Last time

o NAT

o Application layer

¢ Intro

¢+ Web /HTTP

20-1

This time

o Finish HTTP

o FTP

20-2

HTTP Modeling

O

Assume Web page consists of:

+ 1 base HTML page (of size O bits)

¢+ M images (each of size O bits)
Non-persistent HTTP:

¢ M+1 TCP connections in series

¢+ Response time = (M+1)O/R + (M+1)2RTT + sum of idle times
Persistent HTTP:

¢ 2 RTT to request and receive base HTML file

¢+ 1 RTT to request and receive M images

¢+ Response time = (M+1)O/R + 3RTT + sum of idle times
Non-persistent HTTP with X parallel connections

¢+ Suppose M/X integer.

¢+ 1 TCP connection for base file

¢+ M/X sets of parallel connections for images.

¢+ Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

See the applet on UW-ACE!

20-3

HTTP Response time (in seconds)

RTT =100 msec, O =5 Kbytes, M=10 and X=5

20
184
16+
141
124
10+

8_

E non-persistent

M persistent

[] parallel non-
persistent

SN A
[R R

28 100 1 10
Kbps Kbps Mbps Mbps

For low bandwidth, connection & response time dominated by transmission time.

Persistent connections only give minor improvement over parallel connections.
20-4

HTTP Response time (in seconds)

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

70-
60+
501
[non-persistent

40+
30H M persistent
207 [] parallel non-
101 persistent

0_4

28 100 1 10
Kbps Kbps Mbps Mbps

For larger RTT, response time dominated by TCP establishment & slow start delays.
Persistent connections now give important improvement: particularly in high

delaysbandwidth networks.
20-5

HTTP request message

o Two types of HTTP messages: request, response

o HTTP request

message.

¢+ ASCII (human-readable format)

request line
(GET, POST,\‘ GET /somedir/page.html HTTP/1.1

HEAD commands)

header
lines

—

Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: fr

e

Carriage return, —{extra carriage return, line feed)

line feed
indicates end
of message

20-6

HT TP request message: general format

If

request
line

header
ines

Entity Body

20-7

Uploading form input

POST method:

o Web page often
includes form input

o Input is uploaded to
server in entity body

URL method:

o Uses GET method

o Input is uploaded Iin
URL field of request
line:

http://www.somesite.com/animalsearch?monkeysé&banana

20-8

Method types

HTTP/1.0
o GET

o POST
o HEAD

¢ asks server to leave
requested object out of
response

HTTP/1.1

o GET, POST, HEAD

o PUT

¢ uploads file in entity body
to path specified in URL
field

o DELETE

¢+ deletes file specified in
the URL field

20-9

HT TP response message

status line
(protocol
status Code\ HTTP/1.1 200 OK
status phrase) [Connection: close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
header | p.st-Modified: Mon, 22 Jun 1998 ...
lines Content-Length: 6821
Content-Type: text/html

data, e.g, .— data data data data data ...

requested
HTML file

20-10

HT TP response status codes

In first line in server->client response message.
A few sample codes:

200 OK
¢ request succeeded, requested object later in this message
301 Moved Permanently

¢+ requested object moved, new location specified later in this
message (Location:)

400 Bad Request

¢+ request message not understood by server
404 Not Found

¢+ requested document not found on this server
505 HTTP Version Not Supported

20-11

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connection to port 80
(default HT TP server port) at cis.poly.edu.
Anything typed in sent

to port 80 at cis.poly.edu

2. Type ina GET HTTP request:

GET /~ross/ HTTP/1.1 By typing this in (hit carriage
Host: cis.poly.edu return twice), you send
this minimal (but complete)

GET request to HTTP server

3. Look at response message sent by HT TP server!

20-12

User-server state: cookies

Many major Web sites use

cookies

Four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

Example:

¢ Susan access Internet
always from same PC

¢+ She visits a specific e-
commerce site for first
time

¢ When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for ID

20-13

Cookies: keeping “state” (cont.)

Cookie file

P

ebay: 8734

Cookie file
amazon: 1678
ebay: 8734

one week later:

P

Cookie file

amazon: 1678
ebay: 8734

P

—

client

usual http request msg

server

server R

usual http response +

— creates ID

Set-cookie: 1678

usual http request msg
Cookie: 1678

cookie-

A%v

*

—

specific

usual http response msg

action

usual http request msg
Cookie: 1678

cookie-
— spedctific

usual http response msg

action

20-14

Cookies (continued)

What cookies can bring:
authorization

shopping carts
recommendations

user session state (Web e-
mail)

O 0O O O

How to keep “state”

o Protocol endpoints: maintain
state at sender/receiver over
multiple transactions

o cookies: hitp messages
carry state

_ — aside
Cookies and privacy:

0 cookies permit sites to
learn a lot about you

0 you may supply name
and e-maill to sites

20-15

Web caches (proxy server)

(Goal: satisfy client request without involving origin server

O user sets browser: Web origin
accesses via cache server
o browser sends all HTTP @ Proxy

requests to cache ar > server r [
+ object in cache: cache cluent/‘/Tr/o ‘7‘/@8, \,\ﬁ? 6900‘58
returns object "eso0 e ©
g
+ else cache requests e%
object from origin server, Q X
then returns object to ') 2 @«590(\

client @ ‘8\6 n

origin
server

20-16

More about Web caching

o Cache acts as both client
and server

o Typically cache is installed
by ISP (university, company,
residential ISP)

Why Web caching?

(]

O

Reduce response time for
client request.

Reduce traffic on an
institution’s access link.

Internet dense with caches:
enables “poor” content
providers to effectively
deliver content (but so does
P2P file sharing)

20-17

Caching example

. origin

Assumptions Servers

O average object size = 100,000
bits

o avg. request rate from
institution’s browsers to origin

servers = 15/sec

o delay from institutional router to
any origin server and back to
router = 2 sec

Consequences
o utilization on LAN = 15%

o utilization on access link = 100%

o total delay = Internet delay + i
access delay + LAN delay institutional

= 2 sec + minutes + milliseconds cache

1.5 Mbps
access link

20-18

Caching example (cont)

origin

Possible solution servers

0 increase bandwidth of access
link to, say, 10 Mbps

Consequences
o utilization on LAN = 15%
o utilization on access link = 15%

o Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
o often a costly upgrade

10 Mbps
access link

institutional
cache

20-19

Caching example (cont)

origin
Install cache servers
O suppose hitrate is .4
Consequence

o 40% requests will be satisfied
almost immediately

o 60% requests satisfied by
origin server

o utilization of access link
reduced to 60%, resulting in
negligible delays (say 1
msec

o total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01)secs +
4*milliseconds < 1.4 secs institutional

cache

1.5 Mbps
access link

20-20

Conditional GET

Goal: don’t send object if cache Server
cach_e has up-to-date cached — " HTTP request msg
version If-modified-since: | _ obiect
cache: specify date of cached <date> nJot
copy in HTTP request ___ modified
If-modified-since: HTTP response
<date>] HTTP/1.0

304 Not Modified

server: response contains no
object if cached copy is up-to- == =—=—=—= === === ————-—-———

date: — HTTP request msg
HTTP/1.0 304 Not If-modified-since: |
Modified <date> object

modified

/

HTTP response
«— HTTP/1.0 200 OK

<data>

20-21

Chapter 2: Application layer

o 2.1 Principles of o 2.6 P2P file sharing
network applications o 2.7 Socket programming
o 2.2Weband HTTP with TCP
o 2.3FTP o 2.8 Socket programming
o 2.4 Electronic Mail with UDP
¢+ SMTP, POP3, IMAP o 2.9 Building a Web server

o 2.5 DNS

20-22

FTP: the file transfer protocol

|
FTP ETP L file transfer A FTP
. USEr client server
interface

user) |
at host local file T remote file
system system

o transfer file to/from remote host

o client/server model
¢ client: side that initiates transfer (either to/from remote)
¢+ server: remote host

o ftp: RFC 959

o ftp server: port 21

20-23

FTP: separate control, data connections

TCP control connection
o FTP client contacts FTP server port 21
at port 21, specifying TCP as ‘
transport protocol

N

Ll
o
»

TCP data connection

o Client obtains authorization FTP oort 20 FTP
over control connection client server

o Client browses remote
directory by sending o Server opens another TCP
commands over control data connection to transfer
connection. another file.

o When server receives file o Control connection: “out of
transfer command, server band”
opens 2”_0’ TCP connection (for 5 FTP server maintains “state”:
file) to client current directory, earlier

o After transferring one file, authentication

server closes data connection.

20-24

FTP commands, responses

Sample commands:

(]

sent as ASCII text over
control channel

USER username
PASS password

LIST return list of file in
current directory

RETR filename retrieves
(gets) file

STOR filename stores
(puts) file onto remote host

Sample return codes

(]

status code and phrase (as
in HTTP)

331 Username OK,
password required

125 data connection
already open;
transfer starting

425 Can’t open data
connection

452 Error writing
file

20-25

Recap

o Finish HTTP

o FTP

20-26

Next time

0 SMTP (email)
0 DNS

o P2P

20-27

