matrix.java

package babylon.tests.MatMul;

import java.io.Serializable;
import babylon.core.x*;
import java.util.Random;

public class Matrix implements Serializable
{
private final static int numberSize = 10;
private int rows = 10;
private int columns = 10;

int[1[]

=

b

public Matrix() {
m = new int[rows] [columns];

}

125

public Matrix(int rows, int columns) {
this.rows = rows;
this.columns = columns;
m = new int[rows] [columns];

public int getValue(int x, int y) {
return m([x] [y];

}

public void print() {
for (int i = 0; i < rows; i++){
for (int j = 0; j < columns; j++)
System.out.print(m[i] [j] + " ");
System.out.println();
}
}

public int getRows() {
return rows;

}

public int getColumns() {
return columns;

}

public void setValue(int x, int y, int value) {
m[x] [yl = value;
}

public static Matrix createldentityMatrix(int size) {
Matrix result = new Matrix(size, size);
for (int i = 0; i < size; i++)
for (int j = 0; j < size; j++)
if (4 == j)
result.setValue(i, j, 1);
else
result.setValue(i, j, 0);

126

return result;

}

public static Matrix createRandomMatrix(int rows, int columns) {
Matrix result = new Matrix(rows, columns);
Random random = new Random() ;
for (int i = 0; i < rows; i++)
for (int j = 0; j < columns; j++)
result.setValue(i, j, random.nextInt() % Matrix.numberSize);
return result;

}

public Matrix getSubMatrixByRows(int startAtRow, int endAtRow) {
int nrows = endAtRow - startAtRow + 1;
Matrix result = new Matrix(nrows, columns);
for (int i = 0; i < nrows; i++)
for (int j = 0; j < columns; j++)
result.setValue(i, j, m[i+startAtRow] [j1);
return result;

}

public Matrix getSubMatrixByColumns(int startAtCol, int endAtCol) {
int ncols = endAtCol - startAtCol + 1;
Matrix result = new Matrix(rows, ncols);
for (int i = 0; i < rows; i++)
for (int j = 0; j < ncols; j++)
result.setValue(i, j, m[i][j+startAtColl);
return result;
}
}

B.2 MultiplyMatrix.java

package babylon.tests.MatMul;

import java.rmi.server.*;
import java.rmi.*;

import java.io.Serializable;
import babylon.core.x*;

127

public class MultiplyMatrix extends RemoteObj implements Serializable

{

Matrix a,b,c;

public MultiplyMatrix() {
}

public void setA(Matrix m) {
a = m;

}

public void setB(Matrix m) {
b = m;

}

public void createC() {
c = new Matrix(a.getRows(),b.getColumns());
}

public Matrix getResult() {
return c;

}

public void multiply(Integer st,Integer fi) {
int brows, rows, columns;
int start = st.intValue();
int finish = fi.intValue();
int value;
if (a.getColumns()== b.getRows()) {
rows = a.getRows();
columns = b.getColumns();
brows = b.getRows();

for (int i = start; i < finish; i++)
for (int j = 0; j < columns; j++) {
value = 0;
for (int k = 0; k < brows; k++)
value += a.getValue(i,k) * b.getValue(k,j);
c.setValue(i, j, value);

3

128

B.3 TestMatrixMult.java

package babylon.tests.MatMul;

import babylon.core.x*;
import babylon.io.x*;
import babylon.server.*;
import babylon.sched.x*;
import java.rmi.*;
import java.util.Date;

public class TestMatrixMult
{
public static void main(String args[]) {
System.setSecurityManager (new RMISecurityManager());
if (args.length !'= 3) {
System.out.println("<scheduling server> " +
"<num processors> <matrix size>");
System.exit (0);
}

Scheduler sched = Babylon.register(args[0]);

int nprocs = Integer.parselnt(args[1]);
int size = Integer.parseInt(args[2]);

Matrix a, b,c;

BabylonObj mm = null;

long startServerT, finishServerT;
long startExecT, finishExecT;

startServerT = (new Date()).getTime();

129

try {
RemoteI0 io = new RemoteIOImpl();
mm = Babylon.remoteNew(
"babylon.tests.MatMul.MultiplyMatrix",
"mm", "/cs/home/gradi/izatt/MatMul.jar",
sched.AvailServer(),io);
}
catch (Exception ex) {
System.out.println("Creation error");

}

b = Matrix.createldentityMatrix(size);

a = Matrix.createRandomMatrix(size, size);
¢ = null;

int start_row = 0;

int end_row = -1;

int nrows = size / nprocs;

try {
Babylon.rmi(mm, "setA", a);
Babylon.rmi(mm, "setB", b);
Babylon.rmi(mm, "createC");

}

catch (Exception ex) {
System.out.println("error " + ex);

}
finishServerT = (new Date()).getTime();

for (int i = 0; i < nprocs; i++) {
if (i >= size % nprocs) {
start_row = end_row + 1;
end_row = start_row + nrows - 1;
}
else {
start_row end_row + 1;
end_row = start_row + nrows;

}

130

startExecT = (new Date()) .getTime();
for (int i = 0; i < nprocs; i++) {
try {
Babylon.rmi(mm, "multiply", new Integer (i*nrows),
new Integer ((i+1)*nrows));
if (i < nprocs-1) {
System.out.println("moving..");
Babylon.migrate(mm,sched.AvailServer());

}
}
catch (Exception ex) {
System.out.println("Execution " + i + ": error: " + ex);
}
}
try {
¢ = (Matrix) Babylon.rmi(mm,"getResult");
}

catch (Exception ex) {
System.out.println("error " + ex);

}

finishExecT = (new Date()).getTime();

long serverStartup = finishServerT - startServerT;
long execTime = finishExecT - startExecT;
System.out.println("Matrix size = " + size +
", processors = " + nprocs);
System.out.println("Time required for starting " +
nprocs + " servers:" + serverStartup);
System.out.println("Time required for multiplication: " +
execTime) ;
System.exit(0);

131

Bibliography

1]

2]

3]

[4]

A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman, “SuperWeb: Towards
a Global Web-Based Parallel Computing Infrastructure,” in 11th International

Parallel Processing Symposium, April 1997.

Y. Amir, B. Awerbucn, A. Barak, R. Borgstrom, and A. Keren, “An opportunity
cost approach for job assignment in a scalabale computing cluster,” in Proceed-
ings of the 10th International Conference on Parallel and Distributed Computing

Systems (PDCS ’98), pp. 40-53, October 1999.

E. Arjomandi, W. O’Farrell, I. Kalas, G. Koblents, F. Eigler, and G. Gao,
“ABC++: Concurrency and Inheritance in C++,” IBM Systems Journal,

Vol. 34, No. 1, pp. 120-136, 1995.

A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff, “Charlotte: Metacomputing
on the Web,” in Proceedings of the 9th Conference on Parallel and Distributed

Computing Systems, 1996.

132

[5]

[6]

[7]

8]

9]

[10]

[11]

T. Brecht, H. Sandhu, J. Talbot, and M. Shan, “ParaWeb: Towards World-Wide
Supercomputing,” in Furopean Symposium on Operating System Principles, Oc-

tober 1996.

M. Campione and K. Walrath, The Java Tutorial. Addison Wesley Developers

Press, Sunsoft Java Series, 1998.

P. Chan, “Ajents: A Parallel and Distributed Java System.” Master’s project,

York University, 1998.

B. Christiansen, P. Cappello, M. Ionescu, M. Neary, K. Schauser, and D. Wu,
“Javelin: Internet-Based Parallel Computing Using Java,” in ACM 1997 Work-

shop on Java for Science and Engineering Computation, June 1997.

A. Dick, “Object-Oriented Distributed and Parallel I/O Streams,” Master’s the-

sis, York University, 1999.

A. Dick, E. Arjomandi, and T. Brecht, “Object-Oriented Distributed and Parallel
I/O Streams,” in 18th Annual International Symposium on High Performance

Computing Systems and Applications (HPCS ’99), June 1999.

A. B. Downey and M. Harchol-Balter, “A note on “The limited performance
benefits of migratings active processes for load sharing”,” Technical Report CSD-

95-888, University of California, Berkeley, November 1995.

133

[12] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “The limited performance benefits

of migrating active processes for load sharing,” SIGMETRICS, pp. 662-675, May

1988.

[13] S. Fiinfrocken, “Transparent Migration of Java-based Mobile Agents (Capturing
and Re-establishing the State of Java Programs),” in Proceedings of the Second

International Workshop on Mobile Agents (MA’98), September 1998.

[14] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam,
PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Networked

Parallel Computing. MIT Press, Cambridge Massachusetts, 1994.

[15] G. Glass, “Overview of Voyager: ObjectSpace’s Product Family for State-of-the-

Art Distributed Computing,” Technical Report, ObjectSpace, 1999.

[16] J. Gosling, B. Joy, and G. Steele, The Java Language Specification. Addison

Wesley Developers Press, Sunsoft Java Series, 1996.

[17] J. Gosling and H. McGilton, “The Java Language Environment,” Technical Re-

port, Sun Microsystems, http://java.sun.com, October 1995.

[18] M. Harchol-Balter and A. Downey, “Exploiting process lifetime distributions for

dynamic load balancing,” in Proceedings of ACM SIGMETRICS ’96, May 1996.

134

[19]

[20]

[21]

[22]

23]

[24]

O. Holder, I. Ben-Shaul, and H. Gazit, “System support for dynamic layout of
distributed applications,” in Proceedings of the 19th International Conference on

Distributed Computing Systems (ICDCS ’99), pp. 403-411, May 1999.

M. Izatt, T. Brecht, and P. Chan, “Ajents: Towards an Environment for Par-
allel, Distributed and Mobile Java Applications,” in ACM 1999 Java Grande
Conference, June 1999. (Notwithstanding the title, this paper is based upon

Babylon).

Java Grande Forum, 1998-. http://www.javagrande.org.

H. Karl, “Bridging the gap between Distributed Shared Memory and Message
Passing,” in ACM 1998 Workshop on Java for Science and Engineering Compu-

tation, February 1998.

P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel, “TreadMarks: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems,” in

Proceedings of the 1994 USENIX Technical Conference, 1994.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Riley, B. Topol, and
M. Ahamad, “Efficient Implementations of Java RMIL,” in Proceedings of the 4th
USENIX Conference on Object-Oriented Technologies and Systems (COOTS’98),

April 1998.

135

[25]

[26]

[27]

28]

[29]

[30]

[31]

D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with

Aglets. Addison Wesley, 1998.

T. Lindholm and F. Yellin, The Java Virtual Machine Specification. Addison

Wesley Developers Press, Sunsoft Java Series, 1996.

M. Litzkow, “Remote Unix - Turning Idle Workstations into Cycle Servers,” in

Proceedings of the Useniz Summer Conference, pp. 381-384, June 1987.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, and A. Plaat, “An Ef-
ficient Implementation of Java’s Remote Method Invocation,” in Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (PPOPP’99), May 1999.

M. Neary, S. Brydon, P. Kmiec, S. Rollins, and P. Cappello, “Javelin4++: Scala-
bility Issues in Global Computing,” in ACM 1999 Java Grande Conference, June

1999.

C. Nester, M. Phillippsen, and B. Haumacher, “A More Efficient RMI for Java,”

in ACM 1999 Java Grande Conference, June 1999.

R. Netzer and J. Xu, “Necessary and Sufficient Conditions for Consistent Global
Snapshots,” IEEE Transactions on Parallel and Distributed Systems, Vol. 6,

No. 2, February 1995.

136

32]

[33]

[34]

[35]

[36]

[37]

[38]

ObjectSpace, Voyager Core Technical 2.0 User Guide, 1998.

M. Phillippsen and B. Haumacher, “More Efficient Object Serialization,” in In-

ternational Workshop on Java for Parallel and Distributed Computing, April

1999.

M. Phillippsen and M. Zenger, “JavaParty - Transparent Remote Objects in
Java,” in ACM 1997 Workshop on Java for Science and Engineering Computa-

tion, June 1997.

R. Raje, J. I. William, and M. Boyles, “An Asynchronous Remote Method In-
vocation (ARMI) Mechanism for Java,” in ACM 1997 Workshop on Java for

Science and Engineering Computation, June 1997.

M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz, “Network-aware Mobile

Programs,” in Proceedings of the 1997 USENIX Technical Conference, 1997.

R. Riggs, J. Waldo, and A. Wollrath, “Pickling State in Java,” in 2nd Confer-
ence on Object-Oriented Technologies and Systems (COOTS), Toronto, Ontario,

pp- 241-250, June 1996.

P. Smith and N. Hutchinson, “Heterogeneous Process Migration: The Tui Sys-

tem,” Technical Report, University of British Columbia, March 1997.

137

[39] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The

Complete Reference. MIT Press, Cambridge Massachusetts, 1996.

[40] M. StraBer, J. Baumann, and F. Hohl, “Mole - A Java based Mobile Agent

System,” in ECOOP 96 Workshop on Mobile Object Systems, 1996.

[41] Sun Microsystems, Palo Alto, CA., Java Object Serialization Specification, 1997.

[42] Sun Microsystems, Palo Alto, CA., Java Remote Method Invocation Specification

JDK 1.1, 1997.

[43] Sun Microsystems, Palo Alto, CA., Java Platform 1.1 Core API Specification,

1998.

[44] Sun Microsystems, Palo Alto, CA., Java Remote Method Invocation Specification

JDK 1.2, 1998.

[45] Y.-M. Wang, “Consistent Global Checkpoints that Contain a Given Set of Local

Checkpoints,” IEEE Transactions on Computers, Vol. 46, No. 4, April 1997.

[46] A. Wollrath, R. Riggs, and J. Waldo, “A Distributed Object Model for Java,”
in 2nd Conference on Object-Oriented Technologies and Systems (COOTS),

Toronto, Ontario, pp. 219-231, June 1996.

138

[47] W. Yu and A. Cox, “Java/DSM: a platform for heterogeneous computing,” in

ACM 1997 Workshop on Java for Science and Engineering Computation, June

1997.

[48] S. Zhou, J. Wang, X. Zheng, and P. Delisle, “Utopia: a load-sharing facility for
large heterogeneous distributed computing systems.,” Software - Practice and

Ezperience, Vol. 23, No. 2, pp. 1305-1336, December 1993.

139

