
23-1

Last time

□ P2P

□ Security

♦ Intro

♦ Principles of cryptography

23-2

This time

□ Message integrity

□ Authentication

□ Key distribution and certification

23-3

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Message integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

23-4

Digital Signatures

Cryptographic technique analogous to hand-
written signatures.

□ Sender (Bob) digitally signs document, establishing
he is document owner/creator.

□ Verifiable, nonforgeable: recipient (Alice) can prove
to someone that Bob, and no one else (including
Alice), must have signed document

23-5

Digital Signatures

Simple digital signature for message m:
□ Bob signs m by encrypting with his private signature

key SB, creating “signed” message, SB(m)

□ Bob also has a public verification key V
B
 such that

V
B
(S

B
(m)) = m.

Dear Alice
Oh, how I have
missed you. I think of
you all the time! …
(blah blah blah)

Bob

Bob’s message, m

Public key
signature
algorithm

Bob’s private
signature key

S B

Bob’s message,
m, signed with
his private key

S B(m)

23-6

Digital Signatures (more)

□ Suppose Alice receives msg m, digital signature SB(m)

□ Alice verifies m signed by Bob by applying Bob’s public
verification key VB to SB(m) then checks VB(SB(m)) = m.

□ If VB(SB(m)) = m, whoever signed m must have used
Bob’s private key.

Alice thus verifies that:
● Bob signed m.
● No one else signed m.
● Bob signed m and not m’.

Non-repudiation:
● Alice can take m, and signature SB(m) to court

and prove that Bob signed m.

23-7

Message Digests

Computationally expensive
to public-key sign long
messages

Goal: fixed-length, easy-
to-compute digital
“fingerprint”

□ Apply hash function H to
m, get fixed size
message digest, H(m).

Hash function properties:
□ many-to-1
□ produces fixed-size msg

digest (fingerprint)
□ given message digest x,

computationally infeasible to
find m such that x = H(m), or
two messages m1, m2 with
H(m1)=H(m2)

large
message

m

H: Hash
Function

H(m)

23-8

Internet checksum: poor crypto hash
function

Internet checksum has some properties of hash function:
► produces fixed length digest (16-bit sum) of message
► is many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 4F 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 4F 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

23-9

large
message

m
H: Hash
function H(m)

digital
signature

(sign)

Bob’s
private

key
S B

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally signed
message:

SB(H(m))

signed
msg digest

SB(H(m))

signed
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(verify)

H(m)

Bob’s
public

key V B

equal
 ?

Digital signature = signed message digest

23-10

Hash Function Algorithms

□ Traditionally: MD5 hash function (RFC 1321)
♦ computes 128-bit message digest in 4-step process.
♦ arbitrary 128-bit string x, appears difficult to construct

msg m whose MD5 hash is equal to x.
♦ it's been figured out how to make collisions!

□ Newer: SHA-1
♦ US standard [NIST, FIPS PUB 180-1]

♦ 160-bit message digest
♦ many people think collisions are imminent!

□ Starting to switch to SHA-256
♦ Newer US standard [NIST, FIPS PUB 180-2]

♦ 256-bit message digest

23-11

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

23-12

Authentication

Goal: Bob wants Alice to “prove” her identity to
him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

23-13

Authentication

Goal: Bob wants Alice to “prove” her identity to
him

Protocol ap1.0: Alice says “I am Alice”

in a network,
Bob can not “see” Alice,

so Trudy simply
declares

herself to be Alice
“I am Alice”

23-14

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice”
Alice’s

IP address

23-15

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Trudy can create
a packet “spoofing”

Alice’s address
“I am Alice”

Alice’s
IP address

23-16

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

23-17

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends her
 secret password to “prove” it.

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

Alice’s
password

23-18

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

23-19

Authentication: another try

Protocol ap3.1: Alice says “I am Alice” and sends her
 encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

encrypted
password

23-20

Authentication: yet another try

Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once-in-a-lifetime

ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice
must return R, encrypted with shared secret key

“I am Alice”

R

E (R)
A-B

Alice is live, and
only Alice knows

key to encrypt
nonce, so it must

be Alice!

23-21

Authentication: ap5.0

ap4.0 requires shared symmetric key
□ can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”

R
Bob computes

S
A
(R)

“send me your public keys”

V
A
, E

A

V
A
(S

A
(R)) = R

and knows only Alice
could have the private

key that signed R

Bob then sends
encrypted messages to

Alice
E

A
(m)

23-22

ap5.0: security hole
Man (woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

I am Alice I am Alice

R

Send me your public keys
S

A
(R)

Send me your public keys

E
T
(m)

Trudy gets
m = D

T
(E

T
(m))

sends m to Alice
encrypted with

Alice’s public keym = D
A
(E

A
(m))

R

V
A
,E

A

S
T
(R)

V
A
,E

A

V
T
,E

T

E
A
(m)

23-23

ap5.0: security hole
Man (woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

Difficult to detect:
□ Bob receives everything that Alice sends, and vice

versa. (e.g., so Bob, Alice can meet one week later
and recall conversation)

□ The problem is that Trudy receives all messages as
well!

23-24

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

23-25

Trusted Intermediaries

Symmetric key problem:
□ How do two entities

establish shared secret key
over network?

Solution:
□ trusted key distribution

center (KDC) acting as
intermediary between
entities

Public key problem:
□ When Alice obtains

Bob’s public key (from
web site, e-mail,
diskette), how does she
know it is Bob’s public
key, not Trudy’s?

Solution:
□ trusted certification

authority (CA)

23-26

Key Distribution Center (KDC)

□ Alice, Bob need shared symmetric key.
□ KDC: server shares different secret key with each

registered user (many users)

□ Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for
communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

23-27

Key Distribution Center (KDC)

Alice
knows

R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC
generates

 R1

EB-KDC(A,R1)

EA-KDC(A,B)

EA-KDC(R1, EB-KDC(A,R1))

23-28

Certification Authorities

□ Certification authority (CA): binds public key to
particular entity, E.

□ E (person, router) registers its public key with CA.
♦ E provides “proof of identity” to CA.
♦ CA creates certificate binding E to its public key.
♦ certificate containing E’s public key digitally signed by CA –

CA says “this is E’s public key”

Bob’s
public

key V B

Bob’s
identifying

information

digital
signature
(signing)

CA
private

key S CA

V B

certificate for
Bob’s public key,

signed by CA

23-29

Certification Authorities

□ When Alice wants Bob’s public key:
♦ gets Bob’s certificate (Bob or elsewhere).
♦ apply CA’s public key to Bob’s certificate, get

Bob’s public key

Bob’s
public

key V B

digital
signature
(verifying)

CA
public

key
V CA

V B

23-30

A certificate contains:

□ Serial number (unique to issuer)
□ info about certificate owner, including algorithm and

key value itself (not shown)
□ info about

certificate
issuer

□ valid dates
□ digital

signature by
issuer

23-31

Recap

□ Message Integrity

□ Authentication

□ Key distribution and certification

23-32

Next time

□ Firewalls

□ Attacks and countermeasures

□ Security in many layers

