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Abstract

The objective of the demand matching problem is to obtain the suldset edges which is
feasible and where the sum of the profits of each of the edges is maximized. Theiset
feasible if for each vertex the total demand of edges M incident tov is at most,. In the

case where each of the edges has one unit profit, the problem becomes finding the subset of
largest size and hence, is called the cardinality problem. Shepherd and Vetta [SV06] demon-
strate that the integrality gap for the general demand matching problem for bipartite graphs is
betweerR.5 and2.764, and betweefl and3.264 non-bipartite graphs. We demonstrate that an
expecte®.5-approximation guarantee amldapproximation guarantee is achieveable for bi-
partite graphs and non-bipartite graphs and give some connections to the independent set and
weighted independent set problem.

1 Introduction

An instance of thelemand matching problers defined as an undirected gragh= (V, E') where
each edge € F has an associatguofit p, and an associated demadid and each vertex € V/
has an associatdmbund b,. A set of edgedV! is feasible if for each vertex the total demand of
the edges inl/ incident tov does not exceed the bound associated witRhe aim of the demand
matching problem is to find the optimal feasible 8é&t, that is, the set of edges that are feasible
and have maximum profit. The problem is a specialization obth®tching problem on a graph;

an additional constraint is needed that ensures each edge has an associated demand value. This



NP-hard combinatorial maximum packing problem is well-known and there are vast number of
applications to this theoretical problem; a short list of application include the design of network
switches [SVO06], resource allocation [CCHRO02], and requests scheduling [LMVOO].

A traditional method to solve packing problems, such as the demand matchiagraatdhing
problems, consists of considering a linear programming formulation of the formx : Az <
b, z > 0} for the given problem and attempting to finé a 1 vector indicating an optimal or near-
optimal solution. The demand matching problem can be formulated as the optimization problem:
max{p -z : Dx < b,z; € {0,1}}, wherep is the profit vectorD indicates the associated demand
on the edges, andis a0 — 1 indicator vector for the edges. We will restrict interest to the “all
or nothing” version of the demand matching problem, implying that we require that the whole
demand of the edge must be satisfied to gain the profit or none of the demand, and thus profit, of
the edge is taken. Shepherd and Vetta note that analysis of the linear relaxations for this demand
matching integer programming formulation require different methods from those used for the
matching problem [SVO06]. For a more comprehensive study of the connection between the demand
matching problem and other combinatorial maximum packing problems, we refere the reader to
the work by Shepherd and Vetta [SVO06].

Study of this particular packing problem has been rather limited. A randomized algorithm
exists which provides a.764-approximation guarantee for the demand matching problem on bi-
partite graphs, and a separate randomized algorithm for non-bipartite graphs progidég-a
approximation guarantee [SVO06]. If interest is restricted to the demand matching problem where
the profit on each edge is 1, a greedy algorithm provides a 2.5-approximation guarantee for bi-
partite graphs, and a randomized algorithm exists which provides a 3-approximation guarantee for
non-bipartite graphs [SV06]. Currently, these are the best known approximation guarantees for
both the demand-matching problem. Further, Vetta and Shepherd [SV06] demonstrate that the de-
mand matching problem, and the cardinality version of the problem, is MAXSNP-hard; implying

that there exists a constant- 0 such that the problem admits nct e-approximation algorithm,



unless P = NP. The focus of this paper will be improving upon the existing approximation guaran-
tees for the general demand matching problem by showing there exists an algorithm with expected
3-approximation guarantee for non-bipartite graphs and an algorithm with 2.5-approximation guar-
antee for non-bipartite graphs.

An independent satf a graphG is a subset of the vertices such that no two vertices in the
subset represent an edgein A maximum independent set is a largest independent set for a given
graph. The problem of finding such a set is called thexMium INDEPENDENT SET (MIS)
problem and is an NP-hard problem [GJ79], whose approximability has been intensely investigated
[BH90, Has99, Hal00]. A maximum independent set should not be confused withxanal
independent sgivhich is an independent set that is not contained in any larger independent set. The
problem of finding a maximal independent set can be solved in polynomial time by a trivial greedy
algorithm. WEIGHTED INDEPENDENT SET(WIS) is the problem of finding the independent set
of maximum weight, this implicitly assumes that each vertex has a non-negative weight. Our
approximation bound for the general demand matching problem relies on a transformation from the
demand matching problem to an equivalent weighted independent set problem. We present some
approximation results for WIS and MIS and demonstrate their connection to the demand matching
problem. The main focus of this paper will be an expe@édapproximation guarantee and an

expected-approximation guarantee for bipartite graphs and non-bipartite graphs, respectively.

2 The Demand Matching Problem

Let G = (V, F) be a graph and assign each verteg 1" an integralcapacitydenoted a$,, and
each edge = (u,v) € E an integral demand, (for any edge: adjacent to a vertex we assume
thatd, < b,, otherwise we simply remow®. In addition, associated with each edge F is it’s

profit p.. A demand matching is a subseét C £ such thaty 1 de < b, for each vertex

e€l'(v)N

v, whereI'(v) denotes the neighbours of The demand matching problem is to find a demand



matching of maximum profit and thus, it can be formulated as the following integer program (IP):

maximize: Y . p Pele
subjectto: >, ) dewe < by, Yo EV

z. € {0,1} Vee £

An alternative formulation of the demand matching problem is associated withakgnal profit
of an edge, which ig, = p./d.. The following is an alternative IP formulation that we will refer

to as themarginal profit IP.

maximize: >, p TeTe
subjectto: > c,y Te < by, YO EV
z. € {0,d.} Vee E

The linear program (LP) relaxation of the marginal profit IP replaces the integral constraint on
the x. values by the linear constraiit< z, < d.. The solution space of the resultant LP is the
fractional demand matching polytopad hence, a point in the polytope is dractional demand
matching For a fractional demand matchinga vertexv is referred to asightif >, ) dexe = by
and otherwise, the vertex is referred tofetional. Similarly, we refer to the an edge aght if
z. = d, and otherwise we have < z, < d, ande is referred to a$ractional. We letF'(x) C £
be the set of fractional edges induced by the fractional demand materang letG/(x) denote
the graph induced b¥'(x). The following lemma demonstrates that there is a significant amount
of structure in the LP solution and hence, shows thét) for bipartite graphs exhibits a tree

structure.

Lemma 1 [SV06] Letx be an extreme point of the demand matching polytope. Then each com-
ponent ofG(x) consists of a tree plus (possibly) one edge. In addition, any cyeln has odd

length.



2.1 The Cardinality Problem

When interest is restricted to the demand problem where the demand on every edge is equal to
one, the problem becomes solvable in polynomial-time. However, the problem remains NP-hard
when interest is restricted to the demand matching problem where there exists unit profit on every
edge. The demand matching problem which has this unit-profit restriction is known eartie

nality problem Previous results demonstrate that improved approximation guarantees may exist
for algorithms for the cardinality problem, in comparison to the traditional demand matching prob-
lem. The best approximation guarantee for the cardinality problem for bipartite graphs is a factor

2.5-approximation guarantee and for non-bipartite a faBtapproximation guarantee [SV06].

2.2 Previous Approximation Guarantees and Hardness Results

Calinescuet al.[CCHRO02] proposed the open problem of determining whether demand matching

is MAXSNP-hard or whether there exists a polynomial-time approximation scheme. Recently
this open problem has been solved by Shepherd and Vetta [SV06]: as they demonstrate that the
cardinality problem—and hence, the general demand matching problem—is MAXSNP-complete.
Hence, there does not exist a constant0 such that the problem admits he+- e-approximation,

unless P = NP.

There has been limited study on the demand matching problem and more generally, on demand
versions of combinatorial packing problems. A special case of the generalized assignment problem
where each task has a size independent of its assignment is a special case of the demand matching
problem that has been well-studied. The base problem of this assignment problem can be viewed
as a bipartité-matching problem with the following property: each vertesf one bipartition has
a common demand value on each of its incident edges and its lguadcqual to this demand
value. The generalized assignment problem was studied by Shmoys and Tardos [ST93], where

they studied congestion minimization. The maximization form of this problem was later studied



Chekuri and Khanna [CKO0O0], where these previous minimization results were considered. The
techniques and results from Shmoys and Tardos [ST93] and Chekuri and Khanna [CKOO] resemble
the latest results on the demand matching problem by Shepherd and Vetta [SV06].

Cosares and Caniee [CS94], and Kleinberg [KI96] study demand versions of network flows.
Kleinberg [KI96] introducesunsplittable flowand studies the maximization forms the demand
version network flows. In particular, Kleinberg [KI96] studies the maximization single-source
unsplittable flow problem, where a single soukcis given, along with a collection of terminals
t1,1s, ..., 1, with demandsi,, ds, . . ., d;. The goal of the packing problem is to satisfy the max-
imum number of the demands subject tot he edge capacity constraints. This unsplittable flow
problem can be considered as a demand framework as follows: lek¢ac¢hpath have demand
d;, and add a sink vertexxand edges;t with capacityd; then the goal is to find a maximum pack-
ing of the weighted to ¢ paths. Further, the demand matching problem has connections to other
unsplittable flow problems. Kolliopoulos and Stein [KS02] demonstrate the first approximation
algorithm for maximum unsplittable network flow problem with capacities. Recently, this work
was extended to give a constant factor approximation for the maximum profit unsplittable flow
problem where the underlying graph is a tree [CMSO03]. Shepherd and Vetta [SV06] note that the
maximum unsplittable flow problem, in the case where the tree is a star, includes and the demand
matching problem.

As mentioned previously, there is a close connection between the demand matching problem
and other more applied problems; one such example is the design of communication switches
where the goal is schedule transmission of traffic using a minimum number of time slots. A com-
munication switch can be modelled as a bipartite graph, with the bipartition of the vertices being
the input and output ports. With this graph-theoretic model, the goal becomes colouring the edges
so that each colour class is a demand matching. For a more comprehensive discussion on this topic
we refere the reader to the work by Ngo and Vu [NVO03].

The best known approximation guarantees for the general demand matching problem are a



2.764-approximation and &.264-approximation for bipartite and non-bipartite graphs, respec-
tively [SV06]. Shepherd and Vetta [SV06] also give improved approximation guarantees for the
cardinality problem: &.5-approximation an@-approximation algorithm for bipartite and non-
bipartite graphs, respectively. The results for the general demand matching problem arise from a
randomized approximation algorithm, whereas the results for the cardinality problem arise from a
deterministic algorithm. The lower bound on the integrality gap is at Bfastnon-bipartite graphs
and2.5 for bipartite graphs [SV06]. These bounds on the integrality gap demonstrate that the pre-
vious best known approximation guarantee6fand3 for bipartite and non-bipartite graphs,
respectively, for the cardinality problem are optimal approximations amongst algorithms that use
the LP solution. Although, an improved approximation algorithm for the cardinality problem may

exist, it cannot use only the LP solution as the lower bound in estimating the approximation ratio.

3 An Expected Approximation Guarantee

We present an algorithm that gives an expe@éeapproximation guarantee for bipartite graphs,
and an expectegtapproximation guarantee for non-bipartite graphs. As stated previously, the best
known approximation guarantee for the demand matching problem was 2.764 for bipartite graphs
and 3.264 for non-bipartite graphs [SV06]. Our algorithm works on an alternate formulation of the

problem—that is, an equivalent independent set problem which we define in the following sections.

3.1 Applying Berge’s Augmenting Paths Conditions to Demand Matching

In 1957, Berge showed a simple characterization of a matching of maximal cardinality which
states that a matching is of maximum cardinality if and only if it has no augmenting path [Ber57].
An equivalent result for demand matching is shown by Shepherd and Vetta [SV06] which gives
optimality conditions for the fractional demand matching problem. We consider a partitibn of

into positive edgesdenoted a®, andnegative edgesienoted agy” and define the marginal value



ofasett' CPUN asm(F) =" cpap Fe — 2ecrny Te-

Definition 1 We state that there exists angmenting patt# in the fractional demand matching if
there is a partition? U N of P such that (i) the edges on the path alternate between being positive
and negative, (ii)r(P) > 0, (iii) if an endpointv of the path is tight then the edge whiehs

adjacent to is negative, and (iv) none of the positive edgésane tight.

The conditions for an augmenting path in a demand matching ensure that we can improve the
current demand matching lmugmentingaround the structure—that is, aedb the positive edges
and subtract from the negative edges. We then have a characterization of an optimal fractional
demand matching: a fractional demand matching is optimal if and only if it induces no augmenting

structure [SV06].

3.2 Colouring the Edges According to the LP Solution

We will describe a procedure that takes a fractional demand matching and generates a 2-colouring
of the edges for bipartite graphs and a 3-colouring for non-bipartite graphs. This procedure will be
used in proving the improved bound for the general demand matching problem.

We consider a LP solutiox, for the fractional demand matching problem on a bipartite graph.
We will demonstrate a procedure that, for a tree, will find two integral demand matchings whose
combined profit is at least that of the original solution; this will in turn give an integral solution
whose profit is at least half of the optimal fractional demand matckiogthe tree. Recall that
F(x) consists of a set of trees. We denate= f + h, wheref is the set of fractional edges i
not equal to 0 andh is the set of tight edges of. We note thaf is a feasible fractional demand
matching and therefore, there exists an augmenting path in the graph induced onfthdrset
order, to create an improved demand matching, we augment along an augmentingfpsuichn
that at least one edge becomes tight or becomes zero. We repeat the process of augmenting along

fractional paths until the set of fractional edges induce a demand matching. We call this process of

8



modifying the LP theaugmenting paths procedusasd note it is guaranteed to terminate since at
each step we discard an edge or make an edge tight.

The profit of the solution obtained after the augmenting paths procedure is greater than or equal
to the profit of the original fractional solution since the profit of the solution is improved at each
iteration. Moreover, we note that the set of edges made tight from thiefeethe augmenting
paths procedure, together with the Retlo not necessarily induce a feasible demand matching but
this does not violate our aim of obtaining two disjoint demand matchings from this union when
our underlying graph is a tree. Edges of the final solution are divided into two Bétshich is
the set of fractional edges, aiff which is the set of tight edges.

We now colour the edges according to the groughii@nd H*; an edges is bronzewith respect
to an incident vertex if eithere is in F* or v is not incident to an edge iA* ande was the last
edge to become tight in the augmenting paths procedure. An edge is bronze if it is bronze wither

respect to either of its incident vertices and otherwise, it is colocopger

Lemma 2 [SV06] The set of copper edges with respect to a vertarse feasible with regards to

the associated vertex constraint.

Using Lemma 2 it can trivially shown that given a tréeT" contains two disjoint demand match-
ings M; and M5, whose combined profit is at least that of the optimal fractional demand matching
[SV02]. Hence, there trivially exists a 2-approximation algorithm when the underlying graph is a
tree.

We now extend the edge-colouring procedure to non-bipartite graphs. For non-bipartite graphs,
it follows from Lemma 1 that each component of the optimal fractional demand matching is a tree
with possibly one edge creating an odd cycle. As before, we colour tight edges copper and augment
along the fractional paths such that the profit of the fractional demand matching is improved at each
it step. In addition, we add the possibility of augmenting along an odd cycle. Further, if some edge

e on the odd cycle has the property that < %de then we colour red and remove it from the



component on an iteration. If no edge has this property then there must exist an widgehe
property thatd, — z. < min(z,,, z.,) Wheree; ande, are the incident edges toin the cycle,
we coloure copper and remove it from the component. The remainder of the augmenting paths
procedure remains as described previously and hence, we guarantee that the algorithm terminates
with each of the fractional edges coloured copper, bronze or red.

Hence, Lemma 2 implies that the set of copper edges induce a feasible—but not necessarily
optimal—solution to the demand matching problem. Finding an optimal approximation solution
to the demand matching problem is then narrowed to finding a set of (bronze) edges that can be
made tight and added to the set of copper edges, to obtain a demand matching which has adequate
profit. Using Lemma 2 and Lemma 13sapproximation algorithm for bipartite graphs ahd-
approximation algorithm for non-bipartite graphs for the general demand matching problem can

be obtained trivially.

3.3 Transforming Demand Matching to an Independent Set Problem

We now consider transforming the demand matching problem to an equivalent independent set
problem which simplifies finding an appropriate randomized approximation algorithm. We will
first consider the case in which the original graph is bipartite and thus, each of the edges is coloured
copper or bronze. We can easily extend our transformation to the non-bipartite case where we are
required to consider the red edges. The independent set problem will be defined on a subgraph of
the line graph of~, which we will denote as:’. The vertices ofs’ are coloured bronze or copper
according to the bronze and copper edge colouring.dfience, the existence and colouring of the
vertices and edges ii’ depend on the bronze and copper edge colouring.oAn edgee = uw

exists inG’ if and only if the edges associated withandv, denoted ag, ande, respectively,

share an endpoint, and at least one af, ande, is bronze with respect te'. It follows from

Lemma 2 that a independent setGh corresponds to a demand matchingdn We further note

two important facts: the bronze verticegifinduce a forest, and each copper vertex has degree at

10



most 2 inG’. The latter fact follows from the point that for a copper edgeat may not be possible

to place that edge in a demand matching with either of the edges that are bronze with respect to
u andwv. It follows that we aim to find the independent set of largest profit. For the remainder of
this paper we will consider algorithms for the described independent set problem and consider the

results in the context of the original demand matching problem.

3.4 An Approximation Algorithm for Uniform Random Instances

In this section, we present an approximation algorithm for the demand matching problem on uni-
form random instances. Specifically, we give an algorithm that an exp2étegbproximation for
bipartite graphs and an expectedpproximation guarantee for non-bipartite graphs. We consider

a random instance of the general demand matching problem, find the LP solution, and consider it’s
equivalent independent set problem. As previously stated, each copper~ertéx is adjacent

to at most two vertices, which we denotewaandv. A subtle consequence of the definition of

the independent set transformation in Section 3.2, is that odd cycles can o¢€wand therefore,
whenu andv are from the same bronze tree, the path between them in their tree has either even or
odd length.

We refer to aruniform random instancas an instance of the general demand matching prob-
lem chosen uniformly from all the set of all feasible instances to the corresponding LP defined
in Section 1. Hence, we assume that there is a uniform distribution over all possiplénde-
pendent set problems transformed from the original demand matching problem. This model of
the distribution of the independent set problem instances derived from the demand matching prob-
lem instances is valid since the most commonly studied modet7 {hep) random graph model,
assumes each possible edge exists independently with probability

A given copper vertex in a given random uniform instancejs possibly adjacent to a single
bronze vertex, no bronze vertices, or two bronze vertices. We consider the case statgcent

to two bronze vertices, which we denote:aandv. As previously stated, the path betweeand

11



v maybe odd or even. To analyze the expected approximation ratio of the algorithm defined in this
section we will divide all demand matching instances inéal instancesndgood instancesthe
distinction between good and bad instances is based on the probability that the path bedween
v is odd. We define the probability that the path betweamdv is odd ag. We define an instance
to be good ifp is greater than or equal tpand otherwise we refer to the instance as bad.

Previously the best known approximation guarantee for the demand matching problem was
2.764 [SVO06]. The below theorem demonstrates that modifying the algorithm slightly, an expected

2.5-approximation guarantee is achieveable for bipartite graphs.

Theorem 1 There exists a polynomial-time algorithm, which when applied to uniform random

instances of bipartite graphs has an expected approximation ratio of at most 2.5.

Proof. Given an instance of demand matching problem, we consider the equivalent indepen-
dent set problem formed from definition in Section 3.2. We select an independent set among the
bronze vertices by considering each t7éa the forest of bronze vertices separately and selecting
a bipartition at random df’ and adding the bronze vertices of the corresponding independent set.
We then include all copper vertices such that neither of their bronze neighbours are in in the chosen
independent set. The result is clearly a independent set and hence, we have only to analyze the
performance of the algorithm.

We calculate the probability that a given vertex is chosen as part of the independent set and
therefore, the probability that the corresponding edge is in the demand matching. If the profit
obtained from the copper vertices alone, denptéd), corresponds to at Iea%bf the total profit of
the optimal linear program solution, we are done. Similarly, if the profit obtained from the bronze
vertices, denoteg(B), corresponds to at Iea%tof the total profit of the optimal LP solution then

we are done [SVO06]. Therefore, it follows that we can assumethatPT < p(B) < 5 - OPT

SHES

and: - OPT < p(C) < 2-OPT.

For any bronze vertex we include its bipartition class with probabilit§/ and hencey is

12



included in the independent set with probabilgy We now consider the copper vertices. If a
copper vertex is not adjacent to any bronze vertices teemadded to the existing independent set.
If ¢ is adjacent to a single bronze vertex thes included in the independent set with probability
%, since that is the probability that the bronze vertex was not included in the independent set.
Otherwisec is adjacent to two bronze vertices, which we denote asdwv. If v andv are not
in the same bronze tree then the probability of each one being added to the independent set is
independent of one another and hence, the probabilitypefng included is}i. Otherwisey andw
are connected by a path within the same fe@nd we denotg as the probability that this path is
of odd length.

If the path is of odd length themandv must be in opposing bipartition classes and hence one
or the other must always be included in the independent set and it follows,dhamnot be included
in the independent set. If the path is of even length themdv are in the same bipartition class
and hence, are included in the independent set with probabiityd therefore, the probability that

cis added i%. The following defines the expected profit from the set of copper vertices:

EJ profit of copper vertices= min{% -p(C),p-0+(1—p)- % -p(C)}

> min{i -p(C), % -0+ % -p(C)}
zip(c)

From the above analysis, the expected profit we obtain is até&st ; + p(B) - 5. Thisis
a continuous function defined @& > « - OPT - 1 + (1 — z) - OPT - §, wherez € (£, 2). The
expected value can be simplified > —% -OPT -z + % - OPT. The possible range of values
then are(2 - OPT, 5+ - OPT), and it follows then thall > £ - OPT. O

20

We now directly apply our previous result to obtain an expe8tagproximation guarantee for

13



non-bipartite graphs. Previously the best known approximation guarantee for non-bipartite graphs

was3.264 [SV06].

Theorem 2 There exists a polynomial-time algorithm, which when applied to uniform random

instances of non-bipartite graphs has an expected approximation ratio of at most 3.

Proof. We recall that the red edges have the property that 1d.. If the profit of the
red edges constitutes at Iez%sthe total profit of the LP solution then we are done proving our
claim. Thus, we assume that profit induced by the bronze and copper edges is %t- led3T .
Considering the corresponding independent set problem induced on the edgew®fomit all
red vertices and apply the previous randomized algorithm to the modified independent set problem.

The application of the previous algorithm produces a solution whose expected vialﬂbﬁg”. a

4 Connection to Independent Set Problems

NC is the class of problems for which there exists a parallel algorithm thatus®® n phases
of n°M) simultaneous parallel operations. Further, RNC is the class of problems for which there
exists parallel a Monte Carlo algorithm with one-sided error that s¢¥") n phases of,°()
simultaneous parallel operations [MR95]. Luby shows that MIS is in RNC by giving a Monte Carlo
algorithm and in NC by converting the Monte Carlo algorithm into a simple deterministic algorithm
with the same running time [Lub86]. Using this result by Luby, it follows that approximating the
cardinality problem is in RNC and NC. Further, the algorithm by Luby [Lub86] for MIS can be
used to obtain aﬂ%-approximation angd-approximation for the cardinality problem for bipartite
graphs and non-bipartite graphs, respectively.

There have been a number of parallel approximation algorithms and heuristics developed for

WIS and investigations into bounding the inapproximability [BH90, Hal00]. In Section 3.2 we
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developed a method to transform the general demand matching problem into an equivalent inde-
pendent set problem and hence, the goal of the transformed problem is to find an independent set
in G’ with largest profit. We now give several graph theoretic definitions and results, and thus,
demonstrate how approximation of these results for WIS can be applied to the demand matching
problem.

A graph isé- inductiveif there is a linear ordering of the vertices such that each vertex has at
mostd neighbours ordered after itself [HalOO0]. For example, the equivalent independent set graph
G’ transformed from an optimal fractional demand matching solution defined on a bipartite graph
is a2-inductive graph, since the vertices can be ordered as follows: copper vertices, leaves of the
bronze tree, bronze vertices that are adjacentnt to the leavespot of the bronze tree. The
Lovasz numbet(G) of a graphG is the least numbet such that there exists a representation of
unit vectorsy; to eachi € V, such that for any two nonadjacent verti¢esd; the dot product of
their vectors is equal te%. Given a graplt7, £(G) can be computed in polynomial time [Hal0O].

Halldérsson [Hal00] proves the following theorem of weighéethductive graphs.

Theorem 3 [Hal00] Let G be a weighted-inductive graph satisfying(G) < k. Then an inde-
pendent set i of weightQ(w((G) /6!~ 2¢) can be constructed with high probability in polynomial

time, wherew(G) denotes the sum of the weights of the vertices.

Thus, by computing(G) for the 2-inductive grapl;’ we can use Theorem 3 to construct
an independent set @’ with weight greater than or equal w(G)/Qlfﬁ. Hence, this demon-
strates how approximation results for WIS can be applied to yield an approximation to the demand

matching problem.

5 Conclusions and Open Problems

We have presented an algorithm that gives an expettedpproximation guarantee for the de-

mand matching instances where the underlying graph is bipartite ahdoroximation expected

15



guarantee for the demand matching instances where the underlying graph is non-bipartite. Gen-
eralizing these results to obtain a deterministic algorithm that guarantegsapproximation for
bipartite and &-approximation for non-bipartite graphs remains open.

The work of Phillipset al. [PUWOQ0] is focused on a generalization of the FOURCEAL-
LOCATION PROBLEM. This is an algorithm in this area that uses LP rounding techniques. It is
suggested that this work can be extended to find an approximation algorithm for demand match-
ing which uses LP rounding; currently, no such algorithm exists. Lastly, we have demonstrated
a connection between MIS and the cardinality problem and WIS and the general demand match-
ing problem. Further, we believe that applying approximation algorithms for WIS and MIS to
the cardinality problem and the demand matching problem would yield efficient approximation

algorithms for these problems.
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