
16-1

Last time

□ Reliable Data Transfer with packet loss
♦ rdt3.0

□ Pipelining
♦ Problems with stop-and-wait
♦ Go-Back-N
♦ Selective-Repeat

16-2

This time

□ UDP socket programming

□ TCP

16-3

Chapter 2: Application layer

□ 2.1 Principles of
network applications

□ 2.2 Web and HTTP
□ 2.3 FTP
□ 2.4 Electronic Mail

♦ SMTP, POP3, IMAP

□ 2.5 DNS

□ 2.6 P2P file sharing
□ 2.7 Socket programming

with TCP
□ 2.8 Socket programming

with UDP
□ 2.9 Building a Web server

16-4

Socket programming

Socket API
□ introduced in BSD4.1 UNIX,

1981
□ explicitly created, used,

released by apps
□ client/server paradigm
□ two types of transport service

via socket API:
♦ unreliable datagram
♦ reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface (a
“door”) into which

application process can
both send and

receive messages to/from
another application process

socket

Goal: learn how to build client/server application that
communicate using sockets

16-5

Socket programming with UDP

UDP: no “connection” between
client and server

□ no handshaking
□ sender explicitly attaches IP

address and port of
destination to each packet

□ server must extract IP
address, port of sender from
received packet

UDP: transmitted data may be
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
 of groups of bytes (“datagrams”)

 between client and server

16-6

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
new DatagramSocket()

Client

Create, address (hostid, port=x),
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
new DatagramSocket(x)

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

16-7

Example: Java client (UDP)

se
n
d

P
a

ck
e

t

to network from network

re
ce

iv
e

P
a

ck
e

t

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet

Input: receives
packet

Client
process

client UDP
socket

16-8

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = inFromUser.readLine();

 sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
 hostname to IP

address using DNS

16-9

Example: Java client (UDP), cont.

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);
 clientSocket.close();
 }

}

Create datagram with
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

16-10

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

16-11

Example: Java server (UDP), cont

 String sentence = new String(receivePacket.getData());

 InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();

 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress,
 port);

 serverSocket.send(sendPacket);
 }
 }

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

16-12

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

16-13

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

□ Full duplex data:
♦ bi-directional data flow in

same connection
♦ MSS: maximum segment

size

□ Connection-oriented:
♦ handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

□ Flow controlled:
♦ sender will not overwhelm

receiver

□ Point-to-point:
♦ one sender, one receiver

□ Reliable, in-order byte
steam:
♦ no “message boundaries”

□ Pipelined:
♦ TCP congestion and flow

control set window size

□ Send & receive buffers

s o c k e t
d o o r

T C P
s e n d b u f f e r

T C P
r e c e i v e b u f f e r

s o c k e t
d o o r

s e g m e n t

a p p l i c a t i o n
w r i t e s d a t a

a p p l i c a t i o n
r e a d s d a t a

16-14

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number

Receive window

Urg data pnterchecksum

FSRPAU
head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

16-15

TCP seq. #’s and ACKs
Seq. #’s:

♦ byte stream
“number” of first
byte in segment’s
data

ACKs:
♦ seq # of next byte

expected from other
side

♦ cumulative ACK
Q: how receiver handles

out-of-order segments
♦ A: TCP spec doesn’t

say, - up to
implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
simple telnet scenario

16-16

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

□ longer than RTT
♦ but RTT varies

□ too short: premature
timeout
♦ unnecessary

retransmissions
□ too long: slow reaction to

segment loss

Q: how to estimate RTT?
□ SampleRTT: measured time from

segment transmission until ACK
receipt
♦ ignore retransmissions

□ SampleRTT will vary, want
estimated RTT “smoother”
♦ average several recent

measurements, not just current
SampleRTT

16-17

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

□ Exponentially weighted moving average
□ influence of past sample decreases exponentially fast

□ typical value: α = 0.125

16-18

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
TT

 (m
ill

is
ec

on
ds

)

SampleRTT Estimated RTT

16-19

TCP Round Trip Time and Timeout

Setting the timeout
□ EstimtedRTT plus “safety margin”

♦ large variation in EstimatedRTT -> larger safety margin

□ first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

 Then set timeout interval:

16-20

Chapter 3 outline

□ 3.1 Transport-layer
services

□ 3.2 Multiplexing and
demultiplexing

□ 3.3 Connectionless
transport: UDP

□ 3.4 Principles of reliable
data transfer

□ 3.5 Connection-oriented
transport: TCP
♦ segment structure
♦ reliable data transfer
♦ flow control
♦ connection management

□ 3.6 Principles of
congestion control

□ 3.7 TCP congestion
control

16-21

TCP reliable data transfer

□ TCP creates rdt service
on top of IP’s unreliable
service

□ Pipelined segments
□ Cumulative acks
□ TCP uses single

retransmission timer

□ Retransmissions are
triggered by:
♦ timeout events
♦ duplicate acks

□ Initially consider
simplified TCP sender:
♦ ignore duplicate acks
♦ ignore flow control,

congestion control

16-22

TCP sender events:
data rcvd from app:
□ Create segment with

seq #
□ seq # is byte-stream

number of first data
byte in segment

□ start timer if not already
running (think of timer
as for oldest unacked
segment)

□ expiration interval:
TimeOutInterval

timeout:
□ retransmit segment that

caused timeout
□ restart timer
 Ack rcvd:
□ If acknowledges

previously unacked
segments
♦ update what is known to

be acked
♦ start timer if there are

outstanding segments

16-23

TCP
sender
(simplified)

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

16-24

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=
92

 ti
m

eo
ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=
92

 ti
m

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

16-25

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

16-26

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment startsat lower end of gap

16-27

Recap

□ UDP socket programming

♦ DatagramSocket, DatagramPacket

□ TCP

♦ Sequence numbers, ACKs

♦ RTT, DevRTT, timeout calculations

♦ Reliable data transfer algorithm

16-28

Next time

□ TCP

♦ Fast retransmit

♦ Flow control

♦ Connection management

♦ Congestion control

