Object-Oriented Distributed and Parallel 1/0
Streams

Andrew J. Dick

A thesis submitted to the Faculty of Graduate Studies
in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Computer Science
York University, North York, Ontario

26 February 1999

Abstract

Writing programs for parallel and distributed computing environments can be
significantly more complex than writing programs for their sequential counterparts.
These complexities mainly arise from the additional synchronization and communi-
cation requirements imposed by such environments. These requirements also make
debugging and maintaining such programs significantly more complicated. The prob-
lems of debugging and maintenance are further exacerbated by the lack of good
debuggers and the lack of proper I/O support for such environments.

The goal of this thesis is to design and implement an object-oriented C++ streams
library (piostream) which provides convenient and extensible constructs for input
and output in parallel and distributed programming environments. These environ-
ments include multi-threaded applications, multiprocessors, and distributed systems.
The piostreanm library is based on the C++ iostream library, thus simplifying the
use of I/O operations in parallel and distributed environments. A prototype im-
plementation is described and used to demonstrate the feasibility of the piostream
library design and the ease with which it can be used.

v

Acknowledgements

I dedicate this thesis to the memory of my mother, who taught me what perse-
verance really is, through her battle with diabetes. I thank my family for all their
loving support. Much appreciation goes to both my supervisors, Eshrat and Tim,
for their wisdom and guidance throughout my graduate years. A special thanks to
Bill O’Farrell and Greg Wilson, who both provided the initial framework for my li-
brary, and also patiently provided me with technical information. Most of all, I thank
Samantha, without whose love and support, this thesis would not have been possible.

Contents

Abstract

Acknowledgments

List of Figures

1

Introduction
1.1 Motivation
1.2 Objectiveso
1.3 Contributions oL
1.4 Thesis Outline
Background
2.1 Tostream Library
211 FileStreams
2.1.2 Manipulator Functions
2.2 Related Work
2.3 Active Object Model
2.3.1 Active Object Body
2.3.2 Active Object Message Queue
2.3.3 Active Object Creation and Lifetime
2.3.4 Active Object Communication
24 ABCHA . . .
241 Body Definition 00000
242 Message Queue
2.4.3 Active Object Creation
244 Communication.

vi

Page

iv

3 Postream
3.1 Unsynchronized Data Interleaving
3.2 Data Origin Identification
3.3 Postream Architecture
3.3.1 Pass to Parent Model
3.3.2 Shared Lock Model
3.3.3 Client-Server Model
3.3.4 Architecture Overview
3.4 Perro
3.4.1 Perr Architecture
3.5 Summary L e

4 Pistream
4.1 Data Broadcasting and Striping
4.2 Pistream Architecture
4.2.1 Client-Server Model

4.3 Summary

5 Pfstream
5.1 Issues in the Design of the Pfstream Library
5.1.1 Client-Server Model
5.1.2 Architecture Overview
5.2 Summary

6 Conclusions and Future Work
6.1 Conclusions
6.2 Future Work

A Piostream Library Interface
A.1 Postream Class Interface
A.2 Postream Server Class Interface
A.3 Pistream Class Interface
A.4 Pistream Server Class Interface.

vii

28
29
31
31
32
32
36
39
45
46
46

48
49
o1
52
95
99

61
62
62
65
68

70
70
72

List of Figures

1.1

1.2

2.1

2.2

This diagram illustrates the benefits of extensible output. (A) defines
a class complex that has a built-in print () method, and an extensible
operator<<() friend function. (B) depicts the same class complex
with the piostream library’s overloaded operator<<() function. (C)
illustrates the different syntax required to output the class’ data using
each approach.
This diagram provides a comparison of interfaces between the C++
iostream library and the piostream library. (A) illustrates the stan-
dard C++ iostream interface for using standard input (stdin), stan-
dard output (stdout), standard error (stderr) and file I/O. (B) illus-
trates the piostreanm library interface for similar code. Stdin, stdout,
stderr, and the file system are all located on the main host in each
example. Both examples first instantiate several objects including in-
put and output file streams. The input and output file stream’s state
is checked, and if an error is detected, an error message is written to
stderr. Output is written to stdout and input is read from stdin.
Finally, data is transferred from the input file to the output file, includ-
ing a user-input header comment. The use of I/O chaining, multiple
data types and manipulator functions is also demonstrated.

List of available open modes for files with iostream file I/O. Modified
from [4] (p. 217).o
This table lists the parameterless manipulator functions available from
the iostream library. A description of each manipulator is provided,
including whether the manipulator can be chained. Manipulators that
cannot be chained can be used with the setf () and unsetf () iostream
methods. Modified from [4] (p. 243).

viii

11

2.3

24

2.5

2.6

2.7

2.8

3.1

This table lists the manipulator functions that use parameters avail-

able from the iostream manipulator library (iomanip.h). Note that
many of the manipulators listed in Figure 2.2 can be used in a chained
invocation with the manipulators setiosflags and resetiosflags.
Modified from [4] (p. 244).o 13
This diagram illustrates the use of several manipulator functions in

both a direct and chained invocation fashion. (B) shows the manipu-

lator functions listed in (A) using a direct invocation. (C) shows the
chained invocation of the same manipulators. 14
This illustration shows the characteristics of the active object hierarchy.

(A) shows a main program that has created three active object chil-
dren. (B) illustrates each active object’s ability to create one or more

new active objects. (C) shows two destroyed active objects, drawn

with a dashed line. (D) illustrates the fact that an active object can
outlive its parent. The main program exists until all active objects

have terminated.o o oo 21
This diagram illustrates various ways to accept RMIs from active ob-
jects. The active object message queue is shown, with the oldest RMI

on the left. Messages accepted are on a FCFS (first-come first-served)

basis of available and acceptable RMIs. 24
This diagram illustrates the steps required to create an active object
using ABC++. (A) provides the general function prototype for creat-

ing an active object. (B) defines a simple active object class. (C) shows

the code used to create two active objects. The first Pabc_create ()
invocation uses the default round-robin processor allocation technique.

The second invocation specifies that the active object should be created

on the main host. L. 25
This diagram shows synchronous and asynchronous RMIs using ABC++-.

(A) provides the general function prototypes of the synchronous RMI
methods, Pvalue() and Pvoid(), and the asynchronous RMI meth-

ods, Ppar_value() and Ppar_void(). (B) defines a simple active ob-

ject class with two methods. (C) shows program code that uses asyn-
chronous and synchronous RMIs with the active object defined in (B).

The Pfuture class is also shown in (C) with the asynchronous RMI
method Ppar_value(). 27

This diagram defines an active object body that uses multiple chained
output statements. oL L Lo 29

X

3.2

3.3

3.4

3.5

3.6

This diagram shows output from three concurrent active objects exe-
cuting code from Figure 3.1. (A) illustrates output with unsynchro-
nized access to the output stream. The resulting output suffers from
the unsynchronized data interleaving problem. (B) shows the same out-
put with synchronized access to the output stream. The output still
suffers from the problem that its origin is not identified. (C) shows
the same output with synchronized interleaving and data origin iden-
tification consisting of the host name, the process id, and the thread
id. The data origin identification width can be set using a postream
manipulator function.00 0000000
This diagram illustrates the directional data flow and active object
hierarchy in the pass to parent model. (A) depicts a normal hierarchy
in which each active object is responsible for its childrens’ output.
The main program is the ancestor of all active objects and hence is
responsible for outputting each active object’s data to stdout on the
main host. (B) illustrates the flaw in the pass to parent model. The
termination of a parent object can result in no clear path from its
children to the main program.
This diagram illustrates the directional data flow and communication
between the shared lock and active objects performing output in the
shared lock model. The shared lock could be implemented using either
a shared object or an active object and hence exists on one host or is
shared between each active object’s address space. This model assumes
each active object has direct access to stdout on the main host. Each
active object may only output data to stdout on the main host after
acquiring the lock. The active object is responsible for releasing the
lock after performing output.
This diagram shows the different approaches of acquiring and releasing
the shared lock on the output stream. Approach 1 acquires the lock
during any operator<<() invocation, if it does not already possess
the lock, and releases it on the flush of the output stream. Approach
2 acquires and releases the lock when the output stream is flushed.

This diagram illustrates the directional data flow in the postream
client-server model. A dedicated active object server resides on the
main host and accepts output from active objects that may be exe-
cuting remotely. The server interleaves the output and prepends each
client active object’s data origin identification consisting of the process
id, thread id, and host name.

30

33

34

35

3.7

3.8

3.9

3.10

4.1

This diagram illustrates the different approaches towards transferring
output data to the output server. Approach 1 stores all data un-
til a flush of the output stream, at which time the buffer is trans-
ferred. Approach 2 transfers each token of data after each invocation
of operator<<().
This diagram illustrates the problem encountered using the existing
ostream operator<<() functions with the derived postream class.
(A) shows the derived class postream which publically inherits the base
class ostream, including the friendship of the operator<<() functions.
In (B), the postream object pout is instantiated. The pout object is
used in a chained invocation with two objects and the flush manip-
ulator function. The chained invocation uses the postream object as
an argument, but, the object is upcast into an ostream object by the
first operator<<() function. The operator<<() function returns the
ostream object which is used in subsequent operator<<() function
invocations in the chain. The ostream flush manipulator function is
invoked at the end of the chain instead of the postream flush manip-
ulator function. The ostream flush manipulator function does not
support the required communication with the output server.
This diagram illustrates the problem encountered with using inher-
itance and overloading operator<<() functions. Class postream is

publically inherited from class ostream as shown in (A). Both operator<<()

functions are shown in (B). Each operator<<() function has two pa-
rameters: the output argument and an ostream or postream object
respectively. The postream object is an ostream object however and
consequently the compiler cannot determine which function to use be-
cause the function prototypes are indistinguishable.
This diagram illustrates the syntax used to output with the postream
pout and perr objects. Integers, floats, and character strings are out-
put using a chained invocation. Various formatting manipulator func-
tions are used with both direct and chained invocation techniques.

This diagram illustrates different approaches of distributing data be-
tween active objects. (A) represents a sample sequence of input to-
kens. (B) displays the data distribution between three active objects
resulting from broadcasting. Broadcasting provides identical data to
all requesting active objects. (C) displays an example data distribution
between three active objects using striping. Striping provides sequen-
tial data to requesting active objects on a FCFS basis such that no
active object receives the same data.

xi

47

4.2

4.3

5.1

5.2

This diagram illustrates the directional data flow in the pistream
client-server model. A dedicated active object server resides on the
main host and reads input from stdin which is also on the main host.
The server buffers and distributes data to requesting remote active
objects and the main program.
This diagram illustrates the syntax used to obtain input using the
pistream pin object. An integer, float, and double are input using
a chained invocation. The chained ws manipulator is used to skip
white space. White space skipping is turned off by directly invok-
ing the unsetf () method and the skipws manipulator function. The
pistream server poll time is set to 0.5 seconds (the wait time is in mi-
cro seconds). Finally the program reads in data in fixed size segments
(because no white space is skipped) and printed to stdout using the
postream object pout.

This diagram illustrates the directional data flow in the pfstream
client-server model. A dedicated active object server resides on the
main host and performs I/O on files on the main host file system. The
server serves 1/O requests from remote active objects and the main
program. Unlike the postream and pistream server, the pfstream
server is responsible for serving both input requests and output re-
quests through instantiated pfstream objects (pifstream, pofstream,
and pfstream).l

63

This diagram illustrates the pfstream class hierarchy. The pfstream_common

base class defines the required communication and synchronization fa-
cilities required to support distributed file I/O. The derived classes
pifstream and pofstream define the input and output methods re-
quired to support the iostream file I/O interface. The pfstream bi-
directional class uses multiple-inheritance to derive both the pifstream
and pofstream class functionality.

xii

Chapter 1

Introduction

1.1 Motivation

To perform useful calculations, programs often require data that must be obtained
from an input device or file. Subsequently, the program results must be written to
an output device or file. In a networked environment, programs that perform I/O
must buffer and transmit data to or from tasks executing on remote machines to tasks
executing on machines that have access to the desired I/O devices and files. In dis-
tributed and parallel programs, the standard I/O devices and files are accessible from
the machine where the user program initially begins execution. This machine is called
the main host, and the task that executes initially on the main host is called the main
program. The standard I/O devices consist of two output devices: standard output
(stdout) and standard error (stderr) and one input device: standard input (stdin).
Sending and receiving data between user processes that may be executing on remote
machines and the main host I/O devices requires explicit buffering, transferring and
coordination of data. Access to the main host I/O devices must be synchronized by
the user to support the desired behaviour. The added complexity to user programs
lowers portability and maintainability which makes writing and debugging programs
more difficult.

Significant research efforts have been expended in recent years to improve the per-
formance of I/O subsystems by using parallel techniques to transfer portions of data
to and from several storage devices simultaneously. These efforts have concentrated
almost exclusively on alleviating the I/O performance bottleneck by using multiple
disk devices to perform file I/O[10, 15]. Unfortunately, techniques for providing users
with the ability to simply and easily perform input and output operations on multi-
ple processors or hosts simultaneously for the purposes of debugging, executing and
maintaining parallel and distributed programs have received little attention.

This thesis addresses this shortcoming and focuses on techniques that enable users
to write parallel and distributed applications that perform I/O. The piostream li-
brary is not intended to improve the performance of parallel and distributed pro-
grams. Instead it is designed to provide simple and easy to use I/O constructs for the
purpose of writing, debugging, executing and maintaining parallel and distributed
programs. By using the piostream library, programs can execute input and output
operations from any machine in a networked environment and the input and output
data is transparently obtained from or sent to the originating host by the underlying
run-time system. The target environments of the library include multiprocessors,
networks of workstations, and distributed workstations and PCs.

1.2 Objectives

This thesis describes our design and implementation of a parallel streams library
called piostream. We discuss the issues involved in designing and implementing the
components of the piostream library. The piostream library is designed specifically
to permit parallel and distributed programs to use common input and output oper-
ations regardless of the machine on which the operations are being performed. The
piostream library is comprised of the following components: postream for parallel
output to stdout and stderr, pistream for parallel input from stdin, and pfstream
for parallel file I/O. The pfstream component, similar to the C++ fstream library,
consists of three different classes that can be instantiated for file I/O. The fstream
library has an input file stream (ifstream), an output file stream (ofstream), and
a bi-directional file I/O stream (fstream). Similarly the pfstream library supports:
pifstream for input, pofstream for output, and pfstream for bi-directional file I/O.
A prototype has been implemented for the postream and pistream components of
the piostream library. The pfstream component has been designed but not imple-
mented.

In this thesis, much of the discussion of the design of the piostream library
takes place in the context of a parallel system that provides concurrency through
an active object model such as ABC++ [2, 16]. This design and the piostream
library could easily be implemented using any object-oriented concurrency model.
Because the piostream library constructs are meant for use in object-oriented par-
allel and distributed programs, they must also satisfy a number of object-oriented
design constraints. The issues of proper interface design, encapsulation, extensibility
and efficiency must be considered throughout the design and implementation of the
piostream library.

Encapsulation deals with information hiding and data abstraction. A large por-
tion of the cost of software development is attributed to software maintenance due to

complex and intertwined programs [14, 23]. Encapsulation attempts to rectify this
problem by grouping an object’s data and methods together. Encapsulation enforces
well-defined interfaces for accessing and modifying an object’s data members. This
encapsulation permits the user to use the class without knowledge of its implementa-
tion, and subsequently allows the implementation to be changed without affecting the
user [3]'. By simple application of this concept, the piostream library’s implementa-
tion details should be hidden from the user of the library. The user should not require
significant modifications to their code, beyond the normal changes required to convert
to the parallel paradigm. In addition to requiring minimal interface changes, any ad-
ditional objects and methods required to implement the piostream library should be
completely abstracted from the user. The user should be solely concerned with how
to create and utilize the methods of user objects and not with the piostream library
run-time operations. Consequently it is of primary importance that the piostream
interface be as close to the existing standard C++ iostream interface as possible.

One of the main advantages of the C++ iostream library is its extensibility. In
addition to being able to output predefined data types, the user can output user-
defined data types by overloading operator<<(). Figure 1.1A defines a simple class,
complex, that has both a print () method and an extensible operator<<() function.
Figure 1.1B illustrates how operator<<() functions can be overloaded to support
output of the complex class with the piostream library. Figure 1.1C shows the
different syntax required to output a complex object using the iostream library
and the piostream library. Both the extensible (operator<<()) and non-extensible
(print ()) approaches to output are illustrated for the iostream library. Clearly the
extensible interface simplifies the user code and hence, should be supported in the
piostream library. Subsequently the piostream library supports input and output
of arbitrary objects through the overloading of operator<<() and operator>>().
The piostream library supports user-defined manipulator functions in addition to all
existing iostream manipulator functions.

The issue of efficiency becomes critical in a parallel system due to the poten-
tial amount of synchronization required for communication between parallel and dis-
tributed objects. Several potential bottlenecks exist during the transfer of data from
multiple objects to a single source destination, or conversely, from a single source
to multiple objects. A concern during the design of the piostream library is mini-
mizing the impact of these bottlenecks on performance. The piostream library does
this by limiting the use of shared locks and synchronous messaging in the design of
the piostream library components. Both shared locks and synchronous messaging
increase the length of time tasks block during communication and synchronization.
This blocking reduces the parallelism of the program and hence adversely impacts

! Assuming the external interface remains the same.

class conplex { (A) class conplex { (B)
public: public:
/I Standard class methods /I Standard class methods
/1 Print function prif;/ate: |
oat real;
z/mdprlnt() float inag;
/I Friends

cout << real << " + "
<< imag << "i";

friend postream &operator <<(postream &pos,
const conplex & data);
friend ostream &operator <<(ostream &os,

private:
float real; const conplex & data);
float imag; }:
1l Friends /I Friend postream operator - outputsin form"real + imagi"

friend ostream &operator <<(ostream &os,
const conplex & data);
h
1 Friend ostream operator - outputsin form"real + imag i"
1/ For example: 5.2 + 6.3

ostream &operator <<(ostream &os,
const conplex & data)

1/l For example: 5.2 + 6.3i
postream &oper at or <<(postream &pos,
const conpl ex & data)

{

pos << real << " + "
return pos;

}

/I Friend ostream operator - outputsin form"real + imag i"

<< imag << "i";

{ !
0s << real << " + " << imag << "i"; Il For example: 5.2 + 6.3
return os: ostream &operator <<(ostream &os,
) const conpl ex & data)
{

os << real << " + "
return os;

}

<< imag << "i";

/I Create complex object
Conpl ex c¢(5.2, 6.3);

/I Output using non-extensible print function
cout << "The conpl ex nunber is ";
c.print();

cout << endl;

11 Output using extensible overloaded operator<<
cout << "The conplex nunber is " << ¢ << endl;

/1 Output using extensible parallel output construct
pout << "The conplex nunber is " << ¢ << endl;

©

Figure 1.1: This diagram illustrates the benefits of extensible output. (A) defines a
class complex that has a built-in print () method, and an extensible operator<<()
friend function. (B) depicts the same class complex with the piostream library’s
overloaded operator<<() function. (C) illustrates the different syntax required to
output the class’ data using each approach.

the program’s performance.

1.3 Contributions

The primary advantages of the piostream library and its constructs and thus the
main contributions of this thesis are:

e They are based on the C++ iostream library [21] and as a result are familiar
and straightforward to use as well as easy to extend. Since high-level constructs
are provided, users are not required to construct, send and receive elaborate
messages. The programmer simply uses pin and pout constructs in the same

4

way that sequential C++ programs currently use cin and cout for I/O. The
user can easily input and output predefined and user-defined data types, by
overloading operator<<() or operator>>().

e They are able to support C++ I/O manipulator functions which allow pre-
cisely formatted output. Extensible user-defined manipulator functions are also
supported.

e They are built using and are fully compatible with standard C++, which means
that no special compiler support or language extensions are required.

e The library provides mechanisms for identifying the source of the output. For
example, output being printed by tasks executing on several remote client ma-
chines is automatically and transparently collected, collated, and printed to a
screen or file on the originating host along with information identifying the host
name, process id, and thread id of the task performing the output.

e Input constructs can be used on hosts that are potentially remote. The pistream
interface permits programs to simply use the pin object to obtain input when
desired. The piostream library transparently provides the facilities to read
input on remote hosts with a similar interface as the C++ iostream library.
Input can be distributed to each requesting object by using a single shared
stream position or multiple independent stream positions.

e Synchronization is an integral part of the library and as a result the user is not
required to synchronize access to input and output streams. The proposed file
I/O constructs transparently provide mutually exclusive access to files.

e The proposed file I/O constructs allow the user to access the main host’s file
system from remote hosts for input and output.

One of the main contributions of the piostream library is its clean and simple
interface. Many parallel programs are developed from original sequential versions.
As a result, converting a program from a sequential program to a parallel program
can be complicated and time consuming. The ideal constructs for parallel programs
should provide the same interface as their sequential counterparts where possible.
The piostream library interface is modeled on the existing standard C++ iostream
library [21]. The piostream library could be modified to conform to the new stan-
dards once they are released. To illustrate the ease with which piostream can be
used for output, Figure 1.2 provides an example in C++ using the C++ iostream
interface for cout, cerr, cin and fstream and their piostream counterparts pout,

/I Counter (A) /I Counter (B)
int numel enents; int numel enents;
/I Data /I Data
int element; int element;
I Input file /' nput file
ifstreamin("input", ios::exist); pifstreamin("input", ios::exist);
/I Output file /I Output file
of stream out ("output”, ios::nocreate); pof stream out ("out put”, ios::nocreate);
it ((rin) [l (Yout)) { it (rin) || (tout)) {
cerr << "Error in input or " perr << "Error in input or "
<< "output file." << endl; << "output file." << endl;
exit(0); exit(0);
1/ Header buffer /I Header buffer
char header[256]; char header [256] ;
1/ Get number of input elements /I Get number of input elements
cout << "Please input nunber of " pout << "Pl|ease input nunmber of "
<< "elenents:" << flush; << "elenents:" << flush;
cin >> numel enents; pin >> num el enents;
/I Get header for output file /1 Get header for output file
cout << "Please enter header " pout << "Please enter header "
cout << "for output file." << endl; pout << "for output file." << endl;
cin.getline(header, 256); pi n. getline(header, 256);
/I Insert header into output file /I Insert header into output file
out << header; out << header;
/I Copy and convert decimal data frominput file /I Copy and convert decimal data frominput file
/1 to hexadecimal in output file 1/ to hexadecimal in output file
for (int i =0; i < numelenents; i++) { for (int i =0; i < numelenents; i++) {
in>> ws >> elenent; in>>ws >> elenent;
out << hex << elenent; out << hex << el enent;
} }

Figure 1.2: This diagram provides a comparison of interfaces between the C++
iostream library and the piostream library. (A) illustrates the standard C++
iostream interface for using standard input (stdin), standard output (stdout), stan-
dard error (stderr) and file I/O. (B) illustrates the piostream library interface for
similar code. Stdin, stdout, stderr, and the file system are all located on the main
host in each example. Both examples first instantiate several objects including input
and output file streams. The input and output file stream’s state is checked, and if
an error is detected, an error message is written to stderr. Output is written to
stdout and input is read from stdin. Finally, data is transferred from the input file
to the output file, including a user-input header comment. The use of I/O chaining,
multiple data types and manipulator functions is also demonstrated.

perr, pin, and pfstream. The C++ iostream interface is illustrated in Figure 1.2A
and the piostream interface is shown in Figure 1.2B.

In this trivial example, a remote process is used to read decimal numbers from
a source file and write each number’s corresponding hexadecimal value to a second
destination file. Both the source and destination files are located on the main host’s
file system. The user provides both the number of elements to be converted from
decimal to hexadecimal, and a header comment for the output file. If either the input

or output files are invalid, a message is written to stderr on the main host. The
header is first written to the output file. The required number of decimal integers
are read from the input file, ignoring the white space between each integer using the
manipulator function ws. Each decimal number is converted to hexadecimal using the
manipulator function hex, and written to the output file. The modifications required
in order to move from the standard C++ iostream interface to the parallel specific
I/O interface are to use the pout, perr, pin, and pfstream objects rather than their
sequential counterparts, cout, cerr, cin, and fstream.

1.4 Thesis Outline

Chapter 2 of the thesis describes some popular parallel and distributed systems and
examines the support they provide for parallel and distributed I/O. It also examines
some existing parallel I/O systems and discusses their strengths and weaknesses.
Relevant background is provided on the active object concurrency model, and the
implementation environment, ABC++. A brief discussion of the C++ iostream
library is provided to illustrate the desired interface and behaviour of the piostream
library.

Chapters 3 and 4 provide a discussion of the postream and pistream components
of the piostream library. These chapters describe the problems and issues involved in
designing the postream and pistream components. Chapter 3 discusses the strengths
and weaknesses of various designs considered for the postream component, before
providing an overview of the model chosen, and a description of the implementation
architecture. Chapter 4 discusses the design and implementation issues involved in
supporting the same model for the pistream component.

Chapter 5 discusses the issues involved in designing the pfstream construct for
remote file I/O. A high-level design is provided for the pfstream construct, including
possible solutions to the major issues. The pfstream component is not implemented.
The thesis conclusions and possibilities for future work are presented in Chapter 6.

Chapter 2

Background

Distributed I/O solutions that address the problems of debugging and maintenance of
parallel and distributed programs have received little attention in the literature and
even less research has been conducted on object-oriented solutions to this problem.
This chapter first describes the C++ iostream architecture and interface which is
considered high-level, extensible, and easy to use. The iostream interface is presented
as a model for developing the piostream library interface. The iostream library
provides several manipulator functions that support precise formatting of input and
output data. A brief overview of the iostream manipulator functions is provided to
illustrate the problems inherent in extending the functions for use with parallel and
distributed programs. The chapter then examines how distributed I/O is supported
by the popular PVM (Parallel Virtual Machine) system [7] and the MPI (Message
Passing Interface) standard [18]. The section also describes distributed file I/O using
the NFS (Network File System) [20] and examines the Condor High Throughput
Computing System’s [13] use of RU (Remote Unix) [12] to support distributed I/O.
Both the NFS and RU systems are potential platforms that could be encapsulated
by the piostream library to support distributed I/O. The chapter also describes
an existing object-oriented solution for parallel 1/O, called pC++/streams [9]. The
active object model of concurrency and the implementation environment, ABC++,
are described to provide an understanding of the framework in which the piostream
library is implemented.

2.1 Iostream Library

The iostream library simplifies user I/O operations so that programs are easier to
write, debug, and maintain. The iostream library is high-level and object-oriented,
providing an extensible and easy to use I/O interface that promotes portability and

maintainability. This section describes the C++ iostream library components in-
cluding the output stream (ostream), the input stream (istream), the file stream
classes (ofstream, ifstream, and fstream), and the use of the iostream manipu-
lator functions. The iostream library provides several high-level constructs for I/O
purposes: cout for output to stdout; cerr for output to stderr; and cin for input
from stdin. The fstream library provides several classes that can be instantiated
for file I/O purposes.

Each iostream class consists of three layers. The streambuf class forms the
lowest layer. The streambuf class is a buffer that acts as an intermediary between
the input and output devices and the general I/O system. The ios class is the
middle layer which contains a streambuf object. The ios class acts as a specification
system responsible for formatting and error reporting. The outer layer is a translator
system that converts C++ language typed objects to and from sequences of characters
using the ostream and istream classes [21]. The fstream class architecture is more
complex and is described in more detail in Section 2.1.1

The streambuf class is conceptually a buffer of characters that is divided into two
areas (that possibly overlap). Each area is accessed by a pointer: the get area (for
input) is accessed by the get pointer and the put area (for output) is accessed by the
put pointer. The size of the streambuf buffer can either be dynamic or statically set
at instantiation. The streambuf buffer presents the abstraction of unlimited storage
through the use of several methods that transparently move data in (underflow())
and out (overflow(), sync()) of the buffer’s get and put areas respectively.

The underflow() method is invoked if data is extracted from the streambuf
buffer and the get pointer is at the limit of the get area (e.g., there is no data to be
read in the buffer). The underflow() method attempts to read more data from the
connected input device (stdin for the cin object) and places it in the get area. If
no data is available, the method returns the EOF value. Conversely the overflow()
method is invoked if data is inserted into the streambuf buffer and the put pointer is
at the limit of the put area (e.g., the buffer is full). The overflow() method attempts
to make room in the put area by moving data from the put area to the connected
output device (stdout for the cout object and stderr for the cerr object). If the
data cannot be moved, the method returns the EOF value. The sync() method is
invoked to move the data from the put area to the connected output device. For
instance the iostream manipulator functions that flush the output stream (flush
and endl) invoke the underlying streambuf sync() method. Manipulator functions
are discussed in more detail in Section 2.1.2.

The ios specification class provides error reporting and formatting specification.
The ios class defines various flags that specify the format state of the ios class. For
example, the ios format flags can specify the base number (decimal, hexadecimal,
or octal) or the notation format (scientific or fixed). The ios class also defines error

states that specify the current state (good, bad, fail or end of file condition) of the
underlying streambuf buffer.

The istream and ostream translation classes derive the functionality of the ios
base class and provide translation facilities. These facilities support the translation
of C++ language typed objects to and from sequences of characters. The ostream
class provides an interface for the output of all predefined C++ object types. The
operator<<() friend functions encapsulate the output translation facilities of the
ostream class. The istream class similarly provides an interface for the input of all
predefined object types. The istream class provides several operator>>() friend
functions that encapsulate the input translation facilities of the istream class. The
istream class also provides several get () and getline () methods that extract one or
more characters, up to the specified delimiting character from the streambuf buffer
and insert them into the provided buffer argument. The default delimiting character
is '\n’, the new line character. The difference between the get() and getline()
methods is that the get () methods do not extract the delimiting character from the
streambuf buffer whereas the getline () methods extract and discard the delimiter.

2.1.1 File Streams

The C++ iostream library provides a stream interface for file I/O called the fstream
library. The fstream library makes manipulating files in C++ easier and safer than in
C because of its simple and type-safe interface [4] (pp. 214-218). The fstream library
provides three different constructs for file I/O: ofstream for output only, ifstream
for input only, and fstream for bi-directional I/O. The constructors of the fstream
classes automatically open the specified file. The file can be specified by name or by
a file descriptor of an already open file. The user can explicitly close the file with
the fstream close() method. Alternatively, the destructor closes the file when the
fstream object goes out of scope or is deleted.

The fstream constructs are composed of three layers similar to the iostream
constructs. The lowest layer is the filebuf class which contains a buffer. The
filebuf class acts as an intermediary between the buffer and the attached file. The
fstream_common class contains a filebuf object and defines the common functional-
ity of the input, output, and, bi-directional fstream variants. Both the istream and
ostream translator functions derive the fstream_common class functionality. Each
class provides translator functions for converting C++ typed objects to and from
sequences of characters. The bi-directional class, fstream, derives the functionality
of both the ifstream and ofstream classes.

Files can be opened with a variety of different modes, as listed in Figure 2.1.
These different modes specify conditions regarding the opening and use of a file.
Such conditions as read only, write only, and open an existing file only, can be set.

10

Open Mode Function

ios::in Opensan input file.
Prevents truncation of ofstream.

i 0s::app Opens an output file for appending.

ios::ate Opens an existing file.
Seeks to end of file.
Input or output files.

i 0s::nocreate Open existing file or fail.
i os:: norepl ace Open non-existing file or fail.
ios::trunc Opens afile and deletes the old file

if the old file exists.

i 0s::out Opens an output file.
Without ios::app, ios::ate, or ios::in
ios::trunc isimplied for ofstream.

Figure 2.1: List of available open modes for files with iostream file I/O. Modified
from [4] (p. 217).

These modes can be combined using a bitwise OR.

The ofstream object provides the same interface and methods as the ostream
class. Similarly, the input file stream, ifstream, provides the same interface and
methods as the istream class. The bi-directional fstream construct combines both
ifstream and ofstream interfaces through multiple inheritance. The fstream con-
structs can move the file pointer within the file stream®. A different file pointer exists
for input and output. However both file pointers are synchronized each time the file
stream switches from getting to putting, providing the abstraction of a single file
pointer. The input pointer position can be read with the method tellg(), and set
with the method seekg(). The output pointer position can be read and set with the
methods tellp() and seekp() respectively. The bi-directional class supports both
the read and set position methods for each pointer.

2.1.2 Manipulator Functions

The standard C++ iostream library provides many formatting functions that al-
low precise manipulation of input and output data. Most parallel 1/O facilities do
not, support the standard manipulator functions in a distributed environment. The
following section will briefly describe the existing manipulator functions and discuss

! Although the istream and ostream classes have the capability to seek, the use of the seek()
method with cin or cout is undefined [4] (p. 221).

11

the implementation problems involved in supporting these functions in a parallel and
distributed environment.

The basic iostream library provides many parameterless manipulators. These
manipulators perform such tasks as flushing the output stream (endl, flush), con-
suming white space (ws, skipws), and converting the base of a number (dec — dec-
imal; oct — octal; hex — hexadecimal). Figure 2.2 lists the available manipulator
functions provided by the iostream library. Chapter 3 shows that these manipu-

Manipulator | Chained | Effect

flush Y Flushes the stream.

end| Y Adds anew line character and
flushes the tream.

hex Y Changes integer to hexadecimal.

dec Y Changes integer to decimal.

oct Y Changes integer to octal.

showbase N Indicates numberic base of integer value
(decimal, octal, hexadecimal).

uppercase N Display uppercase A-F for hexadecimal
values and E for scientific values.

showpos N Show plus sign (+) for positive values.

showpoi nt N Show decimal point and trailing zeros for
floating-point values.

scientific N Use scientific notation.

fixed

| eft N Left-align, pad on right.

ri ght Right-align, pad on left.

i nt er nal Fill between leading sign or base indicator
and value.

WS Y Consumes whitespace - same as skipws.

ski pws N Skip whitespace on input.

Figure 2.2: This table lists the parameterless manipulator functions available from the
iostream library. A description of each manipulator is provided, including whether
the manipulator can be chained. Manipulators that cannot be chained can be used
with the setf() and unsetf() iostream methods. Modified from [4] (p. 243).

lator functions are easily overloaded. The overloaded manipulators encapsulate the
required communication facilities used to implement the piostrean library.
A second group of manipulator functions that use parameters are provided in the

12

iostream manipulator library. These manipulator functions support formatting such
as setting the field width (setw), setting the precision of numbers (setprecision),
and the setting and resetting of the format flags (setiosflags, resetiosflags) of
many of the manipulators listed in Figure 2.2. A full list of manipulator functions
that use parameters are provided in Figure 2.3.

Manipul ator Effect

setiosflags(fntflags n) Sets the format flags specified by n.

resetiosflags(fntflags n) Clears the format flags specified by n.

set base(base n) Changes base to n (10, 8, 16)
setfill (char n) Changes thefill character to n.
setprecision(int n) Changes the precision to n.
setw(int n) Changesfield width to n.

Figure 2.3: This table lists the manipulator functions that use parameters available
from the iostream manipulator library (iomanip.h). Note that many of the manip-
ulators listed in Figure 2.2 can be used in a chained invocation with the manipulators
setiosflags and resetiosflags. Modified from [4] (p. 244).

The parameterless manipulator functions can be used in either a direct or chained
fashion by utilizing the iostream methods setf () and unsetf () for direct invocation,
or setiosflags and resetiosflags for chained invocations. Figure 2.4 illustrates
the use of a selected number of manipulators for both direct and chained invocation
approaches.

Manipulator functions that use parameters are difficult to overload because of
the approach used to implement them. First consider the case of a parameterless
manipulator, such as hex. Such a manipulator is a function that takes an ostream
parameter and returns an ostream object. The chained invocation is accomplished by
using an operator<<() function that takes two parameters: an ostream object and
a pointer to a function that itself takes an ostream object parameter and returns an
ostream object. This operator<<() function invokes the passed function and passes
the ostream parameter to it. The hex manipulator first modifies and then returns
the ostream parameter.

The case of manipulator functions that use parameters, however is more difficult.
The operator<<() method is a binary operator that requires exactly two param-
eters. Consequently, the same approach cannot be used to handle parameterized

13

(A) Manipulator | (B) Direct

set preci sion cout . precision(val);
showpos cout.setf(ios::showpos);
showbase cout.unsetf (i os::showbase);
(C) Chained

cout << setprecision(val)
<< setiosflags(ios::showos)
<< resetiosflags(ios::showoint);

Figure 2.4: This diagram illustrates the use of several manipulator functions in both
a direct and chained invocation fashion. (B) shows the manipulator functions listed
in (A) using a direct invocation. (C) shows the chained invocation of the same
manipulators.

manipulators. A one parameter manipulator for example would require: an ostream
object, the manipulator argument, and a pointer to a function that takes two param-
eters (the ostream object and the manipulator argument) and returns an ostream
object. These three arguments cannot be transferred within a single operator<<()
invocation.

To overcome this problem, a temporary object is used that takes the manipulator
parameter as a constructor argument. The subsequent operator<<() invocation uses
the temporary object and an ostream object as parameters. The temporary object
defines the operator<<() function as a friend to allow the operator<<() function to
access the temporary object’s data member. The ostream object is modified using
the data member, and is then returned. By this approach two pieces of information,
the manipulator function name and its argument, can be contained within a single
token of information. More details on this technique are provided in [4] (pp. 171-178).
The problems encountered in implementing parameterized manipulator functions for
use in parallel and distributed environments are described in Section 3.3.4.

2.2 Related Work

Tasks executing on remote hosts often cannot perform I/O with stdin, stdout, and
stderr on the main host because the remote hosts are not connected to these I/O

14

devices. In cases where the main host I/O devices are accessible by remote tasks, syn-
chronization between the multiple tasks becomes a concern. Unsynchronized access
to output devices results in the interleaving of output together. The identification
of each task’s output data is also a problem because the data alone often has no
discernible origin identification. Both of these problems, unsynchronized data inter-
leaving and data origin identification, contribute to difficulty in debugging parallel
and distributed programs. These issues and possible solutions are described in Sec-
tions 3.1-3.2.

Alternatively, multiple objects that input from stdin on the main host must be
coordinated to provide the desired data distribution. Possible distributions include
broadcast, in which all tasks input identical data (if identical input requests are made),
and striped, in which the data is distributed sequentially as each task requests data
(so that no two tasks receive the same data). Striped and broadcast data distributions
are discussed in more detail in Section 4.1. The above concerns provide a framework
for discussion of the PVM system and MPI standard with respect to their support of
remote task I/O operations.

PVM [7], which is a widely used library for parallel programming, provides no
access to stdin on the main host for remote tasks. Each task in PVM is provided
with a stdout sink, a construct that is inherited from its parent task. The PVM run-
time system collects a child’s output and transmits it to the parent task in a run-time
control message. Subsequently, each parent is responsible for its children’s output,
with the main program eventually handling all output data which is output to either
the main host stdout, stderr, or a log file (depending on the implementation). PVM
identifies each task’s output by transparently prepending identification information.
The PVM run-time system marks the end of each task’s output statement to separate
the output of multiple tasks. The main drawback of the approach used in PVM is
that output must first be marshaled and collected into a character array by the user
before being output. Support for user-defined objects and formatting manipulator
functions is not provided because PVM is implemented in C. The added complexity
makes the user program more difficult to port and maintain.

MPI [18] is a standard message passing interface for parallel programming. The
current specification of MPI does not require that all processes provide I/O, nor
does it specify how the stdin or stdout of a process is linked to a particular file
or device [18] (pp. 287-289). The MPI-2 standards document [6] has addressed this
with a chapter on I/O which describes support for collective buffering (shared file
access with synchronization) for remotely executing tasks. Non-collective operations
are also supported but require additional user synchronization to enforce the desired
I/O ordering. The MPI standard supports C and Fortran77 interfaces. Neither of
these interfaces supports the use of arbitrary objects or manipulator functions.

The primary problem with the support provided for distributed I/O in PVM and

15

MPI is that neither provides an easy to use and extensible interface that transpar-
ently supports I/O on user-defined objects or manipulator formatting functions. The
user is required to provide extra synchronization, buffering, and marshaling of data
which increases the programs complexity. The piostream library provides high-level
object-oriented constructs that transparently support synchronized access to I/O de-
vices on the main host for remotely executing tasks. Data origin identification and
synchronized data interleaving are transparently provided by the piostream run-time
system. The high-level object-oriented interface provided by the piostream library
supports I/O on user-defined objects through operator overloading, and the use of
both iostream and user-defined manipulator functions.

Parallel file I/O often involves multiple objects simultaneously reading data or
simultaneously writing data to a single file. Sun Microsystem’s NFS (Network File
System) [17, 20] provides transparent access to remote file systems as if they were local
by mounting a remote file system so that it appears as part of the local file system
directory structure. The NFS works in a heterogeneous environment of operating
systems and networks. The NFS architecture uses a client (a machine that accesses
server resources over the network) and a server (a machine that serves resources to the
network). A machine can be both a client and a server under the NFS architecture.
An NFS server is stateless so that the server does not require information concerning
its clients, transactions previously completed, or which files have been accessed. Each
client transparently provides the server with a file identifier, a starting byte address,
and the length of the transaction in bytes.

In the case of multiple tasks simultaneously reading from the same file, the NF'S
is an excellent solution if the file systems on which the data resides can be mounted.
In some cases however, file systems cannot be mounted for security or administrative
reasons. If the file system can be mounted, the data distribution between clients is a
concern. For example, striped data distribution requires the reading tasks to share a
file pointer so that each client input request reads different tokens of data. However,
the statelessness of the server in the NFS results in no easy method of sharing the file
pointer. Because the clients must maintain any access information, such as the byte
address of the file-pointer, sharing the file pointer between tasks requires explicit
synchronization and communication. The extra synchronization and coordination
complicates the user code which lowers the portability and maintainability of the
program.

The case of multiple tasks simultaneously writing data to the same file is handled
very simply by NFS. File writes are not coordinated because the server is stateless
(and therefore has no knowledge of previous file write operations). Hence the server
cannot eliminate conflicting output of different clients. Explicit user synchroniza-
tion and communication between tasks performing output is hence required in order
to synchronously interleave the file output as desired. The extra synchronization

16

and communication reduces the portability and maintainability of the user program.
The proposed pfstream constructs transparently provide synchronized access to dis-
tributed files for remote tasks so that simultaneous output is synchronously inter-
leaved and not overwritten.

The Condor High Throughput Computing System [13] is a software system de-
signed to utilize unused CPU cycles in a network of workstations. Condor accom-
plishes this by monitoring workstation activity and running programs on idle work-
stations. Upon detection of activity from a participating workstation (e.g., a user
resumes working on that machine’s console), the Condor program is check-pointed
and migrated to another idle workstation. Using this approach, a program is more
likely to finish computation faster than using only the originating machine (which
may be busy). In order to fully utilize Condor’s potential, the program must be
relinked with the Condor library. No actual code modifications to the user program
are required. To allow use of program I/O, the Condor system uses the Remote Unix
(RU) facilities [12] which supports Remote Procedure Calls (RPCs). The use of RPCs
allows remote machines (which may not grant access to the machine’s file system) to
access the originating machine’s file system for I/O purposes. The main host stdin,
stdout, and stderr are also accessible from tasks executing on the remote machine
using RPCs.

RU provides many of the same facilities as the piostream library for distributed
I/O. RU does this through the use of a special C run-time library which provides many
system call stubs that allow system calls on the remote machine to be intercepted,
redirected, and executed on the main host. RU start-up code opens files on the origi-
nating machine that simulate stdin, stdout, and stderr for the program executing
on the remote machine. By intercepting file system calls, RU allows the remote pro-
cess to transparently access files on the main host’s file system as if the process were
local to that host. RU is a powerful facility for distributed computation, but does
have limitations. RU does not support signals or interprocess communication which
eliminates synchronization between distributed objects. Although [12] mentions the
support of multi-process programs is a possible future direction for RU, neither the
current implementation of RU or Condor (which is built on top of RU) appears to
support this. The piostream library could conceivably be implemented on top of RU
to take advantage of RU’s RPC facilities. However, RU does not provide support for
the synchronized access to the main host I/O devices (because RU is intended for
sequential programs). Hence the current implementation of RU is not suitable for
implementation of the piostream prototype. The piostream library transparently
handles access synchronization for stdin, stdout, stderr and files on the main host
for remotely executing tasks.

Gotwals et al. [9], explore the distributed I/O problem by implementing the
d/stream construct in the parallel language pC++ [9]. The d/stream construct is a

17

language-independent abstraction that supports a number of simple primitives which
allow I/O to be performed on distributed arrays with arbitrary object elements. Con-
ceptually, a d/stream is a buffer that is used for intermediate storage between the
user and a file. Using a d/stream, a user is able to insert data into the buffer, then
write it to a file at a later time; or conversely read data from the file into the buffer,
from which it can then be extracted into a distributed array.

The d/stream construct is implemented in the parallel language pC++. The im-
plemented construct is called pC++/stream. Distributed object support is provided
through the use of a compiler dependent feature called collections. A collection is de-
fined as a distributed array of objects with additional underlying infrastructure that
provides support for arbitrary distributed data structures such as trees. A constraint
is enforced that all data read must correspond exactly to data that was previously
written by the pC++/stream library. More specifically, each read and extract op-
eration must correspond in exact order to a previous write and insert operation.
By assigning distributed objects to the same collection, the objects can be output
contiguously to the same file, regardless of their address in memory. Entire ob-
jects or individual elements can be output contiguously, regardless of which node the
data originated from. The pC++/stream construct allows the interleaving of indi-
vidual array elements of multiple distributed arrays that are both inserted into the
pC++/stream before it is written to file.

Gotwals et al. duplicate portions of the C++ iostream interface by supporting
the use of the operator<<() and operator>>() methods which can be extended to
support user-defined objects. However, some limitations are placed on the user. For
example, the interface lacks support for the chaining of I/O method invocations (the
use of several input or output operations in the same C++ statement), there is no
support for manipulator functions, and a special explicit write call must be made by
the user in order to flush the output buffer to a file. pC++/streams, the implementa-
tion of d/streams in the language pC++, is also described for file I/O only, although
the extension of the implementation to support the standard I/O devices would likely
be possible. As a result of these limitations pC++/streams deviates significantly from
C++ iostream interface. An additional drawback is that pC++/streams is based
on a compiler dependent construct, collections, which limits its use. Moreover the
pC++/stream construct requires the use of a parallel file system for data buffering
and transmission in a distributed environment.

The piostream library conversely is based on the interface of iostream which
means that chained I/O and manipulator functions are both supported. The piostream
library does not rely on any language extensions and therefore, depends only on the
use of a standard C++ compiler. Lastly the piostream library file constructs allow
remote objects to perform I/O on the main host file system without dependence on
the use of a parallel file system. The piostream constructs also do not require input

18

files to have been previously written by piostreanm file I/O operations. Any data file
can be used by the piostream file constructs for file I/O purposes which increases
the portability of the data files and the usefulness of the piostreanm library.

2.3 Active Object Model

The current piostream library is implemented using the concept of an active 0b-
ject, although any system supporting multiple threads of control, message passing
and synchronization could be used. A brief description of the active object model
of concurrency is provided to familiarize the reader with the implementation envi-
ronment. Active objects are the product of combining the object-oriented paradigm,
which is concerned with objects, and active messages [1, 22]. Active messages allow
communication and computation to be overlapped, reducing network latency, through
asynchronous communication. Each active object has its own thread of control and
can be created on any processor. An active object has two main components: a
body that defines the active object’s activity including acceptance of RMI (Remote
Method Invocation) requests; and a message queue that is responsible for storing RMI
requests until they are accepted by the active object. The term acceptance is used to
describe an active object’s acknowledgment and execution of an RMI request. Active
objects can request RMIs of other active objects synchronously or asynchronously.
The requesting object, in both cases, blocks until the RMI arguments are packed and
delivered by the run-time system to the destination active object. If the RMI is asyn-
chronous, the active object continues executing; otherwise the active object remains
blocked until the RMI is accepted, and the request is de-queued, processed, and a re-
sult returned. The remainder of this section describes the active object components,
and discusses the issues of active object creation and communication.

2.3.1 Active Object Body

The body of an active object provides its definition for the thread of control. The body
is conceptually a main() method that executes remotely. The body is responsible for:

e Defining the active object’s computation.
e (Creating other active objects.
e Making RMI requests to other active objects.

e Accepting specific RMI requests from other active objects.

19

An active object accepts another active object’s RMI request by de-queuing the RMI
from the accepting active object’s message queue. The active object message queue
is described in the following section.

2.3.2 Active Object Message Queue

Active objects allow inter-object interaction through the use of RMIs whose accep-
tance is controlled by each active object’s body of control. Each active object has a
message queue, or mailbox, which holds all outstanding RMI requests. When an RMI
request is received it is placed into the message queue by the run-time system. Each
RMI can later be accepted, removed from the queue, and processed using a variety
of criteria. RMIs can be accepted on the basis of: RMI type, RMI originator, or
in a FCFS (First-Come First-Served) fashion. The acceptance techniques supported
depend on the implementation of the run-time system. The ABC++ implementation
environment supports selection of RMIs for acceptance based on RMI type in a FCFS
fashion.

2.3.3 Active Object Creation and Lifetime

Active object creation can be done by any existing active object, as well as the original
thread of control, the main() function (called the main program). The active objects
form a hierarchy, with the main program acting as the root node. The properties of
the hierarchy are described in the following section.

2.3.3.1 Active Object Hierarchy

Several properties of the active object hierarchy are depicted in Figure 2.5. The
main program can create one or more active objects as children. Any existing active
object can create one or more new active objects, that are considered children in
the active object hierarchy. The lifetime of an active object is defined by its body
and is independent of both its parent and children (e.g., an active object can exist
beyond its parent’s lifetime). Each active object is identified by a run-time system
technique (which depends on the implementation) rather than through its parent or
its place in the hierarchy. The hierarchy is merely a useful concept for describing
the relationship involved in the construction and destruction of active objects. The
hierarchy is also useful for describing possible I/O data flow models based on an active
object’s relationships with its children and its parent.

20

))

Active Active
Object Object

Active
Object

Active
Object

Active
Object

Active
Object

= - 1
Active Active | Active | Active Active | Active |
Object Object | Object | Object Object | Object |
7z -7 7z -7
- -
-z _ - -
1 i i | i | .
Active | Active | | Active | Active
Object | Objet | | Object | Object

Object Object
© (D)

| Object |
Figure 2.5: This illustration shows the characteristics of the active object hierar-
chy. (A) shows a main program that has created three active object children. (B)
illustrates each active object’s ability to create one or more new active objects. (C)
shows two destroyed active objects, drawn with a dashed line. (D) illustrates the fact
that an active object can outlive its parent. The main program exists until all active
objects have terminated.

2.3.3.2 Main Program

The main program is the original thread of control. The main program can create
active objects and remotely invoke their methods. However, the main program is not
an active object. The main program exists until all active objects have terminated and
is responsible for starting and shutting down the implementation run-time system.

2.3.4 Active Object Communication

Active objects may directly interact with other active objects through RMI requests.
In order to invoke an RMI on another active object, the invoking active object must

21

possess specific information about the remote object. This information includes a
handle or pointer, the method to invoke and any method parameters required. Two
different types of RMIs are possible — synchronous and asynchronous. A brief dis-
cussion of synchronous and asynchronous RMIs is provided because of their effect on
a program’s performance.

2.3.4.1 Synchronous RMI

Synchronous RMIs require the caller to block until the remote method invocation is
accepted, executed, and a result returned. The main benefit of synchronous messaging
is that it allows synchronization between remote active objects. Synchronous RMIs
can lower performance because the caller blocks until the RMI is completed. Many
active objects can potentially end up blocked awaiting RMIs to complete execution.
Consequently the design of the piostream library should minimize the amount of
synchronous RMIs used for inter-object communication.

2.3.4.2 Asynchronous RMI

Asynchronous RMIs do not require the caller to block while the method is being exe-
cuted by the remote host. They do however, require the caller to block until the RMI
parameters are sent to the remote object, after which the caller continues execution.
The benefit of asynchronous RMI is the increased parallelism gained from the limited
blocking of the calling active objects thus permitting computation to be more effec-
tively overlapped. The drawback of asynchronous RMI is that its implementation
may be more difficult due to the extra communication and computation required to
handle the return value of an asynchronous RMI. The return value is complicated to
handle because its value must be inserted into an active object’s address space while
the active object is executing. The run-time system must also be able to intercept
any access of the return value before the result has been returned. A special type of
object, a future, is used to hold the result of an asynchronous RMI.

2.3.4.3 Futures

Futures are used as a container for data objects that are returned asynchronously.
The future object is used to inform the run-time system that a value will be returned
in the future. Upon instantiation of the future object, the run-time system marks
the appropriate future as pending. When the future’s value is returned, the run-time
system marks the future as resolved. If an active object uses a future while that future
is still pending, the active object blocks until the future is returned, at which point
the active object is unblocked and continues executing. The active object proceeds
as normal upon accessing a resolved future.

22

2.4 ABCH+

This section describes the ABC++ implementation of the active object model of con-
currency. The piostream library design must be modified to meet any limitations of
the implementation environment for the development of the prototype. ABC++ is a
class library for parallel programming in C++ [1, 2]. It promotes code reuse through
the abstraction, encapsulation, and polymorphism properties of the Object-Oriented
Programming (OOP) paradigm [14]. ABC++ is written in C++ and requires no
preprocessing, compiler or language extensions. The library is portable and object-
oriented with a concurrency model based on active objects. It presently runs on SUN
workstations, IBM RISC System /6000 workstations and the IBM SP supercomputers.
All active object classes must inherit from the base class Pabc in order to ensure each
active object has the appropriate underlying run-time information. ABC++ sup-
ports both synchronous and asynchronous object interactions through RMIs on both
distributed and shared memory platforms. ABC++ encapsulates the work required
to control threads and synchronize objects thus allowing the user to concentrate on
the semantics of the program. The ABC++ library does not provide parallel I/O
constructs [16]. The library is built on top of MPI and uses the MPI infrastructure to
link each remote active object’s stdout and stderr to the main host window output
device. The start-up and shut-down of the library is invoked explicitly by the user in
the main program, with the functions Pinit () and Pexit (). The remainder of this
section discusses the components and functions of the ABC++ run-time system.

2.4.1 Body Definition

Each active object class inherits a body from the base class Pabc, provided by the
ABC++ class library. The default definition of this body repeatedly accepts any
RMIs requested by other active objects. This action can be overridden by providing
anew main() method. This new body can then perform computations or create other
active objects. The body is also used to initiate communication by performing RMIs
on other active objects or by accepting RMI requests from other objects through its
message queue.

2.4.2 Message Queue

Arriving RMI requests are placed in the active object’s message queue in the order of
arrival. These RMIs can be accepted through two different methods, Paccept (), and
Paccept_any (). Paccept () accepts exactly one RMI, from a list of specified methods
that the active object is currently willing to accept. Paccept_any() accepts the first
available RMI. The different ways of accepting RMIs are illustrated in Figure 2.6.

23

The figure also shows the corresponding RMI requests that would be selected from

1 2 3 4 5 6
Message Queue [slap, kick, dap, dap, run, hide]

Methods Accepted Method Chosen
Paccept_any(); Slap-1
Paccept(run); Run -5
Paccept(siap); Slap-1
Paccept(kick, run, hide); Kick - 2

Figure 2.6: This diagram illustrates various ways to accept RMIs from active objects.
The active object message queue is shown, with the oldest RMI on the left. Messages
accepted are on a FCFS (first-come first-served) basis of available and acceptable
RMIs.

the shown message queue. Both Paccept () and Paccept_any() accept RMI requests
on a FCFS basis. ABC++ does not provide the ability to accept an RMI based
specifically on the identity of the RMI requester [16].

If no suitable RMIs are available in the message queue Paccept () and Paccept_any()
block the active object until a suitable RMI request is made. This blocking accep-
tance limits the design of the piostream library. Fortunately ABC++ also provides
two methods, Ppar_accept() and Ppar_accept_any(), that allow the active object
to continue executing if no acceptable RMI requests are available. These two methods
perform a non-blocking query on the message queue and return a boolean result. The
method Ppar_accept() allows a query for one or more specified RMIs in the mes-
sage queue. Similarly, the method Ppar_accept_any() checks if the message queue
contains at least one RMI and returns a boolean result.

2.4.3 Active Object Creation

The creation of an active object in ABC++ is a two step process. The user first
instantiates a Pabc_pointer template class that acts as a handle for the new active
object. The user then gives the new active object its own thread of control on the
specified host, by invoking the Pabc_create() method with the Pabc_pointer as
an argument, along with any constructor arguments. The host can be allocated
by specifying a particular host or a processor allocation technique. The processor
allocation techniques include random or round-robin with all hosts, only remote hosts,

24

or only the main host. The default technique is round-robin using all available hosts
in the host allocation pool.

The process of creating an active object in ABC++ is illustrated in Figure 2.7.
Figure 2.7A provides a generic function prototype for creating a Pabc_pointer object

Pabc_poi nt er <Acti ve_Obj ect _Type> Poi nt er _narme; (A)
Pabc_creat e(Poi nter_nanme, argl, arg2);

(B) int argl; (C)
doubl e arg2;

/I Create Smart Pointer

cl ass stooge :public Pabc { Pabc_poi nt er <st coge> noe;

/I Constructor Pabc_poi nt er <st ooge> curly;
st ooge(int strength,
doubl e speed){...} /I Create thread of control
eoe Pabc_create(noe, strength, speed);
I Pabc_create(Pproc::local, curly, strength, speed);

Figure 2.7: This diagram illustrates the steps required to create an active object using
ABC++. (A) provides the general function prototype for creating an active object.
(B) defines a simple active object class. (C) shows the code used to create two active
objects. The first Pabc_create() invocation uses the default round-robin processor
allocation technique. The second invocation specifies that the active object should
be created on the main host.

and for using the Pabc_create() method. Figure 2.7B defines a simple class that
takes two arguments for its constructor. Figure 2.7C provides a segment of code that
illustrates the use of the Pabc_pointer object and the Pabc_create() method.

A Pabc_pointer is an aggregate class that consists of a wirtual processor id, an
address in memory and a flag that denotes whether the pointer is currently bound or
not. The virtual processor id specifies the processor the active object is running on.
The memory address specifies where in memory the active object resides.

2.4.4 Communication

ABC++ provides both synchronous and asynchronous RMIs. The use of the ABC+—+
RMI facilities is illustrated in Figure 2.8. The function prototypes for the commu-
nication oriented methods are shown in Figure 2.8A. Figure 2.8B provides a simple
active object class definition with two available methods. The body of another active
object that invokes remote methods on the simple class is shown in Figure 2.8C. The
methods Pvoid () and Pvalue () support synchronous RMIs with zero and one return

25

value, respectively. Similarly, the methods Ppar void() and Ppar_value() support
asynchronous RMIs with zero and one return value. The value returned from an

asynchronous RMI must be stored in a future?, which is supported by the template
class Pfuture.

2Discussed previously in Section 2.3.4.3

26

Pvoi d(Pabc_poi nter, Active_Object::Active_Object_Mthod, argl);
result = Pval ue(Pabc_pointer, Active_Object::Active_Object_Method);
Ppar _voi d(Pabc_pointer, Active_bject::Active_Cbject_Mthod, argl);
Pf ut ur e<i nt > Obj ect ;
bj ect = Ppar_val ue(Pabc_pointer,
Active_bject::Active bject Method, argl, arg2); (A)
. . int strength, hand, arm.length;
cl ass stooge :public Pabc { doubl e speed, distance:
/] Constructor /I Create Smart Pointer
stooge(int strength, Pabc_poi nt er <st ooge> noe;
doubl e speed){...} /I Create thread of control
/I Methods Pabc_creat e(noe, strength, speed);
voi d slap(int hand){ .
{ /] Return variables
ain = hand * strength; doubl e di st ance;
) p B gth Pf ut ur e<doubl e> | ong_di st ance;
doubl e run(doubl e time) /I Synchronous messaging
{ di stance = Pval ue(noe,
P stooge::run, tine);
} return speed * tinme; Pvoi d(moe, stooge::slap, hand);
eoe /I Asynchronous messaging
b (B) | ong_di stance = Ppar_val ue(noe,
stooge::run, tine);
if (long_distance < armlength) {
Ppar _voi d(noe, stooge::slap, hand);
} ©

Figure 2.8: This diagram shows synchronous and asynchronous RMIs using ABC++.
(A) provides the general function prototypes of the synchronous RMI methods,
Pvalue() and Pvoid(), and the asynchronous RMI methods, Ppar_value() and
Ppar_void(). (B) defines a simple active object class with two methods. (C) shows
program code that uses asynchronous and synchronous RMIs with the active object
defined in (B). The Pfuture class is also shown in (C) with the asynchronous RMI
method Ppar_value().

27

Chapter 3

Postream

Our piostream library is designed to solve several problems encountered when using
the iostream library in parallel and distributed environments. The central problem
is that using standard techniques for creating threads of execution on remote hosts
do not properly utilize the proper I/O devices. Each thread’s stdout is linked to
what is essentially an incorrect device for the purpose of performing output on the
main host. If remote threads are created using an rexec system call, a socket is
created and given to the stdout of the thread on the remote host (which is clearly
not the correct device). Thus, using cout would require the programmer to add
special code to their program to coordinate with the main host. The design of the
postream construct alleviates the programmer’s burden of writing special code for
performing I/O in such environments. In addition, the postream library also solves
the problems of unsynchronized data interleaving (which can occur when access to
the output stream is not properly synchronized) and data origin identification (which
means that the source of the output is not identified).

This chapter describes the design and implementation of the high-level object-
oriented postream construct. The chapter describes the problems of unsynchronized
data interleaving and data origin identification which occur when multiple objects
produce output using the same output stream. Several postream designs that were
considered are presented and discussed. The postream client-server model used for
the prototype implementation is presented along with an analysis of related design and
implementation issues. An overview of the postream library prototype architecture
is provided. The modifications required to the postream library to support active
object output to stderr on the main host with synchronized data interleaving and
data origin identification are described at the end of the chapter.

28

3.1 Unsynchronized Data Interleaving

The problem of unsynchronized data interleaving is prevalent in parallel and dis-
tributed programs that use the C++ iostream library. The C++ iostream library
is reentrant but places limitations on how multiple threads interact with output
streams [19]. In order to ensure that the code is reentrant, the iostream objects
written for a multi-threaded environment are synchronized within the scope of the
public member functions of the cout object. In other words, each individual function
call is atomic with respect to access of the output stream. However, the interface of
cout allows for multiple invocations of operator<<() in a single output statement
(as shown in Figure 1.2). Consequently a chained output statement is not performed
atomically — only individual operator<<() invocations are atomic. Hence, when
multiple active objects perform output to the same stream using chained invocations,
the resulting output is in arbitrary order.

To illustrate the problem of unsynchronized data interleaving, consider Figure 3.1
which describes a simple class whose objects are active. The active object’s body uses

class active_object
-
public:
/I Constructor
active_object(int i) :input(i), result(0){ }
mai n()
cout << "lnput of " << input << " received" << endl;
result = get_result(input);
cout << "Result =" << result << endl;
}
private:
int result;
int input;
/I Compute integer result
int get_result(int input){...}
h

Figure 3.1: This diagram defines an active object body that uses multiple chained
output statements.

an input parameter and calls the method get_result(), which returns an integer.
The object then outputs this result using the ostream object cout. The output result-
ing from three of these active objects executing simultaneously is shown in Figure 3.2.
The output in Figure 3.2A is difficult to interpret as the output values are interleaved
and merged together. The same output is shown in Figure 3.2B with synchronized

29

I nput of Input of 388 received receivedl nput of (A)
16 receivedResult = 4Result =

Result = 198

I nput of 8 received <curly:7890: 1> Input of 8 received

I nput of 38 received <npe: 1234: 2> I nput of 38 received

I nput of 16 received <larry:5678: 4> Input of 16 received
Result = 4 <curly:7890:1> Result = 4

Result = 8 <larry:5678:4> Result = 8

Result = 19 (B) <noe: 1234: 2> Result = 19 (C)

Figure 3.2: This diagram shows output from three concurrent active objects executing
code from Figure 3.1. (A) illustrates output with unsynchronized access to the output
stream. The resulting output suffers from the unsynchronized data interleaving prob-
lem. (B) shows the same output with synchronized access to the output stream. The
output still suffers from the problem that its origin is not identified. (C) shows the
same output with synchronized interleaving and data origin identification consisting
of the host name, the process id, and the thread id. The data origin identification
width can be set using a postream manipulator function.

interleaving. The output still suffers from the data origin identification problem. The
output shown in Figure 3.2C uses synchronized interleaving and data origin identifi-
cation consisting of the process id, thread id, and the host name. The example shown
is trivial because of the small number of output statements and concurrent objects.
However, unsynchronized data interleaving problem can be much more serious in the
case of a parallel program with large numbers of concurrent objects each printing
complicated debugging output.

One solution, and the most common solution, to the unsynchronized data inter-
leaving problem is to force the user to coordinate the access of the output stream
through a synchronization mechanism such as a lock or a monitor. This further com-
plicates user code and can be misused because the user is responsible for acquiring
and releasing the lock for each output operation. Hence, the use of a lock or monitor
at the user-level is not an acceptable solution. The postream library transparently
synchronizes access to the output stream thus greatly simplifying the user code. The
postream construct permits data to be interleaved using a suitable granularity such
as the flush of the output stream as shown in Figure 3.2B. The flush of the out-
put stream is handled by the manipulator functions endl and flush through the
postream pout object.

30

3.2 Data Origin Identification

Re-examining Figure 3.2B, the output still suffers from the problem that its origin is
not identified, which makes program debugging and execution more difficult. From
the output alone, one cannot determine which active object produced which result.
Several possible user-level solutions to this problem exist. One solution is to redirect
each active object’s output to a separate output window'. If the parallel system does
not, support output redirection to separate windows, the user can explicitly provide
the necessary mechanisms. User-level output redirection however, adds significant
complexity to the user code which decreases both the portability and maintainability
of the program. Another problem with using separate output windows is that it
does not allow for the output from different hosts to be examined simultaneously.
Sometimes it is useful to examine the output together for debugging purposes such
as determining the ordering between output from different active objects.

A second solution is for the user to add an identification system on the objects
that would subsequently be prepended to each individual output statement (e.g., each
flush of the output stream). This solution adds complexity to the user code and again
makes the program more difficult to port and maintain.

In the postream library, unique identification tags are transparently generated
by the run-time system and prepended to each sequence of output data as shown
in Figure 3.2C. The postream identification tag consists of three variables: the host
name, the process id, and the thread id. The identification tags are created for each
active object by the run-time system. A library that provides data origin identification
and synchronized data interleaving is invaluable for writing and debugging parallel
and distributed programs. Furthermore, such a library contributes to the simplicity
of user code which lowers the cost of code maintenance.

3.3 Postream Architecture

Three different models were considered to solve the problem of data interleaving.
These models conceptualize different approaches of handling each active object’s out-
put data. The first model, called pass to parent, handles data interleaving by forcing
each active object to be responsible for its heir’s output. Ultimately, the main pro-
gram is responsible for all output data and therefore controls the interleaving of the
output data. The second model, called shared lock, synchronizes access to the output
stream using a shared lock. This model requires each active object to have existing
access to stdout on the main host. The third model, called client-server, uses a dedi-

!Treadmarks [11], a popular distributed shared memory system, supports separate window
output.

31

cated active object which executes on the main host to synchronize output to stdout.
We have selected the client-server model for the postream design and demonstrate
its feasibility by using it to implement the postream prototype. Sections 3.3.1-3.3.3
discuss each model by first describing the model and then examining the model with
respect to a number of design issues.

3.3.1 Pass to Parent Model

The pass to parent model requires all output data to be passed from the active object
performing output to the parent of that object. Each active object has a parent,
which is either the main program or an active object in the system. The ancestral
relationship of the active objects forms a hierarchy (as described in Section 2.3).
Output data is transmitted up the hierarchy toward the root object. Therefore, each
active object must maintain the address of its parent object which increases coupling
between the objects. Each active object must receive output from its children and
pass the output to its parent. Ultimately the main program is responsible for handling
all output because it is the ancestor of all active objects. Therefore, the main program
can control data interleaving by synchronizing the output of data that it receives.

Figure 3.3 depicts a hierarchy with the direction of data movement indicated
with respect to each active object. The normal active object hierarchy is shown in
Figure 3.3A. The main program is the ancestor of all active objects and is responsible
for synchronizing the output of data to stdout on the main host. The flaw with this
model is illustrated in Figure 3.3B. Recall from Section 2.3.3 that active objects can
enter and leave the system at any time. Subsequently, active objects that are children
can outlive their parents. The termination of a parent active object before its child,
results in a missing link in the active object hierarchy (as seen in Figure 3.3B). Hence
the child’s output data cannot be transmitted up the disconnected hierarchy to the
main program. Dynamic maintenance of the hierarchy would solve this problem but
would present substantial implementation problems in order to properly maintain
and reorder the hierarchy during program execution. The pass to parent model was
rejected because it does not adequately handle a disconnected hierarchy of active
objects.

3.3.2 Shared Lock Model

The shared lock model uses a shared lock to synchronize access to stdout on the main
host. This model assumes that active objects executing remotely have existing access
to stdout on the main host. The implementation environment, ABC++, supports
direct access to stdout and stderr for all active objects using the underlying MPI
infrastructure. The shared lock can be implemented using an active object server

32

Pass to Parent Architecture
"""" A

ain Program) f
T

Figure 3.3: This diagram illustrates the directional data flow and active object hierar-
chy in the pass to parent model. (A) depicts a normal hierarchy in which each active
object is responsible for its childrens’ output. The main program is the ancestor of
all active objects and hence is responsible for outputting each active object’s data to
stdout on the main host. (B) illustrates the flaw in the pass to parent model. The
termination of a parent object can result in no clear path from its children to the
main program.

or a shared object?. The communication between the shared lock and active objects
performing output is depicted in Figure 3.4. Before any active object can output data
to stdout on the main host, the active object must make an acquire lock request.
When the lock acquire has been granted, the active object may directly output to
stdout on the main host. When the active object completes the output operation,
the lock is released. All lock acquire and release requests are performed transparently
by the run-time system.

Two concerns in the shared lock model include when to acquire and when to release
the shared lock. The desired level of data interleaving was defined in Section 3.1 to
be around the flush of the output stream. Consequently it is logical to release the

2A shared object is implemented through a DSM (distributed shared memory) run-time system.
A DSM system allows an object to exist in multiple address spaces so that the object appears local
to different active objects. The DSM run-time system is responsible for maintaining the consistency
of the object’s data between each address space.

33

Shared Lock Architecture

Direction of Data Flow
_

Acquire/ Release Lock
> =

Figure 3.4: This diagram illustrates the directional data flow and communication
between the shared lock and active objects performing output in the shared lock
model. The shared lock could be implemented using either a shared object or an
active object and hence exists on one host or is shared between each active object’s
address space. This model assumes each active object has direct access to stdout on
the main host. Each active object may only output data to stdout on the main host
after acquiring the lock. The active object is responsible for releasing the lock after
performing output.

lock within the flush manipulator functions (flush and endl) of the output stream.
The decision of when to acquire the lock is not as simple. Two choices are evident:

e Obtain the lock when the active object flushes the output stream.

e Obtain the lock any time operator<<() is invoked and the active object does
not already possess the lock.

The different acquisition approaches are illustrated in Figure 3.5.

Approach 1 requires the active object performing output to buffer data, because an
arbitrary number of operator<<() invocations could be performed (each outputting
data) before the output stream is flushed. For example in Figure 3.5, obj1, obj2,
and obj3 must all be buffered before being output.

34

int obj1;
float obj2;
char obj 3;

Approach 2 acquire

\
pout << obj1l << obj2;

Approach 1 acquire

\l
pout << obj3 << objl << flush;
!
|
{ApproachZacquire M Approach 1& 2 Release }
T T

I I
\)) \l
pout << obj2 << obj3 << flush;

Approach 1 acquire

Figure 3.5: This diagram shows the different approaches of acquiring and releasing
the shared lock on the output stream. Approach 1 acquires the lock during any
operator<<() invocation, if it does not already possess the lock, and releases it on
the flush of the output stream. Approach 2 acquires and releases the lock when the
output stream is flushed.

Approach 2 is easier to implement because it requires no buffering. The lock
is acquired at the start of each output sequence and released when the stream is
flushed. Each token of data is then inserted directly into the output stream on the
main host. However, approach 2 is not very robust or efficient. If the user neglects
to flush the output stream (and therefore does not release the lock) any other active
object that outputs data, and subsequently attempts to acquire the lock, will block
indefinitely. Even if the user flushes the stream properly, the synchronous nature of
lock acquisition impacts performance because the lock is held for a longer duration
of time under approach 2. Hence, approach 1 is a better lock acquisition and release
scheme for robustness and performance reasons.

35

3.3.3 Client-Server Model

The client-server model uses an active object as a dedicated output server to control
the synchronization of active object output. The server executes on the main host
and hence has access to stdout on the main host. Each active object that produces
output is a client of the output server, including the main program. The coordination
and transfer of data required between each client and the output server is handled
transparently by the run-time system.

The direction of data flow and communication between the client and server is il-
lustrated in Figure 3.6. Active objects, which may execute remotely, transmit output

CI ientr—ServerArchitecture : Host A

Main Host
Active Object

Host B
Standard Output
Active Object . - |
Server 0S
Host C

Direction of Data Flow Active Object :

Figure 3.6: This diagram illustrates the directional data flow in the postream client-
server model. A dedicated active object server resides on the main host and accepts
output from active objects that may be executing remotely. The server interleaves the
output and prepends each client active object’s data origin identification consisting
of the process id, thread id, and host name.

to the server. The server controls the data interleaving of the output and prepends
each active object’s output with the appropriate data origin identifiers. The data ori-
gin identification is transferred during the initial communication between the client
and server, afterwhich the server stores the origin information. All data transfers
between the client and server are performed asynchronously which improves the per-
formance of the client-server model over the synchronous communication required
in the shared lock model. The performance improvement is because asynchronous
RMIs increase the parallelism of the active objects performing output compared to

36

the use of synchronous RMIs. Although either the shared-lock model or the client-
server model could be used for the piostream prototype, the client-server model was
chosen because it does not rely on existing access to stdout on the main host for all
remote active objects. The client-server model is hence more portable and is easier
to implement.

The main concern with this model is when to transfer data to the output server.
The following represents two possible choices:

e Approach 1) Transfer the data after a flush of the output stream.

e Approach 2) Transfer the data after each invocation of the operator<<() func-
tion.

The storage and transfer of data using both approaches is illustrated in Figure 3.7
using an example chained output statement.

int obj1;
float obj2;

[Approach 1 store J [Approach 1 transfer J

7 N \\
¥ AN \
pout << obj 1l << obj2 << flush;
~ N -
~_ -

Approach 2 transfer

Figure 3.7: This diagram illustrates the different approaches towards transferring
output data to the output server. Approach 1 stores all data until a flush of the
output stream, at which time the buffer is transferred. Approach 2 transfers each
token of data after each invocation of operator<<().

Approach 1 requires each active object to buffer its output until the flush occurs.
A limit on the size of the client buffer is enforced in a fashion similar to the ostream
object?. If the client buffer’s size limit is reached, the run-time system transparently
transmits the output data to the output server using a remote method invocation.

Approach 2 is easier to implement because no client buffering is required. How-
ever, approach 2 requires more message transfers than approach 1 because each
operator<<() invocation transmits data between the client and the output server.

3The limit imposed in several iostream implementations, including the implementation environ-
ment IBM Cset1.1.1.4 for Solaris is 1024 bytes.

37

Because such messages are usually expensive in a distributed system, approach 1 is
more efficient than approach 2 and is therefore used for the design of the postream
construct.

Using approach 1, if the server receives data from the client because the client’s
buffer has filled, the output server stores this data in a storage buffer located on
the main host. Data received because of the invocation of a flush manipulator is
immediately output to stdout on the main host. The server maintains a vector of
storage buffers, one for each client active object. Each client’s buffer on the server is
indexed by a vector identification key. The server uses a dynamic sized vector to serve
the growing number of clients in the system. The vector starts with a programmer
controlled size and is doubled each time the vector becomes full. An index key is
used by the server to identify each active object performing output. The key is
requested by the client the first time data is transmitted from the client to the server.
The key cannot be requested when the postream object is instantiated because the
message passing facilities of the client active object may not be enabled at that time.
The active object is not fully instantiated until the active object’s data members,
including the postream object, are instantiated. The run-time system transmits the
client active object’s data origin identification to the server object.

Each client’s data origin identification is stored with the client’s storage buffer on
the server. The server then prepends the data origin identification to each client’s
data when it is output to stdout. The storage buffers on the server are also limited in
size. If the buffer size is exceeded, the buffer is flushed to stdout with the appropriate
data origin identification. The handle of the server is inserted by the run-time system
into each newly created client active object. The handle cannot be set by the active
object constructor because the active object is instantiated as a user object. Hence the
active object constructor is invoked by the user and consequently the handle cannot
be included as a constructor argument without changing the user interface. The
output server is created and terminated by the run-time system within the parallel
system start-up and shut-down routines.

As noted in Section 2.1.2, the support of manipulator functions with parameters
is complicated because three arguments must be passed in the binary operator<<()
function. As discussed, the specific manipulator function’s identity must be passed
to operator<<(). Two techniques can be used to represent the manipulator func-
tion name: a global function or a class. Both of these approaches result in limiting
the extensibility of the iostream manipulator functions for parallel and distributed
environments.

For example, consider the case of the setprecision manipulator. If setprecision
is implemented as a function, it takes an integer parameter and returns an ostream
object. Overloading this function for use in a parallel environment results in a func-
tion that takes an integer parameter, and returns a postream object. The overloaded

38

and original setprecision() functions differ only by the type of object returned,
but C++ does not permit overloading by return type alone [5]. Hence, the imple-
mentation of the setprecision() manipulator as a function prevents the extension
of setprecision because the function cannot be properly overloaded.

Now consider the case where the manipulator function’s identity is passed as a
class type. The example manipulator function setprecision is implemented as a
class. This class, which is part of the standard iostream manipulator library, can
not be modified to add parallel functionality*. A second class cannot be defined with
the same class name® to handle the parallel implementation. Clearly using a global
function or a class type with the same name can not be used to provide parallel
versions of parameterized manipulators.

To circumvent this problem, the parallel manipulator library (piomanip.h) is
used in our prototype. This manipulator library is used in lieu of the sequential
iostream manipulator library (iomanip.h). It should be noted that the use of both
the piomanip and iomanip libraries in the same compilation is undefined®. This re-
quires the parameterized manipulator function to be used only with the piostream
library. The piomanip library fully reimplements the iomanip library but adds dis-
tributed support for the manipulator functions that require parameters (as described
in Section 2.1.2). The piomanip library supports all of the iomanip manipulator
functions with the same manipulator names and a chained interface.

The postrean client-server model supports the extensible iostream interface that
allows the output of user-defined classes through operator overloading, the chaining
of operator<<() functions, and the use of output manipulator functions. All actions
performed on behalf of the clients as related to output are transparently supported by
the postream library and the underlying run-time system. The code at the user-level
simply uses pout in the same fashion as cout is used.

3.3.4 Architecture Overview

The postream client-server architecture has a client and a server component. The
server runs on the main host. The client is a data member of each active object and
resides where the active object is executing. The major components of the server
and client are described in this section. The interface of the client and server can be
found in Appendix A.

4The required addition would be to declare the overloaded operator<<() function as a friend of
the setprecision class.

5The exception to this is the concept of namespaces [4, 5]. Namespaces allow the duplication of
class names in different scopes. Manipulator functions exist in the same global scope and hence,
namespaces cannot be used to solve the problem.

6The likely result is a compilation error due to either a type or a method conflicts.

39

Server Architecture: The server component of the postream library is a single
class, postream server, which uses several smaller classes for implementation. A
single object of this class, po_server is instantiated to act as the output server. The
server body continually accepts RMIs from clients until it receives a terminate RMI
from the run-time system. The postream_server class contains a dynamically sized
vector of buffers, one per client, for storing output data. If the vector becomes full,
it is doubled in size. Each client is assigned a buffer when the run-time system first
transfers the client’s data to the output server. Each buffer is also dynamically sized
with an initial size of zero. Each buffer has a size limit which if reached results in
the data in the buffer being flushed to stdout. The client’s data origin identification
information is stored with the client’s respective buffer on the server.

When a client transmits data to the server, a boolean flag is used to indicate
whether more data is expected in the current output sequence. An output sequence
is considered to be all of the information between two sequential flushes of a client’s
output stream. Therefore, the end of any particular sequence is signified by the flush
of the client’s output stream. Hence, more data would be expected if the transfer of
data occurs because of an overflow of the client’s local buffer. If the user does not
flush the output stream, the data is buffered on the client until an overflow occurs,
and the run-time system transfers the data to the server for storage in the appropriate
server buffer. The overflow of a server buffer results in the immediate flush of the
data to stdout on the main host with the appropriate data origin identification. If
more data is expected, the data is stored on the server in the client’s storage buffer
using the client’s key as an index in the vector. If no more data is expected, the server
outputs the client’s data origin identification, the contents of the client buffer on the
server and the data transmitted with the flush (which has not been inserted into the
server buffer) to stdout on the main host. The server maintains another boolean
flag for each client which is used to suppress or show the data origin identification
when the client’s data is output. This flag can be modified through a public method
using the postream manipulator functions hideid and showid. All postream server
methods are used through the postream client interface and are invoked by the run-
time system on behalf of the client. The postream_server supports the following
methods:

e Request key (request Key()) — this public method allows a client to obtain
a unique identification key for communicating with the server. This method is
invoked by the run-time system the first time output data is transferred to the
server. This exchange can not be performed at object creation time because
the active object communication mechanisms may not have been instantiated
at this time. This method takes the client’s identification information (host
name, process id, and thread id) as parameters.

40

e Transfer data (transfer Data()) — this public method is invoked by the run-
time system to transfer data to the server for output to stdout. The client’s
index key and output data are provided as arguments. A flag specifying whether
the passed data buffer is the last of the current sequence is also provided.

e Transfer function (transfer Function()) — this public method is invoked
by the run-time system to transfer manipulator function information to the
server. All postream manipulator functions that are based on the standard
iostream manipulator functions are invoked on the client side of the postream
construct using the client buffer. Therefore, the transfer Function() method
does not require knowledge of these iostream based manipulator functions.
The postream specific manipulator functions such as hideid and showid, are
supported by the transfer_Function() method because they directly affect the
postream server’s behaviour. Each postream specific manipulator function is
identified through the use of an enumerated type. The run-time system provides
the index key and manipulator function’s enumerated value as arguments.

o Flush all buffers (flush_A11()) — this private method is invoked by the server
before terminating. All buffers on the server are flushed in sequence using data
interleaving and the appropriate data origin identification.

e Shut down server (terminate()) — this public method is invoked by the run-
time system to shut down the server.

Client Architecture: The client component of the postream library consists of
one class, postream. At first glance, extending the existing ostream class through
inheritance seems to be the best approach for the design of the postream class.
However, several problems exist with this approach.

The main problem with extending the ostream class through inheritance is the
ostream construct’s dependence on the operator<<() friend functions. These friend
functions comprise a significant portion of the ostream library user interface. The
friend operator<<() functions cannot be extended through inheritance because they
are not member functions of the ostream class. Therefore, to support the same
interface the postream library can either use the existing ostream operator<<()
friend functions or create new versions by method overloading. Both approaches do
not work because:

e Using the existing ostream operator<<() functions causes a problem with
upcasting when used in chained invocations because the end1l and flush func-
tions are typically used at the end of a chained invocation. The overloaded

41

postream flush and endl functions encapsulate the required facilities for com-
munication with the output server in order to preserve the iostream interface.
The upcasting problem is illustrated in Figure 3.8. The existing operator<<()

// Postream class (A)
class postream public ostream {

I
/I Ostream operator
ostream & oper at or <<(ostream &os, obj 0);

postream pout ; (B)
int obj1;
int obj2;

postream
|
v
pout << obj 1l << obj2 << flush;
\ I\ /

~__-- ~ -

ostream ostream

Figure 3.8: This diagram illustrates the problem encountered using the existing
ostream operator<<() functions with the derived postream class. (A) shows the
derived class postream which publically inherits the base class ostream, including the
friendship of the operator<<() functions. In (B), the postream object pout is in-
stantiated. The pout object is used in a chained invocation with two objects and the
flush manipulator function. The chained invocation uses the postream object as an
argument, but, the object is upcast into an ostream object by the first operator<<()
function. The operator<<() function returns the ostream object which is used in
subsequent operator<<() function invocations in the chain. The ostream flush
manipulator function is invoked at the end of the chain instead of the postream flush
manipulator function. The ostream flush manipulator function does not support
the required communication with the output server.

function takes an ostream object as an argument. Because postreanm is inher-
ited from ostream, the postream object is accepted as an argument for the
first operator<<() invocation. However, the postream object is upcast into
the more general ostream object. This ostream object is returned and used
by subsequent operator<<() invocations in the chain. The operator<<() in-
sertion functions still behave properly because the data is inserted into the
underlying streambuf because a postream object is an ostream object and
therefore inherits the streambuf contained in the ostream class. However,
when the flush manipulator function is invoked at the end of the chained in-

42

vocation the ostream version of the flush function will be invoked rather than
the postream flush function. The ostream flush and endl functions do not
support the necessary communication with the output server. Hence, using
the existing ostream operator<<() functions is not an acceptable solution for
implementing the postream class in a distributed environment.

e Using overloaded ostream and postream operator<<() functions leads to the
problem that the compiler cannot distinguish between the two functions. Both
the existing ostream and overloaded postream versions of the operator<<()
functions are shown in Figure 3.9. Both versions have two parameters, an in-

cl ass postream public ostrean{ (A)

s

ostream & operator<< (ostream & os, obj 0); (B)
. 4

: E B]]

postream |ISA ostream SAME SAME

L. . . I I
Y

postream & operator<< (postream &pos, obj 0);

Figure 3.9: This diagram illustrates the problem encountered with using inheritance
and overloading operator<<() functions. Class postreanm is publically inherited from
class ostream as shown in (A). Both operator<<() functions are shown in (B). Each
operator<<() function has two parameters: the output argument and an ostream
or postream object respectively. The postream object is an ostream object however
and consequently the compiler cannot determine which function to use because the
function prototypes are indistinguishable.

teger and an ostream or postream object respectively. Recall however, that
a postream object is an ostream object because postream is publicly inher-
ited from ostream. Consequently the compiler cannot distinguish between
the overloaded functions and will not compile a program with both function
declarations. Therefore overloading the operator<<() function is also not an
acceptable solution.

The main advantage inheritance provides is code re-use. However, even if the problem
of the ostream operator<<() interface could be solved, the extension of the ostream
class is still complex. Due to these complexities, the inheritance approach was rejected
and a new postream class was implemented that parallels the ostream class. This
approach is simpler and easier to implement for our prototype.

43

Each client active object contains an object of the postream class named pout.
This is implemented in the prototype by adding a data member, pout, to the root
class in ABC++. Since all user active object classes inherit from ABC++’s root class,
Pabc, every client contains a pout object as a data member. This object, pout, then
acts as an interface between each active object and the postream_server object.

Data members of the postream class include the index key provided by the
postream_server object, the handle of the postream server object, and a storage
buffer. The handle of the server is used to access the processor id, and the machine
name or Internet address of the output server. The postream class supports both the
output of user-defined objects (through overloading) and manipulator functions.

The interface and behaviour of the postream methods are similar to their ostream
counterparts. The postream class supports the following methods:

e Set address of po_server (set_P0S_Server()) — this private method is invoked
by the run-time system to set the postream server handle which consists of
the server run-time host and memory address.

e Get client identification (get_Identification()) — this private method is in-
voked by the run-time system to gather the client active object’s host name,
process id, and thread id for data origin identification. The data origin iden-
tification is transmitted to the server by remotely invoking the server method
request_Key () on the server.

e Output operator for predefined types (operator<< {predefined type}) — this
public method allows the client to insert all predefined data types (except char-
acter strings) into the local buffer. Character strings are handled separately
because of their arbitrary size.

e Output operator for character strings (operator<< {character string}) —
this public method is used to insert character strings into the buffer. If the
character string is too large to fit into the client buffer, it is divided and trans-
mitted to the postream_server by remotely invoking the postream server
method transfer_Data() on the server.

e Output operator for manipulator functions (operator<< {manipulator fun-
ction}) — this public method is used to invoke manipulator functions including
endl and flush in a chained fashion. The passed manipulator function is
invoked with the postream object as an argument.

e Manipulator functions (flush, endl, hex, etc.) — these manipulator func-
tions implement the parallel variants of the standard iostream manipulator
functions. The parallel manipulator functions invoke their standard iostream

44

counterparts which set the appropriate format fields on the underlying postream
client buffer. These manipulator functions are invoked in a similar manner to
their sequential counterparts. Many of these functions can also be invoked in
chained or unchained fashion as described in Section 2.1.2.

e Set function (setf()) — this public method is used to set manipulator functions
such as showbase and showpos.

e Unset function (unsetf ()) — this public method is used to unset manipulator
functions such as showbase and showpos.

e Send data (send Data()) — this private method encapsulates the transmission
of data to the output server by invoking the postream_server remote method
transfer_Data() on the server.

e Send function (send_Function()) — this private method encapsulates the in-
vocation of postream specific manipulator functions on the output server by
remotely invoking the postream_server method transfer Function() on the
server.

e Show / Hide data origin identification (showid/hideid) — these manipula-
tor functions allow the client to suppress the data origin identification that
is prepended to each client’s output data. These manipulator functions are
invoked by the client in a fashion similar to standard manipulator functions.

3.4 Perr

UNIX provides a second output device for error messages because of the need to
distinguish between normal output and error messages. The C++ standard iostream
library supports this distinction by providing a second ostream object cerr. Hence,
the piostream library should also provide a construct that outputs to stderr on the
main host. Although active objects can use the standard iostream object cerr to
output to stderr on the main host, the output will suffer from the problems of data
interleaving and data origin identification, described in Sections 3.1-3.2. Hence, by
providing a perr object, the piostream library provides data interleaving and data
origin identification for error messages that are output to stderr on the main host.
The following section will describe the modifications to the postream client-server
architecture that are required to support output to stderr on the main host with
synchronized interleaving and data origin identification.

45

3.4.1 Perr Architecture

The server component of the perr construct is handled by the postream server
class previously described. The postream server is modified to support output to
either the stdout or stderr device on the main host. The same postream_server
object is used for both the pout and perr constructs. The postream server method
request_Key() is modified to take an additional parameter, a flag that specifies the
appropriate output device, stdout or stderr. The flag is stored with the client’s
buffer on the server in addition to the client’s data origin identification information.
The server uses the flag to determine the appropriate output device for each client’s
output’. The output device used by the postream construct is set by the run-time
system when the postream object is instantiated. The instantiation of the perr
object is handled using the same technique as pout. A perr object of type postream
is added as a data member of the active object root class in ABC++.

3.5 Summary

This chapter presented an overview of the design and implementation of the postream
component of the piostream library. Active objects that execute on remote hosts
often cannot output to stdout on the main host because remote cout and cerr
objects may not be connected to meaningful output devices. The user must provide
complex buffering and coordination between active objects in order to perform output
to stdout or stderr on the main host. If remote active objects can access stdout
and stderr on the main host, the user must still provide data origin identification and
enforce synchronized data interleaving to ensure that the output is coherent. This
adds complexity to the user code which lowers portability and maintainability.

The postream construct provides parallel and distributed output facilities for
remotely executing active objects. The postream run-time system transparently pro-
vides support for all data transfer, buffering, and synchronized access to stdout and
stderr on the main host. Data origin identification and data interleaving is provided
by the postream run-time system for each active object performing output. The
postream construct provides a similar interface and behaviour as the C++ ostream
construct. At the user-level, active objects simply use pout or perr to output data
to stdout or stderr respectively. As in C++4, operator<<() can be overloaded at
the user-level. An example of the postream syntax using the pout and perr objects
is shown in Figure 3.10. The postream library is an object-oriented solution that

"Note that each active object can represent two clients on the postream_server if output is
performed with both pout and perr. Each object has a different buffer and destination, which
requires a different index number, and hence each can represent a different client.

46

int mass;
fl oat accel eration;
float force;

if (mass < 0){
perr << "Negative mass is not permtted" << endl;
exit(0);
pout << "The mass of the object is "
<< setprecision(0) << mass
<< " kg." << endl;
pout << "The object’s acceleration is
<< setiosflags(showpos) << accel eration
<< " metres per second squared." << endl;
pout << "The force of the object’s inpact is " << flush;
force = float(mass) * acceleration;
pout . preci sion(6);
pout . setf(scientific);
pout << force << " Newtons. << endl;

Figure 3.10: This diagram illustrates the syntax used to output with the postream
pout and perr objects. Integers, floats, and character strings are output using a
chained invocation. Various formatting manipulator functions are used with both
direct and chained invocation techniques.

offers significant advantages to programmers for writing and debugging parallel and
distributed programs. The postream construct simplifies user output operations and
hence, increases the portability and maintainability of the user program.

47

Chapter 4

Pistream

Like sequential programs, many parallel and distributed programs also require input
to perform meaningful computations. Although program input is often obtained from
files, reading data from the user console is also common for the purposes of user input.
A file can also be easily redirected to stdin allowing the user to input data from files.
In a distributed environment however, the use of stdin by active objects residing on
remote machines is often not meaningful because cin objects on the remote host are
frequently not associated with stdin on the main host. Little attention has been paid
to techniques for providing input from stdin on the main host to tasks executing on
remote hosts. In many parallel and distributed systems, the use of stdin by remote
tasks is often either not uniformly supported [18] (pp. 287-289) or is simply not
supported at all [8]. Remote Unix allows remote stdin access by invoking a shadow
process that intercepts remote system calls and redirects them to the program’s host
of origin. More detail on Remote Unix is provided in Section 2.2. Remote Unix could
potentially be used as an underlying run-time system for the piostream library but
the current version of Remote Unix does not support inter-process communication.

In most existing systems, delivering input from the user console or a file! to threads
executing on several different hosts is simply not possible. Instead the user must first
read and buffer the input on the main host. They must then co-ordinate the sending
and receiving hosts, and somehow transmit the data to the desired objects. Clearly
this approach increases the complexity of the program and hence, makes the program
harder to port and maintain. High maintenance levels impact the overall cost of a
software project. Our implementation environment, ABC++, only provides stdin
access to active objects that are specifically directed to execute on the main host.
However, in a distributed system most active objects execute on remote hosts and
hence they lack access to stdin on the main host.

!Through redirection to stdin.

48

Ideally, the user should be able to use cin remotely with a similar interface and
behaviour as in a sequential program. The parallel input stream, pistream, is a
component of the piostream library that is designed for easily performing input
operations on remote active objects in a parallel or distributed environment. The
pistream library reads data from stdin on the main host, and transmits the data
to requesting active objects that may be executing on remote hosts. All buffering,
synchronization, and the sending and receiving of data is handled transparently by
the pistream library run-time system.

This chapter describes the design and implementation of the high-level object-
oriented pistream construct. The chapter describes two different modes of data
distribution between multiple active objects. Broadcast mode distributes identical
data to requesting active objects while striped mode distributes the data sequentially
to requesting active objects. A discussion is provided of the pistream client-server
model and is followed by an analysis of various design issues. An overview of the
pistream library prototype architecture and implementation issues is provided at the
end of the chapter. One implementation problem found was that the IBM Cset1.1.1.4
for Solaris implementation of the iostream library cannot detect EQOF properly for
redirected empty files. This problem exists in the IBM Cset iostream library and
subsequently exists in the piostream prototype because of the dependence of the
piostream library on the iostream library.

4.1 Data Broadcasting and Striping

Input data is contained in a single stream from which various active objects request
input. The input data from this single shared stream can be distributed in a variety of
ways to active objects requesting input. Two common distribution techniques result
from the two possible approaches to sharing the stream: each object can have an in-
dependent stream position or all objects can share the same stream position. If each
object has an independent position in the stream, the resulting data distribution is
called broadcasting. Broadcasting transmits each token of information to all request-
ing active objects. For example in a matrix multiplication program, all computing
objects require a complete copy of one matrix. Conversely, if all active objects share
a single stream position that progresses through the stream as data is extracted, the
resulting data distribution is called striping. Striping transmits tokens of information
to requesting active objects in a FCFS fashion. In the matrix multiplication example,
a second matrix is usually split between several objects on a row by row, or a column
by column basis. Striping allows each active object to input an entire row or column
so that no other active object performing input receives the same row or column.
The broadcast and striped data distributions are illustrated with an example in

49

Figure 4.1. A string of input tokens is shown in Figure 4.1A. This string is read

Input String (A)

1/2[3]a/5]6]7/8]9].

Broadcast ®) Striping ©
AOM[1]2[s[a]s[e[7]sfo]..] | AOL [1]2]s]7] |
AO2l1]2]sf4a]s[6]7]8o]..] | A2 [s]e].]
A%3[1]2]sfalse[7[s]o}. | | A3 [afefo]]

Figure 4.1: This diagram illustrates different approaches of distributing data between
active objects. (A) represents a sample sequence of input tokens. (B) displays the data
distribution between three active objects resulting from broadcasting. Broadcasting
provides identical data to all requesting active objects. (C) displays an example data
distribution between three active objects using striping. Striping provides sequential
data to requesting active objects on a FCFS basis such that no active object receives
the same data.

and distributed to three active objects that request input (as shown in Figure 4.1B
and Figure 4.1C). When using a broadcast approach, as shown in Figure 4.1B, the
input string is provided identically to all three active objects. Figure 4.1C displays
an example of the data that might be received by the three active objects through
the striped distribution technique. In this case the data is distributed and consumed
on a FCFS basis with a shared stream position so that no active objects receive the
same data.

The pistream design does not allow the use of both broadcast and striped data
distributions in the same program execution. The semantic difference in the use of
stream positions in each distribution mode presents a problem for run-time switching
between data distribution modes. Switching from striped to broadcast mode is trivial
because the single stream position used in striping would become the independent
stream position for each active object in broadcast mode. Switching to striping
mode from broadcast mode however, poses the problem of creating a single shared
stream position from multiple independent stream positions. The value of the single
stream position could be determined in one of several ways. For example, the stream
position could be either the position of the object that requested the mode change or
the position of the object that has read the most data. The use of the most advanced
position would ensure that no active object’s stream position regresses. Regressing

20

in the stream could result in the same data being read a second time. The ideal
stream position cannot be determined by the run-time system because only the user
can decide the desired behaviour. Hence, the pistream design only allows one data
distribution mode to be used in a single program execution. The data distribution
mode is set with a command line parameter and defaults to the broadcast distribution
mode.

Broadcast mode uses multiple independent stream positions for each active object
performing input. An initial stream position must be set for each new active object.
The easiest solution, and arguably the best solution, is to initialize each stream posi-
tion to the beginning of the input stream. Therefore, each active object is ensured to
receive identical data in broadcast mode. Assuming each active object makes identical
input requests. However, this solution potentially requires the entire input stream to
be buffered during program execution however, which can result in significant mem-
ory overhead. Even if all existing active object clients make progress reading data, a
new client that requests data requires access to the entire sequence of input from the
beginning token. A potential solution to the memory overhead required would be to
cache the input buffer in a temporary file if a size limit is exceeded. The drawback to
this solution would be the lower access speed of accessing the cached file. However,
if the amount of input is sufficiently large, the user should use file I/O rather than
redirection to stdin.

The pistream library support of broadcast and striped data distribution modes
simplifies user programs. The pistream library transparently provides all necessary
buffering and transmitting of data, in addition to providing the coordination between
active objects required to distribute input data in either a broadcast or a striped
fashion.

4.2 Pistream Architecture

As in the case of postream, the architecture of pistream is based on a client-server
model. In this section we first present the client-server model and then provide
a discussion of the issues involved in the design of the pistream construct. The
pistream architecture uses a separate server object than the postream construct,
due to the semantic differences in pistream and postream client-server interactions.
Asis the case with istream, the pistream object blocks when requesting data. Hence,
the pistream RMIs are synchronous and conversely, the majority of the postream
RMIs are asynchronous.

ol

4.2.1 Client-Server Model

The active object server is instantiated on the main host so that the server can access
stdin on the main host. The server is primarily responsible for two tasks. The server
must read data from stdin and serve client RMI requests for input. The server must
alternate between these two tasks by checking if any client RMIs are pending and
by polling for data on stdin. The server continually reads data from stdin, stores
it in the server’s data buffer, and serves client RMI requests for input. If the server
data buffer grows too large, it is cached to a temporary file on the main host. The
input server has sole access to stdin. For this reason, the main program is also a
client of the pistream server. The directional flow of data in the client-server model
is illustrated in Figure 4.2. As mentioned in the previous section, the client-server

Client-Server Architecture Hogt A
Main Host

Main Program
000oooooooooo ooo
Active Object
Server

Direction of Data Flow
R —

Active Object

Standard Input

000000000000 000

Active Object

Active Object

Figure 4.2: This diagram illustrates the directional data flow in the pistream client-
server model. A dedicated active object server resides on the main host and reads
input from stdin which is also on the main host. The server buffers and distributes
data to requesting remote active objects and the main program.

model supports both the broadcast and striped distribution techniques because it has
sole access to the input stream.

Another concern is if the server accepts a client RMI request for data that cannot
be completed because no data is available for the requesting object. This occurs when
the client’s stream position is at the end of the server’s data buffer (i.e., the client has
read all of the input that has been made available to the server). In the sequential
iostream library, the object requesting input blocks until data becomes available.
Blocking until data is available in striped mode is an acceptable solution because
the next input read must be given to the blocked client in order to comply with the

92

FCFS data distribution of striping. However, blocking is not acceptable in broadcast
mode. Recall that broadcast mode uses multiple independent stream positions. Other
client stream positions may not have reached the end of the server’s data buffer, hence
other client’s RMI requests for data may still be served, even if the current client RMI
request cannot be completed. The problem is therefore that the server can process
only one RMI at a time (in order to satisfy FCFS) and while the currently executing
client RMI cannot proceed (because no data is available), other client RMI requests
can proceed because data may be available. This problem is solved through the use
of nested RMI acceptance. Nested RMI acceptance allows an active object to accept
and execute an RMI while an RMI request is being processed. For example, an active
object could accept an RMI on the method foo() while method foo() could accept
an RMI request on another method, including foo () itself.

Another concern is how the server should react if no RMIs are pending and no data
is available on stdin. If the server continually loops while polling for data on stdin
and for RMI requests in the message queue, busy waiting results. Busy waiting is the
concept of keeping the CPU busy while it waits for some event. Busy waiting usually
lowers performance and should be avoided if possible. Ideally, the server should block
until data is available on stdin or a client RMI is requested. Blocking for both of
these conditions simultaneously is not possible because one condition involves the
run-time system (RMIs in the active object message queue) and the other condition
involves an operating system device (data available on the stdin stream). Hence, the
server must not block until data is available on stdin or until client RMI requests
are received.

e If the server blocks until data is available on stdin, the server can become
permanently blocked. If all the program data has been input when the server
blocks, the server will never unblock. Subsequently, the blocked server cannot
accept and serve client RMI requests. Therefore, the server must not block until
data is available on stdin.

e It is acceptable for the server to block until a client RMI is received and input is
being consumed in striped mode. The server blocks until an RMI is requested,
which maintains the FCFS data distribution of striping. However, in broadcast
mode, if the server blocks until an RMI is received, the server can enter a dead-
locked state. Because broadcast mode allows nested RMI acceptance (to solve
the no data available problem), it is possible that all active objects performing
input could become blocked if their RMI requests become nested on the server.
If no input data is available on stdin, the server will block until another RMI
is requested by a client. However, it is possible, that no more RMIs will be
requested. All the clients performing input could be nested already (and there-
fore blocked) and consequently no more RMIs will be requested. If the server

23

blocks until another RMI is requested, it cannot input data from stdin that
is required to complete the nested RMI client requests. The pistream system
is now deadlocked because the server is waiting for a client RMI request and
the client objects are blocked until the server reads more input data. Therefore
having the server block on client RMI requests is also not a valid option for
preventing busy waiting (in broadcast mode).

The solution used to prevent busy waiting is to temporarily block the server between
polling attempts. The server provides a method to control the length of time the
server blocks between polling attempts. If the user wants the input server to busy
wait, they can set the server wait time to zero through the pistream client interface.

Another concern in the pistream library design is the amount of message passing
between the client and server. Traditionally message passing is very expensive in
a parallel and distributed system. Consider a line of input that is composed of
several tokens (words, integers, and floats). Each operator>>() function invocation
inputs a single token of data and therefore requires the client to communication
with the server once for each token. In order to improve performance, the pistream
object maintains a buffer on the remote host on which the client active object is
executing when broadcast mode is used. The buffer caches an entire line of input.
By buffering the line of input, the number of messages is reduced because the entire
line is retrieved with one RMI request rather than using an RMI request to retrieve
each individual token. Because each active object inputs the same data in broadcast
mode, the ordering of input obtained by each object is not affected. However, caching
is not supported in striped mode because the ordering of data would be affected. For
example, consider two active objects that input integers from stdin. If caching is not
used, the first object to input would read the first integer, the second object to input
(not necessarily the second active object) would input the second integer. Caching
of input would alter this because the first object would input the first integer but
would also cache the first row of integers on the client side. The second object would
subsequently read the first integer of the second row (and cache the remainder of the
second row on the client side). Hence caching cannot be used in striped mode because
it alters the order of input received.

However, because caching is not used in striped mode, pistream methods that
query the state of the input stream, such as eof () and peek(), are not guaranteed to
be valid for the querying object’s next input operation. A second object may input
from the shared stream and therefore change the state of the stream from the result
sent to the first object.

The pistreamn client-server model is also extensible. The model supports the input
of user-defined classes through operator overloading, the chaining of operator>>()
functions, and the use of input manipulator functions. All necessary interactions

o4

between the client and server are performed transparently by the piostream library
run-time system. The code at the user-level simply uses pin in the same fashion that
cin is used in sequential programs. Unless explicitly stated, all client object actions
stated here are performed by the run-time environment on behalf of the client objects.

4.2.2 Architecture Overview

The pistream client-server architecture has a client and a server component. The
server runs on the main host. The client is a data member of each active object and
resides where the active object is executing. The major components of the server
and client are described in this section. The interface of the client and server can be
found in Appendix A.

Server Architecture: The server component of the pistream library is primar-
ily implemented within a single class, pistream_server, which uses several smaller
classes for the underlying implementation. A single object of this class, pi_server,
is instantiated to act as the input server. The pistream_server class contains a
buffer for storing input for the program. This buffer grows dynamically when input
is inserted in either the striped or broadcast distribution mode. In broadcast mode, a
vector of stream positions is maintained, one per client. Each client’s stream position
is added to the vector when the run-time first requests an identification key on behalf
of the client. An initial default size is used, and is doubled each time the vector
becomes full. When a client requests data, a lookup is performed to determine the
appropriate stream position. The server then seeks to the client’s read position in
the buffer. The corresponding data is then returned to the client. The client’s new
stream position is stored back into the appropriate vector location. In striped mode,
a single stream position is used to read from the buffer. The server’s stream position
changes as each client’s RMI request is served.

The implementation environment, ABC++, does not support nested RMI accep-
tance because the FCFS order of RMI completion cannot be guaranteed when using
asynchronous RMIs. For example, consider an active object that requests RMIs asyn-
chronously on another active object. If the accepting active object nests RMI requests
and hence executes multiple RMI invocations simultaneously, the order of RMI com-
pletion will be LIFO (last-in first-out) instead of FCFS. However, if only synchronous
RMIs are used, each active object can only synchronously request a single RMI at any
one time (the object blocks until completion of the RMI) and therefore FCFS order
can be maintained. The additional methods PI0_accept() and PIO_accept_any()
were implemented to provide nested RMI acceptance. Nested acceptance is safe for
use in the pistream library because the client-server model for the pistream con-
struct uses only synchronous RMIs, hence FCFS order is maintained. Because these

95

nested RMI acceptance methods are only used by the I/O library, the FCFS invoca-
tion behaviour of the active object model is not violated.

Polling for data on stdin is complicated due to the possibility of redirected files.
Console input can be detected through polling the stdin read state using the UNIX
system call select(). Unfortunately, this technique does not work correctly for
redirected file input because the select () call incorrectly reads the availability of
data on the stdin stream when a file is redirected. The select() call incorrectly
returns the result that data is available, even if the EOF condition is present, and no
more data is available. Conversely, the iostream method eof () can detect the EOF
character, however, console input does not use an EOF value . Consequently, eof ()
cannot be used to determine data availability with console input. Hence, in order to
detect available data from either the console or a redirected file, both approaches are
combined. Data availability is detected through the read state of stdin and the state
of the EQF bit.

The server also has a data member that defines the length of time the server
should block between polling stdin and checking for client RMI requests. This time
can be modified by the user using a public method. In the prototype implementation,
temporary blocking is implemented using the UNIX system call usleep(). All public
pistream server methods are invoked through the pistream client interface by the
underlying run-time system on behalf of the client. The pistream_server supports
the following methods:

e Request key (request_Key()) — this public method allows a client to obtain
a unique identification key for communicating with the server. This method
is invoked by the run-time system the first time an input attempt is made by
each active object. The method cannot be invoked when each active object
is instantiated because the active object communication mechanisms may not
have been instantiated at this time.

e Request data (request Data()) — this public method is invoked by the client
run-time system to request data. The client’s index key and a delimiting charac-
ter are provided as arguments. In broadcast mode, the server provides a string
of data, delimited by the specified character — with the default being the new
line character. The use of line oriented input supports a similar interface and
behaviour as the istream library and is discussed further in following section.
In striped mode the maximum length of the desired input string is also pro-
vided. This length allows the server to provide striped input by returning the
properly sized string. The conversion of data from character string to C++
data type is handled on the client side of the pistream client-server model.

e FExtract delimiter (extract Delimiter()) — this private method is invoked by

26

the server’s Read_data() method. The method is used to extract the delimiting
character from the server buffer. The delimiter is then concatenated with the
Read_data() return value.

e End of file (eof ()) — this public method is invoked by the run-time system and
performs the same function as the eof () istream method. The method returns

the condition of the EOF bit for the client’s stream position in the server’s data
buffer.

e Poll for data on stdin (poll_ Available Data()) — this private method is
invoked by the server to determine if data is available to be read from stdin.
The technique used can detect input from either the console or a redirected file.

e Read data (read Data()) — this private method is invoked by the server when
data is detected on stdin. A line of data is read and inserted into the server’s
data buffer.

e Set wait time (set_Wait_Time()) — this public method is invoked by the run-
time system to set the length of time the input server blocks between polling
for data on stdin and handling RMIs in the message queue.

e Block temporarily (wait()) — this private method is invoked by the server if
no RMIs are pending and no data is available on stdin. The method uses the
usleep() system call to block for wait_time length of time. The wait_time
value can be modified by the Set_wait_time() method.

e Shut down server (terminate()) — this public method is invoked by the run-
time system to shut-down the server.

Client Architecture: The client component of the pistream library is imple-
mented using one class, pistream. Extending the istream class through inheritance
is not possible for the same reasons as discussed for postream in Section 3.3.4. Each
client active object contains an object of the pistream class, named pin. This is im-
plemented in a fashion which is similar to postream, by adding pin as a data member
of the root class Pabc in ABC++.

The pistream class contains a buffer that is used to cache a line of input data.
The get() and getline() methods allow the user to specify a delimiting character.
This character is used to bound by context the data string extracted by the get ()
and getline() methods. The delimiter default value is the new line character ’\n’
which works well with the line-oriented caching of the pistream object in broadcast
mode. However, if the user invokes get() or getline() with a different delimiter,
the desired input string could require more data than is in the cache. This occurs if

57

the cache size is smaller than the specified number of characters to be read and the
delimiter is not encountered in the cache. For example, the requested data includes
all the data in the current client cache and one or more characters that are still
stored in the server’s buffer. The run-time system transparently handles this problem
by requesting additional data from the server until either the requested number of
characters are read or the delimiting character is encountered. The requested data is
concatenated by the run-time system with the initial cache data stored on the client
to produce the proper result. This solution provides the same interface and behaviour
as the standard iostream library get() and getline() methods. In striped mode,
the maximum length of characters to be read is also specified to ensure the input is
properly striped.

Other data members of the pistream class include an identification key provided
by the pistream server object and the handle of the pistream server object. The
pistrean class supports both the input of user defined objects (through overloading),
and manipulator functions. The interface and behaviour of the pistream methods
are similar to their istream counterparts. The methods supported by the pistream
class include the following:

e Set address of pistream server (set PIS Server()) — this private method
is invoked by the run-time system to set the pistream_server handle, which
consists of the server process id (host name or Internet address) and memory
address. This must be done by the run-time system for transparency reasons
as discussed for the postream object in Section 3.3.4.

e Input operator for predefined types (operator>> {predefined type}) — this
public method allows the client to extract data from the line of input cached
by the client into the requested data type. In all input methods, if the in-
put request cannot be completed because the client cache lacks enough data,
the client run-time system transparently requests more data by invoking the
pistream server’s request_Data() method.

e Input operator for manipulator functions (operator>> {manipulator funct-
ion}) — this public method is used in a similar manner as the operator<<()
functions for manipulator functions described for the postream class. The
passed manipulator function is invoked on the client side with the pistream
object as an argument.

e Input character(s) (get()) — these public methods allow the user to input
either a single character, or a number of characters until a delimiter character
is encountered (Several overloaded versions exist. See [21](pp. 120) for more
details). The delimiting character is not extracted from the input buffer similar

28

to the istream get () method. Each get() method’s interface and behaviour
is similar to its respective istream counterpart.

o Input next line (get_1ine()) — these public methods allow the user to input a
single line, or a number of characters up to the delimiting character. (Several
overloaded versions exist. See [21](pp. 120) for more details). These meth-
ods have the same behaviour as the pistream get() methods except that the
delimiting character is extracted and thrown away. Each getline() method’s
interface and behaviour is similar to its respective istream counterpart.

e Ezamine next character (peek()) — this public method allows the user to ex-
amine, without extracting, the next character of the input buffer. The returned
value is of type integer in order to allow the EOF value to be returned.

e Manipulator functions (ws, hex, etc.) — these functions implement the pistream
versions of the standard istream manipulator functions. These functions are
invoked in a similar manner as their istream counterparts.

e End of file (eof ()) — this public method allows the client to obtain the con-
dition of the EOF bit for the client’s stream position in the server’s data buffer.
The run-time system transparently invokes the server’s eof () method.

e Set wait time (set_Wait_Time()) — this public method allows the client to set
the length of time the server blocks between polling for data on stdin and
handling RMIs in the server’s message queue. The run-time system transpar-
ently invokes the server’s Set_wait_time () method with the given value as an
argument.

4.3 Summary

This chapter presents an overview of the design and implementation of the pistream
component of the piostream library. The pistream library is a high-level object-
oriented construct that simplifies user input operations and therefore, increases the
portability and maintainability of the user program. Active objects that execute on
remote hosts often cannot input using stdin because cin objects on the remote host
are not associated with stdin on the main host. Users must provide complex buffering
and coordination between active objects to facilitate data distribution to remote active
objects. The pistream construct provides parallel and distributed input facilities
for remotely executing active objects. The pistream run-time system transparently
provides support for data transfer, buffering, and distribution in a broadcast or striped
fashion. The pistream construct provides an interface and behaviour that is similar

29

to the C++ istream construct. At the user-level, active objects simply use pin to
input data from stdin. As in C++, operator>>() can be overloaded at the user-
level. Manipulator functions are used as in C++. An example of the pistream syntax
using the pin object is shown in Figure 4.3.

int mass;
fl oat accel eration;
doubl e vel oci ty;
char buf[size];
/I Input mass, velocity and acceleration, skipping white space
pin >> ws >> mass >> velocity >> accel eration;
/I Turn off white space skipping
pi n. unset f (i os:: ski pws);
// Set input server poll timeto 0.5 seconds
pin.set_wait_tine(500000);
/I Read in data until end of fileis reached
while (! pin.eof()){
pi n.getline(buf, size);
pout << "lnput [" << buf << "] received." << endl;

}

Figure 4.3: This diagram illustrates the syntax used to obtain input using the
pistream pin object. An integer, float, and double are input using a chained in-
vocation. The chained ws manipulator is used to skip white space. White space
skipping is turned off by directly invoking the unsetf() method and the skipws
manipulator function. The pistream server poll time is set to 0.5 seconds (the wait
time is in micro seconds). Finally the program reads in data in fixed size segments
(because no white space is skipped) and printed to stdout using the postream object
pout.

60

Chapter 5

Pfstream

Many parallel and distributed programs use file I/O for reading input and writing
results. A major concern is that active objects executing on remote hosts may not be
able to access the main host file system. The main host file system is considered the
most important file system because it is the environment where the main program
is executing. The NFS (Network File System) provides support for the sharing of
different machine’s file systems. It is possible however that file systems cannot be
mounted for either security or administrative reasons. Another potential difficulty
with the NFS is the coordination required to support active object file I/O with a
shared single file pointer. The statelessness of the NFS server requires any coordi-
nation to be performed explicitly by the user. For these reasons the NFS is not a
suitable solution for high-level distributed file I/O. A second concern is the low-level
interface supported by many parallel and distributed systems. For example, PVM
and MPI both require the user to explicitly convert data from C++ or user-defined
types to character strings for output purposes. Hence in addition to the difficulty of
parallelizing the program, the user must add extra code to perform any required data
buffering, transferring, and synchronization between an object that has access to the
main host file system and remotely executing active objects that perform I1/O. This
added complexity makes the user program more difficult to port and maintain.

The design of the proposed parallel file stream constructs alleviates the program-
mer’s burden of buffering and transmission of data in parallel and distributed envi-
ronments. As is the case in the sequential iostream library, three different high-level
object-oriented file stream constructs are proposed: pifstream for input, pofstream
for output, and pfstream for cases where both input and output operations are per-
formed on the same file. These constructs comprise the pfstream library which is a
high-level object-oriented solution that provides the familiar C++ iostream interface
for file I/O. The proposed pfstream library allows multiple active objects to output
to the same file, even if the active objects are not executing on hosts that have access

61

to the main host’s file system. The library also provides data origin identification for
output written to files in the same manner as described for postream.

Many of the issues involved in the design of the pfstream library are similar to
issues encountered in the postream and pistream constructs. This chapter describes
the design of the object-oriented pfstream library with a focus on issues concerning
the support of parallel and distributed file I/O. These issues include:

e The modes supported for multiple active objects to simultaneously access the
same file. By simultaneous we mean that at least two client objects overlap the
open() and close() file operations. The pfstream library supports indepen-
dent and shared file stream positions.

e The tracking and representation of open files required to support shared access
to the same file by multiple clients.

e The simultaneous use of different access modes on the same file by different
active objects.

e The opening of the same file multiple times by the same active object.

An overview of the proposed pfstream client-server architecture and class hierarchy
is provided at the end of the chapter.

5.1 Issues in the Design of the Pfstream Library

The architecture of the pfstream library is based on a client-server model. The single
server may create a bottleneck that can impact the performance of the program. The
objective of the pfstream library is not to provide a high-performance solution to the
I/0O bottleneck. Rather, the pfstream library is intended to support distributed I/O
through high-level constructs, hence reducing the complexity of writing, debugging,
and maintaining parallel and distributed programs. In this section we discuss the
client-server model and the issues involved in the design of the pfstream library
followed by an overview of the pfstream library architecture.

5.1.1 Client-Server Model

An active object server is instantiated on the main host so that the server can access
the main host file systems. Although other hosts may have access to these file systems
using for example NFS, only the main host is guaranteed to have access to its own
filesystems. The server is responsible for performing I/O on files residing on the
main host file system and serving client RMI requests. Unlike the postream and

62

pistream constructs which must provide access to a well-defined number of I/O
devices (stdout, stderr, and stdin), one pfstream object is instantiated for each
file that is opened by an active object. The number of simultaneously open files is
bound by the operating system’s limit on the number of open file descriptors available
to a single process (the active object server). Because the active object server handles
all file I/O requests, the total number of open files for all clients is bound by this
limit. The server is responsible for opening, reading, writing, and closing each file
as requested by the client active objects. Although the main program can access
the main host file system directly, it is also possible for the main program to act as
a client of the server for access synchronization purposes and to provide a uniform
interface for all client objects. The directional flow of data in the client-server model
is illustrated in Figure 5.1. The server is responsible for accessing files for input,

Client-Server Architecture
Main Host Host A
Active Object
Input Main Program
FileX \
— Host B
Output v
FileY - - : ’
Active Object] »| Active Object
e
Input/Output /
Filez
Host C
Direction of Data Flow Active Object
_——

Figure 5.1: This diagram illustrates the directional data flow in the pfstream client-
server model. A dedicated active object server resides on the main host and performs
I/O on files on the main host file system. The server serves I/O requests from remote
active objects and the main program. Unlike the postream and pistream server, the
pfstream server is responsible for serving both input requests and output requests
through instantiated pfstream objects (pifstream, pofstream, and pfstream).

output, and bi-directional 1/0.

Access Modes: The pfstream library supports two access modes: independent
access in which each client has an independent file stream position; and shared ac-
cess in which all participating clients share the same stream position. An extra file

63

open mode is provided that specifies the desired type of access. Independent and
shared access are similar to broadcasting and striping which are described in Sec-
tion 4.1. However, independent and shared access can also be applied to output and
bi-directional file streams. Shared access provides synchronized interleaving of I/0O
requests for each client active object. The run-time system transparently provides
the required active object coordination, buffering, and data transmission. Indepen-
dent access supports independent stream positions for each client, but the user must
ensure that the active objects do not interfere with each other which could result
in the overwriting of data. The user must provide this synchronization because the
run-time system cannot determine the behaviour desired by the user.

Tracking and Representation of Open Files: A major concern of the pfstream
construct is determining when the same file is opened by different clients. Each file
opened by the pfstream server must be tracked and identified. Several approaches
are possible for representing files that are opened simultaneously by multiple clients.
The first approach is to maintain a iostream fstream object for each client. A sec-
ond approach is to use a single fstream object and a table of file stream positions for
seeking within the file. Using multiple fstream objects is easier to implement than
sharing an fstream object between clients (which may request different open modes).
Moreover, the necessary seeking involved in the second approach could create signif-
icant overhead. However, using a separate fstream object for each client requires a
larger number of file descriptors to be used, which could limit the pfstream library’s
usefulness because of the limitation on the number of files that can be opened si-
multaneously. A modification of the multiple fstream approach can eliminate this
hindrance and is used for the pfstream design. This modified approach uses an
fstream object to represent each client, but each fstream object shares the same file
descriptor (assuming the same file is opened). Sharing file descriptors is accomplished
with the fstream method attach() using a file descriptor of an opened file as an
argument.

When an open file request is made by a client object, the server must search the
table of file names to determine if the requested file is already open. If the file is
not open, the server opens the file using an fstream object, stores the file’s name,
descriptor, and open modes. If shared access is specified, the server sets the number
of file clients to one. If the file is already open, and the request is for independent
access, a new fstream object is attached using the existing file descriptor. Clients
using shared access to a file would use the same fstream object and subsequently
the same file stream position. If the open request is for shared access, the server
increments the number of clients using the file. Conversely when a client makes a
close file request, the server deletes the fstream object (if access is independent) or

64

decrements the appropriate file’s client count (if access is shared). If the number of
clients sharing a file reaches zero, the file is closed by the server and removed from
the table of file names.

Conflicting Access Modes: The problem of conflicting open modes' is a more
difficult issue. Two client objects may open a file with one or more conflicting open
modes. For example, Client A may open file foo with the open modes: independent
access and input only. Client B may subsequently (before Client A closes file foo)
open the file with the open modes: shared access, output only, and append mode.
In this case the open modes conflict (independent — shared, input only — output
only, no append — append). The server has a variety of options including: using
the file’s original open modes (independent access and input only), changing the file’s
open modes to the requested open modes (shared access, output only, and append),
permit each client to maintain a distinct set of modes that guide the client’s access, or
throwing a C++ run-time exception. Enforcing one client’s open modes on a second
client is not a valid solution because the second client will not have the expected
semantic behaviour. Hence, the first two options are not suitable for our design. The
use of client specific open modes simplifies the problem because only clients that share
access can conflict. In shared access the conflict must be solved by the use of run-time
exceptions. Even the use of shared and independent stream positions on the same
file can be accommodated using client specific modes. All clients that request shared
access must use the same open mode settings. The user is responsible in all cases for
ensuring that the desired semantics are maintained by the client objects.

Multiple Open: Active objects can open the same file multiple times using one
instantiation of a pfstream object for each file stream. Each pfstream object is
treated as a separate client by the pfstream server.

5.1.2 Architecture Overview

The pfstream client-server architecture has a client and a server component. The
server runs on the main host. Each client is instantiated by an active object to interact
with a single file (at a time). The client resides where the active object is executing.
The major components of the server and client are described in this section.

Server Architecture: The server component of the pfstream library is primarily
a single class, pfstream server. A single object of this class, pf_server, should be

'File open modes are used to specify the semantics desired for the file stream such as read only,
write only, and open an existing file only. File open modes are described in Section 2.1.1

65

instantiated to act as the remote file I/O server. The server must maintain a table of
open file names as well as a table of fstream objects and their corresponding open
modes. The server provides public methods for opening, reading, writing, and closing
files. The server also supports public methods for reading and setting the file stream
position. These methods are invoked remotely by the client active object through
the client pfstream object interface. The pfstream _server supports the following
methods:

Open file (open()) — this public method allows a client to open a file on the
main host. An index value is returned to the client for subsequent communica-
tion with the server. If shared access is requested, and the file is already open,
the client’s file stream is attached to the corresponding file descriptor.

Attach file (attach()) — this public method is invoked by the run-time system
to attach the specified file descriptor to the client file stream.

Read data (read Data()) — this public method is invoked by the run-time
system to read and return data from the specified file

Write data (write Data()) — this public method is invoked by the run-time
system to transfer data to the server for output to the specified file.

Read stream position (tell()) — this public method is invoked by the run-time
system to read the stream position in the specified file. Either the get or put
stream position is specified by a boolean argument.

Set stream position (seek()) — this public method is invoked by the run-time
system to change the stream position in the specified file. Either the get or put
stream position is specified by a boolean argument.

End of file (eof ()) — this public method is invoked by the run-time system
and returns the status of the EQF bit for the specified file.

Close (close()) — this public method is invoked by the run-time system to
close the specified file. The server closes the specified file if the requesting client
is the last file stream attached to the file.

Shut down server (terminate()) — this public method is invoked by the run-
time system to shut down the server.

66

[pf st ream conmon]

pi fstream pof st ream

pf stream

Figure 5.2: This diagram illustrates the pfstream class hierarchy. The
pfstream_common base class defines the required communication and synchronization
facilities required to support distributed file I/O. The derived classes pifstream and
pofstream define the input and output methods required to support the iostrean file
I/O interface. The pfstream bi-directional class uses multiple-inheritance to derive
both the pifstream and pofstream class functionality.

Client Architecture: The client component of the pfstream library consists of
four classes: pfstream common, pifstream, pofstream, and pfstream which are il-
lustrated in Figure 5.2. The pfstream class hierarchy is similar to the C++ iostream
fstream class hierarchy. The pfstream_common class is the base class of the hierarchy
and encapsulates the communication and coordination facilities required to support
distributed file I/O. The input file stream, pifstream, and the output file stream,
pofstream, are both derived from the pfstream common class. The pifstream and
pofstream classes define the methods that support the iostream file I/O interfaces.
The bi-directional file I/O class pfstream derives both the pifstream and pofstream
interfaces through multiple inheritance. Extending the C++ fstream classes through
inheritance to support distributed file I/O is not possible because of the problems
caused by the non-member function operator<<() and operator>>() interface as
discussed in Section 3.3.4 for the postream class.

The data members of the pfstream common class include a file index and the han-
dle of the pfstream server object. The file index is used to identify the appropriate
file in the pfstream_server’s table of file names. The interface and behaviour of all
the pfstream class (pofstream, pifstream, and pfstream) methods are similar to
their fstream counterparts. The pfstream common class supports:

e Set address of pf_server (set_PFS_Server()) — this private method is invoked
by the run-time system to set the pfstream server handle which consists of
the server run-time host and memory address.

67

e Open file (open()) — this public method allows the client to open a file on
the main host. The file is specified by either file name or a previously opened
file’s descriptor. The run-time system transparently invokes the server’s open()
method.

e Close file (close()) — this public method allows the client to close the specified
file. The run-time system transparently invokes the server’s close() method.

e Attach file stream (attach()) — this public method allows the client to attach
the file stream object to the specified file descriptor corresponding to an opened
file on the main host. The run-time system transparently invokes the server’s
attach() method.

e End of file (eof ()) — this public method allows the client to obtain the con-
dition of the EQF bit for the client’s stream position in the specified file. The
run-time system transparently invokes the server’s eof () method.

e Read Stream Position (tell()) — this public method allows the client to read
the position of the client’s get or put pointer in the specified file. The run-time
system transparently invokes the server’s tell() method.

e Set Stream Position (seek()) — this public method allows the client to change
the position of the client’s get or put pointer in the specified file. The run-time
system transparently invokes the server’s seek () method.

The pofstream class has the same interface as the pfstream_common base class and
the postream class. Similarly, the pifstream class has the same interface as the
pfstream common base class and the pistream class. The pfstream class inherits
the interface of both the pofstream and pifstream base classes.

5.2 Summary

This chapter presented an overview of the design of the pfstream component of
the piostream library. The proposed pfstream constructs provide parallel and dis-
tributed 1/O facilities for remotely executing active objects that access files with
shared or independent file stream positions. The pfstream library supports a sim-
ilar interface and behaviour as the C++ fstream library. At the user-level, active
objects simply instantiate a pfstream object (pifstream, pofstream, or pfstream)
and input or output data in a similar manner as in C++. I/O for arbitrary objects is

68

supported through overloading of operator<<() and operator>>() functions. Ma-
nipulator functions can be used as in C++. The pfstream run-time system trans-
parently provides support for data transfer, buffering, and synchronized file output
operations.

69

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we describe the design and prototype implementation of an object-
oriented C++ streams library designed for use in parallel and distributed environ-
ments. The piostream library provides support for performing I/O operations with
active objects that may be executing remotely. Without the piostream library, the
user is often required to buffer data and coordinate each active object before send-
ing and receiving data from the I/O devices to the remote objects performing I/0.
Moreover, the user must explicitly direct the active objects to send and receive the
data. This explicit buffering, synchronization, and communication increases the pro-
gram’s complexity. In turn the increased complexity lowers the program’s portability
and maintainability which makes writing, testing, and debugging the program more
difficult. A major portion of the cost of the software development life cycle can be
attributed to the maintenance of a software program after its implementation [14, 23].
Hence, significant development costs can be reduced by increasing the maintainability
of a software program.

The piostream library provides support for active objects that execute remotely
to perform I/O operations that use stdin, stdout, stderr, and the file-system on
the main host as if these devices were local to the executing objects. High-level con-
structs are provided for output (pout, perr), input (pin), and file I/O (pfstrean,
pofstream, pifstream). At the user-level, these constructs are used in the same man-
ner as their iostream counterparts (cout, cerr, cin, and fstream). The piostream
library transparently provides any buffering, synchronization, and data transmission
required for active objects that may execute remotely to perform I/O operations using
the main host I/O devices.

The aspects that make the piostream library particularly useful for debugging,

70

executing, and maintaining parallel and distributed programs and hence the main
contributions of this thesis are:

The piostream library provides high-level constructs pin, pout, perr, and
pfstream so that users are not required to construct, send and receive elaborate
messages in order to perform I/O with active objects that may be executing
on remote hosts. The piostream library transparently performs all necessary
buffering, synchronization and data transmission. Therefore, user programs are
reduced in complexity which results in increased portability and maintainability.

A simple and familiar interface is provided to reduce the potential for errors that
would be caused by learning and using a new interface for I/O operations. The
piostream library supports the same interface as the standard C++ iostream
library including the chaining of operator<<() and operator>>() functions,
support for user-defined classes through overloading, and all iostream manip-
ulator functions.

Unlike many existing systems, the piostream constructs are built using and are
fully compatible with standard C++ which means no special compiler support
or preprocessing is required.

Synchronization is an integral part of the piostream library and the underlying
run-time system. Therefore, the user is not required to synchronize access
between multiple objects and I/O streams on the main host.

Mechanisms are provided for automatically and transparently identifying the
source of active object output. Output being printed by active objects executing
on multiple remote hosts is collected, collated and printed to a screen or file
on the main host along with information identifying the host name, process id,
and thread id of the active object performing the output.

Input and output constructs can be used on any remote host. The piostream li-
brary provides mechanisms for distributing input in either a broadcast or striped
fashion. The piostream library transparently provides remote active objects
with access to stdin on the main host. This access is simply not possible in
most existing systems with users being required to explicitly read, buffer and
send the data to each remote active object.

Access to the main host file system is provided for active objects executing
on remote hosts. Cross-mounting different file systems may not be possible
for administrative and security issues. The piostream library transparently
supports synchronized access to files. Executing active objects on remote hosts

71

provides the necessary framework for the piostream library to support file I/O
on the main host.

The piostream library demonstrates that a familiar and natural interface can be
provided for remote I/O operations. The design of the piostream library is object-
oriented and encapsulates the buffering, synchronization and communication required
to support remote I/O operations. Hence, the piostrean library is portable and can
be used to support remote I1/O operations for any parallel and distributed system us-
ing the active object model of concurrency. Although the design and implementation
of the piostream library is described in terms of C++ and the active object model of
concurrency, the library can be adapted for any object-oriented concurrency model.
Moreover, the piostream library demonstrates that remote I/O can be supported
without requiring special compiler support or language extensions. The piostream
library is implemented in and is fully compatible with standard C++.

The design process of the piostream library illustrates the complexity of providing
useful remote I/O facilities such as output data interleaving and input data distri-
bution modes. The required level of control over the flow of data to support these
facilities introduces bottlenecks through the client and server interactions. The per-
formance impact of these bottlenecks is a concern during the design of the piostream
library. Subsequently the use of shared locks and synchronous RMIs is limited in the
piostream design because of their impact on the parallelism of the program.

The design of high-level file I/O constructs illustrates the difficulty involved in sup-
porting bi-directional file I/O operations. Many of the synchronization issues involved
in bi-directional file I/O depend on user semantics. For example, the synchronization
of file data between active objects that read and write to the same file is largely the
user’s responsibility. Enforcing an explicit synchronization scheme will not provide
the desired semantics for all users. Subsequently, the piostream library strives to
provide an object-oriented flexible solution to this and other problems encountered
in supporting file I/O in a parallel and distributed environment.

6.2 Future Work

This thesis presents the design of the piostream library. A prototype of the piostream
model was implemented within the ABC++ concurrent library to demonstrate that
the piostream library design is sound and that it can be applied to a parallel and
distributed system based on the active object model. Many of the existing iostream
methods have been implemented to provide a working prototype. The next logi-
cal progression for the piostream library involves a full implementation that would
include:

72

e Implementing all existing iostream methods and providing full iostream func-
tionality within the piostream architecture. Because of the size of the iostream
library, the full iostream interface is not supported in the prototype. Instead
partial support was implemented to demonstrate the piostream library design’s
feasibility.

e Developing methods that provide the user with some control over buffer sizes.
For example, the method pistream::set_wait_time() provides the user with
control over the length of time between pistream server polling attempts.
Similar methods should be developed that provide control over the size of the
pistream, postream, and pfstream client and server buffers.

e Examine the feasibility of integrating the different parallel server objects into a
single entity. Initial study of this issue suggests that the parallel input, output
and file I/O client-server semantics are not compatible. The input server RMIs
are synchronous (the client active objects block while waiting for input data)
while the output server RMIs are asynchronous (the client active objects block
only long enough to send the output data to the server). The use of RMI
polling and nested RMI acceptance however, could provide the necessary tools
to design a single parallel I/O server. The use of a single server for I/O however,
increases the potential bottleneck in the distribution of data between remote
active objects and the main host.

e Implement run-time exception handling for the piostream library. Most ex-
ceptions can not be recovered from and therefore output an error message to
stderr before shutting down the piostream run-time system. The prototype
supports some exceptions which are thrown by the server if an invalid client
index is received.

e Conduct performance tests comparing equivalent user programs that use the
piostream library and the iostream library. We wish to show that the piostream
run-time support of the necessary data buffering, transmission, and synchro-
nization is comparable in performance with user-level solutions using only the
iostream library constructs. The testing should compare the performance of a
program using the piostream library with a program that uses the iostream
constructs along with user-level buffering, synchronization, and the explicit
sending and receiving of data between active objects.

The piostream library design allows tasks that may be executing remotely to
access stdout, stderr, stdin, and the file system on the main host for I/O purposes.
Data buffering, transmission, and object synchronization is transparently provided

73

by the piostream run-time system. Safe, multi-threaded access to stdin, stdout,
stderr and the filesystem on the main host is supported using an interface and
behaviour similar to the standard C++ iostream library. At the user-level, the
user performs I/O with pin, pout, perr, and pfstream in the same manner as their
iostream counterparts.

The piostream library demonstrates that parallel and distributed I/O can be
supported using a standard and familiar interface. Moreover, parallel and distributed
I/O can be supported without the use of compiler and language extensions. The
piostream library provides intuitive and powerful high-level object-oriented con-
structs that can offer significant benefits to programmers when writing, debugging,
executing and maintaining parallel and distributed programs.

74

Bibliography

[1] E. Arjomandi, W. O’Farrell, I. Kalas, G. Koblents, F.C. Eigler, and G. Gao.
ABC++: Concurrency and Inheritance in C+4. IBM Systems Journal,
34(1):120-136, 1995.

[2] E. Arjomandi, W. O’Farrell, and G.V. Wilson. Smart Messages: An Object-
Oriented Communication Mechanism. In 2nd Conference on Object-Oriented
Technologies and Systems (COOTS), pages 233-240, Toronto, Canada, June
1996.

[3] D.T. Barnard, R.C. Holt, and J.N.P. Hume. Data Structures: An Object-Oriented
Approach. Holt Software Associates, Toronto, 1995.

[4] B. Eckel. Thinking in C++. Prentice Hall, New Jersey, 1995.

[5] M.A. Ellis and B. Strousstrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[6] MPI Forum. MPI-2: Extensions to the Message-Passing Interface. Tech-

nical report, (available at http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html), 1997.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Networked
Parallel Computing. The MIT Press, Cambridge Massachusetts, 1994.

[8] G. A. Geist and V. S. Sunderam. Network-based concurrent computing on the
PVM system. Concurrency: Practice and Ezperience, 4(4):293-311, June 1992.

[9] J. Gotwals, S. Srinivas, and D. Gannon. pC++/streams: a library for I/O on
complex distributed data structures. In Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 11-19,
Santa Barbara, July 1995.

75

[10] J. Gotwals, S. Srinivas, and S. Yang. Parallel I/O from the User’s Perspective.
In Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel
Computation, pages 129-137, 1995.

[11] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Distributed
shared memory on standard workstations and operating systems. In Proc. of
USENIX, 1994.

[12] M. Litzkow. Remote Unix - Turning Idle Workstations into Cycle Servers. In
Proceedings of Usenixz Summer Conference, pages 381-384, June 1987.

[13] M. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter of Idle Worksta-
tions. In Proceedings of the 8th International Conference of Distributed Comput-
ing Systems, pages 104-111, June 1988.

[14] B. Meyer. Object-Oriented Software Construction. Prentice Hall, New Jersey,
1988.

[15] N. Nieuwejaar and D. Kotz. Low-level interfaces for high-level parallel I/O. In
Proceedings of the IPPS ’95 Workshop on Input/Output in Parallel and Dis-
tributed Systems, pages 47-62, April 1995.

[16] W.G. O’Farrell, F.Ch. Eigler, I. Kalas, and G.V. Wilson. An Introduction to
the IBM Parallel Class Library for C++. ABC++ Version 1, Release 1, IBM
Canada, 1995.

[17] R. Sandberg. The Design and Implementation of the Sun Network File System.
In USENIX Association Conference Proceedings, pages 119-130, January 1985.

[18] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
Complete Reference. The MIT Press, Cambridge Massachusetts, 1996.

[19] Sun Microsystems, Inc. C++ 4.1 library reference manual. pages 81-99, Moun-
tain View, California, November 1995.

un Microsystems, Inc. e istribute 1le dervice. lechnical report,
20] Sun Mi I The NFS Distributed File Service. Technical
(available at http://www.sun.com/software/white-papers/wp-nfs), March 1995.

[21] S. Teale. C++ 10Streams Handbook. Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1993.

[22] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. In Proceedings

of the 19th International Symposium on Computer Architecture, Gold Coast,
Australia, May 1992. ACM Press.

76

[23] K. Walden and J. Nerson. Seamless Object-Oriented Software Architecture -
Analysis and Design of Reliable Systems. Prentice Hall International (UK), 1995.

7

Appendix A

Piostream Library Interface

The following appendices provide the piostream library interface supported in the
prototype implementation. The complete piostream library code cannot be provided
here for proprietary reasons pertaining to the ABC++ concurrency library.

A.1 Postream Class Interface

// Constructor
postream(output_destination);

// Destructor
“postream() ;

// Create pointer to Postream_Server
void set_P0S_Server(virtual_processor_id, void *);

// Set info of active object on Postream_Server
void set_Identification();

// Send data to server
void send_Data();

// Send flag to server
void send_Flag(ostream_flag);

// setf and unsetf
void setf(long);

78

void unsetf(long);

// width, fill and precision
void width(int);

void fill(char);

void precision(int);

// Friend functions

friend postream & operator<<(postream&, const int &);

friend postream & operator<<(postream&, const float &);

friend postream & operator<<(postream&, const double &);

friend postream & operator<<(postream&, const char &);

friend postream & operator<<(postream&, const ostream &);

friend postream & operator<<(postream&, ostrstream &) ;

friend postream & operator<<(postream&, const char x*);

friend postream & operator<<(postream&, postream & (*f) (postream &));

FRrRrrERREFR

// Manipulator functions
friend postream & endl(postream &) ;
friend postream & ends(postream &) ;
friend postream & flush(postream &);
friend postream & hideid(postream &);
friend postream & showid(postream &);
friend postream & showbase(postream &) ;
friend postream & noshowbase(postream &);
friend postream & showpos(postream &) ;
friend postream & noshowpos(postream &);
friend postream & uppercase(postream &);
friend postream & nouppercase(postream &);
friend postream & showpoint(postream &);
friend postream & noshowpoint(postream &);
friend postream & skipws(postream &);
friend postream & noskipws(postream &) ;
friend postream & left(postream &) ;
friend postream & right(postream &);
friend postream & internal (postream &) ;
friend postream & scientific(postream &);
friend postream & fixed(postream &) ;
friend postream & dec(postream &);
friend postream & oct(postream &);

PRI AR R

79

friend postream & hex(postream &) ;

// Manipulators with parameters
friend postream & setfill(postream &, char &);
friend postream & setprecision(postream &, int &);
friend postream & setw(postream &, int &);

A.2 Postream Server Class Interface

// Constructor
Postream_Server();

// Destructor
~“Postream_Server() ;

// Main function
int main();

// Accept data from the client object
// Index, Data packet, Sequence Complete?
void transfer_Data(int, Container, boolean);

// Index, Enumerated Flag
// Accept manipulator enumerated flag from the client object
void transfer_Flag(int, ostream_flag);

// Process id

// Thread id

// Host name

// Standard out or Standard Error

int add_New_Active_0Object(int, int, Container, output_destination)

// Function used to flush all buffers in case of server shutdown
void flush_A11Q);

// This function is used to shut down the server by the run-time system.
void terminate();

80

A.3 Pistream Class Interface

// Constructor
pistream(boolean);

// Destructor
“pistream();

// Create pointer to Pistream_Server
void set_PIS_Server(virtual_processor_id, void *, pistream_mode);

// Get index from pistream_server
void get_Indentification();

// Get functions

int get();

void get(char* ptr, int count, char delim=’\n’);
void get(streambuf& sbuf, char delim=’\n’);

void get(char& ch);

void get(unsigned char& ch);

int peek();

// Getline functions
void getline(char *ptr, int count, char delim = ’\n’);
void get_line(int size, char delim = ’\n’);

// EOF function for checking server status
boolean eof();

// Set wait time for server polls
void set_wait_time(float);

// Friend functions
friend pistream & operator>>(pistream&, const float &);

friend pistream & operator>>(pistream&, const double &);

friend pistream & operator>>(pistream&, const char &);

friend pistream & operator>>(pistream&, const istream &);

friend pistream & operator>>(pistream&, const istrstream &);

friend pistream & operator>>(pistream&, pistream & (*f) (pistream &));

81

A.4 Pistream Server Class Interface

// Constructor
Pistream_Server();

// Constructor
Pistream_Server(pistream_mode) ;

// Destructor
“Pistream_Server() ;

// Poll for data on stdin
int poll_Data_Available();

// Block for data on stdin temporarily
void wait_Data_Available();

// Read data from stdin
void read_Data();

// Main function
int main();

// Get delimited sequence of characters
// Index, Size of buffer, Delimiter
Container get_Line(int, int, char);

// Provides a method of determining under broadcast mode whether
// more data exists for the server to extract
boolean eof(int id);

// Provides a method of setting how long the server should sleep
// between polling stdin and checking for client requests

// Time is in seconds

void set_Wait_Time(float);

// Get key from server

82

int request_Key();

// This function will check if the delimiter was handled properly
// Buffer, Size of buffer, Delimiter
void check_Delimiter(char, int, char);

// Function used to increase size of storage buffer
void increase_Buffer_Size();

// This function is used to shutdown the server by the run-time system
void terminate();

83

