
20-1

Last time

□ NAT

□ Application layer

♦ Intro

♦ Web / HTTP

20-2

This time

□ Finish HTTP

□ FTP

20-3

HTTP Modeling
□ Assume Web page consists of:

♦ 1 base HTML page (of size O bits)
♦ M images (each of size O bits)

□ Non-persistent HTTP:
♦ M+1 TCP connections in series
♦ Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

□ Persistent HTTP:
♦ 2 RTT to request and receive base HTML file
♦ 1 RTT to request and receive M images
♦ Response time = (M+1)O/R + 3RTT + sum of idle times

□ Non-persistent HTTP with X parallel connections
♦ Suppose M/X integer.
♦ 1 TCP connection for base file
♦ M/X sets of parallel connections for images.
♦ Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

See the applet on UW-ACE!

20-4

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time dominated by transmission time.

Persistent connections only give minor improvement over parallel connections.

20-5

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1
Mbps

10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment & slow start delays.
Persistent connections now give important improvement: particularly in high
delay•bandwidth networks.

20-6

HTTP request message

□ Two types of HTTP messages: request, response
□ HTTP request message:

♦ ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

20-7

HTTP request message: general format

20-8

Uploading form input

POST method:
□ Web page often

includes form input
□ Input is uploaded to

server in entity body

URL method:
□ Uses GET method
□ Input is uploaded in

URL field of request
line:

http://www.somesite.com/animalsearch?monkeys&banana

20-9

Method types

HTTP/1.0
□ GET
□ POST
□ HEAD

♦ asks server to leave
requested object out of
response

HTTP/1.1
□ GET, POST, HEAD
□ PUT

♦ uploads file in entity body
to path specified in URL
field

□ DELETE
♦ deletes file specified in

the URL field

20-10

HTTP response message

HTTP/1.1 200 OK
Connection: close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

20-11

HTTP response status codes

200 OK
♦ request succeeded, requested object later in this message

301 Moved Permanently
♦ requested object moved, new location specified later in this

message (Location:)

400 Bad Request
♦ request message not understood by server

404 Not Found
♦ requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

20-12

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

20-13

User-server state: cookies

Many major Web sites use
cookies

Four components:
1) cookie header line of

HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

Example:
♦ Susan access Internet

always from same PC
♦ She visits a specific e-

commerce site for first
time

♦ When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for ID

20-14

Cookies: keeping “state” (cont.)

client server

usual http request msg

usual http response +
Set-cookie: 1678

usual http request msg
Cookie: 1678

usual http response msg

usual http request msg
Cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific
action

server
creates ID

1678 for user

entry in backend

database

access

ac
ce

ss

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

20-15

Cookies (continued)

What cookies can bring:
□ authorization
□ shopping carts
□ recommendations
□ user session state (Web e-

mail)

Cookies and privacy:
□ cookies permit sites to

learn a lot about you
□ you may supply name

and e-mail to sites

aside

How to keep “state”:
□ Protocol endpoints: maintain

state at sender/receiver over
multiple transactions

□ cookies: http messages
carry state

20-16

Web caches (proxy server)

□ user sets browser: Web
accesses via cache

□ browser sends all HTTP
requests to cache

♦ object in cache: cache
returns object

♦ else cache requests
object from origin server,
then returns object to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP re
sponse

HTTP request

HTTP response

origin
server

origin
server

20-17

More about Web caching

□ Cache acts as both client
and server

□ Typically cache is installed
by ISP (university, company,
residential ISP)

Why Web caching?
□ Reduce response time for

client request.
□ Reduce traffic on an

institution’s access link.
□ Internet dense with caches:

enables “poor” content
providers to effectively
deliver content (but so does
P2P file sharing)

20-18

Caching example

Assumptions
□ average object size = 100,000

bits
□ avg. request rate from

institution’s browsers to origin
servers = 15/sec

□ delay from institutional router to
any origin server and back to
router = 2 sec

Consequences
□ utilization on LAN = 15%
□ utilization on access link = 100%
□ total delay = Internet delay +

access delay + LAN delay
 = 2 sec + minutes + milliseconds

origin
servers

public
 Internet

institutional
network

10 Mbps LAN

1.5 Mbps
access link

institutional
cache

20-19

Caching example (cont)

Possible solution
□ increase bandwidth of access

link to, say, 10 Mbps
Consequences
□ utilization on LAN = 15%
□ utilization on access link = 15%
□ Total delay = Internet delay +

access delay + LAN delay
 = 2 sec + msecs + msecs
□ often a costly upgrade

origin
servers

public
 Internet

institutional
network

10 Mbps LAN

10 Mbps
access link

institutional
cache

20-20

Caching example (cont)

Install cache
□ suppose hit rate is .4
Consequence
□ 40% requests will be satisfied

almost immediately
□ 60% requests satisfied by

origin server
□ utilization of access link

reduced to 60%, resulting in
negligible delays (say 10
msec)

□ total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

origin
servers

public
 Internet

institutional
network

10 Mbps LAN

1.5 Mbps
access link

institutional
cache

20-21

Conditional GET

□ Goal: don’t send object if
cache has up-to-date cached
version

□ cache: specify date of cached
copy in HTTP request
If-modified-since:

<date>

□ server: response contains no
object if cached copy is up-to-
date:
HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

20-22

Chapter 2: Application layer

□ 2.1 Principles of
network applications

□ 2.2 Web and HTTP
□ 2.3 FTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

20-23

FTP: the file transfer protocol

□ transfer file to/from remote host
□ client/server model

♦ client: side that initiates transfer (either to/from remote)
♦ server: remote host

□ ftp: RFC 959
□ ftp server: port 21

file transfer
FTP

server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

20-24

FTP: separate control, data connections

□ FTP client contacts FTP server
at port 21, specifying TCP as
transport protocol

□ Client obtains authorization
over control connection

□ Client browses remote
directory by sending
commands over control
connection.

□ When server receives file
transfer command, server
opens 2nd TCP connection (for
file) to client

□ After transferring one file,
server closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

□ Server opens another TCP
data connection to transfer
another file.

□ Control connection: “out of
band”

□ FTP server maintains “state”:
current directory, earlier
authentication

20-25

FTP commands, responses

Sample commands:
□ sent as ASCII text over

control channel
□ USER username

□ PASS password

□ LIST return list of file in
current directory

□ RETR filename retrieves
(gets) file

□ STOR filename stores
(puts) file onto remote host

Sample return codes
□ status code and phrase (as

in HTTP)
□ 331 Username OK,

password required

□ 125 data connection
already open;
transfer starting

□ 425 Can’t open data
connection

□ 452 Error writing
file

20-26

Recap

□ Finish HTTP

□ FTP

20-27

Next time

□ SMTP (email)

□ DNS

□ P2P

