Last time

0 Reliable Data Transfer with packet loss
¢ rdt3.0

0 Pipelining
¢+ Problems with stop-and-wait
+ Go-Back-N
¢+ Selective-Repeat

16-1

This time

o UDP socket programming

o TCP

16-2

Chapter 2: Application layer

o 2.1 Principles of o 2.6 P2P file sharing
network applications o 2.7 Socket programming
o 2.2Weband HTTP with TCP
o 2.3 FTP o 2.8 Socket programming
o 2.4 Electronic Mail with UDP
¢+ SMTP, POP3, IMAP o 2.9 Building a Web server

o 2.5 DNS

16-3

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket API

o introduced in BSD4.1 UNIX,
1981

o explicitly created, used,
released by apps

o client/server paradigm

o two types of transport service
via socket API:

¢ unreliable datagram

¢+ reliable, byte stream-
oriented

— socket

a host-local,
application-created,
OS-controlled interface (a
“door”) into which
application process can
both send and
receive messages to/from
another application process

16-4

Socket programming with UDP

UDP: no “connection” between
client and server

no handshaking

o sender explicitly attaches IP
address and port of
destination to each packet

o server must extract IP
address, port of sender from
received packet

UDP: transmitted data may be
received out of order, or lost

- application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)
between client and server

16-5

Client/server socket interaction: UDP

Server (running on hostid) Client

create socket, create socket
port=x, for clientSocket =

incoming request: new DatagramSocket()

serverSocket =

new DatagramSocket(x) 1
_’l Create, address (hostid, port=x),

send datagram request
read request from using clientSocket

serverSocket

write reply to

serverSocket — e
specifying client — f€adreply irom
host address, clientSocket
port number close 1

| clientSocket

16-6

Example: Java client (UDP)

Keyboard monitor

input
stream

Client

process Input: receives
packet
Output: sends

packet \ I

Uop
client UDP

| inFromUser |<—

sendPacket

receivePacket

o network from network

16-7

Example: Java client (UDP)

import java.io.”;
import java.net.”;

class UDPClient {
public static void main(String args[]) throws Exception
Create]| 1

Input Stream_—> BufferedReader inFromUser =

Create | new BufferedReader(new InputStreamReader(System.in));

client socket[— DatagramSocket clientSocket = new DatagramSocket();

Translate |
hostname to IP

address using DNS byte[] sendData = new byte[1024];
B byte[] receiveData = new byte[1024];

— InetAddress IPAddress = InetAddress.getByName("hostname");

String sentence = inFromUser.readLine();
sendData = sentence.getBytes();

16-8

Example: Java client (UDP), cont.

Create datagram with
data-to-send,

length, IP addr, port DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send datagram clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Read datagram |
from Sgrvej—b clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

16-9

O

Example: Java server (UC

import java.io.”;
import java.net.”;

class UDPServer {
public static void main(String args[]) throws Exception

Create {

datagram socket
at port 9876 — > DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

Crgate space for DatagramPacket receivePacket =
received datagram > new DatagramPacket(receiveData, receiveData.length);

_ serverSocket.receive(receivePacket);
Receive
datagram

16-10

Example: Java server (UDP), cont

— String sentence = new String(receivePacket.getData());
Get IP addr

port #, of — InetAddress IPAddress = receivePacket.getAddress();

sender|_, .
= " int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();
— DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,
port);

Create datagram
to send to client

Write out
datagram |—- serverSocket.send(sendPacket);

to socket

}
} \
} End of while loop,

loop back and wait for
another datagram

16-11

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

16-12

TCP: Overview

o Point-to-point:

¢+ one sender, one receiver
o Reliable, in-order byte

Steam:

¢+ no “message boundaries”
o Pipelined:

¢+ TCP congestion and flow
control set window size

o Send & receive buffers

socket
door

TCP
send buffer

RFCs: 793, 1122, 1323, 2018, 2581

o Full duplex data:

¢+ bi-directional data flow in
same connection

¢ MSS: maximum segment
size

o Connection-oriented:

+ handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

o Flow controlled:

¢ sender will not overwhelm
receiver

_sockel
door

TCP
receive buffer

16-13

TCP segment structure

A

URG: urgent data

source port #

32 bits

dest port # counting

(generally not used)\
ACK: ACK #

"~ sequence number

by bytes
of data

valid

(not segments!)

PSH: push data now

len—

(generally not used)

M

—acknowledgement number
nead| not 'PPSF Receive window
um
L

bytes

Urg data pnter rcvr willing

RST, SYN, FIN:— |
connection estab

/

O@zn/s (variable length)

to accept

(setup, teardown
commands)

Internet /
checksum

(as in UDP)

/ application

data
(variable length)

16-14

TCP seaq.

H's and ACKs

Seq. #'s:
¢+ byte stream

“number” of first User

: ; types Seq=42’ ACK:
byte in segment’s yPe W
data host ACKs

ACKs:

¢+ seq # of next byte
expected from other

side

¢ cumulative ACK

Q: how receiver handles of echoed —_ 8943, ACk=s,
out-of-order segments ‘C’ \

host ACKs
receipt

¢+ A: TCP spec doesn’t

say, - up to
implementor

simple telnet scenario

receipt of
‘C’, echoes
back ‘C’

time

16-15

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?
o longer than RTT
¢ but RTT varies

0 too short: premature
timeout

¢ unnecessary
retransmissions

o too long: slow reaction to
segment loss

Q: how to estimate RTT?

0 SampleRTT: measured time from

segment transmission until ACK
receipt

¢ ignore retransmissions

0 SampleRTT will vary, want
estimated RTT “smoother”

¢ average several recent

measurements, not just current
SampleRTT

16-16

TCP Round Trip Time and Timeout

EstimatedRTT = (1- d) *EstimatedRTT + Aa*SampleRTT

o Exponentially weighted moving average
o influence of past sample decreases exponentially fast

o typical value: a =0.125

16-17

Example RTT estimation:

RIT: gaia.cs.uness.edu to fantasia.eurecomfr

350 ~

¢
300

RTT (milliseconds)
R
o
—e
—e
>
—
VY
m— 3
—

N
o
o

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
time (seconnds)

106

—o— SampleRTT —=— Estimated RTT

16-18

TCP Round Trip Time and Timeout

Setting the timeout

0 EstimtedRTT plus “safety margin”
¢ large variation in EstimatedRTT -> larger safety margin

o first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

16-19

Chapter 3 outline

o 3.1 Transport-layer o 3.5 Connection-oriented
services transport: TCP

o 3.2 Multiplexing and ¢ segment structure
demultiplexing + reliable data transfer

o 3.3 Connectionless ¢ flow control

transport: UDP ¢ connection management
o 3.6 Principles of
congestion control

o 3.7 TCP congestion
control

o 3.4 Principles of reliable
data transfer

16-20

TCP reliable data transfer

o TCP creates rdt service o Retransmissions are

on top of IP’s unreliable triggered by:

service ¢ timeout events
o Pipelined segments ¢ duplicate acks
o Cumulative acks O InltlaIIy consider

o TCP uses single simplified TCP sender:

retransmission timer ¢+ ignore duplicate acks
¢ ignore flow control,

congestion control

16-21

TCP sender events:

data rcvd from app: timeout:

o Create segment with o retransmit segment that
seq # caused timeout

0 seq # is byte-stream o restart timer
number of first data Ack revd:
byte ”_1 Segme”t o If acknowledges

o start timer if not already previous|y unacked
running (think of timer segments
as for oldest unacked ¢+ update what is known to
segment) be acked

0 expiration interval: + start timer if there are

TimeOutInterval outstanding segments

16-22

NextSegqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)
start timer
pass segment to IP
NextSeqNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}

} /" end of loop forever */

TCP

sender

(simplified)

Comment:

» SendBase-1: last
cumulatively
ack’ed byte
Example:

« SendBase-1 =71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

16-23

TCP: retransmission scenarios

«— timeout ——

y
SendBase

=100

v

time

lost ACK scenario

<
w

Sendbase
=100
SendBase
=120

SendBase
=120

92 timeout —

92 timeout —sj+— Seq=

eqg=

3

time

premature timeout

16-24

TCP retransmission scenarios (more)

@ Host A Host B @

Seq=g
[bytes data
— =A0
§ Seq=100’ 20 P\C‘ﬂ
= X: > data

=120

?<
SendBase P\C“/

A
4

time
Cumulative ACK scenario

16-25

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment startsat lower end of gap

16-26

Recap

o UDP socket programming
+ DatagramSocket, DatagramPacket

o TCP

¢+ Sequence numbers, ACKs
¢ RTT, DevRTT, timeout calculations

+ Reliable data transfer algorithm

16-27

Next time

o TCP

¢+ Fast retransmit
¢+ Flow control
+ Connection management

+ Congestion control

16-28

