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Abstract

This thesis examines the problem of using 802.11 hotspots for vehicular Internet
access. In this access paradigm, a user in a vehicle performs batch transfers by
opportunistically communicating with roadside 802.11 access points while driving
along a highway. Despite the short connection duration, a significant amount of
data can be transferred. Because complete coverage is not needed, this method
of Internet access provides a low-cost alternative to using cellular technology for
applications that can tolerate some delay and require large data transfer such as
sending or receiving music, movies, or digital photographs.

Although vehicular opportunistic connections offer the potential to transfer a
large of amount of data, utilizing this potential is non-trivial because existing trans-
port and data-link layer network protocols were not designed for this use.

This thesis presents an experimental analysis of transport and data-link layer
protocol operation at a level of detail not previously explored. We identify ten
problems that cause a reduction of up to 50% of the amount of data that could have
been transferred in this scenario. Our primary finding is that transmission errors
during connection setup and inadequate MAC data rate selection are the main
causes of the underutilization of the connection. Based on these findings we make
preliminary recommendations for best practices for using vehicular opportunistic
connections. In particular, we argue that overall throughput could be significantly
improved if environmental information was available to the lower layer network
protocols.
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Chapter 1

Introduction

In this thesis, we consider the problem of obtaining Internet access in vehicles using
short-lived connections to roadside 802.11 access points that arise opportunistically
as vehicles are in motion. To better understand this new paradigm of access, we
perform a detailed experimental analysis of the behavior of data-link and trans-
port layer protocols during opportunistic communication at a depth not previously
explored.

This connectivity paradigm can be used for (1) downloading data to the vehicle,
such as for passengers to preview movie trailers as they travel to the cinema, to
download product-specific promotional information from local retailers as a family
drives between shopping outlets searching for a particular item, or to provide traffic
and weather updates for navigational purposes; (2) uploading data from the vehi-
cle, such as for unloading digital camera images or video on a road trip; and (3)
transshipment of data, including relaying sensor data from disconnected stations
to infrastructure nodes, as done by Seth et al. [59].

Connecting wirelessly to the Internet while moving can be done using two com-
mon technologies: through a cellular network or through an 802.11 hotspot, which
is an 802.11 Wi-Fi access point with a backhaul connection to the Internet. Cellular
networks provide near-ubiquitous coverage in most cities in the world, while 802.11
hotspots are confined to smaller coverage areas and are typically located in homes
or businesses such as coffee shops, gas stations, and libraries. Because a hotspot’s
backhaul connection could be a bottleneck, we assume the access point has some
storage that allows it to act as a cache between wireless users and the Internet.

Using a cellular network to transfer data comes at a much higher cost per bit
than using an 802.11 hotspot. Due to the need for complete coverage, cellular
systems are both more expensive and offer lower data rates than 802.11 hotspots.

Cost: Cellular systems are designed primarily for voice and therefore aim for
anytime, anywhere service. To setup and maintain the significant infrastructure
required for such near-ubiquitous coverage comes at great cost, often exceeding
hundreds of millions of dollars [17]. A single 802.11 hotspot, on the other hand,
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requires only a commodity access point and an inexpensive cable or DSL backhaul
connection. The number of hotspots required for satisfactory coverage depends on
user’s needs and type of application.

Data Rate: Because the signal does not need to travel as far, 802.11 has
been designed to transmit data using a more dense encoding scheme, and thus
a higher data rate, than cellular technology. 802.11a [31], released in 1999, and
802.11g, released in 2003, support peak link layer rates of up to 54 Mbps and
typical goodput rates of approximately 30 Mbps, as shown later in Chapter 4.
CDMA cellular technology using 1X EVDO, standardized in 1999, supports peak
link layer rates of up to 2.4 Mbps downlink and 153 Kbps uplink, but TCP goodput
in practical scenarios has been measured to be only 573 Kbps downlink and 95 Kbps
uplink [40]. GPRS EDGE cellular networks, first available in 2003, support peak
link layer rates of up to 474 Kbps downlink but TCP goodput of only 32 Kbps
has been measured in practical scenarios [11]. Newer technologies, such as 802.11n,
802.16 WiMAX, and 4G cellular, all support higher data rates; however, the trade-
off between coverage and data rate remains.

Therefore, 802.11 hotspots provide much lower cost per bit than cellular systems,
at the expense of reduced coverage. Many common applications, such as email,
transferring pictures or video, and bulk downloads, can already tolerate significant
outages between periods of connectivity. This relieves the need for ubiquitous
coverage, allowing for a much less expensive access paradigm that still provides
the ability to transfer large amounts of data. In our experiments, in Chapter 4, a
vehicle traveling past an 802.11 roadside access point at 80 km/h is able to transfer
up to 50 MB of data, the equivalent of approximately 20 songs, 15 minutes of low
quality video, or 125 high quality digital photographs.

Despite this potential, making effective use of opportunistic connections to
802.11 access points while moving is non-trivial due to the short connection du-
ration and rapid fluctuations in signal quality. In this thesis, we examine the
problem of effectively using opportunistic connections by analyzing the shortcom-
ings of existing data-link and transport layer protocols and making preliminary
recommendations to best use opportunistic connections, as discussed next.

1.1 Utilizing Opportunistic Connections

Previous work [49, 27, 10, 18, 42] has confirmed the feasibility of using opportunistic
communication for vehicular Internet access. In this thesis, we build on previous
work with a detailed experimental analysis at a depth not previously explored. Our
empirical analysis of opportunistic vehicular connections reveals the following three
problem areas:

• As a vehicle enters the range of the access point, wireless losses at the fringe
of access point coverage are not handled well during the connection setup
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phase, causing both the 802.11 MAC and TCP protocols to enter a back-off
state that can last into the useful period of the connection.

• Once the useful period of the connection has begun, the data rate selection
algorithm at the MAC layer is not dynamic enough to achieve the best possible
throughput in such a rapidly changing environment.

• When leaving the coverage area, the 802.11 MAC and TCP protocols can
again respond to wireless losses at the fringe by performing a back-off proce-
dure, resulting in a further decrease in throughput.

We argue that lack of environmental awareness is the fundamental underlying
cause of these problems. We observed that signal quality was highly correlated with
position on the road. Had TCP and the 802.11 MAC layer known that they were in
an environment where the signal strength first increases and then decreases, with
reasonably predictability, they could have adapted their behavior to better suit the
environment.

Our work describes a scenario where heightened awareness of the environment
can improve overall throughput. We argue that this insight can be broadly applied
to communication protocols in general. That is, environmental information can be
used to: (1) choose more suitable initial operating parameters, such as the initial
TCP timeout value or the initial MAC data rate and (2) tune protocol behavior to
better handle the amount of packet loss or delay at any point in time.

The majority of our analysis of vehicular opportunistic communication in this
thesis was presented previously at the ACM MobiSys 2007 conference [26] and the
details of our GPS analysis, in Section 3.5 of this thesis, were presented in the
MobiEval workshop [24] as part of the same conference.

1.2 Contributions

Our contributions can be summarized as follows:

1. We experimentally demonstrate that data-link and transport layer
protocols achieve only half of the available potential throughput.
During a single pass of a roadside access point at 80 km/h, we found that
protocol behavior significantly inhibited the amount of data that was trans-
ferred.

2. We experimentally identify a complex interplay of ten distinct
causes of reduced data transferred and quantify the impact of each.
In particular, even with a streamlined connection setup procedure that does
not use DHCP, delayed connection setup due to (a) lengthy access point se-
lection, (b) MAC management timeouts, (c) ARP timeouts, (d) poor MAC
bit rate selection, and (e) TCP timeouts, results in a loss of nearly 25% of
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overall throughput 15% of the time, and up to a loss of 40% in the worst
case. In addition to problems at the start of the connection, we show that
further problems during the connection and near its end also contribute to
lost throughput.

3. We make preliminary recommendations for best practices for using
vehicular opportunistic connections. Based on our experimental findings
of how current data-link and transport layer protocols underutilize connection
potential, we suggest ways in which heightened awareness of the operating
environment could be used to increase the overall throughput of a vehicular
connection.

1.3 Thesis Organization

This thesis is organized as follows. After discussing related work in Chapter 2, we
describe our experimental setup in Chapter 3, including details of how we address
systematic and random error in GPS measurements in Section 3.5. Following that
we detail our experimental results in Chapter 4, beginning with some key initial ob-
servations. We then show the extent to which current data-link and transport layer
protocols underutilize vehicular connections in Section 4.2, followed by a detailed
look at root causes in Section 4.3. Based on our experimental findings we then
make preliminary recommendations for best practices for vehicular opportunistic
connections in Section 4.4 and discuss how our work shows the broader benefits
of environmental awareness for communication protocols in general in Section 4.5.
Finally, we present conclusions and future work in Chapter 5.
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Chapter 2

Background and Related Work

Using intermittently connected links for communication has been studied in many
different contexts. Figure 2.1 gives an overview of the related work and can be used
as a road-map for this chapter.

Using opportunistic connections as a means of communication presents many
different challenges at several levels. In general, networking protocols have been
designed with the assumption of a single persistent connection and have a limited
ability to handle intermittent connectivity and changing points of attachment.

From an architectural point of view, managing a user’s identity across multiple
connections, routing data between intermittent users, and ensuring reliable end-to-
end delivery are all challenges that must be addressed when using opportunistic
connectivity. For each individual connection, it is important to setup a connection
quickly and make best use of the connection time while fairly sharing access to the
wireless medium.

Opportunistic communication can be broken down into two broad categories,
as shown in Figure 2.1: Mostly Connected (Sec. 2.1), which assumes connectivity
will be available almost all of the time with only short and infrequent outages, and
Mostly Disconnected (Sec. 2.2), which assumes connectivity will only occasionally
be available. The key difference is that in the former case, networking protocols
need only to mask the temporary disconnections from the user, as opposed to the
more challenging case involving longer periods of disconnection.

The work in this thesis falls primarily into the category of mostly disconnected;
however, any scenario involving the use of opportunistic connections may benefit
from the insights gained from the experimental analysis performed in this thesis.

2.1 Mostly Connected

If connectivity can be assumed to be available most of the time, then transparent
operation can be provided by simply masking the brief periods of disconnection from
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the user. The proposed approach to this is to fool the transport or application layer
protocols into thinking that an underlying link layer connection is always present,
although it may be constantly changing. The user experience would be much like a
persistent connection but with short spikes in response time during the brief periods
of disconnection. Work in this area has focused on two main problems.

Maintaining a persistent TCP connection: One of TCP’s well-known
problems is that it interprets any loss as an indication of network congestion and
accordingly backs off [4], as depicted in Figure 2.2. Thus, if a user is briefly discon-
nected it is important to ensure that TCP does not unnecessarily enter into a deep
backoff state. Freeze-TCP [20] was proposed to pause TCP’s state if an impending
disconnection or handoff were detected by the mobile device, resuming TCP’s state
once connectivity is reestablished. TCP Migrate [62] and Rocks and Racks [74]
have similar goals to Freeze-TCP but require both client and server modification,
whereas Freeze-TCP only relies on modification of the mobile’s TCP behavior. In
mostly disconnected scenarios, attempting to maintain a TCP connection between
periods of connectivity is often undesirable as disconnected episodes could last from
minutes to days.

Connection
Quality

TCP Trans-
missions

Data Ack Packet Loss TCP Retransmissions
after Exponential Backoff

X X X X

Time

Figure 2.2: The harmful effects of TCP misinterpreting wireless loss as network
congestion [4].

Managing identity across points of attachment: As points of attachment
change, end-host IP addresses change. Although it is possible to use a middle-
box to translate between old and new addresses, such as using MobileIP [32], the
IETF is working toward a long-term solution, which would be to associate globally
unique identifiers with hosts rather than just IP addresses that are coupled with the
network attachment point. The Host Identity Protocol (HIP) [29] by the IETF uses
public keys and DNS to avoid the use of a middle-box. Another group in the IETF
is examining a similar identity problem involving managing the identity of an entire
network that moves and changes attachment points, such that individual users are
continually reachable and mobility is transparent to the users. Their approach
uses a middle-box for translation and is called NEtwork MObility (NEMO) [48].
Managing identity is also important in mostly disconnected scenarios. Seth et
al. [59], in their Tetherless Computing Architecture, propose a scheme that uses
globally unique IDs for use in such scenarios.
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2.2 Mostly Disconnected

We divide related work on mostly disconnected scenarios into four areas, as shown
in the roadmap Figure 2.1: (1) Infrastructure-less (Sec. 2.2.1) communication
between mobile nodes without the help of infrastructure or a ferrying mechanism;
(2) Communication with Infostations (Sec. 2.2.2), which are gateways between
mobile devices and a backhaul network such as the Internet; (3) Ferry-Based
(Sec. 2.2.3) where specific message carriers assist with the delivery of messages
between nodes and infrastructure; and (4) Scheduled Access (Sec. 2.2.4), which
is a special case of the first three, having the unique property that the schedules of
future links are precisely known, or it is assumed that node connectivity follows a
regular pattern that can be learned.

Much of this research falls under the umbrella of Delay Tolerant Networking
(DTN) [15], which has the general goal of accommodating all types of disconnected
operations. In general, DTN operates using the store-and-forward principle, where
one mobile node may carry a bundle of data from another node in the hope that
the data will eventually reach its destination. However, the focus of most of this
research has been on routing protocols, rather than on maximizing data transfer
during a single opportunistic connection. Our work complements this research.

The Tetherless Computing Architecture [59], built on top of DTN, can be viewed
as an extension to DTN and has the goal of providing mobility and disconnec-
tion transparency to the mobile user, while using low control overhead and being
Internet-compatible and secure.

Furthermore, a separate solution with similar goals is the Haggle project [58].
Haggle aims to eliminate relying on infrastructure unnecessarily when performing
tasks such as sending an email between two users who could communicate directly.
Haggle’s approach to this problem is to “raise” the API to allow applications to
specify more meaningful information to the network such as information about the
endpoint’s identifier, security, and delivery targets or deadlines. Haggle, like DTN,
has focused on architectural issues rather than specific network protocol interaction
during opportunistic communication as is done in this thesis.

The work in this thesis falls primarily in the infostations area of research; how-
ever, there is significant overlap between work done in all areas of mostly discon-
nected scenarios. Our work focuses on the last hop of the Internet connection, the
wireless connection between the vehicle and the access point. We assume that the
access point has local storage and can act as a cache between the vehicle and the
Internet.

2.2.1 Infrastructure-less

Networks in which communication is between a collection of mobile nodes that
are not all connected to one another is referred to as Mobile Ad-hoc Networks
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(MANETs) and in the specific case where the mobile nodes are vehicles, they are
referred to as Vehicular Ad-hoc Networks (VANETs). MANETs are the subject of
much study, the details of which are outside the scope of this thesis.

VANETs: VANETs have received significant research attention due to the
unique challenges associated with traveling at high speeds. Guo et al. [23] exam-
ined the problem of streaming video from one vehicle to another, using intermediate
vehicles to relay the video from source to destination. Another project in this area,
UMassDieselNet [66], involved placing small wireless devices on 40+ buses and mea-
suring the inter-contact time and amount of data that could be transferred between
buses. Using this data they were able to determine which DTN routing protocols
would be most effective in this scenario. They further examined the effectiveness
of adding roadside “throw boxes” to improve the number of messages delivered
between buses [6]. A throw box is a stationary wireless device that performs a
function similar to an intermediary postal mail box. Data can be dropped off at
the throw box by one bus for future pick by another bus. The work in this thesis
complements this research as network protocol operation during opportunistic com-
munication between buses is very similar to that between a vehicle and a roadside
access point.

Dedicated Short Range Communication (DSRC): The DSRC group [14]
aims to use short range communication to improve the safety of vehicles on the
road. Suppose a driver is making a right turn onto a highway at a stop sign and
his/her view is obstructed. With DSRC technology, a warning would be sent from
oncoming vehicles announcing their presence to warn the driver not to pull out in
front of them. The DSRC group is a US government initiative, backed by many
major automobile manufacturers, that will be incrementally rolled out between 2010
and 2020. The communications standard, being developed by the IEEE 802.11p
working group, uses 75 MHz of spectrum in the upper 5 GHz range, allocated by
the FCC for the purpose of improving traffic safety. The project is based on 802.11a
technology and allows some room for commercial applications such as automated
payment at a restaurant drive-thru. Although most DSRC work is internal, some
work has been published, addressing such problems as location-based broadcast [72]
and vehicle-to-vehicle multi-hop communication [43].

A similar initiative is taking place in Japan, termed InternetCAR [65]. Both
InternetCAR and DSRC research has focused primarily on safety issues requiring
fast response time rather than our focus on bulk transfers in this thesis.

2.2.2 Infostations

Opportunistic communication with roadside gateways was first termed “infofueling”
by Frenkiel et al. [17], where a mobile device “fills up” with information at an
“infostation”. This is similar to how a vehicle gets gas at a gas station.

Early Infostations Work: The idea of using many-time many-where connec-
tivity was first proposed by the WINLAB research center at Rutgers [17]. Their
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research focuses primarily on motivating the idea and integration with cellular net-
works [9]. Work at the MAC layer includes improving packet delivery probability
through the use of an adaptive retransmission scheme [30]. This work evolved into
the technology transfer phase and has become an emergency response project, the
details of which are unpublished. Another early project was FleetNet [16] which
aimed both to provide ad-hoc communication between vehicles as well as Internet
access through multi-hop communication between vehicles and a roadside Internet
gateway. Funding for the FleetNet project has since ended and the project no
longer exists.

Drive-thru Internet: The first work in infostation-style communication at a
practical and experimental level was done by Ott and Kutscher [49] who coined
the term Drive-Thru Internet. Their goal was to achieve Internet access in vehicles
through opportunistic communication with roadside 802.11 access points. They
found that using off-the-shelf 802.11b hardware, a vehicle could maintain a connec-
tion to a roadside access point for 600 m, and transfer 9 MB of data at 80 km/h
using either TCP or UDP. They found that connections pass through three phases:
the entry phase, the production phase, and the exit phase, each lasting 200 m in
their experiments. In more recent experiments with 802.11g [50], they were able to
transfer between 30 and 70 MB of data at 100 km/h using external antennas.

In order to maintain a persistent connection between a vehicle and an end-host
on the Internet, Ott and Kutscher propose the Persistent Connection Management
Protocol (PCMP) [50] which uses a proxy to mask the vehicle’s mobility to end-
hosts as well as to allow vehicles to resume connections established during previous
connection opportunities. Further work on Drive-thru Internet has been done on
service maps [54], mobile access gateway [51], automating hotspot authentication
[52], and bundling the web for DTN [53].

Ott and Kutscher do not examine the specific consequences of data-link and
transport layer protocol behavior in their work, as done in this thesis. In their
feasibility study they conclude that connection setup must complete before the
production phase begins in order to fully utilize the connection [49]. However, they
suggest that existing networking protocols are not likely to perform well in the
presence of high packet loss and that further investigation is needed to determine
the actual impact of the communication characteristics of the entry phase on the
overall connection throughput. This is precisely the analysis we perform in this
thesis.

Infostations Measurements: Work by Gass et al. [18], termed in-motion
networking, has further confirmed the feasibility of using opportunistic connections
to vehicles under a variety of different conditions. They study TCP bulk traffic,
UDP bulk traffic, and web traffic using standard laptops with no external anten-
nas at speeds ranging from 5 km/h to 120 km/h with various induced backhaul
bandwidth and delay parameters. In general, they found that the more chatty the
protocol (i.e., the more round trip times required for communication), the lower the
overall throughput. As a result they recommend the development of a bulk-mode
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of operation for chatty protocols such as HTTP. Consistent with Ott and Kutscher,
they remark that the numerous authentication stages in 802.11 networks must be
eliminated. Similarly, Zhuang et al. [76] point out that loss of control messages
during application startup causes significant reduced throughput. In this thesis, we
quantify the effects of the numerous stages of connection setup during an oppor-
tunistic connection and show that loss of control messages results in a significant
reduction in the amount of data that is transferred. We specifically focus on the
last hop of the connection, which is the wireless link from the access point to the
vehicle. Therefore, in our experiments we do not use a backhaul connection to the
Internet as we only transfer data between the access point and the vehicle. This is
applicable to a realistic scenario because the backhaul link could be a bottleneck
to the connection and therefore storage at the access point would be required to
allow it to act as a cache between the vehicle and the Internet.

More recently, Bychkovsky et al. [10], as part of the CarTel project at MIT,
conducted an extensive empirical analysis of the performance characteristics of
using existing open/unsecured 802.11 networks for vehicular Internet access. Based
on data they collected from nine vehicles under normal driving conditions in urban
environments for almost one year, they found the median connection duration to be
13 seconds and the mean duration between connections to be 75 seconds, showing
that existing 802.11 access points can be used by vehicular users for a variety of
applications. They found that long connection setup times significantly reduce
the useful length of the connection. Specifically, they found the mean scan, mean
association, median IP acquisition, and median application initialization times to
be 750 ms, 560 ms, 1.83 seconds, and 8 seconds, respectively. They propose an
IP address caching scheme which by-passes DHCP and reduces the median IP
acquisition time to 346 ms. They attribute their high application initialization time
to overloaded client devices, due to running database software. Despite reporting
these measurements, they do not identify causes of these delays, nor characterize
their impact on the overall connection. They further remark, consistent with Ott
et al. [49] and Gass et al. [18], that high losses at the beginning of a connection
dramatically reduces the overall throughput of a connection and cite this as an area
of future investigation.

The VanLan project at Microsoft Research has measured opportunistic commu-
nication between vans and WiFi access points in urban areas [42]. Their primary
finding is that in urban areas the signal quality does not exhibit the same increas-
ing, peak, and then decreasing pattern as found previously in line-of-sight highway
scenarios [49, 27, 10]. In particular, in urban areas, signal quality drops sharply
and unpredictably during an opportunistic connection [42]. They find that these
gray periods do not occur consistently at the same location and are difficult to
predict using available statistics such as RSSI and frame loss. They conclude that
minimizing disruptions requires new protocols and that predictions based on past
performance at a location can help identify gray periods. In this thesis we draw
similar conclusions in a rural setting. We find that the signal quality of an oppor-
tunistic connection is very repeatable, as shown in Section 4.1.1. As well, in Section
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4.5, we similarly conclude that an access point could exploit its knowledge of past
connection history to help future connections.

To improve the interactive experience, particularly for VoIP calls, during an
opportunistic connection, the VanLan project has developed a pseudo-handoff pro-
tocol named ViFi [5]. ViFi exploits access point diversity during opportunistic
communication. The basic idea is that if an access point overhears a packet in-
tended for another access point but does not overhear an ACK, the overhearing
access point will attempt to deliver the packet itself. Using this protocol in their
testbed doubled the length of disruption-free VoIP calls compared to an 802.11-
like handoff protocol [5]. Despite improvements for interactive applications, they
remark that for non-interactive applications, the choice of hand-off method is not
critical. Their work is complementary to work in this thesis as we focus only on
batch transfers occurring between mobile devices and a single access point.

If vehicles are equipped with steerable directional antennas, Navda et al. [47]
demonstrate that the direction of the antenna can be set based on past history to
significantly improve overall throughput.

Infostation Applications: Several novel uses of infostation-style connectivity
have been studied. ZebraNet [37] was one of the first such projects, which involves
attaching sensors to wild zebras that record movement and other data which is
eventually relayed back to a collector node. Small et al. [61] studied a similar
system for tracking the movement of whales. Such work can benefit from the
experimental analysis of opportunistic connections done in this thesis.

Finally, a novel way of distributing common content to vehicles passing a road-
side access point was proposed by Nandan et al. [46] which involves a BitTorrent [8]
like approach to sharing common content. Using this technique, vehicles traveling
along a highway would each receive different chunks of the same file as they passed
the access point. Since they are likely to be in close proximity of each other for
a much longer period of time then they are within range of the access point, the
vehicles can share chunks with each other after they have left coverage of the access
point. Understanding network protocol operation during communication between
vehicles and between vehicles and roadside access points is essential to the success
of such a proposed application. The analysis of network protocols in vehicle to
roadside communication in this thesis provides a significant first step toward such
understanding.

2.2.3 Ferry-Based

In ferry-based communication, a special mobile middle-node is employed to take
on the responsibility of carrying data from source closer to the destination. Two
general areas of message ferrying have been studied:

Ad-hoc Message Ferrying: In this paradigm, the mobility pattern of the
nodes is not known and in order to aid in delivery of messages between partitioned
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areas of the ad-hoc network, message ferries are introduced. Zhao et al. [75]
were the pioneers of this idea and describe it as introducing non-randomness in
the mobility of nodes to overcome network partitions. Zhao et al. have studied
algorithms for determining the optimal path a message ferry node should take in
order to maximize the delivery-ratio in delay-tolerant networks.

Scheduled Message Ferrying: In this area of work, a rough schedule of
the message ferry is known and the ferry is relied upon to be the main source of
connectivity between distant nodes and the bulk of the network. The Tetherless
Compting Architecture uses bus-based ferrying in their KioskNet project [59]. The
primary goal of KioskNet is to provide basic Internet connectivity to rural villages in
developing nations such as India. In villages with no other means of connectivity,
a city bus with an 802.11 access point serves as the only means of connectivity
between the kiosk in the village and the Internet. As a bus drives past a village
kiosk, it is important to maximize the amount of data transferred, as is the goal of
our work in this thesis.

2.2.4 Scheduled Access

A unique situation arises in a mostly disconnected network when the schedules of
links are precisely known, such as in inter-planetary communication [64]. Because
the schedules of links are known precisely, optimal routes can be computed and
relied upon when performing routing in deep space delay-tolerant network [12].
This allows the accurate a priori computation of delivery ratio, waiting time, and
quality of the network, which is not possible in general ad-hoc routing. Fall et al.
[34] and Jones et al. [36] study scheduling in general delay-tolerant networks that
assume links follow a precise schedule that can be learned. Similarly, Wang et al.
[68] deal with the same set of problems in PostMANET which explores the use of
the postal system to provide a mechanism for digital communication. Although
schedules are precisely known, maximizing data transfer during an opportunistic
connection is still dependant on network protocol behavior, which is explored in
this thesis.

2.3 Wireless Performance Optimizations

Improving throughput, reducing delay, and increasing fairness have been the subject
of much study in the context of wireless communication. We next discuss those
studies related to opportunistic vehicular communication.

2.3.1 Optimizing TCP for Wireless

The problem of TCP’s poor throughput over wireless links arises because TCP
assumes all loses are due to congestion rather than link loss, as depicted previously
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in Figure 2.2. Four approaches have been taken to improve TCP’s performance
over wireless networks:

• Split the end-to-end TCP connection into two halves, one for the wireless side
and one for the wired side. This was first proposed by Bakre et al. [1] and
titled Indirect-TCP.

• Use a TCP-aware middle-box, such as a wireless access point, that detects
TCP losses on the wireless side and generates local retransmissions. This idea
was first proposed by Balakrishnan et al. [4] in Snoop.

• Modify TCP to be link-aware. This approach is taken by Explicit Loss Noti-
fication [2] and variants of TCP such as WTCP [60].

• Hide wireless loses by using automatic repeat requests (ARQ) and/or forward-
error correction (FEC) at the link layer. This is done in 802.11 and virtually
all cellular networks.

Balakrishnan et al. [3] compare a variety of these approaches and find that all
achieve similar results, but each are better suited for different operating scenarios,
including whether or not client modification is reasonable and what functionality
is available on the access point.

The majority of this past work was done using wireless technology that did
not perform link-layer retransmissions and before 802.11 was first released in 1997.
802.11 performs up to eight link-layer retransmissions, thus reducing the number
of link-layer losses seen by TCP. In Section 4.1.3, we show that 802.11 MAC re-
transmissions are very effective and TCP sees only a small fraction of link-layer
losses.

As a result of the aggressive 802.11 MAC retransmission scheme, when using
TCP over 802.11, TCP is likely to see link-layer losses only during periods of poor
signal quality, when all of the MAC retransmissions are likely to fail. During an
opportunistic connection, when the vehicle first enters coverage of the access point,
the signal is weak and link losses are common. This is a delicate point in the
connection because TCP is more likely to see a loss and then backoff, thus reducing
the useable amount of the connection. We show examples and discuss this further
in Chapter 4.

2.3.2 802.11 Bit Rate Selection

When sending data, 802.11 devices must choose among a set of possible encoding
rates to send each data frame: four rates in 802.11b, eight in 802.11a and 12 in
802.11g. Choosing a particular rate corresponds to using a different modulation
scheme and error coding at the physical layer. Choosing an appropriate rate is
challenging because only previous loss statistics and a rough estimate of channel
energy are available.
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Since rate selection algorithms are not part of the 802.11 standard, vendors
are free to implement any scheme they desire. Research using 802.11 hardware has
shown that such rate selection schemes are significantly different between cards and
even between drivers [21], and furthermore that performance is very dependent on
the environment [26, 71, 7].

Much research has been done on 802.11 rate selection algorithms, including the
AMRR [39], ONOE [44], and SAMPLE [7] algorithms as well as the more recently
proposed RRAA [71] algorithm. Research on a new bit rate selection algorithm
for vehicular opportunistic communication is a fruitful area of future work. In
this thesis, we show in Section 4.1.2 that the default parameters of the default bit
rate selection algorithm (SAMPLE) used in the Madwifi drivers are inadequate for
vehicular opportunistic communication because they rarely select rates above 11
Mbps even when 54 Mbps was possible. Modifying the default parameters was
necessary in order to make use of higher rates, as discussed further in Chapter 4.

2.3.3 802.11 Performance Anomaly

When nearby 802.11 devices communicate simultaneous, the throughput of each
device is reduced because the wireless medium must be shared between all devices
in range of each other. During periods of overload, the 802.11 MAC protocol is
designed such that, on average, all senders are able to send the same number of
data frames. However, because each sender may choose different bit rates to use,
it is possible for one user to dominate the time using the wireless medium by using
a low bit rate; i.e., sending a MAC frame at 1 Mbps takes approximately 40 times
longer than if the frame were sent at 54 Mbps. This results in choking out users
capable of sending at high rates because 802.11 allows stations to send one frame
at a time, in turns. As such, all users are effectively slowed down to the rate of the
slowest user. This has been dubbed the 802.11 performance anomaly by Heusse et
al. [28].

The most prominent solution to the performance anomaly problem is to fairly
share the amount of time each user can access the medium rather than each user
being allowed to transmit an equal number of frames. The notion of time fairness,
proposed using different methods of implementation [63, 73, 45], results in each user
accessing the medium for an equal amount of time, but because users can choose
different encoding rates, each may achieve a different data rate.

The problem of how to fairly allocate access to the wireless medium generalizes
into a scheduling problem of how to optimally schedule a shared resource. In the
case of vehicles driving along a highway, opportunistically communicating with
802.11 access points, it was shown by Hadaller et al. [25] that in the presence of
multiple vehicles, simply allocating access to the channel to the vehicle with the
strongest signal results in significant throughput gains over both standard 802.11
and time fairness, while maintaining a high degree of fairness between vehicles.
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Although there has been much related work involving vehicular communication,
none examines detailed data-link and transport layer protocol interaction as done
in this thesis. Our experimental analysis complements existing work by exploring
vehicular opportunistic communication at a level of detail not previously explored.
We next discuss the experimental setup we used for our analysis.
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Chapter 3

Experimental Setup

This chapter details the experimental hardware and procedures used to analyze
protocol behavior during opportunistic communication, as well as the steps taken
to account for systematic and random error in GPS measurements. Our goal is
to examine the detailed protocol interaction during opportunistic communication
involving a vehicle driving past an 802.11 roadside access point at highway speeds.

3.1 Equipment

All experimental runs were done with a 1997 Saturn SC-2 traveling at 80 km/h, the
speed limit on the rural road. The vehicle drove past our roadside access point that
was setup on the top of a five foot (1.52 m) step ladder. We used two dedicated
sniffers, one situated beside the access point and one on the car, depicted in Figure
3.1.

Sniffer 
near AP

Sniffer 
on Car

Vehicular 
Client

Access 
Point

Figure 3.1: Experimental setup used to analyze opportunistic vehicular connections
using 802.11 hardware.

We used the following equipment, pictured in Figure 3.2:

• Access point: Dell Latitude CPX H500GT laptop with 500 MHz processor
and 512 MB RAM, with magnetic GlobalSat BU-353 USB GPS receiver,
Atheros-based CB9-GP-EXT CardBus 802.11 a/b/g wireless card and 7 dBi
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Pacific Wireless MA24-7N magnetic-mount external omnidirectional antenna
placed on a five foot (1.52 m) step ladder.

• Vehicular client: Dell D600 laptop with 1.6 GHz processor and 1 GB RAM,
with the same BU-353 GPS receiver, CB9-GP-EXT wireless card, and MA24-
7N antenna. The GPS receiver and wireless antenna were mounted externally
on the roof of the vehicle as shown in Figure 3.2.

• 2 dedicated sniffers: Each is a Soekris net4801 single-board computer with
266 MHz 586 class processor, 256 MB RAM, 40 GB hard drive, with Atheros-
based EMP-8602 miniPCI 802.11a/b/g wireless card and the same MA24-7N
antenna. One sniffer was located in the vehicle with its antenna mounted
on the roof the vehicle, the other located on the step ladder near the access
point.

Figure 3.2: Equipment: Soekris board (top right), 802.11 PCMCIA card in lap-
top with external antenna connector (middle top), Magnetic 7 dBi Antenna and
Magnetic USB GPS Receiver (left), Vehicle and roadside access point (laptop with
antenna on ladder) (bottom left), and the two power units used to power the access
point (bottom right).

All hardware ran the latest release of the Debian Linux version 3.1 testing branch
at the time (August 2006) with kernel version 2.6.16 and Madwifi driver version
0.9.1 [44].

We report on a total of 48 runs in this thesis. 15 of those were used to test the
duration of the connection and the remaining 33 focused on the connection setup
phase.

Although only one hardware configuration is used in our study, we discuss how
our results can be generalized in Section 5.1.

Sniffer Configuration: We used a total of four sniffing devices: sniffing soft-
ware running in the background on the access point and the client, as well as two
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dedicated sniffers, depicted in Figure 3.1. This arrangement ensures that, with high
probability, all packets sent on the air were captured at one of the sniffers. Our
data set unifies these four captured traces.

3.2 Operating Parameters

In order to focus on protocol operation, we fixed the following variables: all runs
were performed at 80 km/h, during the same day, using downstream TCP traffic
with the access point initiating a TCP connection to the vehicle. Downstream TCP
traffic was used because it represents the expected flow of the majority of content
to a vehicle in a realistic environment [57]. Although the vehicle will likely initiate
the TCP connection in practice, in our experiments, the TCP sender (the AP) had
to initiate the connection due to a limitation of our traffic generation software. We
argue that similar results would have been obtained had the vehicle initiated the
TCP connection or if data were sent in the uplink direction because the underlying
causes of decreased overall throughput remain unchanged. Furthermore, vehicular
experiments not reported in this thesis indicate that weather conditions do not
significantly impact signal quality between the access point and the vehicle. As
well, we argue that our results can be extrapolated to different vehicle speeds, as
discussed in Section 5.1.

We chose to experiment with TCP as it is the transport protocol used by the
majority of existing applications. However, in ongoing work, we have experimented
with UDP and preliminary results show very little difference between UDP and
TCP due to the aggressive retransmissions done at the MAC layer, as discussed
further in Section 4.1.3.

Although we aim for Internet access in vehicles, in our experiments we only
consider the last hop of the connection, the wireless link from the access point to
the vehicular client. We ignore the effects of the backhaul connection to the Internet
because we assume that the access point has some form of local storage and can act
as a cache between the vehicular client and the Internet. This is necessary because
802.11 data rates are much higher than a typical cable or DSL backhaul connection
and without local storage the backhaul would be a bottleneck.

We used statically configured IP addresses, as DHCP is known to behave poorly
in this environment [10], and we were interested in isolating less well-studied pro-
tocol behavior. We used the default transmit powers in the Madwifi driver of 19
dBm and 15 dBm for the access point and the client, respectively.

All experiments were conducted on the same section of road, a straight, rela-
tively flat (some slight inclines and bumps were present), undivided country road
surrounded by tall corn crops on one side and power lines and the occasional house
on the other. Other vehicular traffic was light or non-existent during our experi-
ments. Exploring different environments is an area of future work, as discussed in
Section 5.1.
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During our initial experiments, we found that the default parameters of the
default bit rate selection algorithm (SAMPLE) used in the Madwifi drivers, were
not responsive enough for our environment, and rarely selected rates higher than 11
Mbps. Modifying these parameters was necessary in order to make the algorithm
more responsive for the vehicular environment. The details of these modifications
are discussed in Section 4.1.2.

3.3 Logging

All transmissions between the access point and client were captured by placing
the Atheros card in monitor mode and using tcpdump version 3.9.4 to capture
all frames, including extra MAC layer information from the card in the Prism
monitoring header, such as the MAC bit rate and measured RSSI for each frame.

We used GPS devices, attached via USB, to record the position of both the
access point and the vehicle over time. We used a shell script loop to poll the
GPS device for its position once per second, which is the highest frequency of
measurements supported by the GPS device. Because of the high accuracy that was
required, it was necessary to correct for certain systematic GPS errors, discussed
in Section 3.5.

Time synchronization between all devices was performed using NTP between
experimental runs.

3.4 Experimental Procedure

Our experiments were conducted as follows. The vehicle begins out of range of
the access point and the logging scripts on the access point, the vehicle, and both
sniffers are started. The vehicle, driving at a constant speed of 80 km/h, enters the
range of the access point and continues driving at a constant speed until it leaves
coverage range. The experiment is then repeated in the opposite direction.

We used iperf v1.7.0 [33] to send bulk TCP data from the access point to the
client. At the start of an experiment, the vehicular client runs iperf in listener
mode, waiting for a connection from the iperf sender. Once the client enters the
range of the access point, it performs a standard 802.11 MAC association with
the access point. Using a shell script, the access point detects a newly associated
client and launches the iperf sender, which initiates a bulk TCP connection to the
statically configured client IP.

3.5 Achieving Relative GPS Accuracy

We rely on consistent GPS measurements between different experimental runs and
accurate relative measurements between GPS devices to determine the vehicle’s
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precise relative position with respect to the access point. This is not the same as
achieving absolute GPS accuracy, that is, ensuring that the measured GPS position
is close to that of the actual ground position.

In this section, we analyze GPS measurements and show that up to 49.9 m of
position error is present and can be reduced to less than 8.6 m after accounting for
systematic error. We next present some brief background information about GPS.

3.5.1 Understanding GPS

The Global Positioning System (GPS) is a U.S.-operated system for determining
terrestrial position using signals from satellites. The 31 GPS satellites follow a
Medium Earth Orbit at 20,200 km above the Earth and orbit the planet twice each
day, traveling at over 14,000 km/h [22]. Satellites each transmit a unique repeating
code over the 1.5 GHz carrier along with their position. These signals are used by
a GPS receiver to determine precise distance to each satellite. Signals from at least
three different satellites are used to determine a 2D position fix, and at least four
satellites for a 3D fix.

The position measured by the receiver is subject to error from many sources
[41]. Because the atmosphere is not a vacuum, effects of the dense ionosphere
introduce non-uniform delay in the signal sent from the satellite. In addition,
because satellites drift slightly off course, their reported positions can be inaccurate
enough to cause measurement errors on the ground. Multi-path and shadowing
effects as well as imprecision in the receiver’s oscillator can also reduce accuracy.

3.5.2 Previous GPS Measurements

Quantifying GPS error has been studied previously. Wing et al. [70] found sta-
tionary accuracy of commodity devices to be within 5 m to 10 m of true position
depending on the view of the sky. Webster et al. [69] found 3-6% error in measur-
ing the size of a 500 m field. A study by the U.S. National Geodetic Survey [67]
found 95% of GPS measurements fell within a radius of 6.3 m. In addition, the
manufacturer of the devices we used in our experiments claims a 10 m position ac-
curacy [19]. Although the absolute accuracy of stationary GPS measurements has
been examined by other researchers, none have measured relative accuracy between
devices or the impact of mobility as we do in this thesis.

3.5.3 Stationary Experiments

In addition to data gathered from the vehicular experiments, we also performed
stationary experiments to measure consistency between GPS devices. In these
experiments, four identical devices were mounted within 10 cm of each other, as
shown in Figure 3.3. These devices were same GlobalSat GPS receivers that were
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Systematic Error
Error Impact Mitigating Error Sec. Fig.
Infrequent
Measurements

Up to 0.5 s, or 11.1
m at 80 km/h

Performed linear
interpolation between
measurements.

3.5.4 3.4

Measurement
Delay

1.36 s ± 0.06 s (95%
CI), or 30.2 m ± 0.4
m at 80 km/h

Subtracted 1.36 s
from measurement
timestamp.

3.5.4 3.5, 3.6

Random Error
Error Impact Mitigating Error Sec. Fig.
Single-Device
Variation

≤ 4.3 m in 95%
of measurements.

Averaged stationary
measurements.

3.5.5 3.7

Device
Consistency

No significant in-
consistency, error
captured by single-
device variation.

Cannot be corrected. 3.5.5 3.8, 3.9

Table 3.1: Sources of GPS Error

used in the vehicular experiments. The devices were magnetically mounted on
a metal sewer grate in the middle of the University of Waterloo campus. The
experiments were performed on a day with no clouds, and all devices had a clear
view of the sky.

Figure 3.3: Arrangement of GPS devices used for Stationary Measurements.

Table 3.1 summarizes the sources of GPS error we identified. We next discuss
systematic error, followed by random error.

3.5.4 Systematic Error

Infrequent Measurements

Our off-the-shelf GPS receiver only reported position measurements once per sec-
ond, which is common in commodity GPS receivers [13]. This is problematic when
trying to determine precise position over short time periods.
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In our vehicular experiments there were thousands of frames transmitted per
second. Simply assigning a frame’s location to the nearest GPS measurement results
in up to 0.5 s of error, which translates into 11.1 m at 80 km/h. Using this method
results in a sparse signal strength map, shown in Figure 3.4(a).
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(b) Interpolated Measurements

Figure 3.4: (a) Using the once-per-second position measurements from GPS results
in a sparse signal strength map and as much as 0.5 s of error, or 11.1 m of error at 80
km/h. (b) Performing simple linear interpolation between position measurements
improves accuracy and smooths the map.

Correcting for Infrequent Measurements : We performed linear interpolation be-
tween measurements. A linear fit was appropriate because we were traveling at
a constant speed and did not change direction. In situations where the mobile
device changes speed and/or direction, a more complex interpolation would need
to be performed. Figure 3.4(b) shows that using interpolation results in a much
smoother signal strength map and more accurate frame locations.

Measurement Delay

In this section we describe how we determined the amount of GPS measurement
delay. We conclude that when a position was received on the USB port it was
actually the position of the vehicle 1.36 seconds ± 0.06 s (95% confidence interval)
in the past. Thus, at 80 km/h, the vehicle was 30.2 m ± 0.4 m ahead of the reported
position at any point in time.

Determining GPS Measurement Delay : We were able to determine the actual
position of the vehicle relative to the access point based on the measured signal
strength of the wireless signal. The strength of a signal received by a wireless
device is proportional to the inverse of the distance to the sender [56]. Therefore,
the signal strength will be at its maximum when the vehicle is closest to the access
point. Our signal strength measurements exhibited a sharp peak, lasting an average
of only 62 ms± 28 ms (95% CI) (1.4 m± 0.6 m at 80 km/h), as can be seen in Figure
3.4(b). It is therefore reasonable to assume that the center of the signal strength
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peak is the position where the vehicle was closest to the access point. With this
point of reference, we can determine the GPS measurement error as follows.

Figure 3.5(a) shows the position of the GPS measurement before the access
point (xgps1), at the access point (xap), at the signal peak (xpeak), and the GPS
measurement after the access point (xgps2). Recall that the GPS device only re-
ports measurements once per second, thus interpolation is needed. After a GPS
measurement is taken, it is reported by the device and read by the host system on
the USB port, this takes ∆read

gps time. The time to attach a timestamp and log this
measurement is ∆write

gps . Similarly, the time to read a signal measurement is ∆read
signal

and to log it takes ∆write
signal. The access point’s position is known as it has its own

GPS device1.

The signal peak is assumed to occur when the vehicle is closest to the access
point (xap = xpeak). Therefore, the GPS measurement delay (∆read

gps ) is the difference
between the time that the vehicle was measured to be closest to the access point
(t̃gps peak, requires interpolation) and the time that the signal peak actually occurred
(t̃peak −∆read

signal −∆write
signal), as follows:

We first determine the interpolated GPS timestamp at xpeak:

Define t̃gps peak = t̃gps1 +
xpeak − xgps1

velocity

Because t̃peak and t̃gps peak are both relative to xpeak:

t̃gps peak −∆read
gps −∆write

gps = t̃peak −∆read
signal −∆write

signal

∆read
gps = t̃gps peak − t̃peak + ∆read

signal + ∆write
signal −∆write

gps

We make two assumptions in order to isolate GPS measurement delay (∆read
gps ),

these do not affect the amount of error experienced: (a) the time to log a GPS
measurement and log a signal strength measurement are, for practical purposes,
identical and negligible (∆write

gps = ∆write
signal = 0), and (b) the time to report a signal

strength measurement is negligible (∆read
signal = 0), yielding a best case for ∆read

gps :

GPS measurement delay ∆read
gps = t̃gps peak − t̃peak (3.1)

We calculated the GPS measurement delay using Equation 3.1 from logs of 45
mobile experiments. Figure 3.5(b) shows a CDF of ∆read

gps ; the average delay was
1.36 s ± 0.06 s (95% CI).

The cause of GPS measurement delay is primarily due to the sequential process
of measuring signals from each satellite, computing the receiver’s position, and
then sending the data to the host laptop [13]. As a result, when a computation is
received by the host laptop, the measurement is already out-of-date.

Correcting for Measurement Delay : Subtracting 1.36 s from the timestamp
reported by each GPS measurement was adequate to correct for GPS measurement

1Due to stationary variation, we averaged the measured positions of the access point.
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delay in our experiments. We caution the reader that other devices may experience
different delay, and the measurement delay should be determined before applying
any correction. However, we expect that the majority of off-the-shelf devices will
experience similar delay as it is inherent to the operation of standard NMEA GPS
devices.

Validation of Correction for Measurement Delay : We validate our correction by
comparing experimental runs done with the vehicle traveling in the both directions
on the road. Before correction, the signal peaks do not align (Figure 3.6(a)), and
after applying our correction, the signal peaks align (Figure 3.6(b)). Therefore, our
correction reduces error due to measurement delay.
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Figure 3.6: Validation of computed measurement delay; subtracting 1.36 s from the
GPS timestamp corrects for GPS measurement delay. Two runs in each direction
are shown, Figure A shows the difference in measured signal peaks before correction;
Figure B shows that after correcting for this systematic error, the signal peaks align.

3.5.5 Random Error

Single-Device Variation

Over a 5.5 hour period, the measured position of the stationary access point varied
by as much as 10 m. Figure 3.7 shows all of the measurements, along with the
mean, median, and mode. Additionally, a box containing 95% of the measurements
closest to the average is shown, of size 4.6 m × 5.7 m. Although we did not know
the true location of the access point, the average of all stationary measurements is
a reasonable approximation. Therefore, the error in 95% of measurements will be
no more than 4.3 m, the distance from the average to the furthest corner of the
box.

Reducing Impact of Single-Device Variation: Measurements can be averaged to
reduce error due to stationary variation.
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Figure 3.7: The measured position of the stationary access point over a 5.5 hour
period.

Consistency Between Devices

For our vehicular experiments, we rely on accurate relative position measurements
to determine the distance between the vehicle and the access point throughout
an experimental run. If individual GPS devices exhibit significant measurement
bias and produce significantly inconsistent measurements between devices, then
determining accurate relative position would not be possible.

To investigate device-specific measurement bias, we placed four identical GPS
devices within 10 cm of each other, as shown earlier in Figure 3.3. Upon first
inspection some measurement bias appeared, as shown in the left half of Figure 3.8,
showing 1800 measurements per device collected over a 30 minute period. However,
10 minutes later, measured positions from the devices all overlapped, shown in the
right half of Figure 3.8. This indicates there is no prominent device-specific bias
for our hardware.

However, at any point in time, there was a different of up to 10 m between
measurements from the four devices. Further analysis revealed that this inconsis-
tency was due to single-device variation and resulted from satellite selection done
independently at each device.

Understanding Satellite Selection: During the 30 minute period shown in the left
half of Figure 3.8, 15 satellites were detected by each receiver, eight were used the
entire time, four were never used, and three were only used part of the time. Each
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Figure 3.8: Left four (read top to bottom): Measurements from four nearby GPS
devices over 30 minutes. Right four: The same four devices 10 minutes later,
measured for 15 minutes. Average measured location is shown for each device.
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of the four devices selected a different subset of these three satellites at different
times, leading to the reported position differences. To better understand the effects
of satellite selection, Figure 3.9 shows satellite choices for a single stationary device
(GPS1 from the top left of Figure 3.8).

We draw two conclusions from these measurements: (1) The strength of the
signal received from a satellite determines whether the GPS receiver will use that
satellite in the position calculation, and (2) changing which satellites are included
in the calculation affects the measured position. Although satellite selection is only
one of many causes of stationary error, it is important to understand its impact on
measured position.

Reducing Inconsistency : This error cannot be reduced as the selection of satel-
lites cannot be controlled with commodity hardware.

3.5.6 Summary of Improving Relative GPS Accuracy

Although random error cannot be eliminated, we have identified a significant
amount of systematic error that can be corrected.

Without accounting for systematic error, up to 49.9 m of GPS measurement
error is present; up to 41.4 m due to movement at 80 km/h and up to 8.6 m of
random error (4.3 m at both the access point and the client). Performing linear
interpolation between measurements and subtracting 1.36 s from the measurement
timestamp corrects for systematic error due to infrequent measurements and mea-
surement delay, respectively. Averaging the position measurements at the station-
ary access point will help reduce outlier effects due to random error but because the
average is not necessarily more accurate than any other measurement, we do not
consider this to have accounted for single-device variation. In addition, the random
error at the vehicular client cannot be reduced as averaging cannot be performed.
No significant inconsistency between devices was found beyond that captured by
single-device variation.

Therefore, after reducing systematic error due to mobility, we are left with 4.3
m of error at both the access point and the client, resulting in a relative position
error of less than 8.6 m. This amount of error is acceptable in our analysis, as we
divide the roadway into 20 m intervals, as discussed in the following chapter.
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Chapter 4

Results

4.1 General Observations

While conducting our vehicular experiments, we encountered several phenomena
that led to further investigation. In particular we observed that: (1) connection
quality is repeatable across runs, (2) the default MAC rate selection algorithm in
the Madwifi driver significantly underutilized available connection quality, and (3)
there were few TCP losses.

4.1.1 Repeatable Connection

We found that signal strength measurements, relative to position on the road, were
very consistent between runs, as shown in Figure 4.1(a). Although the quality of the
connection was repeatable, the behavior of data-link and transport layer protocols
was very inconsistent, evident from the large 95% confidence intervals in Figures
4.1(b) and 4.1(c).

Because the connection quality was consistent, one would expect that the
amount of data transferred between runs would also be consistent. Understanding
why this is not the case is the focus of our experimental analysis in this chapter.

4.1.2 Default Bit Rate Selection Unsuitable

During our initial experiments, we found that the default SAMPLE bit rate selec-
tion algorithm [7] used in the Madwifi driver was not responsive enough for our
environment, and rarely selected rates higher than 11 Mbps, resulting in signifi-
cantly less data transferred. Figure 4.2 shows an example of the bit rates chosen
by the default bit rate algorithm. For the same location, bit rates of up to 54 Mbps
were possible, as shown in Figure 4.1(b).
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Figure 4.1: Measured signal strength (RSSI), MAC bit rate, and goodput averaged
over distance across 15 runs with 95% confidence intervals. The maximum potential
connection spans a distance of 1280 m which lasted 58 seconds at a speed of 80
km/h.
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Figure 4.2: Example of poor rate selection using the default parameters of the
default bit rate selection algorithm. Using these parameters would have resulted
in significantly less overall throughput compared to using our modified parameters
which achieved much higher rates (shown in Figure 4.1(b)). The lack of throughput
during the middle of this run was due to a TCP timeout, caused by an initially ex-
cessive bit rate of 54 Mbps. The high initial bit rate also preventing the connection
from starting until 150 meters before the access point.

In order to make use of higher bit rates we had to modify the default parameters
of the default bit rate algorithm to make it more responsive to the rapidly changing
environmental conditions. The default SAMPLE parameters were designed for
stationary scenarios, and as a result, the algorithm considers frame loss statistics
over the last 10 seconds when making a rate selection decision. Using a 10 second
window is far too long for a vehicular opportunistic connection as significant signal
quality changes occur on the order of a few seconds. Furthermore, the default
SAMPLE parameters also only used 10% of frames to probe for new data rates
and made a rate decision only every 1000 milliseconds. Again, in a scenario where
the signal changes rapidly, more probes and more frequent decisions are necessary.
We found that a window of one second, using 40% of frames to probe new rates,
and making rate decisions every 100 milliseconds allowed SAMPLE to adequately
choose bit rates during the vehicular connection. Our modifications are summarized
in Table 4.1. We do not claim to have set the SAMPLE algorithm parameters
optimally, merely that the default settings were unusably bad, and our settings are
good enough to allow us to explore the problem further. Had we used the default
parameters, TCP goodput would have been significantly reduced as the default
parameters rarely chose rates above 11 Mbps. Optimal choice of MAC bit rate for
vehicular scenarios is a fruitful area for future work.

Our modified bit rate selection parameters were used on the access point, which
was the TCP sender in our experiments. However, we elected not to change the TCP
client on the vehicle, as we wish to focus our analysis on what could be attained by
an infrastructure provider without client modification. We experimentally explore
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Parameter Original [44] New Value
Probe Packets 10% 40%
Sample Window 10 s 1 s
Decision Interval Every 1000 ms Every 100 ms

Table 4.1: Changes to Default SAMPLE Rate Selection Algorithm

the effects of using an unmodified client in Section 4.3.

4.1.3 Few TCP Losses

Although the number of MAC losses was quite high (18.5% of all transmitted MAC
frames were lost), as shown in Figure 4.3, the 802.11 MAC retransmission scheme
did an exceptional job of hiding losses from TCP. Of the approximately 22,000+
TCP packets transmitted on average per experimental run, there were only an
average of 26.8 ± 33.3 (95% CI) losses seen by TCP (< 0.13% TCP loss).
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Figure 4.3: MAC retransmissions vs distance from the AP, summed across 15 runs.
A higher proportion of losses occurred in the fringe areas and, on average, 18.5%
of transmitted MAC frames were lost.

The reason for low TCP loss is the aggressive multi-rate retransmission scheme
implemented in the Atheros Hardware Abstraction Layer (HAL). When the driver
makes a call to the HAL to send a frame, it can specify up to four different rates to
send the frame at, which the hardware will attempt in decreasing order, each with
a maximum retry count of eight. Analysis of our logs revealed that frames were
often transmitted 4 to 8 times at a high rate, then up to 8 times at the lowest rate,
which would then usually succeed.
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The overall number of TCP losses was very low. However, as explained in
Section 2.3.1, during periods of weak signal such as at the start or end of an oppor-
tunistic connection, TCP is more likely to see losses due to the higher likelihood
that all of the MAC retransmissions will be lost. We give some examples and discuss
this further in Section 4.3.

4.2 Underutilized Vehicular Connections

In this chapter, we show that using existing data-link and transport layer protocols
for opportunistic connectivity to vehicles results in (1) significant variation in the
amount of data transferred per run as well as (2) significant underutilization of the
connection. Figure 4.4 shows that the least data transferred in a run was less than
half (42.3%) as much as the most data transferred in a run (21.6 MB vs 51.1 MB).
Both of these are significantly distant from the median data transferred (32.6 MB),
and all runs were below the potential, explained next.
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Figure 4.4: CDF of the amount of data transferred per run

Supremum: Because no run was problem-free, Figure 4.4 also shows the supre-
mum data transferred of all runs, calculated as follows. Goodput for each run is
computed over 20 m intervals (or sections of the roadway). The supremum goodput
for each interval is the maximum goodput of the set of goodputs achieved in that
interval over all runs (shown in Figure 4.1(c)). The supremum data transferred is
then simply the sum of the supremum goodput of all intervals multiplied by the
time spent in an interval (0.9 seconds at 80 km/h in our experiments).

We argue that the supremum is an accurate representation of what is possible
in a single pass because (1) the effects of the environment are relatively consistent
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across all runs, as discussed in Section 4.1.1, and (2) a reduction in goodput at a
particular point on the roadway due to transient protocol behavior will be present
in some runs but likely not all. Therefore the supremum goodput is at least a
minimum for what is possible at each point along the roadway.

Theoretical Potential: Because the supremum can be limited by persistent
problems that occurred in all runs, further utilization of the connection is possible.
Therefore, we have also shown a rough computation of the theoretical potential
in Figure 4.4, computed as follows. First, for each 20 m interval on the roadway,
we were able to compute an estimate of the signal-to-noise ratio (SNR) based on
the average measured signal energy (RSSI) and assuming a noise floor of -95 dBm
(this is the noise floor assumed by the Madwifi driver). Next we computed the
expected MAC bit rate at each point on the road based on the minimum receiver
sensitivity for each MAC bit rate, as specified in the 802.11 standard [31]. Based
on lab experiments we determined the TCP goodput possible for each MAC rate
under ideal conditions, shown in Table 4.2. Summing the goodput over all intervals,
we obtained a rough estimate of the theoretical potential data transferred in our
environment, used here only as a point of reference.

As shown in Figure 4.4, existing networking protocols not only significantly
underutilize connection potential by more than 50%, relative to the supremum,
but also yield large variations in data transferred, despite all runs using identical
configurations. Next we experimentally analyze the cause of this underutilization.

MAC Rate TCP Goodput MAC Rate TCP Goodput
1 Mbps 0.75 Mbps 12 Mbps 8.8 Mbps
2 Mbps 1.53 Mbps 18 Mbps 12.7 Mbps

5.5 Mbps 3.88 Mbps 24 Mbps 16.4 Mbps
6 Mbps 4.51 Mbps 36 Mbps 22.4 Mbps
9 Mbps 6.76 Mbps 48 Mbps 27.7 Mbps

11 Mbps 6.87 Mbps 54 Mbps 29.3 Mbps

Table 4.2: Lab Measurements of Static TCP Goodput

4.3 Causes of Underutilization

We have identified ten problems that occur during three distinct phases of an op-
portunistic vehicular connection. Table 4.3 provides a roadmap for this section.

4.3.1 Overview

For the purposes of our analysis, we divide the connection into the entry phase, the
production phase, and the exit phase, as done by Ott et al. [49], illustrated in Figure
4.5. During the entry phase, the connection is established and the signal slowly
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Observed
Effect

Mechanism Sec. Fig. Impact

Entry Phase:
Delayed
Connection
Startup
(Section 4.3.2)

Lengthy AP Selection 4.3.2 4.9 Average Total Delay:
13.1 s ± 12.3 (95%
CI) (Figures 4.7, 4.8),
resulting in a median
of 7.5% lost data
transferred and 22.8%
in 15% of runs

MAC Management
Timeout

4.3.2 4.10

Application
Initialization Delay

4.3.2 4.8

ARP Timeout 4.3.2 4.11
Overestimation of
Initial MAC Bit Rate

4.3.2 4.12

Early TCP Timeouts 4.3.2 4.11
Production
Phase:
Underutilization
of Performance
Potential
(Section 4.3.3)

TCP Sender: Slow
Adaptation of MAC
Bit Rate

4.3.3 4.2 Goodput would have
been significantly re-
duced had we used the
default MAC rate se-
lection

TCP Receiver: Slow
Adaptation of MAC
Bit Rate

4.3.3 4.15 16-23% goodput re-
duction

Exit Phase:
Inefficient Use of
Weakening Signal
(Section 4.3.4)

Overestimation of
MAC Bit Rate After
the Production Phase

4.3.4 4.16 9.4 s ± 10.6 (95% CI)
lost connection time,
resulting in 2.1%
median lost data
transferred and 3.0%
in 15% of runs

TCP Timeout Near
the Beginning of the
Exit Phase

4.3.4 4.16, 4.17

Table 4.3: Causes of Underutilization of Opportunistic Vehicular Connections

increases. Following that, the period of good connection quality, the production
phase, is where the bulk of the data is transferred. After the production phase is
the exist phase, where the connection quality decreases until the vehicle leaves the
coverage range of the access point.

We have chosen to identify the production phase as beginning 320 meters before
the access point and, for symmetry, ending 320 meters after the access point, as
shown in Figure 4.5. This results in the three phases as follows:

1. Entry phase: starts at -640 meters, ends at -320 meters.

2. Production phase: starts at -320 meters, ends at 320 meters.

3. Exit phase: starts at 320 meters, ends at 640 meters.

During the production phase, the supremum goodput is greater than 3 Mbps. The
choice of where to label the phase divisions is arbitrary and is only used for reference
in our analysis. The total connection duration of the supremum is 58 seconds (at
80 km/h), with the three phases lasting 14.5 s (25%), 29 s (50%), and 14.5 s (25%),
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Figure 4.5: The three phases of a vehicular connection. The precise division between
phases is arbitrary and is only used for reference in our analysis.

respectively. During the entry, production, and exit phases, 3%, 94%, and 3% of
the supremum data transferred was transferred during each phase, respectively.

We next analyze the cause of connection underutilization in each of the three
phases.

4.3.2 Entry Phase

As suggested in [49, 18, 10], high losses near the beginning of a connection could
impair connection setup and significantly reduce the amount of data transferred
during the connection. Here we quantify this through a detailed experimental
analysis of the entry phase of an opportunistic vehicular connection.

Connection Setup Procedure

The connection setup procedure required to setup a TCP connection over an
802.11 link is shown in Figure 4.6. DHCP was not used in our experiments, as
discussed in Section 3. As shown, there is a lengthy series of control messages that
must be sent sequentially in order for a connection to be successfully set up. It is
precisely this chattiness that causes problems in lossy environments, as identified
by Zhuang et al. [76]. Recovering from the loss of an individual control message is
handled by a variety of different mechanisms across different networking layers. In
a lossy environment, like the entry phase, all of these mechanisms must function
well together for quick connection setup; something not easily achieved using
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existing networking protocols, as shown next.
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Figure 4.6: Timeline of connection setup procedure, showing the sources of delay.

Connection Setup Delay

Robust connection setup is crucial in order to fully utilize a short-lived oppor-
tunistic connection. Any delay in setting up the connection results in lost oppor-
tunity to send data, especially if it cuts into the production phase.

Figure 4.7 shows the locations where the connection setup completed. We con-
sider connection setup to be complete once the first successful TCP Data and TCP
ACK packets are exchanged. Figure 4.8 shows a breakdown of the major causes of
connection setup delay. We examine these causes in detail next.
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Lengthy Access Point Selection

Before an 802.11 MAC connection is attempted, a client must decide which access
point to connection to. A client first locates all available access points by perform-
ing one or both of (1) a passive scan, involving sequentially switching through all
channels and listening for beacon messages, (2) an active scan, where the client
sends probe request messages and waits for probe responses from any available
access point. Our cards performed both simultaneously.

The scanning process continues until the client locates an access point it wishes
to connect to. Our experiments reveal that this process continues well after the
roadside access point is first detected. In our experiments, the vehicular client
received beacons from the access point very early on (750+ m before the access
point), before a two-way connection was possible. This was due to the access point
using a higher transmit power than the client (19 dBm vs 15 dBm, as discussed in
Section 3).

As occurred in the run shown in Figure 4.9, the client continues to scan for
alternative access points, even after a two way connection was possible. This is
evident by the probe responses received, and acknowledged, by the client, which
would often receive multiple probe responses from the roadside access point before
deciding to associate.

The Madwifi driver decides to associate with an access point when the average
measured signal energy (RSSI) over a fixed time interval crosses a certain threshold.
This threshold, controlled by the rssi11g parameter, defaults to 24 RSSI units,
which is the equivalent of -71 dBm of measured signal energy [35]. Because of the
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Figure 4.9: Example of Lengthy AP Selection

repeatability of the signal strength in this environment (recall Figure 4.1(a)), we
expected that the AP selection process would be very consistent; however, Figure
4.8 shows that the length of the AP selection process was very inconsistent. We
attribute this to rapid fluctuations of the instantaneous measured signal strength
which caused the average signal strength to cross the association threshold (the
rssi11g parameter) much earlier or much later in different runs.

MAC Management Timeout

As shown in Figure 4.6, once the client has decided to attempt association, it
transmits a MAC authentication request. Because we are using open authentication
and no encryption, this is followed by only three control messages to complete the
MAC connection setup. However, if one of these messages is lost, the Madwifi
driver recovers from this loss with a hard-coded timeout of five seconds and
a single retransmission. After two successive losses, the AP selection process is
restarted and this process is repeated. Figure 4.10 shows a drastic example of how
losing a few MAC management messages results in a significant delay in connection
setup. Although the five second timeout is specific to our hardware configuration,
we discuss how this observation can be generalized in Section 5.1.

Application Initialization Delay

Because we did not use DHCP for IP address assignment, the next step in the
connection setup procedure is for the access point to initiate a connection to the
client’s statically assigned IP address. Previous work has examined the delay due
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Figure 4.10: Example of MAC Management Timeout

to DHCP and found it to be 1.8 seconds on average [10]. This certainly would have
a significant impact on connection setup; however, we chose to isolate other, lesser
known, causes of delay in our work.

Once a MAC layer connection has been established, the application running on
the access point must detect the new client and initiate a transfer to it. Previous
work by Bychkovsky et al. [10] observed average application initialization delays
of 5 seconds; however, they attributed this delay to the heavy load on their devices
due to running database software. In our case, we launched iperf from a shell script
loop, resulting in a small delay of 1-2 seconds, as shown in Figure 4.8.

ARP Timeout

Next, the access point must perform an ARP lookup of the client’s MAC address
based on the destination IP address requested by the application. Figure 4.11
shows that lost ARP messages are retransmitted after one second, a reasonable
timeout for a vehicular scenario. Therefore, we found that ARP timeouts were not
a significant source of connection setup delay.

Overestimation of Initial MAC Bit Rate

When a MAC layer connection first begins, an initial MAC bit rate must be chosen
before any feedback from the environment is obtained. The SAMPLE rate selection
algorithm we used chose an initial rate of either 11, 36, or 54 Mbps using simple
IF-statements based on signal strength. Analysis of our logs revealed that it was
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Figure 4.11: Example of two ARP timeouts, causing a two second delay. Early
TCP timeouts also occurred during this experimental run, causing a 10.5 second
delay, discussed later.

not uncommon for high initial rates to be selected, even though the connection was
clearly not capable of transmitting at those high rates. The decision to use a high
initial bit rate is not unique to the SAMPLE algorithm. As shown in Table 4.4,
many other algorithms do the same.

Algorithm Initial Bit Rate
SAMPLE [7] 11, 36, or 54 Mbps depend-

ing on signal strength
Onoe [44] 36 Mbps
AMRR [39] 36 Mbps
RRAA [71] 54 Mbps

Table 4.4: Initial MAC Bit Rate Used by Rate Selection Algorithms

Choosing an initial bit rate that is higher than the wireless channel can support
introduces a delay before the connection becomes useable, as the bit rate algorithm
must gradually reduce its rate until it matches the channel’s capability. In our
experiments using the improved SAMPLE parameters, this still took up to six
seconds, as was the case in the run shown in Figure 4.12.

Although overestimating the initial bit rate causes high MAC losses, we found
that this did not necessarily translate into high TCP losses. We attribute this
to the Atheros multi-rate retransmission mechanism that reduces the bit rate for
successive retransmissions, as discussed in Section 4.1.3. However, because high
rates are used when lower rates would have been more suitable, the amount of
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Figure 4.12: Example of overestimation of initial MAC bit rate; 54 Mbps was chosen
although only 1 Mbps was possible during the initial phase of the connection. In
this run it took 115 m (6 s) to adapt to the proper bit rate. Also seen later in the
connection are the frames used to probe higher rates.

viable transmission attempts is reduced and therefore high MAC losses due to
overestimation of bit rate does increase the probability of TCP losses.

Early TCP Timeouts

As discussed previously in Section 4.1.3, the overall number of losses seen by TCP
was very low because of the aggressive 802.11 MAC retransmission scheme. How-
ever, the losses that are seen by TCP are more likely to occur during periods of
weak signal such as during the entry or exit phase as there is a higher probability
that all of the MAC retransmissions will fail.

During the early phase of an opportunistic connection, TCP is more likely to
enter a back-off state because (a) its congestion window is small and therefore TCP’s
fast retransmit mechanism is less likely to be engaged, and because (b) losses are
higher at the fringe of coverage. Entering a back-off state is effectively equivalent
to pausing transmission at the TCP sender, something highly undesirable during a
short-lived connection.

Although we did observe early TCP timeouts, as seen in the previously shown
run in Figure 4.11, they were not as common as we had anticipated. The previously
shown Figure 4.8 shows that an early TCP timeout only occurred in one of the 15
runs shown. We attribute this to (a) better than expected connection quality once
the TCP connection was established, due to the TCP connection starting relatively
late because of the MAC layer delays discussed previously and (b) the aggressive
Atheros MAC retransmission scheme, discussed in Section 4.1.3. If the MAC layer
delays were reduced, we would expect to see an increased amount of TCP timeouts
during the early phase of the connection.
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Understanding the Effects of Connection Setup Delay

Although it appears from our results (particularly Figure 4.8) that some sources of
delay are more significant than others, we argue that they are highly dependent on
one another. That is, had one source of delay not been present, the one following
it would likely have taken its place. For example, had the AP selection process
not lasted as long, more MAC management timeouts would likely have occurred
due to weak signal, consuming approximately the same delay as before. The same
argument can be extended to ARP timeouts and TCP timeouts. As a result, a
solution to reduce connection setup delays must be all-or-nothing, as the connection
cannot become useful unless all delays are addressed. We discuss this and other
possible solutions in Section 4.4.

Impact of Connection Setup Delay

As shown in Figure 4.7, connection setup delay prevents most connections from
becoming usable until well into the production phase. In order to gauge the impact
of this, we determined the lost potential data transferred that resulted from late
connection setup. Using the supremum goodput (Figure 4.1(c)), we found that for
the median connection setup distance, 7.5% of potential data transferred was lost.
In 15% of runs, more than 22.8% was lost, and in the worst case 40.3% was lost.

4.3.3 Production Phase

TCP Sender: Slow Adaptation of MAC Bit Rate

The first major problem we encountered was that the default parameters used by
the default bit rate selection algorithm used in our equipment did not perform well
in the vehicular environment (discussed previously in Section 4.1.2), requiring us to
modify the algorithm’s parameters to make it more dynamic for our environment.

Although the results in this thesis were gathered using our modified parameters
of the bit rate algorithm on the access point, early experiments revealed that using
the default parameters resulted in up to four times less data transferred than using
our modified parameters. Thus, using a bit rate selection algorithm on the sender
that is well suited to the environment is critical.

Next we report on the impact using the default algorithm parameters on the
unmodified clients.

TCP Receiver: Slow Adaptation of MAC Bit Rate

Recall from Section 3.2 that our goal in these experiments was to analyze perfor-
mance characteristics experimentally using unmodified clients. This represents the
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limit of what an infrastructure provider has control over. As a result, we chose to
use the default bit rate selection parameters on the clients rather than our modified
parameters.

As expected, the TCP receiver (the vehicle) tended to use lower bit rates for
sending TCP ACKs (Figure 4.14) than the access point for sending TCP Data
(Figure 4.13). Here we notice two unusual spikes in the rates used by the client.
This is a result of the slow adaptation of the default rate selection algorithm, which
bases its decisions on a 10 second history (recall Table 4.1). As is the case in the
run shown in Figure 4.15, the rate was not increased until after it had passed the
access point.
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However, this did not occur during every run, as evident by the large error bars
in Figure 4.1(c). A closer examination of our logs revealed that in some runs, the
client used very high rates (e.g., 54 Mbps) for TCP ACKs, and in others, much
lower rates were used (e.g., 11 Mbps). Lower rates (such as in the run shown
in Figure 4.15) were common due to the slow adaptation of the default bit rate
selection parameters. However, in other runs, higher rates were achieved because
of a combination of two factors: delayed connection setup and a high initial bit rate.
If connection setup was sufficiently delayed such that the MAC connection did not
complete until after the entry phase, then the initially high bit rate used by the
client would succeed rather than being immediately reduced by the rate selection
algorithm.

We discovered that using the default bit rate algorithm on the client had a much
larger impact than expected. The slower rate used for TCP ACKs consumed more
air time and resulted in reduced goodput. In order to quantify the impact of this, we
first determine the overall degradation in the production phase by identifying the
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Figure 4.15: Example run showing slow adaptation of MAC bit rate on vehicular
client (TCP receiver); the average bit rate used by the AP for this run is shown for
reference

difference between the average goodput and supremum goodput during the middle
of the production phase. The average goodput is 25% less than the supremum, as
can be verified visually in Figure 4.1(c).

Next we examine the bit rates used, by the access point and the client, ag-
gregated across all runs, shown in Figures 4.13 and 4.14 respectively. The first
immediate difference is that, during the middle of the production phase, rates 54
and 48 Mbps were used the majority of the time by the access point and 2, 6, and
11 Mbps were used the majority of time by the client.

Lab experiments, shown in Table 4.5, reveal that the air time used by the
TCP ACKs has a significant impact on overall TCP goodput. Based on these
measurements and the proportion of rates used by the access point and the client,
we compute that the lower bit rates used on the client account for approximately
19% of lost goodput during the middle of the production phase.

Sender MAC Rate Receiver MAC Rate TCP Goodput % of Max
54 Mbps 1 Mbps 11.3 Mbps 39%
54 Mbps 2 Mbps 16.5 Mbps 56%
54 Mbps 5.5 Mbps 20.5 Mbps 70%
54 Mbps 11 Mbps 22.3 Mbps 76%
54 Mbps 6 Mbps 25.2 Mbps 86%
54 Mbps 9 Mbps 26.5 Mbps 90%
54 Mbps 12 Mbps 27.5 Mbps 94%
54 Mbps 54 Mbps 29.3 Mbps 100%

Table 4.5: Effect of MAC bit rate used for TCP ACKs (lab measurements). The
first four receiver MAC rates shown consume more air time than the remainder due
to using the legacy 802.11b preamble and timing.
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We argue that this can be reasonably extrapolated to the remainder of the pro-
duction phase, and because 94% of the data was transferred during the production
phase, we conclude that using the default bit rate selection on the TCP client (the
vehicle) resulted in approximately 16% to 23% less data transferred compared to
the supremum.

4.3.4 Exit Phase

Overestimation of MAC Bit Rate After the Production Phase

After the production phase, connection quality begins to decrease. We found that
the MAC bit rate selection algorithm on the access point, even with our improved
SAMPLE parameters, failed to adequately adjust to the decreasing signal quality.
This resulted in the same overestimation symptoms experienced during the entry
phase, as discussed in Section 4.3.2. Figure 4.16 shows an example of the high bit
rates attempted by the access point after the production phase. A more dynamic
bit rate selection algorithm is needed to adjust to the rapidly changing channel
conditions in this environment.
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Figure 4.16: Example run showing overestimation of MAC bit rate after production
phase causing a TCP timeout at 300 m (last half of connection shown).

TCP Timeout Near the Beginning of the Exit Phase

Much like the entry phase, due to overestimation of MAC bit rate and poor con-
nection quality, TCP losses were likely to occur in the exit phase. The earlier the
TCP timeout occurred, the more potential data transferred was lost. Figure 4.16
shows an example of a TCP timeout that occurred shortly after the production
phase, 300 m past the access point.
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Figure 4.17 shows the CCDF of the locations where the last useful TCP packet
was received by the vehicle. Here we see that the majority of the exit phase was
unused in most runs, as the supremum exit phase ended at 640 m past the access
point while the median connection ended much earlier, at 398 m, representing an
average of 9.4 seconds ± 10.6 (95% CI) of lost connection time. Compared to the
supremum, this resulted in a median loss of 2.1% potential data transferred, 3.0%
in 15% of runs, and 9.2% in the worst case.

700 CCDF of Location of Last 
Useful TCP Packet

600
Useful TCP Packet

500(m
)

Median TCP 

400

500

A
P 

(

connection ends
398 m after the AP400

e 
to

 A 398 m after the AP

300

an
ce Exit Phase begins 

320 ft th AP
200D

is
ta 320 m after the AP

100

D

100

0
0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of Runs

Figure 4.17: CCDF showing the location where the TCP connection became un-
usable. As shown, the majority of runs ended early into the exit phase.

4.4 Recommendations

Based on our findings, we now suggest some best practices to other system imple-
menters for improving vehicular opportunistic communication using existing 802.11
hardware. Our recommendation is make full use of the production phase by ensur-
ing rapid connection setup and using a dynamic bit rate selection algorithm.

As shown in Section 4.3 the two major causes for poor use of the production
phase are: (1) connection setup delays, lasting well into the production phase, effec-
tively reducing the length of the production phase; and (2) the default client bit rate
selection algorithm leads to sub-optimal use of the production phase. Therefore,
our recommendations translate to mechanisms to mitigate these problems.
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4.4.1 Reducing Delays in Connection Setup

To prevent the connection setup delays from cutting into the production phase,
the simplest solution is to have mobile devices avoid the fringe area. That is, a
device should not attempt to use an AP until the start of the production phase.

Of course, this raises the question of how can a device know that the production
phase has started. There are several possible approaches. For instance, the device
could attempt to associate with an AP only when the RSSI exceeds some thresh-
old. Indeed, our mobile device’s access point selection process already uses such
a threshold. Unfortunately, a single packet with an anomalously high RSSI value
is enough to kick off the association process. Therefore, the threshold has to be
combined with some degree of signal filtering. Another approach would be to peri-
odically probe for an AP using an 802.11 probe packet, but with a very short probe
timeout. While effective, this expends more power, which may preclude its use in
some situations. A well-considered solution for reliably detecting the production
phase appears to be a fruitful area for future work.

4.4.2 MAC Bit Rate Selection Algorithms

We saw in Section 4.3.3 that using the default bit rate selection algorithm reduces
goodput in the production phase. Because the bit rate selection algorithms used by
cards are generally kept secret by chip makers, and could potentially be different
between chip revisions, the only choice a system builder has is to purchase multiple
cards and use whichever card works best. We recommend that system designers
use this pragmatic step when building opportunistic communication systems.

Should the system designer have the ability to tune the bit rate selection al-
gorithm, we suggest making the algorithm more dynamic, as was done for our
experiments (explained in Section 4.1.2).

4.4.3 Tuning Parameters

If system builders cannot stop a card from using the fringe, but have the ability to
change parameters on a device, they can still fine-tune their data-link and transport
layer protocols to work better in the vehicular environment. Some useful tweaks
that could be made are: (a) increasing the minimum RSSI needed before connecting
to an access point, (b) reducing the MAC management timeout, (c) reducing the
ARP timeout, (d) using a more dynamic MAC bit rate selection algorithm, and (e)
reducing TCP’s initial timeout value, and (f) making TCP retransmissions more
aggressive.

Note that there is a limit to the effectiveness of tuning the last hop of the
connection (either the access point or the wireless client) because the TCP sender
could be any host on the Internet, which cannot be controlled. Therefore, we
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advocate using a connection-splitting approach, such as done by Indirect-TCP [1],
to split the TCP connection into two halves at the access point, allowing the access
point to control the TCP parameters used over the wireless link.

To sum up, we recommend that system implementers either avoid the fringe,
or, if that is not feasible, reduce the effect of the fringe on protocol performance by
fine-tuning parameters. Performance can also be improved by evaluating multiple
cards and multiple firmware versions.

4.5 Discussion: the Role of Environmental

Awareness

Although the focus of this thesis is on understanding the problems associated with
vehicular opportunistic connections, we believe that our work raises the broader
question of the role of environmental awareness in networking protocols. To see
this, consider first that all wireless technology deployments, including those of the
future, are likely to contain areas with marginal coverage, where packet losses are
very high due to dead spots, weak spots, and interference. Section 4.3.2 showed that
existing data-link and transport layer protocols perform poorly in marginal coverage
areas. Worse, today’s networking protocols are not only poor at dealing with bursty
losses, but also hide their failures from the layer above, causing destructive protocol
interactions.

To avoid these problems, future data-link and transport layer protocols should
be less sensitive to bursty wireless losses, especially during control-plane actions,
such as association and authentication. They should also use initial operating pa-
rameters that are suitable for marginal coverage areas. Figure 4.18 illustrates the
effects of not selecting appropriate initial operating parameters. If it is not possible
to adapt parameters, communication protocols should try to use the wireless chan-
nel for control actions only when it is known to be in a good state. In any case,
they should report a failure to an upper-layer protocol immediately, so that it can
take the appropriate action.

At a more abstract level, we believe that future networking protocols need to be
more aware of their operating environment. This would allow them to (1) better
choose initial operating parameters; and (2) better deal with very high variability
in packet loss rates (or, equivalently, packet delays), and link capacities. Envi-
ronmental awareness could be accomplished either manually, by a user preference
setting, or automatically by some learning or detection process on the client or the
access point.

In this light, it is interesting to note the privileged position of a roadside AP in
vehicular opportunistic communication. It participates in every communication and
can therefore exploit its knowledge of past connection history to help future connec-
tions. This is particularly powerful because signal strength is relatively consistent
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between vehicular passes (as discussed in Section 4.1.1). For example, suppose the
access point recorded the average signal strength of a client relative to its GPS po-
sition. The access point could then (1) build an approximate picture of the pattern
of signal quality and (2) determine how rapidly the signal quality changes, perhaps
due to client mobility. The access point could then use this information to adjust
its operating parameters, such as setting the initial bit rate, using an appropriately
aggressive bit rate selection algorithm, and adjusting MAC and TCP timeouts to
make them more suitable for the environment. Moreover, it could even give hints
about operating parameters to incoming vehicles as a field in its beacon messages.

In summary, we believe that heightened environmental awareness will be a key
feature of future communications protocols and that, in the context of roadside
communication, the AP can play a critical role in bringing this about.
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Chapter 5

Conclusions

The feasibility of opportunistically using 802.11 hotspots for vehicular Internet
access has been confirmed by previous work [49, 27, 18, 10, 42]. In this thesis, we
build on this work with a detailed experimental analysis of data-link and transport
layer protocol behavior during opportunistic vehicular communication at a depth
not previously examined. We show that heightened awareness of the operating
environment, particularly in the vehicular scenario, can dramatically increase the
overall throughput of a connection.

In our experiments, we show that the amount of data transferred during an op-
portunistic connection was only 50% of what was possible in this scenario. Specifi-
cally, we show that losses during the connection setup phase contribute significantly
to this amount.

We have identified ten problems that cause this throughput reduction during
the three phases of an opportunistic connection, including:

1. Entry phase: Problems in the entry phase caused a median loss of 7.5% of
potential data transferred, 22.8% was lost in 15% of runs, and 40% was lost
in the worst case, due to:

(a) Lengthy AP selection process

(b) Long MAC management timeouts

(c) Application initialization delay

(d) ARP timeouts

(e) Overestimation of the initial MAC bit rate

(f) TCP timeouts early in the entry phase

2. Production phase: 16% to 23% less data was transferred due to problems
during the production phase.
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(a) Significantly less data would have been transferred had we used the
default parameters of the default rate selection algorithm (SAMPLE)
on the access point.

(b) 16% to 23% less data was transferred than possible due to slow adapta-
tion of MAC bit rate on the default client during the production phase.

3. Exit phase: Problems in the exit phase caused a median loss of 2.1% potential
data transferred, 3.0% was lost in 15% of runs, and 8.4% was lost in the worst
case, due to:

(a) Overestimation of MAC bit rate after the production phase

(b) TCP timeouts near the beginning of the exit phase

We further suggest best practices for vehicular opportunistic connections. First,
we argue that the best way to use current networking protocols in this scenario is to
avoid the fringe areas altogether, due to protocol timeouts and back-off procedures
extending into the production phase. Second, we recommend a fruitful direction of
future protocol design which involves exploiting environmental knowledge to opti-
mize protocol behavior for the operating environment. In the case of opportunistic
vehicular data transfers, our experimental analysis shows that overall throughput
could be improved by up to a factor of two by using such environmental information.

5.1 Limitations and Future Work

The biggest limitation of our work in this thesis is that we have only evaluated
a single scenario: one vehicle, one vehicle speed, one environment, one wireless
card, and only downlink data transfers that used only TCP. However, some of
these aspects of opportunistic connection have already been examined. Previous
work [49, 27, 18] has shown that data transferred is inversely proportional to vehicle
speed. As well, in [27], we examined data transfer in the uplink direction and found
similar behavior to that in the downlink direction. Furthermore, in ongoing work,
we have experimented with UDP transfers and preliminary results show very little
difference between UDP and TCP due to the aggressive retransmissions done at
the MAC layer. Bychkovsky et al. [10] and Mahajan et al. [42] have studied ve-
hicular opportunistic connections in an urban setting; however, further exploration
is needed to understand the details of data-link and transport layer behavior in an
urban environment.

Gaining a thorough understanding of the behavior of different wireless cards in
this scenario is a fruitful direction of future work. Existing work [21] indicates that
there are subtle differences in the implementation of the 802.11 standard between
chip manufacturers that can have a significant impact on how they communicate.
Because of the short duration of a vehicular connection, the effects of these sub-
tleties is likely to be exaggerated.
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A large space of future work lies in designing an 802.11 bit rate selection algo-
rithm for the vehicular environment. Although mobility-aware 802.11 rate selection
algorithms have been developed in recent literature [71, 55, 38], none have ade-
quately addressed the needs of high-speed vehicular communication. Specifically,
because of the short connection duration and rapid fluctuations in signal quality,
probing different rates, as is commonly done, may lead to significant inefficiencies
in this scenario.

Understanding protocol behavior in the presence of multiple vehicles is a fruitful
avenue of future work. The effects of the 802.11 performance anomaly [28] on data
transferred in scenarios with multiple vehicles has been examined by Hadaller et al.
[25] using trace-based simulations. However, much work remains on understanding
detailed protocol interaction and potentially designing new communication proto-
cols that are better suited to multi-vehicle communication. In particular, when a
second vehicle enters coverage, the communication of an earlier vehicle near the
access point will effectively drown-out the second vehicle’s attempts to associate
with the access point, preventing the second vehicle from being able to fairly use
the connection opportunity.

Although we have identified potential gains from heightened environmental
awareness, implementing such ideas is non-trivial. One question that needs to
be answered is what is a good source of environmental information? Should it be
automatically detected or should the user manually indicate the operating condi-
tions (e.g., stationary, mobile, highly mobile)? A second question is what is the best
way to get this information to the networking protocols? Should the protocol API
be changed to allow the input of these parameters, or should the operating system
provide a common interface for applications to tune networking parameters? These
are avenues of future work.

A higher layer problem, which has been a particular challenge for delay tol-
erant networking research [15, 58, 59], is how to use intermittent connectivity at
the application layer. Existing applications assume a persistent and reliable un-
derlying connection and cannot handle frequent disruptions. Making applications
disconnection-aware is a broad area of future work.
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