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Abstract

The objective of the demand matching problem is to obtain the subsetM of edges which is
feasible and where the sum of the profits of each of the edges is maximized. The setM is
feasible if for each vertexv the total demand of edges inM incident tov is at mostbv. In the
case where each of the edges has one unit profit, the problem becomes finding the subset of
largest size and hence, is called the cardinality problem. Shepherd and Vetta [SV06] demon-
strate that the integrality gap for the general demand matching problem for bipartite graphs is
between2:5 and2:764, and between3 and3:264 non-bipartite graphs. We demonstrate that an
expected2:5-approximation guarantee and3-approximation guarantee is achieveable for bi-
partite graphs and non-bipartite graphs and give some connections to the independent set and
weighted independent set problem.

1 Introduction

An instance of thedemand matching problemis defined as an undirected graphG = (V;E) where

each edgee 2 E has an associatedprofit pe and an associated demandde, and each vertexv 2 V
has an associatedbound, bv. A set of edgesM is feasible if for each vertexv the total demand of

the edges inM incident tov does not exceed the bound associated withv. The aim of the demand

matching problem is to find the optimal feasible setM�, that is, the set of edges that are feasible

and have maximum profit. The problem is a specialization of theb-matching problem on a graph;

an additional constraint is needed that ensures each edge has an associated demand value. This



NP-hard combinatorial maximum packing problem is well-known and there are vast number of

applications to this theoretical problem; a short list of application include the design of network

switches [SV06], resource allocation [CCHR02], and requests scheduling [LMV00].

A traditional method to solve packing problems, such as the demand matching andb-matching

problems, consists of considering a linear programming formulation of the formfp � x : Ax �
b; x � 0g for the given problem and attempting to find a0�1 vector indicating an optimal or near-

optimal solution. The demand matching problem can be formulated as the optimization problem:

maxfp � x : Dx � b; xi 2 f0; 1gg, wherep is the profit vector,D indicates the associated demand

on the edges, andx is a0 � 1 indicator vector for the edges. We will restrict interest to the “all

or nothing” version of the demand matching problem, implying that we require that the whole

demand of the edge must be satisfied to gain the profit or none of the demand, and thus profit, of

the edge is taken. Shepherd and Vetta note that analysis of the linear relaxations for this demand

matching integer programming formulation require different methods from those used for theb-
matching problem [SV06]. For a more comprehensive study of the connection between the demand

matching problem and other combinatorial maximum packing problems, we refere the reader to

the work by Shepherd and Vetta [SV06].

Study of this particular packing problem has been rather limited. A randomized algorithm

exists which provides a2:764-approximation guarantee for the demand matching problem on bi-

partite graphs, and a separate randomized algorithm for non-bipartite graphs provides a3:264-

approximation guarantee [SV06]. If interest is restricted to the demand matching problem where

the profit on each edge is 1, a greedy algorithm provides a 2.5-approximation guarantee for bi-

partite graphs, and a randomized algorithm exists which provides a 3-approximation guarantee for

non-bipartite graphs [SV06]. Currently, these are the best known approximation guarantees for

both the demand-matching problem. Further, Vetta and Shepherd [SV06] demonstrate that the de-

mand matching problem, and the cardinality version of the problem, is MAXSNP-hard; implying

that there exists a constant� > 0 such that the problem admits no1 + �-approximation algorithm,
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unless P = NP. The focus of this paper will be improving upon the existing approximation guaran-

tees for the general demand matching problem by showing there exists an algorithm with expected

3-approximation guarantee for non-bipartite graphs and an algorithm with 2.5-approximation guar-

antee for non-bipartite graphs.

An independent setof a graphG is a subset of the vertices such that no two vertices in the

subset represent an edge inG. A maximum independent set is a largest independent set for a given

graph. The problem of finding such a set is called the MAXIMUM INDEPENDENT SET (MIS)

problem and is an NP-hard problem [GJ79], whose approximability has been intensely investigated

[BH90, Has99, Hal00]. A maximum independent set should not be confused with amaximal

independent set, which is an independent set that is not contained in any larger independent set. The

problem of finding a maximal independent set can be solved in polynomial time by a trivial greedy

algorithm. WEIGHTED INDEPENDENT SET(WIS) is the problem of finding the independent set

of maximum weight, this implicitly assumes that each vertex has a non-negative weight. Our

approximation bound for the general demand matching problem relies on a transformation from the

demand matching problem to an equivalent weighted independent set problem. We present some

approximation results for WIS and MIS and demonstrate their connection to the demand matching

problem. The main focus of this paper will be an expected2:5-approximation guarantee and an

expected3-approximation guarantee for bipartite graphs and non-bipartite graphs, respectively.

2 The Demand Matching Problem

Let G = (V;E) be a graph and assign each vertexv 2 V an integralcapacitydenoted asbv, and

each edgee = (u; v) 2 E an integral demandde (for any edgee adjacent to a vertexv we assume

thatde � bv, otherwise we simply removee). In addition, associated with each edgee 2 E is it’s

profit pe. A demand matching is a subsetM � E such that
P

e2�(v)\M de � bv for each vertex

v, where�(v) denotes the neighbours ofv. The demand matching problem is to find a demand
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matching of maximum profit and thus, it can be formulated as the following integer program (IP):

maximize:
P

e2E pexe
subject to:

P
e2�(v) dexe � bv; 8v 2 V

xe 2 f0; 1g 8e 2 E

An alternative formulation of the demand matching problem is associated with themarginal profit

of an edge, which is�e = pe=de. The following is an alternative IP formulation that we will refer

to as themarginal profit IP.

maximize:
P

e2E �exe
subject to:

P
e2�(v) xe � bv; 8v 2 V

xe 2 f0; deg 8e 2 E

The linear program (LP) relaxation of the marginal profit IP replaces the integral constraint on

thexe values by the linear constraint0 � xe � de. The solution space of the resultant LP is the

fractional demand matching polytopeand hence, a pointx in the polytope is afractional demand

matching. For a fractional demand matchingx a vertexv is referred to astight if
P

e2�(v) dexe = bv
and otherwise, the vertex is referred to asfractional. Similarly, we refer to the an edge astight if

xe = de and otherwise we have0 < xe < de ande is referred to asfractional. We letF (x) � E
be the set of fractional edges induced by the fractional demand matchingx and letG(x) denote

the graph induced byF (x). The following lemma demonstrates that there is a significant amount

of structure in the LP solution and hence, shows thatG(x) for bipartite graphs exhibits a tree

structure.

Lemma 1 [SV06] Letx be an extreme point of the demand matching polytope. Then each com-

ponent ofG(x) consists of a tree plus (possibly) one edge. In addition, any cycle inG(x) has odd

length.
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2.1 The Cardinality Problem

When interest is restricted to the demand problem where the demand on every edge is equal to

one, the problem becomes solvable in polynomial-time. However, the problem remains NP-hard

when interest is restricted to the demand matching problem where there exists unit profit on every

edge. The demand matching problem which has this unit-profit restriction is known as thecardi-

nality problem. Previous results demonstrate that improved approximation guarantees may exist

for algorithms for the cardinality problem, in comparison to the traditional demand matching prob-

lem. The best approximation guarantee for the cardinality problem for bipartite graphs is a factor

2:5-approximation guarantee and for non-bipartite a factor3-approximation guarantee [SV06].

2.2 Previous Approximation Guarantees and Hardness Results

Calinescuet al. [CCHR02] proposed the open problem of determining whether demand matching

is MAXSNP-hard or whether there exists a polynomial-time approximation scheme. Recently

this open problem has been solved by Shepherd and Vetta [SV06]: as they demonstrate that the

cardinality problem–and hence, the general demand matching problem–is MAXSNP-complete.

Hence, there does not exist a constant� > 0 such that the problem admits no1 + �-approximation,

unless P = NP.

There has been limited study on the demand matching problem and more generally, on demand

versions of combinatorial packing problems. A special case of the generalized assignment problem

where each task has a size independent of its assignment is a special case of the demand matching

problem that has been well-studied. The base problem of this assignment problem can be viewed

as a bipartiteb-matching problem with the following property: each vertexv of one bipartition has

a common demand value on each of its incident edges and its boundbv is equal to this demand

value. The generalized assignment problem was studied by Shmoys and Tardos [ST93], where

they studied congestion minimization. The maximization form of this problem was later studied
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Chekuri and Khanna [CK00], where these previous minimization results were considered. The

techniques and results from Shmoys and Tardos [ST93] and Chekuri and Khanna [CK00] resemble

the latest results on the demand matching problem by Shepherd and Vetta [SV06].

Cosares and Caniee [CS94], and Kleinberg [Kl96] study demand versions of network flows.

Kleinberg [Kl96] introducesunsplittable flowand studies the maximization forms the demand

version network flows. In particular, Kleinberg [Kl96] studies the maximization single-source

unsplittable flow problem, where a single sources is given, along with a collection of terminals

t1; t2; : : : ; tk with demandsd1; d2; : : : ; dk. The goal of the packing problem is to satisfy the max-

imum number of the demands subject tot he edge capacity constraints. This unsplittable flow

problem can be considered as a demand framework as follows: let eachs to ti path have demand

di, and add a sink vertext and edgestit with capacitydi then the goal is to find a maximum pack-

ing of the weighteds to t paths. Further, the demand matching problem has connections to other

unsplittable flow problems. Kolliopoulos and Stein [KS02] demonstrate the first approximation

algorithm for maximum unsplittable network flow problem with capacities. Recently, this work

was extended to give a constant factor approximation for the maximum profit unsplittable flow

problem where the underlying graph is a tree [CMS03]. Shepherd and Vetta [SV06] note that the

maximum unsplittable flow problem, in the case where the tree is a star, includes and the demand

matching problem.

As mentioned previously, there is a close connection between the demand matching problem

and other more applied problems; one such example is the design of communication switches

where the goal is schedule transmission of traffic using a minimum number of time slots. A com-

munication switch can be modelled as a bipartite graph, with the bipartition of the vertices being

the input and output ports. With this graph-theoretic model, the goal becomes colouring the edges

so that each colour class is a demand matching. For a more comprehensive discussion on this topic

we refere the reader to the work by Ngo and Vu [NV03].

The best known approximation guarantees for the general demand matching problem are a
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2:764-approximation and a3:264-approximation for bipartite and non-bipartite graphs, respec-

tively [SV06]. Shepherd and Vetta [SV06] also give improved approximation guarantees for the

cardinality problem: a2:5-approximation and3-approximation algorithm for bipartite and non-

bipartite graphs, respectively. The results for the general demand matching problem arise from a

randomized approximation algorithm, whereas the results for the cardinality problem arise from a

deterministic algorithm. The lower bound on the integrality gap is at least3 for non-bipartite graphs

and2:5 for bipartite graphs [SV06]. These bounds on the integrality gap demonstrate that the pre-

vious best known approximation guarantees of2:5 and3 for bipartite and non-bipartite graphs,

respectively, for the cardinality problem are optimal approximations amongst algorithms that use

the LP solution. Although, an improved approximation algorithm for the cardinality problem may

exist, it cannot use only the LP solution as the lower bound in estimating the approximation ratio.

3 An Expected Approximation Guarantee

We present an algorithm that gives an expected2:5-approximation guarantee for bipartite graphs,

and an expected3-approximation guarantee for non-bipartite graphs. As stated previously, the best

known approximation guarantee for the demand matching problem was 2.764 for bipartite graphs

and 3.264 for non-bipartite graphs [SV06]. Our algorithm works on an alternate formulation of the

problem–that is, an equivalent independent set problem which we define in the following sections.

3.1 Applying Berge’s Augmenting Paths Conditions to Demand Matching

In 1957, Berge showed a simple characterization of a matching of maximal cardinality which

states that a matching is of maximum cardinality if and only if it has no augmenting path [Ber57].

An equivalent result for demand matching is shown by Shepherd and Vetta [SV06] which gives

optimality conditions for the fractional demand matching problem. We consider a partition ofE
into positive edges, denoted asP, andnegative edges, denoted asN and define the marginal value
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of a setF � P [N as�(F ) =Pe2F\P �e �
P

e2F\N �e.

Definition 1 We state that there exists anaugmenting pathP in the fractional demand matching if

there is a partitionP [N ofP such that (i) the edges on the path alternate between being positive

and negative, (ii)�(P ) > 0, (iii) if an endpointv of the path is tight then the edge whichv is

adjacent to is negative, and (iv) none of the positive edges inP are tight.

The conditions for an augmenting path in a demand matching ensure that we can improve the

current demand matching byaugmentingaround the structure–that is, add� to the positive edges

and subtract� from the negative edges. We then have a characterization of an optimal fractional

demand matching: a fractional demand matching is optimal if and only if it induces no augmenting

structure [SV06].

3.2 Colouring the Edges According to the LP Solution

We will describe a procedure that takes a fractional demand matching and generates a 2-colouring

of the edges for bipartite graphs and a 3-colouring for non-bipartite graphs. This procedure will be

used in proving the improved bound for the general demand matching problem.

We consider a LP solution,x, for the fractional demand matching problem on a bipartite graph.

We will demonstrate a procedure that, for a tree, will find two integral demand matchings whose

combined profit is at least that of the original solution; this will in turn give an integral solution

whose profit is at least half of the optimal fractional demand matchingx of the tree. Recall that

F (x) consists of a set of trees. We denotex = f + h, wheref is the set of fractional edges inx

not equal to 0 andh is the set of tight edges ofx. We note thatf is a feasible fractional demand

matching and therefore, there exists an augmenting path in the graph induced on the setf . In

order, to create an improved demand matching, we augment along an augmenting path inf such

that at least one edge becomes tight or becomes zero. We repeat the process of augmenting along

fractional paths until the set of fractional edges induce a demand matching. We call this process of
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modifying the LP theaugmenting paths procedureand note it is guaranteed to terminate since at

each step we discard an edge or make an edge tight.

The profit of the solution obtained after the augmenting paths procedure is greater than or equal

to the profit of the original fractional solution since the profit of the solution is improved at each

iteration. Moreover, we note that the set of edges made tight from the setf for the augmenting

paths procedure, together with the seth, do not necessarily induce a feasible demand matching but

this does not violate our aim of obtaining two disjoint demand matchings from this union when

our underlying graph is a tree. Edges of the final solution are divided into two sets:F � which is

the set of fractional edges, andH� which is the set of tight edges.

We now colour the edges according to the groupingF � andH�; an edgee is bronzewith respect

to an incident vertexv if either e is in F � or v is not incident to an edge inF � ande was the last

edge to become tight in the augmenting paths procedure. An edge is bronze if it is bronze wither

respect to either of its incident vertices and otherwise, it is colouredcopper.

Lemma 2 [SV06] The set of copper edges with respect to a vertexv are feasible with regards to

the associated vertex constraint.

Using Lemma 2 it can trivially shown that given a treeT , T contains two disjoint demand match-

ingsM1 andM2 whose combined profit is at least that of the optimal fractional demand matching

[SV02]. Hence, there trivially exists a 2-approximation algorithm when the underlying graph is a

tree.

We now extend the edge-colouring procedure to non-bipartite graphs. For non-bipartite graphs,

it follows from Lemma 1 that each component of the optimal fractional demand matching is a tree

with possibly one edge creating an odd cycle. As before, we colour tight edges copper and augment

along the fractional paths such that the profit of the fractional demand matching is improved at each

it step. In addition, we add the possibility of augmenting along an odd cycle. Further, if some edge

e on the odd cycle has the property thatxe � 1
2de then we coloure red and remove it from the
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component on an iteration. If no edge has this property then there must exist an edgee with the

property thatde � xe � min(xe1 ; xe2) wheree1 ande2 are the incident edges toe in the cycle,

we coloure copper and remove it from the component. The remainder of the augmenting paths

procedure remains as described previously and hence, we guarantee that the algorithm terminates

with each of the fractional edges coloured copper, bronze or red.

Hence, Lemma 2 implies that the set of copper edges induce a feasible–but not necessarily

optimal–solution to the demand matching problem. Finding an optimal approximation solution

to the demand matching problem is then narrowed to finding a set of (bronze) edges that can be

made tight and added to the set of copper edges, to obtain a demand matching which has adequate

profit. Using Lemma 2 and Lemma 1 a3-approximation algorithm for bipartite graphs and3:5-

approximation algorithm for non-bipartite graphs for the general demand matching problem can

be obtained trivially.

3.3 Transforming Demand Matching to an Independent Set Problem

We now consider transforming the demand matching problem to an equivalent independent set

problem which simplifies finding an appropriate randomized approximation algorithm. We will

first consider the case in which the original graph is bipartite and thus, each of the edges is coloured

copper or bronze. We can easily extend our transformation to the non-bipartite case where we are

required to consider the red edges. The independent set problem will be defined on a subgraph of

the line graph ofG, which we will denote asG0. The vertices ofG0 are coloured bronze or copper

according to the bronze and copper edge colouring ofG. Hence, the existence and colouring of the

vertices and edges inG0 depend on the bronze and copper edge colouring ofG. An edgee = uv
exists inG0 if and only if the edges associated withu andv, denoted aseu andev respectively,

share an endpointv0, and at least one ofeu andev is bronze with respect tov0. It follows from

Lemma 2 that a independent set inG0 corresponds to a demand matching inG. We further note

two important facts: the bronze vertices inG0 induce a forest, and each copper vertex has degree at
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most 2 inG0. The latter fact follows from the point that for a copper edgeuv it may not be possible

to place that edge in a demand matching with either of the edges that are bronze with respect to

u andv. It follows that we aim to find the independent set of largest profit. For the remainder of

this paper we will consider algorithms for the described independent set problem and consider the

results in the context of the original demand matching problem.

3.4 An Approximation Algorithm for Uniform Random Instances

In this section, we present an approximation algorithm for the demand matching problem on uni-

form random instances. Specifically, we give an algorithm that an expected2:5-approximation for

bipartite graphs and an expected3-approximation guarantee for non-bipartite graphs. We consider

a random instance of the general demand matching problem, find the LP solution, and consider it’s

equivalent independent set problem. As previously stated, each copper vertexc in G0 is adjacent

to at most two vertices, which we denote asu andv. A subtle consequence of the definition of

the independent set transformation in Section 3.2, is that odd cycles can occur inG0 and therefore,

whenu andv are from the same bronze tree, the path between them in their tree has either even or

odd length.

We refer to anuniform random instanceas an instance of the general demand matching prob-

lem chosen uniformly from all the set of all feasible instances to the corresponding LP defined

in Section 1. Hence, we assume that there is a uniform distribution over all possiblejE 0j2 inde-

pendent set problems transformed from the original demand matching problem. This model of

the distribution of the independent set problem instances derived from the demand matching prob-

lem instances is valid since the most commonly studied model, theG(n; p) random graph model,

assumes each possible edge exists independently with probabilityp.

A given copper vertexc in a given random uniform instance;c is possibly adjacent to a single

bronze vertex, no bronze vertices, or two bronze vertices. We consider the case wherec is adjacent

to two bronze vertices, which we denote asu andv. As previously stated, the path betweenu and
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v maybe odd or even. To analyze the expected approximation ratio of the algorithm defined in this

section we will divide all demand matching instances intobad instancesandgood instances, the

distinction between good and bad instances is based on the probability that the path betweenu and

v is odd. We define the probability that the path betweenu andv is odd aŝp. We define an instance

to be good ifp̂ is greater than or equal to12 and otherwise we refer to the instance as bad.

Previously the best known approximation guarantee for the demand matching problem was

2.764 [SV06]. The below theorem demonstrates that modifying the algorithm slightly, an expected

2:5-approximation guarantee is achieveable for bipartite graphs.

Theorem 1 There exists a polynomial-time algorithm, which when applied to uniform random

instances of bipartite graphs has an expected approximation ratio of at most 2.5.

Proof. Given an instance of demand matching problem, we consider the equivalent indepen-

dent set problem formed from definition in Section 3.2. We select an independent set among the

bronze vertices by considering each treeT in the forest of bronze vertices separately and selecting

a bipartition at random ofT and adding the bronze vertices of the corresponding independent set.

We then include all copper vertices such that neither of their bronze neighbours are in in the chosen

independent set. The result is clearly a independent set and hence, we have only to analyze the

performance of the algorithm.

We calculate the probability that a given vertex is chosen as part of the independent set and

therefore, the probability that the corresponding edge is in the demand matching. If the profit

obtained from the copper vertices alone, denotedp(C), corresponds to at least2
5 of the total profit of

the optimal linear program solution, we are done. Similarly, if the profit obtained from the bronze

vertices, denotedp(B), corresponds to at least4
5 of the total profit of the optimal LP solution then

we are done [SV06]. Therefore, it follows that we can assume that3
5 � OPT < p(B) < 4

5 � OPT
and 1

5 �OPT < p(C) < 2
5 �OPT .

For any bronze vertexv we include its bipartition class with probability12 and hence,v is
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included in the independent set with probability12 . We now consider the copper vertices. If a

copper vertexc is not adjacent to any bronze vertices thenc is added to the existing independent set.

If c is adjacent to a single bronze vertex thenc is included in the independent set with probability

1
2 , since that is the probability that the bronze vertex was not included in the independent set.

Otherwise,c is adjacent to two bronze vertices, which we denote asu andv. If u andv are not

in the same bronze tree then the probability of each one being added to the independent set is

independent of one another and hence, the probability ofc being included is14 . Otherwise,u andv
are connected by a path within the same treeT and we denotêp as the probability that this path is

of odd length.

If the path is of odd length thenu andv must be in opposing bipartition classes and hence one

or the other must always be included in the independent set and it follows, thatc cannot be included

in the independent set. If the path is of even length thenu andv are in the same bipartition class

and hence, are included in the independent set with probability1
2 and therefore, the probability that

c is added is12 . The following defines the expected profit from the set of copper vertices:

E[ profit of copper vertices] = minf14 � p(C); p̂ � 0 + (1� p̂) � 12 � p(C)g

� minf14 � p(C); 12 � 0 +
1
4 � p(C)g

= 1
4 � p(C)

From the above analysis, the expected profit we obtain is at leastp(C) � 1
4 + p(B) � 1

2 . This is

a continuous function defined asE � x � OPT � 1
4 + (1 � x) � OPT � 1

2 , wherex 2 (15 ; 25). The

expected value can be simplified toE � �1
4 � OPT � x + 1

2 � OPT . The possible range of values

then are(25 �OPT; 9
20 �OPT ), and it follows then thatE � 2

5 �OPT . 2

We now directly apply our previous result to obtain an expected3-approximation guarantee for
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non-bipartite graphs. Previously the best known approximation guarantee for non-bipartite graphs

was3:264 [SV06].

Theorem 2 There exists a polynomial-time algorithm, which when applied to uniform random

instances of non-bipartite graphs has an expected approximation ratio of at most 3.

Proof. We recall that the red edges have the property thatxe � 1
2de. If the profit of the

red edges constitutes at least1
3 the total profit of the LP solution then we are done proving our

claim. Thus, we assume that profit induced by the bronze and copper edges is at least5
6 � OPT .

Considering the corresponding independent set problem induced on the edges ofG, we omit all

red vertices and apply the previous randomized algorithm to the modified independent set problem.

The application of the previous algorithm produces a solution whose expected value is1
3 �OPT . 2

4 Connection to Independent Set Problems

NC is the class of problems for which there exists a parallel algorithm that useslogO(1) n phases

of nO(1) simultaneous parallel operations. Further, RNC is the class of problems for which there

exists parallel a Monte Carlo algorithm with one-sided error that useslogO(1) n phases ofnO(1)

simultaneous parallel operations [MR95]. Luby shows that MIS is in RNC by giving a Monte Carlo

algorithm and in NC by converting the Monte Carlo algorithm into a simple deterministic algorithm

with the same running time [Lub86]. Using this result by Luby, it follows that approximating the

cardinality problem is in RNC and NC. Further, the algorithm by Luby [Lub86] for MIS can be

used to obtain an21
2 -approximation and3-approximation for the cardinality problem for bipartite

graphs and non-bipartite graphs, respectively.

There have been a number of parallel approximation algorithms and heuristics developed for

WIS and investigations into bounding the inapproximability [BH90, Hal00]. In Section 3.2 we
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developed a method to transform the general demand matching problem into an equivalent inde-

pendent set problem and hence, the goal of the transformed problem is to find an independent set

in G0 with largest profit. We now give several graph theoretic definitions and results, and thus,

demonstrate how approximation of these results for WIS can be applied to the demand matching

problem.

A graph is�- inductiveif there is a linear ordering of the vertices such that each vertex has at

most� neighbours ordered after itself [Hal00]. For example, the equivalent independent set graph

G0 transformed from an optimal fractional demand matching solution defined on a bipartite graph

is a2-inductive graph, since the vertices can be ordered as follows: copper vertices, leaves of the

bronze tree, bronze vertices that are adjacentnt to the leaves,: : :, root of the bronze tree. The

Lovász number"(G) of a graphG is the least numberk such that there exists a representation of

unit vectorsvi to eachi 2 V , such that for any two nonadjacent verticesi andj the dot product of

their vectors is equal to� 1k . Given a graphG, "(G) can be computed in polynomial time [Hal00].

Halldórsson [Hal00] proves the following theorem of weighted�-inductive graphs.

Theorem 3 [Hal00] Let G be a weighted�-inductive graph satisfying"(G) � k. Then an inde-

pendent set inG of weight
(w(G)=�1� 1
2k ) can be constructed with high probability in polynomial

time, wherew(G) denotes the sum of the weights of the vertices.

Thus, by computing"(G) for the 2-inductive graphG0 we can use Theorem 3 to construct

an independent set ofG0 with weight greater than or equal tow(G)=21� 1
2k . Hence, this demon-

strates how approximation results for WIS can be applied to yield an approximation to the demand

matching problem.

5 Conclusions and Open Problems

We have presented an algorithm that gives an expected2:5-approximation guarantee for the de-

mand matching instances where the underlying graph is bipartite and an3-approximation expected

15



guarantee for the demand matching instances where the underlying graph is non-bipartite. Gen-

eralizing these results to obtain a deterministic algorithm that guarantees a2:5-approximation for

bipartite and a3-approximation for non-bipartite graphs remains open.

The work of Phillipset al. [PUW00] is focused on a generalization of the RESOURCEAL-

LOCATION PROBLEM. This is an algorithm in this area that uses LP rounding techniques. It is

suggested that this work can be extended to find an approximation algorithm for demand match-

ing which uses LP rounding; currently, no such algorithm exists. Lastly, we have demonstrated

a connection between MIS and the cardinality problem and WIS and the general demand match-

ing problem. Further, we believe that applying approximation algorithms for WIS and MIS to

the cardinality problem and the demand matching problem would yield efficient approximation

algorithms for these problems.
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