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ABSTRACT

The subject of this thesis is to study the problem of dynamic processor allocation in
parallel application scheduling. Processor allocation involves determining the number of
processors to allocate to each of several simultaneously executing parallel applications
and possibly dynamically adjusting the allocations during execution to improve overall
system performance. We devise and analytically evaluate dynamic allocation policies
that operate in environments in which full information about the jobs being executed is
not known when making scheduling decisions.

We use competitive analysis to compare the performance of algorithms which do not
know the arrival or execution time of jobs with the performance of the optimal algorithm
which uses complete information about jobs. The result of such a comparison is called a
competitive ratio. The competitive ratio is indicative of the utility of different allocation
policies. Our study is carried out under two performance objectives: minimizing the
makespan and minimizing the mean response time respectively.

Our results for minimizing the makespan consist of three parts. First we use
competitive analysis to devise an allocation policy, OptComp, which yields the optimal
competitive ratio for scheduling two parallel jobs. As well, we compare the dynamic
equipartition (DEQ) policy with OptComp and find that the relative ratio of DEQ to
OptComp is 1. 175729. This implies that the competitive ratio of DEQ is very close to
optimal. Secondly we extend the results of sequential job scheduling to parallel job
scheduling. Our results cover the situations when the application parallelism varies
during execution as well as when applications do not arrive at the system simultaneously.
Lastly we consider the case when some applications may execute infinitely because of
programming errors which lead to an infinite loop. Our results show that DEQ yields the
optimal competitive ratio.

Our results for the problem of minimizing the mean response time assume that all
applications arrive at the system simultaneously and that application parallelism does not
change during execution. We show that in this case DEQ yields an optimal competitive

ratio of 

2 −

2

N + 1


.

(iii)
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Glossary

Ji - job i

P - total number of processors in the system

Pi - parallelism of job i

li - execution time of job i if executed on unlimited number of processors

pi - number of processors allocated to job i

p - equipartition value according to DEQ

N - total number of jobs in the system

Wi - work executed by job i

JS - job set

JSequi - job set in which the allocation to each job is equal to p

ke - number of jobs in JSequi

JS para - job set in which the allocation to each job is equal to Pi

k p - number of jobs in JS para

JS ′
para - subset of JSequi in which the allocation to each job is increased to Pi after

processor reallocation

k p
′ - number of jobs in JS ′

para

JS ′
equi - a subset of JSequi in which the allocation to each job is equal to p before

and after processor reallocation

ke
′ - number of jobs in JS ′

equi

M A(JS) - the value of the objective function for algorithm A with job set JS

Opt(JS) - the optimal value of the objective function with job set JS

(viii)



α - used to devise the optimal policy for scheduling two jobs, 0 ≤ α ≤ 1

R1 - competitive ratio for scheduling two jobs when J1 completes execution first

R2 - competitive ratio for scheduling two jobs when J2 completes execution first

m - parallelism of J1 represented as a fraction of P

n - parallelism of J2 represented as a fraction of P

ti - time at which job i arrives at the system

τ
- time span during which

N

i=1
Σ Pi ≥ P

τ ′
- time span during which

N

i=1
Σ Pi < P

t*

- time at which
N

i=1
Σ Pi < P for the first time

ri - remaining execution time of job i

L1 - maximum of li over all jobs

K - number of infinite jobs in the system

Ti - execution time of job i

Tequi - time span during which the allocation to job i is equal to p

T para - time span during which the allocation to job i is equal to Pi

lequi - the time required to execute p Tequi units of w ork if job i is allocated Pi

processors

β i - response time of job i

f - phase during which the allocation to job i is equal to the job parallelism

e - phase during which the allocation to job i is equal to the equipartition value

A(JS) - squashed area bound for job set JS

(ix)



L(JS) - sum of li for all jobs in job set JS

FT A(JS) - flow time for job set JS with algorithm A

C - constant which is defined to be 2 −
2

N + 1

(x)



Chapter 1

Introduction

Historically, increases in computing power were obtained by employing faster

processors using high-speed semiconductor technology. Multiprocessor systems have

emerged as an alternative means for reducing program execution time. Processor

scheduling becomes critical to the performance of multiprocessor systems because an

inappropriate scheduling decision can substantially degrade system performance.

Scheduling parallel applications on multiprocessors involves determining the

number of applications to execute simultaneously (an activation decision) and the number

of processors to allocate to each of these simultaneously executing applications (an

allocation decision). A number of different policies have been proposed and evaluated

for scheduling on multiprocessor systems [22][19][28][23][16][33][12][20][24][3][2].

As well, a number of different approaches are possible for comparing the performance of

various algorithms [10][8][9][1][5]. We study dynamic scheduling policies for

scheduling multiple parallel applications in shared-memory multiprocessors when the

scheduler does not have full information about applications at the time of scheduling.

The approach used is competitive analysis, which compares the performance of an

algorithm without full information with the optimal algorithm operating with full

information about jobs.

1.1. Motivation

Recent studies have demonstrated by both analysis and simulation that utilizing

certain job characteristics may improve the mean response time of parallel applications

[6][23][33][20][24][2]. However, in real systems it is unlikely that the scheduler will

have access to all of this information. For example, information about the service

demand of jobs may be used by the scheduler to reduce mean response time

[18][19][24][2], however, such information may not be available to the scheduler.

Therefore, we study the processor allocation problem assuming that the scheduler does

not have complete information about incoming applications. To be specific, we assume

that the scheduler has no information about a job’s arrival and its execution time.

1
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Competitive analysis is an approach to studying algorithms that operate in

environments in which information about the jobs being executed is not known at the

time of scheduling. The idea behind competitive analysis is to compare, over all possible

inputs, the performance of an algorithm when full information about the input is

unavailable with the performance of an optimal algorithm which operates with complete

information.

A number of studies have applied competitive analysis to sequential job scheduling

on multiprocessors in order to minimize the makespan [10][8][13][25]. In this thesis we

examine this problem in the context of parallel applications. As well, a number of recent

studies have utilized competitive analysis to study the problem of minimizing the mean

response time for scheduling parallel applications in a static environment, where the

number of processors allocated to each job does not change during execution

[30][17][31][29]. In this thesis we study this problem in a dynamic environment in which

the allocations to applications may be adjusted during execution in order to improve the

overall system performance.

1.2. Goals

One of our goals is to use competitive analysis to study dynamic processor

allocation policies under realistic assumptions of job characteristics and the workload.

Another goal is to gain a better understanding of the dynamic equipartition policy and the

significance of using certain job characteristics in scheduling by comparing the

performance of the policies using limited available information about job characteristics

with the optimal policy which uses full information.

1.3. Contributions

We study the dynamic processor allocation problem under the assumption that the

scheduler does not know the job arrival and execution time. Our study is conducted

under realistic job and workload models. We study dynamic processor allocation policies

designed to minimize makespan and mean response time respectively. Our contributions

are twofold:

(1) Minimizing the makespan: we use competitive analysis to devise an optimal policy

for scheduling two jobs. This method may be of help for devising optimal

competitive policies for generalized cases. We extend the results of sequential job

scheduling to parallel job scheduling. Our analysis considers realistic situations

when there are new arriving jobs and the job parallelism varies during execution.
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(2) Minimizing the mean response time: we study the problem of minimizing the mean

response time in a dynamic scheduling environment. We show that the dynamic

equipartition policy, which allocates an equal fraction of processing power to each

job, provided that the job has enough parallelism, has an optimal competitive ratio.

This explains why the dynamic equipartition policy performs well under various

workloads.

Our results show that when the information of arrival and execution time is not

available at the time of scheduling, the policy which space-shares processors evenly

among all jobs in the system has the optimal competitive ratio. This leads to a better

understanding of the significance of utilizing the application execution time in scheduling

parallel jobs.

1.4. Overview of the Thesis

The structure of the thesis is as follows: In Chapter 2 we present some of the

relevant background and previous results for the problem under study. In Chapter 3 we

introduce the job workload and system models upon which our research is based. In

Chapter 4 we study the problem of minimizing the makespan. We first devise an optimal

algorithm for scheduling two jobs, then we study the problem in the context of scheduling

N jobs. Lastly we consider the situation in which some applications may execute

infinitely. In Chapter 5 we study the problem of minimizing the mean response time. We

prove that, in the worst case, the mean response time for the dynamic equipartitioin

(DEQ) policy is no more than twice the optimal. In Chapter 6 we summarize our

research.



Chapter 2

Background

Tw o important aspects of parallel application scheduling in multiprocessors are: (a)

how many applications are allowed to execute in the system at the same time and (b) how

many processors should be allocated to each of them (including dynamically adjusting

those allocations to improve overall system performance). In this chapter we briefly

outline the issues in parallel application scheduling and the relevant research in literature.

2.1. Performance Objectives

Most of the research in multiprocessor scheduling considers one of two performance

objectives: minimizing the makespan or minimizing the mean response time of

applications. For a set of jobs, makespan is defined as the amount of time that elapses

from the arrival of the first job to the departure (completion) of the last job. Minimizing

makespan is important for scheduling jobs in a batch mode as well as in manufacturing.

The problem of minimizing makespan has been treated extensively in the context of

scheduling sequential jobs [10][8][26][1][13][25][7]. We shall extend the previous

results obtained for scheduling sequential jobs to the scheduling of parallel jobs.

In an interactive environment minimizing mean response time is of greater interest

than minimizing makespan. The response time of a job is the amount of time which

elapses from its arrival until its completion. A number of recent analytic studies have

been carried out in parallel job scheduling in order to minimize the mean response time

[21][29][30][31][17]. However, all of these studies are conducted in a static environment,

in which the processors are not preempted from an executing job until it has completed

execution. We shall study this problem of minimizing the mean response time in a

dynamic environment.

The problem of minimizing makespan is simpler than minimizing the mean response

time, because minimizing makespan is only concerned with the completion time of the

last job in the system while minimizing the mean response time requires considering the

completion time of all jobs in the system.

4
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2.2. Scheduling Parallel Jobs on Multiprocessors

As the number of processors available in multiprocessors continues to grow it is

likely that many applications will not be able to utilize all of the processors in the system.

The effective simultaneous execution of multiple parallel applications has become a

research area of growing interest and importance. We briefly describe the well-accepted

approaches to multiprogramming parallel applications, upon which our work is based.

2.2.1. Time-sharing versus Space-sharing

Techniques for multiprogramming parallel applications in shared-memory

multiprocessors fall under two general categories: time-sharing policies and space-

sharing policies. The difference between these two schemes lies in how the processors

are shared among the many executing parallel applications.

Under a time-sharing scheme processors are shared over time by executing different

applications on the same processor during different time intervals. Such a time interval is

called a time-slice. Usually processes of the same application are executed on different

processors during the same time slice. As a result, each processor incurs context

switching overheads at every time-slice.

A space-sharing scheme partitions processors among jobs. That is, it allocates

different portions of the system to different applications [28]. This eliminates the need to

rotate processors from one job to another and avoids unnecessary context switching

overheads. Studies have shown that space-sharing is preferable to time-sharing in small-

scale shared-memory multiprocessors [28][12][20]. Therefore, our study is focused on

space-sharing schemes.

2.2.2. Static versus Dynamic Scheduling

Scheduling algorithms can be classified as static or dynamic according to the

frequency with which processor reallocation decisions are made and revised. A static

algorithm assigns a certain number of processors to an application at the time it is

activated and does not reallocate processors during its execution. A dynamic algorithm

permits the allocation of processors among applications to be changed at any time

[28][20]. Both simulation and experimental evaluation have concluded that dynamic

scheduling is preferable to static scheduling in UMA multiprocessors, even when

reallocation overheads are relatively large [33][20]. Experimental evaluations in a

NUMA multiprocessor also arrive at a similar conclusion [32]. Therefore, our research

is concentrated on dynamic scheduling policies.
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2.3. Application Characteristics

Recent studies have demonstrated that in multiprogrammed environments certain

application characteristics can be used to make scheduling decisions in order to improve

mean response time [6][23][20] [2][11] Other studies have shown that some of these

characteristics can be obtained and used in realistic environments [2][24]. The following

is a brief description of the application characteristics that we believe to be potentially

useful.

2.3.1. Parallelism Profile

A parallelism profile is defined as the number of processors an application is capable

of using at any point in time during its execution [14]. Figure 2.1 shows two examples of

parallelism profiles. If, during execution, the parallelism of an application varies with

time, its parallelism profile is said to have multiple phases (as shown in Figure 2.1(a)). If

the parallelism of a job does not change during execution, the parallelism profile is said to

consist of a single phase (as shown in Figure 2.1(b)).

0

(a) parallelism profile with multiple phases (b) parallelism profile with a single phase

0

number of processors number of processors

time time

Figure 2.1: Parallelism profile

2.3.2. Speedup and Efficiency

Speedup and efficiency are two common performance measures of a parallel

program. Speedup is defined to be the ratio of execution time attained using one

processor to the execution time using p processors. The efficiency of a job is defined as

the mean effective processor utilization when p processors are allocated to the job.

Define T j(p), where p = 1, . . . , P, as the execution time of a parallel job, J j ,

assuming a static allocation of p processors. The speedup and efficiency can be derived

as:
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Speedup : S j(p) =
T j(1)

T j(p)

Efficiency : E j(p) =
S j(p)

p

Speedup can be viewed as the benefit obtained from using some number of

processors for the parallel execution of a job and the efficiency can be seen as the cost of

using those processors. Due to the execution on multiple processors, threads of an

application must communicate in order to synchronize and exchange information. The

costs of communication and synchronization will increase as the number of processors in

use increases and may eventually outweigh the decrease in execution time (benefit).

Eager, et al. use an execution time - efficiency profile to illustrate the cost benefit tradeoff

[6]. Figure 2.2 contains an example of such a profile. The vertical axis represents the

execution time of a parallel job using different numbers of processors while the

horizontal axis represents its efficiency. The knee of the profile is the point at which the

ratio of efficiency to execution time E(p)/T (p) is maximized. That is, the point at which

highest possible benefit is attained at the lowest cost.

0

8

16

24

32

40

48

56

64

72

80

0.2 0.30.1 0.4 0.5 0.6 0.7 0.8 0.9 1

execution

time

efficiency

p=2

p=1

p=3

knee

p=4

Figure 2.2: An execution time - efficiency profile



8

In our study, for applications whose parallelism profiles have only one phase, we

assume that all applications execute with perfect efficiency. For applications whose

parallelism profiles have multiple phases, we assume that they execute with perfect

efficiency in each individual phase.

2.3.3. Work to Be Executed

The work to be executed by a job is defined to be the amount of basic computation

performed by the job if it uses one processor. A number of allocation policies have been

proposed to schedule jobs according to the increasing order of the amount of work.

Majumdar, et al. propose and evaluate scheduling algorithms based on the total work and

number of tasks in a parallel job [19]. They hav e proposed policies called Smallest

Number of Processes First (SNPF) and Smallest Cumulative Demand First (SCDF) as

well as preemptive version of these algorithms. Research by Sevcik proves that when

there are no new arrivals and jobs execute with perfect efficiency, Least Work First (LWF)

is optimal [24]. It has also been shown, if jobs execute with perfect efficiency, that Least

Remaining Work First (LRWF) yields optimal mean response time when there are new

arrivals and preemption is allowed during a job’s execution [24][2]. Optimality of these

policies does not hold when applications do not execute with perfect efficiency.

Studies have also proposed possible ways to obtain information about the work,

efficiency and maximum number of processors a job can use. The study by Brecht has

provided three possible ways to estimate expected remaining work [2]. It might be

obtained from user supplied estimates, from past execution logs or by cooperating with

the run-time system. We believe that in general purpose systems it is impractical to

obtain an accurate estimate about job execution time. Therefore, in our research we

assume that the scheduler has no information about job execution time at the time of

scheduling.

2.4. Competitive Analysis

The competitive analysis of algorithms is a measurement of performance for

algorithms operating with incomplete information, first introduced by Sleator and Tarjan

[27] in the study of a system memory management problem. Applying competitive

analysis to the study of scheduling algorithms, the competitive ratio of a scheduling

algorithm refers to the worst case ratio of the outcome of a policy on a job set to the

optimal outcome on the same job set over all possible job sets [21]. We denote the value

of the objective function for a scheduling algorithm A on a job set, JS, with M A(JS), and

denote the value of the objective function for the optimal algorithm which has complete
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information about this job set with Opt(JS). The competitive ratio, RA, for algorithm A

is defined as maxall JS



M A(JS)

Opt(JS)



.

RA has a lower bound f (n) if RA ≥ f (n). This implies that the objective function

for policy A can not be smaller than f (n) ⋅ Opt(JS). RA has an upper bound g(n) if

RA ≤ g(n), which implies that, in the worst case, the competitive ratio of policy A can not

be greater than g(n). The algorithm A is said to be g(n) − competitive if its upper bound

is g(n) [21]. The algorithm is said to be competitive if there exists a constant k for which

it is k − competitive [21]. Knowing the competitive ratio of a scheduling policy is

indicative of the utility of such a policy.

However, competitive analysis has limitations. The competitive ratio does not

distinguish the performance of one policy from another if the objective is minimizing

makespan. We will show that any policy that does not leave idle processors will be

2 − competitive. If the objective is minimizing mean response time, no policy can have a

smaller lower bound than N 1/3 when there are new arriving jobs (N is the total number of

jobs in the system) [21].

2.5. Dynamic Equipartition Policy

Our analysis concentrates on one particular scheduling policy called Dynamic

Equipartition (DEQ), which is reported to yield good mean response time in a number of

environments [16][3] and is considered to possess the desired properties of a good

scheduler [16][15]. The Equipartition (EQ) policy was first introduced to parallel job

scheduling by Tucker and Gupta as a process control policy, which limits the total

number of processes in the system to be equal to the number of processors and space-

shares processors among applications [28]. The main idea behind this approach is to

allocate an equal fraction of the processing power to each application if they hav e enough

parallelism and to reallocate processors upon job arrivals and departures. Zahorjan and

McCann propose a dynamic equipartition (DEQ) policy, which improves the equipartition

(EQ) policy by dynamically adjusting processor allocations with changes in job

parallelism [33]. It differs from the equipartition policy in that processor reallocations

can occur during job execution rather than just at job arrivals and departures. Assume

that all jobs execute with perfect efficiency and that all jobs arrive at the system

simultaneously. When the scheduler does not know the job execution time, DEQ

guarantees that the job with the least amount of work will finish execution first, by

allocating an equal fraction of processing power to each job.
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Assume that there are N jobs in a system of P processors. We denote the

parallelism of each job, Ji, with Pi. Let pi represent the actual number of processors

allocated to each job. DEQ is defined as follows: the initial allocation to all jobs is set to

zero. Increment the number of processors allocated to each job by one. Any job whose

allocation has reached its parallelism drops out. This process continues until either all P

processors have been allocated or there are no remaining jobs. In this way the

equipartition value is recursively recomputed. As a result, if Pi is less than the

equipartition value p, Ji is allocated Pi processors, otherwise, the number of processors

allocated to Ji is equal to p.

We shall show that the competitive ratio of DEQ is very close to that of the optimal

policy in terms of minimizing makespan as well as minimizing the mean response time.

2.6. Summary

In this chapter we have outlined the relevant research in literature. Studies in small-

scale shared-memory multiprocessor systems have shown that space-sharing is preferable

to time-sharing. Simulation and experimental results have demonstrated that dynamic

scheduling is preferable to static scheduling in both UMA and NUMA systems. Our

analysis will be focused on a simple dynamic space-sharing policy called Dynamic

Equipartition (DEQ), which has been stated to possess desirable properties of a good

scheduling algorithm [16][15]. DEQ requires only information of the number of jobs in

the system and the current parallelism of applications.

Recent studies have shown that making use of certain application characteristics

such as the amount of work that a job needs to execute will improve the mean response

time. However, we believe that the scheduler is not likely to know job arrival and

execution time a priori. Competitive analysis is an approach to studying algorithms that

operate in environments in which full information about the jobs being executed is not

available at the time of scheduling. By comparing the competitive ratio of different

policies we can gain a better understanding of the utility of these policies.



Chapter 3

The Job, Workload and System Models

A number of studies have used application parallelism and execution time to

characterize parallel jobs [29][30][31][17]. In studies by Turek, et al. [29][30][31][17]

each parallel job can be allocated an arbitrary number of processors and the job execution

time is a known function of the number of processors allocated to it. We use a similar job

model in our analysis but our study is conducted in a dynamic environment in which

processors may be reallocated among jobs during execution.

3.1. Job Model

We define the total number of jobs in the system to be N . We characterize a job, Ji,

with (Pi, li), where 1 ≤ i ≤ N . Pi is the instantaneous parallelism of the job, which

denotes the number of processors a job is capable of using in its execution. Pi may vary

with time. Let pi be the number of processors actually allocated to each job Ji. The

parameter li represents the execution time of Ji if pi is always equal to Pi. Note that li is

a theoretic bound on the job execution time. We define Pi li to be the amount of work

that Ji executes, which is denoted by Wi. Note that Wi is fixed.

A job can be allocated any number of processors that is no greater than its

parallelism (i.e., pi ≤ Pi). If a job may is allocated fewer processors than Pi its execution

time will be lengthened proportionally. This implies that the actual execution time of Ji

is at least li.

3.2. Workload Model

We study the problem of minimizing the makespan by first assuming that all jobs

arrive at the system simultaneously. This assumption will be relaxed at a later point. In

order to distinguish different work-conserving policies, we consider the case where some

jobs may execute infinitely because of some error conditions inside the program which

lead to an infinite loop.

11
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For the problem of minimizing mean response time, we assume that there are no

new job arrivals. We do not consider new arrivals because it has been proven that the

lower bound on the competitive ratio for any policy that does not know job execution

time is N 1/3.

3.3. System Model

We assume that the system consists of P identical processors and that all jobs arrive

at a central job queue. No processors are idle if the job queue contains one or more jobs.

At the time of scheduling the scheduler has no information about a job’s execution time

or the variation of parallelism. That is, at any point in time the scheduler knows only the

instantaneous parallelism of the jobs in the system and the number of jobs and processors

in the system.

Processors may be preempted from one job and reallocated to another during their

execution and we assume that the scheduling overhead and the preemption costs are

negligible.

3.4. Summary

In this chapter we have described the job, workload and system models upon which

our analysis is based. In the following chapters we utilize the models and assumptions

described in this chapter to examine the problems of minimizing the makespan and the

mean response time for parallel job scheduling. To summarize, the following

assumptions will be used throughout this thesis:

Assumption 3.1: During each phase of the parallelism profile, jobs execute with

perfect efficiency.

Assumption 3.2: Each job can be executed on any number of processors that is no

more than its parallelism (i.e., pi ≤ Pi).

Assumption 3.3: The scheduling and preemption overheads are negligible.

Assumption 3.4: The scheduler has no a priori information about job arrival

times.

Assumption 3.5: The scheduler has no a priori information about job execution

times.

Assumption 3.6: The scheduler has no a priori information about a job’s variation

in parallelism.



Chapter 4

Minimizing the Makespan

In this chapter we use competitive analysis to study dynamic processor allocation

policies for parallel jobs whose execution time is not known to the scheduler a priori.

The objective in this chapter is to minimize the makespan. We assume that the

preemption and reallocation of processors can take place during the execution of a job as

well as at the arrival and departure of jobs and that the preemption cost is negligible. We

begin by considering jobs with only one phase of parallelism (i.e., the parallelism does

not change during execution) and devise an optimal competitive scheduling policy for

scheduling two parallel jobs on P processors. We then derive upper and lower bounds for

scheduling N parallel jobs on P processors.

In this chapter, the competitive ratio of a scheduling algorithm refers to the worst

case ratio of the makespan of a policy (without full information about applications) to the

optimal makespan when the scheduler has complete information about the incoming jobs.

That is, if M A(JS) denotes the makespan for a scheduling algorithm A on job set, JS, and

Opt(JS) denotes the makespan for the optimal algorithm which has complete information

about the jobs, the competitive ratio of algorithm A is defined as maxall JS



M A(JS)

Opt(JS)



.

The goal is to find an algorithm which leads to the minimum competitive ratio.

In Section 4.1 we obtain the minimum makespan Opt(JS) for scheduling jobs on P

processors, assuming that complete information about job execution time is known to the

scheduler. In Section 4.2 we use competitive analysis to devise a policy, OptComp,

which yields the optimal competitive ratio for scheduling two parallel jobs when job

execution time is not known to the scheduler at the time of scheduling. Note that the

parallelism of these two jobs does not change during execution. As well, we compare the

OptComp policy with DEQ. In Section 4.3 we study the problem of scheduling N

parallel jobs by combing a generalization of our analysis in Section 4.2 and the results for

scheduling sequential jobs on multiprocessors by Graham [10], Hall and Shmoys [13]

and Shmoys, et al.[25]. We prove that for scheduling N single-phased parallel jobs on P

processors the upper and lower bounds are 2 −
1

P
. We then consider the cases where the

13
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parallelism profiles contain multiple phases and the case where there are new jobs

arriving. We prove that the competitive ratio for scheduling N parallel jobs with multiple

phased parallelism profile is also 2 −
1

P
. As well, we prove that the competitive ratio for

scheduling N parallel jobs (with single or multiple phased parallelism profiles) with new

arrivals is also 2 −
1

P
. In Section 4.4 we consider the case where there are K jobs

(1 ≤ K < N ) that may execute infinitely because of some error conditions within the

application that lead to an infinite loop. In Section 4.5 we give a brief summary of this

chapter.

4.1. Optimal Scheduling with Complete Information

In order to simplify the analysis, we first add the following restrictions which will be

relaxed later in this chapter.

Assumption 4.1: All jobs have single-phased parallelism profiles.

Assumption 4.2: All jobs arrive at the system simultaneously.

Observe that the fewer idle processors a scheduler leaves, the lower the makespan.

Therefore, a scheduling policy that minimizes makespan will not leave processors idle if

there exists a job in the system capable of using it. (Such a policy is also called a work-

conserving policy in literature [6].) For example, consider scheduling two jobs. Assume

that both jobs arrive simultaneously and that a scheduler, A, activates two jobs

consecutively. Figure 4.1 shows that the makespan for scheduler A is l1 + l2. The

number of processors allocated to J1 and J2 are denoted by p1 and p2 respectively. Since

both P1 and P2 are less than P, the allocations to J1 and J2 are equal to their parallelism

(i.e., p1 = P1 and p2 = P2). As a result, when job Ji, whose parallelism is Pi, is

executing, P − Pi processors are idle.
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J2

J1

P

p1(= P1)

p2(= P2)

0
l1 + l2

t

number of processors

p

l2

idle

Figure 4.1: Activating two jobs one by one

Suppose that there is another scheduler B, which allocates P − P2 processors to J1

from time zero to l2 instead of leaving those P − P2 processors idle. J1 will execute

(P − P2)l2 units of work in this period of time. As a result, the makespan for scheduler B

is less than l1 + l2. In Figure 4.2 P − P2 processors are allocated to J1 from time zero to

l2. Therefore, when J2 finishes execution at time l2, the remaining amount of work that

J1 needs to execute is P1l1 − (P − P2)l2, which can be completed on P1 processors.

Hence the makespan for scheduler B is much less than the makespan for scheduler A.

J2

P

p1(= P1)

p2(= P2)

0 t

p
number of processors

l2

J1

idle

t1

Figure 4.2: Activating two jobs at the same time

If we call the regions marked idle in Figure 4.1 and Figure 4.2 holes, this example
illustrates that the smaller the holes are, the lower the makespan produced by the
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scheduler. This is also true for N jobs. Therefore, our objective in this chapter is to
reduce the number of unnecessarily idle processors.

In order to carry out the competitive analysis, we first need to obtain the optimal

makespan, Opt(JS), when the scheduler has the information about the parallelism and the

execution time of all incoming jobs. We start by considering the case where the job

parallelism does not change during execution. Assume that P1 is the parallelism of job

J1, and P2 is the parallelism of job J2. Let l1 represent the time J1 needs to complete its

execution if it is allocated P1 processors. Similarly l2 is the time required for J2 to

execute if allocated P2 processors. There are P processors in the system. The total

amount of work to be executed by J1 and J2 can be denoted by W1 + W2 which is equal to

P1l1 + P2l2. Let pi be the number of processors that are actually allocated to Ji.

Theorem 4.1 : The optimal makespan for scheduling two parallel jobs on P processors is

Opt(JS) = max 

l1, l2,

W1 + W2

P



= max 

l1, l2,

P1l1 + P2l2

P


.

Proof : Processor allocation is trivial when P1 + P2 ≤ P : allocate Pi processors to Ji.

The theorem holds in this case. Therefore, we only need to prove the theorem when

P1 + P2 > P. Without loss of generality we assume that P1 ≥ P2. We consider three

possible relations among P1, P2 and P: (1) P > P1 ≥ P2, (2) P1 ≥ P > P2 and (3)

P1 ≥ P2 ≥ P. Note that there are two extremes for initial allocations:

Least Parallelism First (LPF)

Allocate min(P, P2) processors to J2 and allocate the remaining processors to J1.

When one job finishes execution, allocate min(P, Pi) processors to the remaining

job (Pi is the parallelism of the job still executing).

Most Parallelism First (MPF)

Allocate min(P, P1) processors to J1 and allocate the remaining processors to J2.

When one job finishes execution, allocate min(P, Pi) processors to the remaining

job (Pi is the parallelism of the job still executing).

LPF and MPF deal with two extreme situations and therefore, the initial allocation of

processors using any other policy will lie between these two extremes. For a special case

where l1 = l2, the following policy will not leave any processors idle before both of the

jobs have finished execution.
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Dynamic Proportional Partition (DPP)

The number of processors allocated to each job is proportional to the job

parallelism. That is, allocate
P1P

P1 + P2
processors to J1, and allocate

P2P

P1 + P2

processors to J2. After one job has finished execution, allocate min(P, Pi)

processors to the remaining job.

We now prove that the theorem holds.

(1) P > P1 ≥ P2

Obviously, neither J1 nor J2 can use all P processors. The processor allocation

varies with the relation between l1 and l2. There are three possible relations between

l1 and l2.

(1a) l1 = l2

Since P1 + P2 > P, the processors allocated to at least one of the jobs will be

less than its parallelism. DPP yields the optimal makespan, since it keeps all

processors busy and both jobs finish execution at the same time. The makespan

for DPP is
P1l1 + P2l2

P
.

(1b) l1 < l2

In order to reduce the number of idle processors during the execution of both

jobs, the initial allocation of J2 should be P2 and therefore, J1 should be

P − P2. In other words, the processors should be initially allocated according

to LPF until the jobs reach a point at which the remaining execution time of

both jobs are the same. Once they reach that point, the remainder of the

execution is identical to case (1a). Therefore, at that point the processors

should be allocated according to DPP so that both jobs finish simultaneously.

The completion time is
P1l1 + P2l2

P
if there is w ork remained after using LPF.

Otherwise, J1 will finish execution before J2 and the makespan will be l2.

(1c) l1 > l2

This case is symmetric to (1b). The initial allocation of processors is done

according to MPF. When the remaining execution time of both jobs is equal,

the processors should be reallocated according to DPP.

(2) P1 ≥ P > P2

In this case LPF yields the optimal makespan regardless of the values of l1 and l2

because LPF keeps all processors busy until both jobs have finished execution.
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Therefore, the makespan is
P1l1 + P2l2

P
.

(3) P1 ≥ P2 ≥ P

In this case any work-conserving policy yields the optimal makespan since either J1

or J2 by itself can utilize all P processors. In other words, there are no idle

processors until both jobs have finished execution. The makespan is
P1l1 + P2l2

P
.

The above analysis shows that max 

l1, l2,

P1l1 + P2l2

P



is an upper bound on the

makespan. It is not difficult to see that max 

l1, l2,

P1l1 + P2l2

P



is also a lower bound on

the makespan. Therefore, the optimal makespan for scheduling two jobs is

max 

l1, l2,

P1l1 + P2l2

P


.

Theorem 4.2 : The optimal makespan for scheduling N parallel jobs on P processors is

Opt(JS) = max







l1, l2, . . . lN ,

N

i=1
Σ Pili

P







.

Proof : When
N

i=1
Σ Pi ≤ P, the number of processors allocated to each job is equal to its

parallelism and therefore each of the job will finish execution within li units of time. The

makespan in this case is max(l1, l2, . . . , lN ). (Notice that in this case
N

i=1
Σ Pi li

P
≤ max(l1, l2, . . . , lN ) because not all P processors can be busy throughout

max(l1, l2, . . . , lN ) units of time.)

When
N

i=1
Σ Pi > P, the total amount of work to execute of all N jobs is

N

i=1
Σ Pi li. Note

that the optimal policy will keep all processors busy, provided that there is work to

execute. Therefore, the time required to complete
N

i=1
Σ Pi li units of work is at least

N

i=1
Σ Pi li

P
. That is, the optimal makespan, Opt(JS), is at least

N

i=1
Σ Pi li

P
. Note that in this
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case the allocation to Ji cannot be equal to its parallelism and therefore its execution time

must be more than li, which implies that

N

i=1
Σ Pi li

P
> max(l1, l2, . . . , lN ).

Therefore, the optimal makespan for scheduling N parallel jobs on P processors is

Opt(JS) ≥ max







l1, l2, . . . lN ,

N

i=1
Σ Pili

P







.

Now we prove that Opt(JS) ≤ max







l1, l2, . . . lN ,

N

i=1
Σ Pili

P







. We combine the previous

analysis in this section with the optimal algorithm for scheduling sequential jobs on

multiprocessors by Shmoys, et al. [25] to construct the following optimal algorithm for

scheduling N parallel jobs on P processors. Without loss of generality we assume that

l1 ≤ l2 ≤ . . . ≤ lN . First, we allocate processors to jobs according to the following

recursive rules:

(a) (Base case): l1 = l2 = . . . = lN . Allocate processors to jobs in proportion to

their parallelism.

(b)
(Recursive case): lm < lm+1 = lm+2 = . . . = lN . If

N

i=m+1
Σ Pi < P, allocate Pi

processors to Ji, where m + 1 ≤ i ≤ N . Then recursively allocate the remaining

P −
N

i=m+1
Σ Pi processors to the remaining jobs. Otherwise, allocate

Pi P
N

i=m+1
Σ Pi

to

Ji, m + 1 ≤ i ≤ N .

This process continues until one of the following cases occurs:

(a) All applications have finished execution.

(b) One job finishes execution, after which the processors are reallocated according

to the above rules.

(c) Some job Ji reaches a point at which its remaining execution time becomes

equal to that of one or more other jobs (which were not previously the same as

Ji). We then reallocate the processors using the above recursive rules.

This algorithm for scheduling N jobs guarantees that
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Opt(JS) ≤ max







l1, l2, . . . lN ,

N

i=1
Σ Pili

P







. Therefore, the theorem holds.

4.2. Optimal Competitive Scheduling for Two Jobs on P Processors

In the previous section, we have derived the optimal makespan, Opt(JS), for the

problem of scheduling two as well as N parallel jobs when the scheduler has a priori

information about job execution times. In this section we devise an optimal competitive

policy, OptComp, for scheduling two parallel jobs when the scheduler does not know job

execution times at the time of scheduling. Note that OptComp is optimal in the sense that

it yields the best possible competitive ratio in the worst case over all possible job sets.

Without loss of generality we assume that P1 ≥ P2. We first examine LPF and MPF

policies for the number of idle processors in the worst case. The worst case of MPF

occurs when J1 finishes execution before J2 does. After this point, P − P2 processors

will be idle. Similarly, the worst case of LPF is when J2 finishes execution first, after

which P − P1 processors will be idle. Since there are more idle processors in the worst

case using MPF than using LPF, the competitive ratio for MPF is larger than that of LPF.

Therefore, if we consider the number of processors allocated to J1 (or J2) to be a

continuum with the allocations of MPF and LPF being the two extremes, the policy that

yields the minimum competitive ratio will be closer to the LPF end than to MPF end.

DPP can be viewed as a combination of LPF and MPF. Its worst case occurs when

J1 finishes execution first since there will be more idle processors than the case when J2

finishes first. The policy with the optimal competitive ratio will be a combination of LPF

and DPP in the form of α LPF + (1 − α )DPP. Let p1 be the actual number of processors

allocated to J1 and p2 be the actual number of processors allocated to J2. Then

p1 = α (P − P2) + (1 − α )
P1P

P1 + P2
and p2 = α P2 + (1 − α )

P2P

P1 + P2
. The policy that

yields the minimum competitive ratio should yield the same competitive ratio no matter

which job finishes execution first. We can thus determine α and the optimal policy

accordingly.

Define Mα (JS) as the makespan of the combined policy, Policy(α ), with parameter

α on a job set JS. Its competitive ratio is maxJS
Mα (JS)

Opt(JS)
. If J1 finishes first using

Policy(α ), the optimal allocation policy will be LPF. Therefore, Opt(JS) = l2. As well,

l1 and l2 satisfy the following relation: l2 =
P1l1

P − P2
. In this case we denote the
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competitive ratio with R1(P1, P2, α ), 0 ≤ α ≤ 1. Similarly, Opt(JS) = l1 if J2 finishes

first, where l1 =
P2l2

P − P1
. We denote the competiti ve ratio in this case with

R2(P1, P2, α ), 0 ≤ α ≤ 1. When R1(P1, P2, α ) = R2(P1, P2, α ), we can obtain a function

of α (P1, P2) which yields the smallest competitive ratio.

<- the proper α

J2 finishes first->

J1 finishes first->

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 0.2 0.4 0.6 0.8 1α

Figure 4.3: Proper α when P1 = 0. 75P and P2 = 0. 6P.

We hav e shown in the previous section that the allocation is simple when either P1

or P2 is greater than P. Therefore, we only consider the case where P1 ≤ P, P2 ≤ P and

P1 + P2 > P. Note that both P1 and P2 can be represented in terms of P. We let

P1 = mP, and P2 = nP, 0 ≤ m ≤ 1 and 0 ≤ n ≤ 1. Then R1 and R2 can be represented as

functions of m, n and α . By setting R1 = R2, we obtain the proper α which is represented

in terms of m and n, α (m, n), and thus obtain the minimum competitive ratio. (The

solution is presented in the Appendix.) Figure 4.3 illustrates how a proper α value is

selected when m = 0. 75 and n = 0. 6. The two curves in Figure 4.3 are R1 and R2

respectively. The proper value of α corresponds to the point at which R1 intersects with

R2. In this case, α is approximately 0.2.

We substitute the term α in R1 for the proper α (m, n) and obtain R1 in terms of m

and n. Figure 4.4 illustrates the competitive ratio of this optimal competitive policy, R1

(note that R1 = R2), as a function of m and n. Observe that in Figure 4.4 m ranges from
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0. 5 to 1. The reason is that in order to satisfy both P1 + P2 > P and P ≥ P1 ≥ P2, P1

must be larger than
P

2
. That is, m ≥ 0. 5.

0.6

competitive ratio

0.70.80.91

m

00.20.40.60.81 n

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Figure 4.4: Competitive ratio of the optimal policy

We can also observe that, across all possible m and n where 0 ≤ m, n ≤ 1, R1 reaches the

maximum of 4 − 2√2 (approximately 1.175729) when m = n =
√2

2
. This means that, in

the worst case, the makespan for Policy (α ) is within a constant of 1. 175729 times the

optimal (i.e., the competitive ratio of Policy(α ) is 1. 175729). As well, in the process of

deriving this policy we hav e shown that 1. 175729 is the best possible competitive ratio

among all possible policies. That is, Policy(α ) has the optimal competitive ratio.

Therefore, we call it OptComp. Note that OptComp is different from Opt(JS). Opt(JS)

refers to the policy which has the optimal makespan when it has information about the

execution time of the jobs being executed, while OptComp refers to the policy which has

the optimal competitive ratio when it does not know the job execution time at the time of

scheduling.

Now we compare OptComp with the dynamic equipartition (DEQ) policy. The

purpose of this comparison is to find out the difference between DEQ and OptComp for

scheduling two parallel jobs when the job execution time is not known to the scheduler a

priori. We find that the competitive ratio for DEQ is the same as that for OptComp. This

indicates that DEQ produces the best possible competitive ratio for scheduling two jobs.
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4.3. Scheduling N Jobs on P Processors

In Section 4.2 we have devised an optimal competitive policy for scheduling two

parallel jobs on P processors when the job execution time is not known to the scheduler a

priori. In this section, we study the problem of scheduling N jobs on P processors in the

same environment.

4.3.1. Scheduling N Jobs with Single-phased Parallelism Profiles

Let Pi denote the parallelism of Ji and let li denote the time it takes to complete

execution if it is allocated Pi processors. We first assume that all N jobs arrive

simultaneously, and there are no new arrivals. These assumptions will be relaxed later.

We also assume that
N

i=1
Σ Pi > P. (It would be trivial to schedule N jobs if

N

i=1
Σ Pi ≤ P.)

According to Theorem 4.2 the optimal makespan is:

Opt (JS ) = max







l1,l2,
. . . , lN ,

N

i=1
Σ Pili

P







Note that we still have the restrictions that all jobs arrive at the system simultaneously

and all jobs have single-phased parallelism profiles. According to the results for

sequential job scheduling on multiprocessors by Graham [10], Hall and Shmoys [13] and

Shmoys, et al.[25] we have the following theorem.

Theorem 4.3 : The competitive ratio of any work-conserving policy for scheduling N

jobs with single-phased parallelism profiles is 2 −
1

P
.

Proof : Suppose that all jobs arrive at the system at time t0. For any work-conserving

algorithm A there will be a point in time t* at which the sum of the parallelism of the

remaining jobs in the system is less than P for the first time. Assume that the last job

finishes execution at time tN . The execution of these N jobs can be divided into two

phases. The first phase is from time t0 to t*, which is the unshadowed region shown in

Figure 4.5. Assume that the length of this period is τ . The second phase is from time t*

to tN , which is the shadowed region in Figure 4.5. Suppose that the length of this time

span is τ ′. Therefore, the makespan (for any work-conserving algorithm), M A(JS) is

τ + τ ′. Let Wi = Pili and let the W ′
i be the amount of work executed by Ji at time t*.

Then W ′
i is no more than Wi, 1 ≤ i ≤ N . Therefore, we have:
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Figure 4.5: The execution of jobs is divided into τ and τ ′

τ =

N

i=1
Σ W ′

i

P
≤

N

i=1
Σ Pili

P
.

After time t*, the number of processors allocated to each remaining job will be equal to

its parallelism, since
N

i=0
Σ Pi ≤ P. Denote the remaining execution time of each jobs after

t* with ri

τ ′ = max(r1, r2, . . . , rN ) ≤ max(l1, l2, . . . , lN )

Therefore,

M A(JS) = τ + τ ′ =

N

i=1
Σ W ′

i

P
+ max(r1, r2, . . . , rN ) ≤

N

i=1
Σ Wi

P
+ max(l1, l2, . . . , lN )

Let L = max(r1, r2, . . . , rN ). Note that Opt(JS) ≥

N

i=1
Σ Pi li

P
and

N

i=1
Σ Pili ≥ L +

N

i=1
Σ W ′

i. We

have the following relation:

Opt(JS) ≥ y
L +

N

i=1
Σ W ′

i

P
+ xL, where x + y = 1.

≥ y

N

i=1
Σ W ′

i

P
+ (x +

y

P
)L

Since τ + τ ′ =

N

i=1
Σ W ′

i

P
+ L, we let y =

1

2 −
1

P

so that we can simplify the expression of
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M A(JS)

Opt(JS)
. Therefore, we have an upper bound on the competitive ratio :

M A(JS)

Opt(JS)
=

τ + τ ′

Opt(JS)
≤

L +

N

i=1
Σ W ′

i

P

y







L +

N

i=1
Σ W ′

i

P







= 2 −
1

P
.

Therefore, an upper bound on the competitive ratio for scheduling N jobs on P

processors is 2 −
1

P
.

Shmoys, et al. [25] prove that a lower bound on competitive ratio for scheduling N

sequential jobs on multiprocessors is 2 −
1

P
. Since scheduling sequential jobs on

multiprocessors can be viewed as scheduling parallel jobs all of which have parallelism

of one, a lower bound on competitive ratio for scheduling N jobs on P processors is also

2 −
1

P
. Since both the upper and lower bounds are 2 −

1

P
, the competiti ve ratio for

scheduling N parallel jobs on P processors is 2 −
1

P
. Therefore, we pro ve that the

competitive ratio of any work-conserving policy for scheduling N parallel jobs on P

processors is 2 −
1

P
.

4.3.2. Scheduling N Jobs with Multiple Phases of Parallelism

We hav e studied the problem of scheduling N parallel jobs, whose parallelism does

not change during execution. In this section, we relax Assumption 4.1 and consider jobs

that execute with multiple phases of parallelism. The analysis here is similar to that used

to prove the upper bound on the competitive ratio for scheduling parallel jobs in Section

4.3.1.

Without loss of generality let Ji be the last completed job. We can divide the total

execution time into two phases: phase 1 is when the number of processors allocated to Ji

is equal to Pi. We denote the length of this time period with τ . Phase 2 occurs when the

number of processors allocated to Ji is less than Pi. We denote the length of this time

period with τ ′. If we let the total amount of work executed by both jobs during τ be W ′,

the makespan is
W ′

P
+ τ ′. From this we obtain the same competitive ratio 


2 −

1

P



as in

the previous subsection.
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4.3.3. Scheduling with New Arrivals

Note that so far we assume that all jobs arrive at the system simultaneously. We now

relax Assumption 4.2 and assume that there are new arriving jobs and the scheduler does

not have any a priori information about the job arrival times. Shmoys, et al. prove that

the competitive ratio of scheduling sequential jobs on multiprocessors with new arrivals is

2 −
1

P
[25]. Let Ji be the last job to finish execution. Again, in our analysis, we divide

the total execution time into two phases: phase 1 occurs while the number of processors

assigned to Ji is equal to Pi. Phase 2 takes place while the number of processors

assigned to Ji is less than Pi. Combining the above analysis with the result by Shmoys,

et al. [25], we obtain the same competitive ratio 

2 −

1

P



for scheduling parallel jobs on

multiprocessors with new arrivals.

4.4. Scheduling with Erroneous Infinite Jobs

We hav e shown, in the previous section, that any work-conserving policy is



2 −

1

P



− competitive. That is, the competitive ratio does not distinguish one work-

conserving policy from another in minimizing the makespan. Therefore, we introduce

the factor of robustness in order to make a distinction. Notice that the previous result is

based on the assumption that all the jobs will finish execution within a finite time period.

However, it is possible that a job exists that may execute infinitely because of an error

condition in the program.

In this section we show that DEQ is robust in the sense that it is

(K + 1) − competitive in the presence of K infinitely executing jobs while other work-

conserving policy such as dynamic proportional policy may have a much larger

competitive ratio. A finite job here refers to the job that will finish execution within a

finite number of time units. Note that the makespan in this chapter refers to the time

which elapses from the arrival of the first job to the departure of the last finite job in a job

set. Let M A(JS) be the completion time of the last finished finite job for the allocation

algorithm A. Let Opt(JS) denote the optimal completion time when the scheduler has

complete information about all jobs. (Note that the optimal scheduler will not execute

any infinite job.) The competitive ratio is then defined as maxall JS
M A(JS)

Opt(JS)
.
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4.4.1. All Jobs Arrive at the System Simultaneously

Assume that there are K infinite jobs in the system. The scheduler does not have

any information to distinguish infinite jobs from finite jobs.

Theorem 4.4 : If there are no new arrivals, a lower bound on the competitive ratio of any

scheduling policy when there are K infinite jobs in the system is K + 1.

Proof : Since we need to prove a lower bound, we assume that all of the jobs have

parallelism P. Note that this can be viewed as scheduling N sequential jobs on a

uniprocessor system because each individual job can make use of all processors in the

system. Let N = K + 1 and assume that there is only one finite job which finishes

execution after t units of time. Let M A(JS) represent the makespan of a scheduler when

there is no information available about which K jobs are infinite and let Opt(JS)

represent the optimal makespan when the scheduler can distinguish the K infinite job.

The makespan M A(JS) for any scheduling algorithm is at least (K + 1)t. Therefore, the

competitive ratio RA is

RA =
M A(JS)

Opt(JS)

≥
(K + 1)t

t
= K + 1.

In the following section, we prove that an upper bound on the competitive ratio for

the dynamic equipartition (DEQ) policy is also K + 1.

Theorem 4.5 : If there are no new arrivals, DEQ has an upper bound of K + 1 on its

competitive ratio. (K denotes the number of infinite jobs in the system).

Proof : Let Ji be the finite job that finishes execution last. Denote its parallelism with Pi

and denote its completion time with Ti. Since li is its execution time when it is allocated

Pi processors, obviously Ti ≥ li. Ti is equivalent to the sum of two parts: Tequi + T para,

where Tequi represents the period of time during which the number of processors allocated

to Ji is equal to the equipartition value p and T para represents the time span that the

number of processors allocated to Ji is equal to Pi. We also divide li into two parts: lequi

and l para, where l para = T para, and lequi is the time required for Ji to execute p Tequi units

of work if Ji is allocated Pi processors. There are two possibilities:

(a) T para = 0.

In this case the number of processors allocated to Ji is equal to the equipartition

value p. Because there is at least one finite job the number of processors allocated

to finite jobs at any point in time is at least
P

K + 1
. Therefore, the completion time
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of Ji is at most

N

j=1
Σ P j l j

P

K + 1

. Note that Opt(JS) =

N

j=1
Σ P j l j

P
in this case. Therefore, the

competitive ratio RDEQ =
Ti

Opt(JS)
≤ K + 1 .

(b) T para ≠ 0.

In this case the number of processors allocated to Ji is first equal to p (which

may change after reallocation) and then increased to Pi after another finite job

finishes execution. The execution time of Ji is equal to Tequi + T para. During time

Tequi, no infinite job is allocated more processors than Ji (according to the DEQ

policy). The amount of work Ji has executed is p Tequi. Therefore, the amount of

work infinite jobs execute during that time is no more than K ⋅ (pTequi). Let W finite

denote the total amount of work executed by finite jobs. Then the total amount of

work executed (including the work infinite jobs have executed) is no more than

K ⋅ (pTequi) + W finite, which is equal to K ⋅ (Pilequi) + W finite. Therefore, the

following relation holds:

Ti = T para + Tequi ≤ l para +
K ⋅ (Pi lequi) + W finite

P

Note that Opt(JS) satisfies the following two relations: Opt(JS) ≥ l para + lequi, and

Opt(JS) ≥
W finite

P
. Therefore, Ti is no more than (K + 1) ⋅ Opt(JS). That is, an

upper bound on the competitive ratio for DEQ is K + 1.

We hav e shown that an upper bound on the competitive ratio of DEQ is the same as

the lower bound for any work-conserving policy. It implies that DEQ produces the best

possible competitive ratio in this situation. We now show that the competitive ratio for

Dynamic Proportional Partition (DPP) policy may be much larger than the upper bound

for DEQ. That is, we can find at least one case that the competitive ratio for DPP is

larger than K + 1 (K is the number of infinite jobs).

Suppose that N = K + 1 (K jobs are erroneous). All of the K erroneous jobs have

the same parallelism of xP (x > 0). The finite job has a parallelism of P. The optimal

scheduling policy is to allocate all P processors to the finite job, Ji, until it finishes

execution. The optimal makespan, Opt(JS), is therefore, li. Howev er, DPP will allocate
P ⋅ P

K xP + P
processors to the finite job and allocate

(xP) ⋅ P

K Px + P
processors to each of the

erroneous jobs. As a result, the finite job takes (Kx + 1) li units of time to execute. The
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competitive ratio is then Kx + 1, which can be much larger than that of DEQ. Since x is

chosen arbitrarily, dynamic proportional partition does not guarantee a fixed competitive

ratio.

4.4.2. Scheduling Infinite Jobs and with New Arrivals

In this section we relax Assumption 4.2. We show that the upper and lower bounds

obtained in Section 4.4.1 hold when there are new arrivals. We assume that there are K

infinite jobs in the system. The scheduler is unable to distinguish infinite jobs from finite

jobs.

Theorem 4.6 : In a multiprocessor system with new arrivals and K infinite jobs, DEQ is

(K + 1) − competitive.

Proof : Note that we are trying to obtain an upper bound on DEQ and that makespan only

considers the completion time of the last finite job. Suppose that Ji is the last finite job to

finish execution according to the DEQ policy. Let the arrival time of Ji be t0. Again, we

divide the execution of Ji into two parts: (a) T para, which is the period of time that the

number of processors allocated to Ji is equal to Pi and (b) Tequi, which is the period of

time that the allocation of Ji is equal to the equipartition value p. Let the amount of work

Ji executes during Tequi be Wequi. Since there are at most K infinite jobs, the total amount

of work executed by the infinite jobs is no more than K ⋅ Wequi during Tequi. Let W finite be

the total amount of work that finite jobs have executed during Tequi. The completion time

of Ji is no more than t0 + T para +
KWequi + W finite

P
. That is,

Ti ≤ t0 + T para +
K ⋅ Wequi + W finite

P
= t0 + T para +

Wequi

P
+ (K − 1) ⋅

Wequi

P
+

W finite

P

Note that for Opt(JS) the following relations hold:

Opt(JS) ≥ t0 + T para +
Wequi

P

Opt(JS) ≥
W finite

P

Therefore,
Ti

Opt(JS)
≤ K + 1. That is, DEQ is (K + 1) − competitive.

The result in this section shows that the makespan of DEQ with K infinite jobs and

new arrivals is still optimal (i.e., K + 1). This demonstrates the robustness of DEQ.
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4.5. Summary

In this chapter we address the problem of minimizing the makespan for scheduling

N parallel jobs on multiprocessors. We use competitive analysis to devise a policy which

yields the optimal competitive ratio for scheduling two parallel jobs on multiprocessors.

This method may be of help for the analysis in generalized situations. We compare the

competitive ratio of DEQ with this optimal competitive policy OptComp and find that the

competitive ratios of DEQ and OptComp are the same. Moreover, as we hav e

demonstrated in this chapter, the allocation algorithm of OptComp is much more

complicated than DEQ. Therefore, for scheduling two parallel applications without

information about the execution time DEQ is a good policy.

Our analysis of scheduling N parallel applications considers the cases where there

are new job arriving as well as the parallelism of applications varies during execution.

Our results show that any work-conserving policy is 

2 −

1

P



− competitive. That is, any

policy which does not leave unnecessarily idle processors yields the optimal makespan.

In order to distinguish different work-conserving policies, we consider the

robustness of policies by introducing K , which denotes the number of erroneous jobs that

may execute infinitely due to programming error. In this case we have shown that DEQ is

(K + 1) − competitive. That is, the makespan of DEQ is no more than (K + 1) ⋅ Opt(JS)

in the worst case. Note that (K + 1) is the best possible competitive ratio in this case. We

have also demonstrated that the dynamic proportional partition (DPP) policy, which is

also a work-conserving policy, its competitive ratio may be much larger than K + 1. Our

analysis shows that DEQ is robust in the presence of infinitely executing jobs.

We conclude from our analysis that the dynamic equipartition (DEQ) policy is a

simple and robust policy for scheduling parallel applications in order to minimize the

makespan. In Chapter 5, we show that DEQ is also a good policy for minimizing the

mean response time.



Chapter 5

Minimizing the Mean Response Time

In this chapter we study the problem of minimizing the mean response time. We

focus on the dynamic equipartition (DEQ) policy for scheduling parallel jobs when job

execution time is not known a priori. DEQ has been widely studied and is considered by

some researchers to possess the desirable properties of a good scheduler [16][15]. Our

goal here is to understand why DEQ performs well in various environments.

Motwani, et al. have proved that for scheduling N sequential jobs on a uniprocessor

without new arrivals a lower bound on the competitive ratio is 

2 −

2

N + 1


. That is, no

scheduling algorithm can yield a mean response time that is smaller than 

2 −

2

N + 1



times the optimal when the scheduler does not have information about the job execution

time. This lower bound also applies to the parallel job scheduling on multiprocessors

because scheduling sequential jobs on a uniprocessor can be viewed as scheduling

parallel jobs on P processors with the parallelism of each of the jobs being equal to P.

We now prove that an upper bound on the competitive ratio for DEQ is 

2 −

2

N + 1


.

That is, the mean response time that DEQ produces in the worst case is no more than



2 −

2

N + 1



times the optimal. This result implies that DEQ yields the optimal

competitive ratio for scheduling without information about the job execution time.

We do not consider new arrivals, because Motwani, et al. [21] have proved that no

scheduling algorithm which does not have a priori information about job execution and

arrival times can achieve a competitive ratio that is smaller than N 1/3. We assume that the

parallelism profiles of all jobs have only one phase. Although we do not have results

pertaining to jobs with multiple phases, we hope that our results here will provide insight

into the problem. Therefore, in addition to the assumptions used in Chapter 3, we have

the following restrictions:

31
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Assumption 5.1: All jobs arrive at the system simultaneously.

Assumption 5.2: All jobs have single-phased parallelism profiles.

If the total number of jobs in the system is N and the response time of job Ji is β i,

where 1 ≤ i ≤ N , the mean response time is defined as
1

N

N

i=1
Σ β i. (Note that the response

time of a job refers to the time that elapses from a job’s arrival until its departure from the

system.) Observe that minimizing
1

N

N

i=1
Σ β i is equivalent to minimizing

N

i=1
Σ β i, which is

also called the flow time in literature [4]. Therefore, throughout this chapter our objective

function is minimizing the flow time. Suppose that there is a job set:

JS = {(P1, l1), (P2, l2), . . . , (PN , lN )}, in the system, the competitive ratio for a scheduling

policy S in this chapter is defined as the ratio of worst case ratio of the flow time to the

minimum flow time on the same job set. That is, if FTS(JS) denotes the flow time for the

policy S and Opt(JS) denotes the optimal flow time, the competitive ratio is:

maxall JS



FTS(JS)

Opt(JS)



. Howev er, Turek, et al. have reported [31] that the problem of

finding an optimal scheduling algorithm (i.e., with minimum mean response time) is NP-

hard in the strong sense. Therefore, we first obtain a lower bound on the optimal

scheduling algorithm. Then we compare the mean response time of DEQ with that lower

bound and obtain an upper bound on the mean response time for DEQ.

In Section 5.1 we first obtain a lower bound on the optimal flow time. In Section 5.2

we prove that DEQ is 

2 −

2

N + 1



− competitive, when the scheduler can only mak e use

of instantaneous job parallelism to make scheduling decisions. In Section 5.3 we briefly

summarize this chapter.

5.1. Lower Bounds on Mean Response Time

Note that the execution of a parallel job, Ji, can be characterized by Pi and li, which

can be viewed as a rectangle with Pi as its height and li as its length. If we let Wi denote

the amount of work that Ji executes, which is equal to Pi ⋅ li, Wi corresponds to the area

of the rectangle that is associated with Ji. Our main result is based on the squashed area

bound, which is introduced for parallel job scheduling in a static environment

[29][30][31]. Denote the total number of processors in the system with P. Suppose that

a job set, JS = {(P1, l1), (P2, l2), . . . , (PN , lN )}, is arranged in increasing order of the

amount of work so that Wi ≤ Wi+1, where 1 ≤ i < N . The squashed area bound is defined

as [31]:
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A(JS) =
1

P

N

i=1
Σ(N − i + 1)Pili (5.1)

Let
N

i=1
Σ li = L(JS), which is equivalent to the height bound, HJS , by Turek, et al.

[29][30][31]. By setting the parallelism of all jobs to P, a new job set can be created

from the original job set, JS, as JSsquash =






P,

P1l1

P



, 

P,

P2l2

P



, . . . , 

P,

PN lN

P





.

This is called squashed area construction [29]. The squashed area construction does not

change Wi, 1 ≤ i ≤ N , since it does not change the area associated with each job.

Because the original job set is arranged in order of increasing work, the new job set after

the squashed area construction is arranged in order of increasing execution time. Figure

5.1 illustrates the squashed area bound after squashed area construction. The vertical axis

represents the parallelism of jobs. The horizontal axis represents the job execution time.

After the squashed area construction, all jobs have the same parallelism P. That is, any

job is capable of making use of all of the processors in the system during its execution.

In Figure 5.1 the length of the shadowed region is the execution time of the jobs, and the

length of the unshadowed region is the time each job spends waiting to be activated.

Turek, et al. prove that the optimal flow time for this job set, Opt(JS), is no less than the

squashed area bound [29]. That is,

A(JS) = A(JSsquash) ≤ Opt(JS). (5.2)

They also prove that Opt(JS) ≥ max (A(JS), L(JS)).

In order to present our result, we first prove that the sum of the squashed area bound

and the height bound is also a lower bound on the optimal flow time. The execution of a

job Ji = (Pi, li) can be divided into two phases : Ji1 and Ji2. We let Ji1 = (Pi, li1) and

Ji2 = (Pi, li2), so that li1 + li2 = li, 1 ≤ i ≤ N . Let ti1 denote the time at which Ji has

executed Pi li1 units of work using an optimal policy Opt(JS). Let ti2 denote the time at

which Ji has completed execution using Opt(JS). Denote the number of processors

actually allocated to Ji with pi.

Lemma 5.1 :

Opt(JS) ≥ A(JSi1) + L(JSi2). (5.3)

Proof : During the period of time from ti1 to ti2, pi ≤ Pi. Therefore, ti2 − ti1 ≥ li2,

1 ≤ i ≤ N . The optimal flow time is:
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Figure 5.1: The squashed area bound

Opt(JS) =
N

i=1
Σ ti2 ≥

N

i=1
Σ ti1 +

N

i=1
Σ li2

According to (5.2),

Opt(JS) ≥ A(JSi1) + L(JSi2).

Therefore, A(JSi1) + L(JSi2) is a lower bound on the optimal flow time.

Now that we have obtained a lower bound on the optimal flow time we will compare

the flow time for DEQ with this lower bound and obtain an upper bound on the

competitive ratio for DEQ.

5.2. An Upper Bound for DEQ

In this section, we prove that the flow time for the Dynamic Equipartition policy

(DEQ) is within a factor of 

2 −

2

N + 1



of the optimal, where N is the total number of

jobs in the system. We assume that
N

i=1
Σ Pi > P. (The allocation is trivial if

N

i=1
Σ Pi ≤ P:

allocate Pi processors to each job. The flow time in this case is
N

i=1
Σ li, which is equivalent

to L(JS).)

Using DEQ each job will be allocated an equal fraction of processing power,

provided that it has enough parallelism. Therefore, pi must be either equal to the job

parallelism, Pi, or equal to the equipartition value, p, which is recursi vely recomputed
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according to the definition presented in Section 2.5. As a result, we divide all of the jobs

in the system into two subsets :

(1) JS para, in which pi is equal to the job parallelism (i.e., pi = Pi). Denote the number

of jobs that belong to JS para with k p.

(2) JSequi, in which each job is allocated p processors (i.e., pi = p < Pi). Denote the

number of jobs that belong to JSequi with ke.

We use the following observations to derive an upperbound for DEQ:

(a) The parallelism of any job that belongs to JS para, Pi, is less than p. That is,

(∀Ji ∈JS para) pi = Pi < p.

(b) The number of processors allocated to any job that belongs to JSequi is at least
P

N
.

That is,

(∀Ji ∈JSequi) pi = p ≥
P

N
. (5.4)

(c) The sum of the processors allocated to all the jobs that belong to JSequi and the

processors allocated to all the jobs that belong to JS para is P. That is,

i∈JS para

Σ Pi + ke p ≤ P.

(d) If pi = Pi for 1 ≤ i ≤ N , pi will not change until Ji completes execution. If pi = p,

pi may increase up to Pi at a later point of time.

Without loss of generality, the execution of any job, Ji (1 ≤ i ≤ N ), can be divided

into two phases :

(1) Phase e: when it is allocated a equal fraction of processing power according to DEQ.

Denote the time span that Ji executes in this state with Tiequi.

(2) Phase f: when it is allocated Pi processors. Denote the time span that Ji executes in

this state with Tipara.

Note that either Tiequi or Tipara can be zero but not both. Lemma 5.1 is equivalent to

Opt(JS) ≥ A(JS(e)) + L(JS( f )).

Denote the flow time of DEQ for job set JS with FTDEQ(JS). We now prove that

FTDEQ(JS) ≤ 

2 −

2

N + 1



⋅ A(JS(e)) + 

2 −

2

N + 1



⋅ L(JS( f )). Combining this result

with Lemma 5.1, we show that FTDEQ(JS) ≤ 

2 −

2

N + 1



⋅ Opt(JS).
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Theorem 5.1 : Let A(JS(e)) =
1

P

N

i=1
Σ(N − i + 1)PiTiequi and L(JS( f )) =

N

i=1
Σ Tipara.

FTDEQ(JS) ≤ 

2 −

2

N + 1



⋅ A(JS(e)) + 

2 −

2

N + 1



⋅ L(JS( f )). (5.6)

Proof : We use mathematical induction in terms of the number of jobs, N , to prove this

theorem. Let k be the number of jobs, where 1 ≤ k ≤ N .

(a) Base Case (k = 1):

If P1 ≤ P, the scheduler will allocated Pi processors to this job. Therefore,

FTDEQ(JS) = l1. Since in this case A(JS(e)) = 0 and L(JS( f )) = l1, the inequality

(5.6) holds.

If P1 > P, all P processors will be allocated to this job. Therefore,

FTDEQ(JS) =
P1l1

P
. Since A(JS(e)) =

P1l1

P
and L(JS( f )) = 0, inequality (5.6) also

holds in this case. Therefore, the theorem holds when k = 1.

(b) Induction Step:

Induction Hypothesis: For all k (the number of jobs in JS whose length is not zero)

such that 1 ≤ k < N , FTDEQ(JS) ≤ 

2 −

2

k + 1



⋅ A(JS(e)) + 

2 −

2

k + 1



⋅ L(JS( f )).

We now prove that it is also true when k = N . Since A(JS(e)) and L(JS( f )) are not

affected by the jobs whose length is zero, we only need to prove the claim for the

case where every job in JS is of non-zero length. Without loss of generality we

assume that after executing for a period of time, τ , J1 finishes execution and all

processors are then reallocated according to DEQ. Denote the remaining execution

time of Ji with ri. For the remaining (N − 1) jobs we have the following relations:

∀Ji ∈JS para, ri = li − τ and

∀Ji ∈JSequi, ri = li −
τ p

Pi
.

Denote the jobs that originally belong to JSequi and are now allocated pi = Pi

processors with JS ′
para (JS ′

para⊆JSequi). Let JS ′
equi = JSequi − JS ′

para. By the time

J1 finishes execution, all jobs have been in the system for τ units of time. Therefore,

FTDEQ(JS) ≤ Nτ +
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FTDEQ








(Pi, li −

τ p

Pi
): Ji ∈JSequi





∪



(Pi, li − τ ): Ji ∈JS para









(5.7)

According to the induction hypothesis, the second term of the right hand side of

(5.7) satisfies the following relation:

FTDEQ








(Pi, li −

τ p

Pi
): Ji ∈JSequi





∪



(Pi, li − τ ): Ji ∈JS para









≤ C ⋅ A







(Pi, li(e) −

τ p

Pi
): Ji ∈JSequi









+ C ⋅ L







(Pi, li( f )): Ji ∈JSequi









+ C ⋅
i∈JS para

Σ (li − τ ). (5.8)

Note that JSequi = JS ′
equi∪JS ′

para. For the job set JS ′
equi and JS ′

para, the following

relations hold:

∀Ji ∈JS ′
equi, li(e) >

τ p

Pi
and

∀Ji ∈JS ′
para, li(e) =

τ p

Pi
.

Therefore,

A










Pi, li(e) −

τ p

Pi



: Ji ∈JSequi









= A










Pi, li(e) −

τ p

Pi



: Ji ∈JS ′

equi









(5.9)

In order to make use of the squashed area bound, we arrange the jobs in JS ′
equi as

J j1
, J j2

, ..., J jke
′ , ke

′ = |JS ′
equi |. in increasing order of the remaining work where

J ji
∈JS ′

equi. Arrange the jobs in JS ′
para as Jm1

, Jm2
, ..., Jmk p

′ , k p
′ = |JS ′

para |, in

increasing order of the amount of work. According to (5.1), the squashed area

bound of JS ′
equi is :

A










Pi, li(e) −

τ p

Pi



: Ji ∈JS ′

equi








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=
1

P

ke
′

i=1
Σ(ke

′ − i + 1)P ji



l ji

(e) −
τ p

P ji




=
1

P

ke
′

i=1
Σ(ke

′ − i + 1)P ji
l ji

(e) −
1

P

ke
′

i=1
Σ(ke

′ − i + 1)τ p

= A







(Pi, li(e)): Ji ∈JS ′

equi









−
ke

′(ke
′ + 1)

2P
τ p

= A(JS ′
equi(e)) −

ke
′(ke

′ + 1)

2P
τ p. (5.10)

Since L(JS para( f )) =
i ∈ JS para

Σ li,
i ∈ JS para

Σ (li − τ ) = L(JS para( f )) − k pτ . Therefore, we

have :

L(JSequi( f )) +
i ∈ JS para

Σ (li − τ ) = L(JS( f )) − k pτ .

For simplicity let C = 2 −
2

N + 1
. Combining this equation with (5.7), (5.8), (5.9)

and (5.10), we obtain the upper bound on FTDEQ(JS) :

FTDEQ(JS) ≤ Nτ + C ⋅ A(JS ′
equi(e)) + C ⋅ L(JS( f ))

− C ⋅ k pτ − C ⋅
ke

′(ke
′ + 1)

2P
τ p (5.11)

Note that A(JSequi(e)) = A(JS ′
equi(e)) +

1

P

k p
′

i=1
Σ(ke

′ + k p
′ − i + 1)τ p. Inequality (5.11)

is equivalent to :

FTDEQ(JS) ≤ Nτ + C ⋅ A(JSequi(e)) −
C

P

k p
′

i=1
Σ(ke

′ + k p
′ − i + 1)τ p

+ C ⋅ L(JS( f )) − C ⋅ k pτ − C ⋅
ke

′(ke
′ + 1)

2P
τ p

Since C ⋅ A(JS(e)) + C ⋅ L(JS( f )) = C ⋅ A(JSequi(e)) + C ⋅ L(JS( f )), it will be

equivalent to prove that the right hand side of the above inequality is no more than

C ⋅ A(JSequi(e)) + C ⋅ L(JS( f )) in order to prove the theorem. That is,
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Nτ + C ⋅ A(JSequi(e)) −
C

P

k p
′

i=1
Σ(ke

′ + k p
′ − i + 1)τ p + C ⋅ L(JS( f ))

− C ⋅ k pτ − C ⋅
ke

′(ke
′ + 1)

2P
τ p ≤ C ⋅ A(JSequi(e)) + C ⋅ L(JS( f )) (5.12)

Note that (5.12) is equivalent to

Nτ − C ⋅ k pτ − C ⋅
τ
P

k p
′

i=1
Σ(ke

′ + k p
′ − i + 1)p − C ⋅

ke
′(ke

′ + 1)

2P
τ p ≤ 0

In order to prove the above relation, it is both sufficient and necessary to prove that:

N ≤ C ⋅ k p +
C

P

k p
′

i=1
Σ(ke

′ + k p
′ − i + 1)p + C

ke
′(ke

′ + 1)

2P
p,

which is equivalent to

NP ≤ Ck p P + C
k p

′

i=1
Σ(ke

′ + k p
′ − i + 1)p +

C

2
ke

′(ke
′ + 1)p (5.13)

Note that ke + k p = N . (5.13) is equivalent to :

ke P ≤ (C − 1)k p P +
C

2
ke(ke + 1)p

Since C = 2 −
2

N + 1
, the above inequality is equivalent to

ke P (N + 1) ≤ (N − 1)k p P + Nke(ke + 1)p. (5.14)

Again, because ke + k p = N , the right hand side of the inequality is equivalent to:

Pk p(N − 1) + N pke(ke + 1) = Pk p(ke + k p − 1) + N pke(ke + 1)

According to (5.4) in observation (b), we have the following relation:

Pk p(ke + k p − 1) + N pke(ke + 1) ≥ Pk pke + Pk p(k p − 1) + Pke(ke + 1)

Note that k p(k p − 1) ≥ 0. Therefore,

Pk p(ke + k p − 1) + N pke(ke + 1) ≥ Pke(k p + ke + 1) = Pke(N + 1).

Therefore, the theorem holds when k = N .

That is,
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FTDEQ(JS) ≤ 

2 −

2

k + 1



A(JS(e)) + 

2 −

2

k + 1



L(JS( f )) for 1 ≤ k ≤ N .

Note that a lower bound on the optimal flow time, Opt(JS), is A(JS(e)) + L(JS( f ))

according to Lemma 5.1. That is,

A(JS(e)) + L(JS( f )) ≤ Opt(JS).

Since FTDEQ(JS) ≤ 

2 −

2

N + 1



⋅ (A(JS(e)) + L(JS( f ))) according to Theorem 5.1, the

following relation holds:

FTDEQ(JS) ≤ 

2 −

2

N + 1



⋅ Opt(JS).

That is, an upper bound on the competitive ratio for DEQ is 2 −
2

N + 1
. This result

implies that in the worst case the mean response time of DEQ is within a factor of



2 −

2

N + 1



of the optimal.

5.3. Summary

In this chapter, we hav e shown that DEQ is 

2 −

2

N + 1



− competitive in terms of

minimizing the mean response time. That is, in the worst case, the mean response time of

DEQ over all possible job sets is no more than 

2 −

2

N + 1



times the optimal.

Note that in the same situation a lower bound on the competitive ratio for scheduling

parallel jobs is 

2 −

2

N + 1



[21]. Our result has shown that an upper bound on the

competitive ratio of DEQ is equal to the lower bound on the competitive ratio of any

policy that does not utilize job execution time to make scheduling decisions. This implies

that DEQ yields the optimal competitive ratio when scheduling without new arrivals and

without knowledge of job execution times.



Chapter 6

Conclusions and Future Research

6.1. Conclusions

The goals of this thesis are to use competitive analysis to study dynamic processor

allocation policies under realistic job and workload models and provide insight into the

utility of these policies. In pursuit of these goals we use competitive analysis to devise

and evaluate scheduling techniques for scheduling parallel jobs in a multiprocessor

environment.

Our study is conducted in a dynamic environment in which processors may be

preempted and reallocated during job execution. We assume that the scheduler has no

information about the job arrival and execution times. We address the problems of

minimizing the makespan and the mean response time respectively.

• Minimizing the makespan:

We use competitive analysis to devise an optimal competitive policy, OptComp, for

scheduling two parallel jobs on multiprocessors. This suggests a new method to

devise optimal competitive scheduling policies (i.e., policies which yields optimal

competitive ratio). Compared with OptComp, the Dynamic Equipartition policy

(DEQ) does not yield the optimal competitive ratio for scheduling two parallel

jobs. However, the maximum relative ratio of DEQ to OptComp is only 1. 175729.

Note that DEQ is much simpler than OptCompt. Therefore, we conclude that DEQ

is a good policy for scheduling two parallel jobs.

We also extend the previous results for scheduling sequential jobs to parallel

job scheduling. We hav e shown that both upper and lower bounds on the

competitive ratio for any work-conserving policy are (2 −
1

P
) in the cases where

parallelism profiles have multiple phases and there are new arrivals. This implies

that any work-conserving policy yields the optimal competitive ratio if the

objective function is minimizing the makespan. Note that these results are identical

to their sequential counterparts [8][13][25].
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In order to distinguish different work-conserving policies we introduce the

notion of robustness by considering the case where there are jobs that may execute

infinitely due to programming errors. Our result shows that DEQ yields the

optimal competitive ratio, while the dynamic proportional partition (DPP) policy

(which is also a work-conserving policy) does not produce a fixed competitive

ratio. Our results show that DEQ is robust in the presence of infinite jobs.

• Minimizing the mean response time:

Using competitive analysis we study the problem of scheduling N parallel jobs

in order to minimize the mean response time. Our study considers scheduling

parallel jobs with single-phased parallelism profiles. We improve the previous

results of scheduling parallel jobs in a static environment [31][30][29][17] and

prove that in a dynamic environment an upper bound on the competitive ratio of

DEQ is 

2 −

1

N + 1



. Since a lo wer bound on the competiti ve ratio for any

policy which does not know the job execution time is also 

2 −

1

N + 1



, our

result implies that DEQ yields the optimal competitive ratio.

Recent studies have shown that using the information of the work to execute will

improve the mean response time [19][24][2][11]. However, it may not be possible to

obtain the precise information about the job execution time. Instead, an estimate of

execution time could be used when making scheduling decisions [2]. Our results have

shown that DEQ leads to the best possible competitive ratio when the job execution time

is not available to the scheduler at the time of scheduling. Note that DEQ does not

require any information about job execution time, and it is easy to implement in real

systems. Therefore, we conclude that DEQ is a competitive scheduling policy.

Our results shows that when complete information about job characteristics is not

available to the scheduler, it is advisable to space-share processors equally among all

applications provided that they hav e enough parallelism.
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6.2. Direction for Future Research

Our analysis in scheduling N jobs with single-phased parallelism profiles has

provided insight into the analysis of this problem for parallel jobs with multiple-phased

parallelism profiles. It is interesting to carry our future research in this direction.



Appendix

The following are the equations for α and R1 for the optimal competitive policy

Policy(α ) discussed in Section 4.2. Note that α is obtained by setting R1 = R2. They are

presented in terms of x and y to simplify the formulae. Since P1 and P2 can be

expressed as a fraction of P, we let P1 = m P and P2 = n P.

x = 4 n m − 8 n2 m − 8 n m2 + 5 n3 m + 10 n2 m2 − 3 n3 m2 − 3 n2 m3 + 5 n m3 − n4 m

− m4 n + (4 n3 m + 8 n2 m2 + 4 n m3 − 48 n3 m2 − 48 n2 m3 − 16 n4 m − 16 m4 n

+ 104 n4 m2 + 160 n3 m3 − 232 n4 m3 − 232 n3 m4 + 104 n2 m4 − 104 n5 m2 − 104 n2 m5

+ 160 n5 m3 + 230 n4 m4 + 49 n6 m2 + 160 n3 m5 + 49 n2 m6 − 50 n6 m3 − 100 n5 m4

− 10 n7 m2 − 100 n4 m5 − 50 n3 m6 + 15 n6 m4 + 20 n5 m5 + 6 n7 m3 + 15 n4 m6

+ 6 n3 m7 − 10 n2 m7 + n8 m2 + m8 n2 + 24 n m5 − 16 n m6 + 4 n m7

+ 24 n5 m − 16 n6 m + 4 n7 m )1/2

y = n m + n2 m2 − n3 m + n m3 − 2 n m2 − n2 + 2 n3 − n4

α =
x

2 y

Replacing α in R1 (or equivalently R2 ), we have :

R1 =

x n

2 y
− 2 m +

x m

2 y
+ 1 − 2 n −

x

2 y
+ n2 + n m

−
x n

2 y
+

xn 2

2 y
+

xn m

2 y
− m
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