
Finding Largest Subtrees and Smallest Supertrees

Arvind Gupta� Naomi Nishimura�

July �� ����

�School of Computing Science� Simon Fraser University� Burnaby� British Columbia� Canada� V�A �S��
email� arvind�cs�sfu�ca� FAX ��	
� ����	
�� Research supported by the Natural Sciences and Engineering
Research Council of Canada and the Advanced Systems Institute�

�Department of Computer Science� University of Waterloo� Waterloo� Ontario� Canada� N�L �G�� email�
nishi�plg�uwaterloo�ca� FAX ���� ������	�� Research supported by the Natural Sciences and Engineering
Research Council of Canada and the Information Technology Research Centre�

Abstract

As trees are used in a wide variety of application areas� the comparison of trees arises in many
guises� Here we consider two generalizations of classical tree pattern matching� which consists
of determining if one tree is isomorphic to a subgraph of another� For the embedding problems
of subgraph isomorphism and topological embedding� we present algorithms for determining the
largest tree embeddable in two trees T and T � �or a largest subtree� and for constructing the
smallest tree in which each of T and T � can be embedded �or a smallest supertree�� Both subtrees
and supertrees can be used in a variety of di�erent applications� For example� when each of the
two trees contains partial information about a data set� such as the evolution of a set of species�
the subtree or supertree corresponds to a structuring of the data in a manner consistent with
both original trees� The size of a subtree or supertree of two trees can also be used to measure
the similarity between two arrangements of data� whether images� documents� or RNA secondary
structures�

In this paper� we present a general paradigm for sequential and parallel subtree and supertree
algorithms for subgraph isomorphism and topological embedding� Our sequential algorithms run
in time O�n��� logn� and our parallel algorithms in time O�log� n� on a randomized CREW PRAM

using a polynomial number of processors� In addition� we produce better algorithms for these
problems when the underlying trees are ordered� that is� when the children of each node have a left�
to�right ordering associated with them� In particular� we obtain O�n�� time sequential algorithms
and O�log� n� time deterministic parallel algorithms on CREW PRAMs for both embeddings�

� Introduction

Trees and their generalizations are among the most common and best studied of all combinatorial
structures arising in computer science� due in large part to the number of areas of research in
which they are applicable� For example� in data structure design� trees are the primary vehicle
for storing data� many e�cient data structures are tree�based� Trees have also been used in such
diverse areas as compiler design 	
�� �� structured text databases 	��� ��� and the theory of natural
languages 	
�� �� More recently� labeled trees have been used in phylogeny and molecular biology�
where many of the underlying structures can be modeled with trees 	��

� ��� �� �� ��� Due
to the large number of application areas� often the same or similar problems are studied under
di�erent terminology� Of particular interest are methods for combining or comparing the data
associated with a pair of trees� as in the following three classes of problems� which can be viewed as
tree� subtree �or subgraph�� and supertree problems� listed in order of attention given by previous
researchers to date�

Embeddable Tree Problem� Given two trees T and T �� determine whether T is embeddable in
T ��

Largest Common Embeddable Subtree Problem �LCES�� Given two trees T and T �� de�
termine the largest tree L such that L is embeddable in both T and T ��

Smallest Common Embeddable Supertree Problem �SCES�� Given two trees T and T ��
determine the smallest tree S such that both T and T � are embeddable in S�

Each class of problems can be considered with respect to embedding relations� such as subgraph
isomorphism and topological embedding� For a particular embedding relation� a class of problems
contains variants for various assumptions� for example whether the children of each node are un�
ordered �unordered trees� or have a left�to�right ordering �ordered or planar�planted trees�� It is our
goal to unify a particular class of tree problems into a common framework and to present general
sequential and parallel algorithms for problems in the framework�

Over the years� researchers have developed a systematic theory through the study of the algo�
rithmic aspects of trees� Recently� there has been a renewed focus on their combinatorial aspects�
In part this is due to the central role of trees in the work by Robertson and Seymour on graph
minors 	
�� ��� Their far�ranging work on general graphs begins with a treatment of trees as a base
case� Variations of the embeddable tree problem arise in this work� As a problem on ordered trees�
the Embeddable Tree Problem has been approached as pattern matching 	
�� ��
�� there has also
been work done on the unordered tree case 	
�� ��
�� ��� ��� For many embedding relations�
the Embeddable Tree Problem reduces to the Largest Common Embeddable Tree Problem since T is
embeddable in T � if and only if T is the largest common embeddable tree�

Determining the largest common embeddable tree is a problem of interest in its own right� even
when T is not embeddable in T �� Quantifying the similarity between two trees� or more generally
between a given tree and each tree in a �xed set of templates� is a natural problem arising in many
application areas� the size of the largest common embeddable tree is one such measure� In addition�
identifying the largest common embeddable tree may make it possible to merge two or more trees
representing slightly di�ering views of the same data set� Grossi 	�� developed an algorithm for
the restricted case in which leaves of L must map to leaves of T and T �� Previous work on the
more general case has included the examination of the topological embedding problem on trees
with distinct leaf labels� also known as the Maximum Agreement Subtree Problem� The problem
has the following application� given two evolutionary trees derived using di�erent methods� the

�

largest subtree is a more robust evolutionary tree 	��

� ��� �� �� ��� Farach and Thorup 	� have
an O�n��� logn� algorithm� Keselman and Amir 	�� consider the problem when there are more than
two input trees�

A supertree is of interest in the context of editing� image clustering� genetics� and chemical
structure analysis� as it gives a measure of the similarity of trees 	��� and in the context of com�
putational biology� as it provides a method for forming an evolutionary tree 	��� In the case of
the paper by Jiang� Wang� and Zhang� the problem solved is that of ordered minor containment �a
generalization of ordered topological embedding�� in the case of the paper by Warnow� the problem
is that of minor containment in a setting where leaves have distinct labels and are constrained to
map to other leaves�

For the case of unordered trees� our main result is an O�n��� logn� time sequential algorithm for
�nding subtrees or supertrees under either subgraph isomorphism or topological embedding� The
parallel algorithms for the same problems run in O�log� n� time on a randomized CREW PRAM

using O�n���� processors� When the trees are ordered� we obtain O�n�� time sequential algorithms
and O�log� n� time parallel algorithms with O�n�� processors� In this latter case� the parallel
algorithms are deterministic instead of randomized�

After introducing notation and some basic results in Section
� in Section � we compare the
sequential algorithm for subgraph isomorphism on unordered trees to the technique used to solve
the Embeddable Tree Problem� and outline general ways in which this can be extended� Next� in
Section � we give the basic de�nitions and technical lemmas that are required for the develop�
ment of algorithms for the subtree problem� We present a sequential algorithm for subtrees under
topological embedding in Section � and a parallel algorithm for the same problem in Section ��
Sequential and parallel algorithms for topological embedding for supertrees are considered in Sec�
tion �� Variations needed for both problems on ordered trees are considered in Section �� with
the modi�cations needed for solving the subtree and supertree problems for subgraph isomorphism
outlined in Section �� Finally� in Section �� we present some directions for further research�

� Preliminaries

��� Trees

For all the problems discussed in this paper� we consider trees �graphs with no cycles� that are
�nite and have one distinguished node� the root� We use the notation V �T �� E�T �� and r�T � to
denote the node set� edge set� and root� respectively� of a tree T � The size of T � jV �T �j� is denoted
by jT j� For u and v nodes of T � we denote the path from u to v by �T �u� v�� subscripts are omitted
when the tree is clear from context�

In our algorithms� we will refer to several types of trees other than the original input trees� One
such tree� the Brent tree �de�ned in Section
���� is used in our parallel algorithms� For clarity�
we will refer to nodes of a tree T using the Roman alphabet and vertices of a Brent tree using the
Greek alphabet� We associate with each vertex in a Brent tree a level number� where the root of
the tree is at level � and the child of a vertex at level t is at level t � ��

In processing a tree T � we will distinguish between an arbitrary connected subgraph of T � and
a subtree of T consisting of a node in V �T � and all its descendants� where Tv denotes the subtree
of T rooted at v� In the course of our algorithms� we will often be concerned with subgraphs that
arise from removing one subtree from another� For S a subtree of T and v � V �S�� Sn�Sv denotes
the subgraph obtained by removing from S all proper descendants of v� In particular� note that
the node v �� SnSv but that v � Sn�Sv� We say that Sn�Sv is a scarred subtree of T � where v is a

scar� and that Sn�Sv is scarred at v�
The generally accepted de�nition of trees does not place an ordering on the children� We will

also be working with trees in which a left�to�right ordering is placed on the children of each node�
we call such trees ordered trees� these are also known as planar�planted trees in the literature� When
it is not clear from context� we will use the term unordered trees to mean trees in which there is no
ordering on the children�

��� Embedding problems

In this section we present formal de�nitions of the embedding problems considered in this paper�
Our de�nitions are in terms of unordered trees� the de�nitions for ordered trees can be derived by
adding the further restriction that the mappings preserve the ordering on children of each node�

The problem of subgraph isomorphism is that of determining if one tree is a subgraph of
another� A function � is a subgraph isomorphism embedding from a tree T to a tree T � by which
we mean � � V �T � � V �T �� is a one�to�one function such that �a� b� � E�T � if and only if
���a�� ��b�� � E�T ��� We say that � is a root�to�root subgraph isomorphism embedding if� in
addition� ��r�T �� � r�T ���

Topological embedding can be seen as a generalization of subgraph isomorphism� as follows�

De�nition� A tree T is topologically embeddable in a tree T �� T �e T
�� if there is a one�to�one

function � � V �T � � V �T �� such that for any a� b� c � V �T � the following properties hold� If b
is a child of a� then ��b� is a descendant of ��a�� If b and c are distinct children of a� then the
path from ��a� to ��b� and the path from ��a� to ��c� have exactly the node ��a� in common�
Equivalently� we will say that there is a topological embedding of T in T �� The topological embedding
is a root�to�root topological embedding if ��r�T �� � r�T ���

Intuitively� T �e T
� if we can map each node in T to a node in T � such that the edges in T map

to node�disjoint paths in T �� For convenience� we may consider function � to map edges in T to
paths in T �� and describe an edge in the path ��e� as an edge in the image of e� More generally�
we extend the de�nition of � to paths of T � For P � v�� v�� � � � � vk a path in T � we de�ne ��P � to
be the concatenation of the paths ���v�� v���� ���v�� v���� � � � � ���vk��� vk��� Since there is a unique
path between every pair of nodes in a tree� the following lemma is straightforward to prove�

Lemma ���� For � a topological embedding of T into T �� and for any pair of nodes u� v of T �
���T�u� v�� is a path in T ��

Throughout the remainder of the paper� we distinguish between topological embedding� as
de�ned above� and embedding� referring to the class of problems containing subgraph isomorphism
and topological embedding� In addition� we will use T and T � to denote input trees� � and �� to
denote mappings from a largest common subtree �denoted L� to T and T �� respectively� and � and
�� to denote mappings from T and T � to a smallest common supertree �denoted S��

��� Brent restructuring

To solve our tree problems in parallel� we apply results of Brent 	
 to divide a tree into a number of
subgraphs� each a �xed fraction smaller than the original tree� We can obtain a recursive solution
by solving the problem on the subgraphs� with the depth of recursion at most O�logn��

The method used by Brent in performing the division forms two di�erent types of subgraphs
of the original tree T � namely unscarred and scarred subtrees of T � The lemmas below� slight

�

generalizations of results of Brent� contain the essential components of the division for the �rst case
�Lemma
�
� and the second case �Lemma
���� Proofs of these lemmas can be found in an earlier
paper 	���

Lemma ���� For T a tree with at least two nodes� there is a unique node v of T with children
c�� � � � � ck�� such that�

�� jTn�Tvj �
jT j
� � �or equivalently jTvj �

jT j
� �� and

	� jTcij �
jT j
� � for all � � i � k�

Lemma ���� For T a tree with more than two nodes and � a leaf of T � there is a unique ancestor
v of � such that if c is the child of v for which � � Tc then�

�� jTn�Tvj �
jT j
� � �or equivalently jTvj �

jT j
� �� and

	� jTcj �
jT j
� �

We obtain a division of the tree into subgraphs by starting with a tree T and recursively
applying the two lemmas depending on whether or not a subgraph has a scar� In practice� we will
view the applications of both Lemma
�
 and Lemma
�� as two�step operations� �rst T is split
into subgraphs Tn�Tv and Tv �a Brent break� and then Tv is split into subtrees Tc� � � � � � Tck�� where
c�� � � � � ck�� are the children of v �a child break�� By applying a Brent break and then a child break
to a graph �also known as Brent restructuring�� we obtain subgraphs containing disjoint sets of
the nodes� After O�logn� recursive applications of the lemmas� the resulting subgraphs will be of
constant size�

In our parallel algorithms� we store all subgraphs arising from the Brent restructurings in a
representation tree� For the tree T � this tree� denoted BT � is called the Brent tree of T � In BT �
a vertex will correspond to a subgraph of the original tree and an edge between two vertices
will indicate that the child is derived from the parent by a restructuring step� We can form BT

in O�log jT j� time using an O�jT j���processor CREW PRAM 	��� The reader is referred to the
bibliography for various papers in which this technique is applied 	��� �
� �� and to one paper in
particular for a detailed discussion of its use 	���

� The basic techniques

Our results are based on a dynamic programming technique �rst employed in a sequential algorithm
of Matula and Reyner 	
��
�� �
 for determining if one tree is a subgraph of another� In this
section� we begin by outlining Matula�s technique and then describe how it can be combined with
Brent restructuring to yield a parallel algorithm� We then discuss modi�cations needed to handle
topological embedding� Details of all these algorithms� with their complexities� can be found in
earlier work 	��� Finally� we give an outline of the structure of the subtree and supertree algorithms�

��� Subgraph isomorphism on trees

To determine whether or not a tree T is isomorphic to a subgraph of a tree T �� Matula�s approach
is to work up from the leaves of T �� in turn labeling each node u � V �T �� with the set of nodes
a � V �T � such that each Ta is a subgraph of T �u� For a particular a and u� we can determine
whether or not Ta is a subgraph of T �u by making use of such information about children of a and

�

u� we must determine whether or not the subgraph rooted at each child of a can be embedded
in the subgraph rooted at a distinct child of u� This problem is equivalent to solving a matching
problem on a bipartite graph G�X� Y�E�� where X corresponds to the children of a� Y corresponds
to the children of u� and there is an edge in E from child b of a to child v of u if and only if Tb is
a subgraph of T �v� The matching must include every node in X � since this implies that each child
of a is assigned to a distinct child of u� Since bipartite matching can be solved in time O�n�����
this step will dominate the complexity� it is not di�cult to show that the total running time is in
O�n�����

��� Parallelizing Matula�s algorithm

To obtain parallel algorithms� the Brent tree of T � BT � is used to decompose the original problem
into subproblems� We process BT level by level from the bottom up� when a level has been
completely processed� we will have determined all the possible locations in T � where we can embed
those subgraphs of T that correspond to vertices at that level in BT � Since each level of BT

corresponding to child breaks partitions the nodes of T � the subgraphs to be embedded are disjoint�
processing a level constitutes solving� in parallel� a number of independent problems� one associated
with each vertex of BT �

To determine the time complexity of such an algorithm� we consider the time to process one
level of the Brent tree and multiply it by the number of levels� The processing is dominated by the
cost of bipartite matching� Since bipartite matching can be accomplished in time O�log� n� on a
randomized CREW PRAM and since the Brent tree has height in O�logn�� the total running time
for the algorithm is in O�log� n�� The total number of processors required can be shown to be in
O�n	����

��� Topological embedding

To solve the same problems when the underlying relation is topological embedding� we use a similar
approach� In particular� we once again label each node u in T � by a set of nodes a in T � in this case� a
is in the set if Ta is root�to�root topologically embeddable in T �u� Since topological embedding maps
edges to paths� for each child b of a and v of u� we must know whether Tb is topologically embeddable
in T �v �it does not su�ce to know whether or not Tb is root�to�root topologically embeddable in T �v��
As in the algorithm for subgraph isomorphism� such a determination can be made by setting up
and solving a matching problem� Since edges are mapped to paths� once we have information about
a and u� we label each ancestor w of u by the information that Ta is topologically embeddable in
T �w� This idea of propagating information to ancestors is also used in the parallel algorithm�

��� Subtree and supertree problems

Each of the algorithms discussed in this paper consists of determining for each pair of nodes a
in T and u in T � either the largest common subtree or the smallest common supertree of Ta
and T �u� As in Matula�s original algorithm� such information is obtained by making use of a
dynamic programming approach� in essence� information concerning children is used to determine
information about parents�

Unlike in the Embeddable Tree Problem� in the LCES and SCES problems it does not matter
which of the input graphs is designated as T and which as T �� As a consequence of this symmetry�
at times it will be necessary to compare information about a and children of u� about u and
children of a� and about children of a and children of u� To enable such processing to proceed by

�

dynamic programming� we must ensure at all times that all necessary quantities have been or can
be computed� Accordingly� each algorithm description in the paper will indicate how quantities
can be calculated as well as the set of quantities needed�

Although ideally T and T � should be treated equally� in the case of the parallel algorithms�
asymmetry may arise from applying Brent breaks to one tree and not the other� Here it will be
important to show that despite this asymmetry� it is possible to obtain all necessary intermediate
results for each calculation�

� The LCES problem � preliminaries

In the next two sections we describe sequential and parallel algorithms for the largest common
embeddable subtree problem �LCES� for topological embedding� Algorithms for �nding subtrees for
subgraph isomorphism will be outlined in Section �� In this section we give some basic background
and technical lemmas that are needed in all these algorithms�

For input trees T and T �� our algorithms will actually compute a largest common subtree of
the trees Ta and T �u for all nodes a � V �T � and u � V �T ��� We denote the set of largest common
subtrees of Ta and T

�
u under subgraph isomorphism by LCSi�a� u� and under topological embedding

by LCSe�a� u�� In the algorithms� it su�ces to compute the size of the elements in each of these
sets� the output subtree can be recovered from the size information� We use Li�a� u� to denote the
size of the subtrees in LCSi�a� u� and Le�a� u� to denote the size of the subtrees in LCSe�a� u��
When it is clear from context� we will omit the subscripts i and e�

Lemma 	��� For any L � LCS�r�T �� r�T ��� �under either subgraph isomorphism or topological
embedding� and for every pair of embeddings � and �� of L into T and T �� either ��r�L�� � r�T �
or ���r�L�� � r�T �� �or both��

Proof�Let L � LCS�r�T �� r�T ��� and suppose there are embeddings � and �� of L into T and T �

such that ��r�L�� �� r�T � and ���r�L�� �� r�T ��� We then form L� from L by adding a new node g
as the parent of r�L�� Now we can easily extend � and �� to form embeddings of L� into both T

and T � by mapping g to the parents of ��r�T �� and ���r�T ���� thereby contradicting the maximality
of L�

The proof of the following lemma is omitted� it can easily be derived from the de�nition of the
largest common subtree and the fact that subgraph isomorphism and topological embedding are
transitive relations�

Lemma 	��� For any node u in V �T ��� L�r�T �� u� � L�r�T �� r�T ����

We rely extensively on solving weighted bipartite matching problems for our algorithms� these
problems are slightly di�erent for topological embedding and subgraph isomorphism� Here we give
the problem for topological embedding� the problem for subgraph isomorphism is given in Section ��

For b�� � � � � bk nodes of T and v�� � � � � v� nodes of T �� MaxWM�fb�� � � � � bkg� fv�� � � � � v�g� is the
maximum weight bipartite matching in the graph G�X� Y�E� de�ned by X � fb�� � � � � bkg� Y �
fv�� � � � � v�g� and E consisting of an edge of weight L�bi� vj� between each pair �bi� vj��

Lemma 	��� Let X � fb�� � � � � bkg and Y � fv�� � � � � v�g be the children of r�T � and r�T ��� respec�
tively� If there is a matching M of weight WM in G�X� Y�E�� then there is a tree L of size at least
WM � � such that L root�to�root topologically embeds in T and T �� Conversely� if there is a tree L
of size W that root�to�root topologically embeds in T and T �� then there is a matching of weight at
least W � � in G�X� Y�E��

�

Proof�For M a matching in G�X� Y�E� of weight WM� we can relabel the bi�s and vi�s such that
M � f�b�� v��� � � � � �bj� vj�g� Then for � � i � j� there is a tree Li of size L�bi� vi� such that Li

embeds in Tbi and T �vi � We de�ne L to have a root with j children� where the subtree of L rooted
at the ith child is Li� It is straightforward to verify that L root�to�root embeds in T and T � �under
either subgraph isomorphism or topological embedding��

To prove the converse� let L be a tree of size W that root�to�root embeds in T and T � under
� and ��� Let L�� � � � � Lj be the trees rooted at the children of r�L�� Without loss of generality
�by relabeling the b�is and v�is� we can assume that ��r�Li�� is a node in Tbi and ���r�Li�� is a
node in T �vi � for � � i � j� Clearly� for each i� the size of Li is at most L�bi� vi�� Therefore�
f�b�� v��� � � � � �bj� vj�g is a matching in G�X� Y�E� of weight at least W � ��

Corollary 	�	� For X and Y as in Lemma
��� MaxWM�X� Y�E� � � is the size of the largest
tree that is root�to�root topologically embeddable in both T and T ��

In our parallel algorithms� it is necessary to extend the de�nitions of LCS and L to handle
scarred trees� We give the de�nitions here without specifying the embedding used� as they are the
same for both subgraph isomorphism and topological embedding�

De�nition� For s a descendant of a � V �T � and y a descendant of u � V �T ��� LCS�an�s� un�y� is
the set of trees L such that

�� there are embeddings � and �� from L to Tan
�Ts and T �un

�T �y and a distinguished node d of L
such that ��d� � s and ���d� � y� and

� no tree larger than L satis�es condition ��

Furthermore� we de�ne LCS�a� un�y� to be the set of largest common subtrees of Ta and T ���
where T �� is the tree T �unT

�
y �i�e� the tree T �un

�T �y with the node y removed�� Therefore� for every
L � LCS�a� un�y� there is an embedding �� from L to T �un

�T �y such that ���d� �� y for every node d of
L� As in our previous de�nitions� we de�ne L�an�s� un�y� to be the size of the trees in LCS�an�s� un�y�
and L�a� un�y� to be the size of the trees in LCS�a� un�y��

Our algorithms will be based on computing the quantities L�a� un�y� and L�an�s� un�y��

� The LCES problem � sequential topological embedding

In this section we describe a sequential topological embedding algorithm for determiningLCSe�a� u�
for any pair of nodes a � V �T � and u � V �T ��� We use a dynamic programming approach whereby
LCSe�a� u� is determined from sets computed for descendants of a and u� We will show that the
largest common subtree for a and u can be found by computing the maximum of three quantities�
each associated with a di�erent condition suggested by Lemma ����

Lemma
��� For any a � V �T � with children b�� � � � � bk and any u � V �T �� with children v�� � � � � v��
one of the following three conditions must hold for every L � LCS�a� u��

�� L � LCS�a� vp� for some p� � � p � ��

	� L � LCS�bq� u� for some q� � � q � k� or

�� there are topological embeddings � and �� of L into T and T � such that�

�

�a� ��r�L�� � a� ���r�L�� � u�

�b� for each child g of r�L� there is a distinct child b�g� of a such that ��g� is a descendant
of b�g��

�c� for each child g of r�L� there is a distinct child v�g� of u such that ���g� is a descendant
of v�g��

�d� the subtree of L rooted at g is in LCS�b�g�� v�g��� and

�e� there is no other tree L� bigger than L and topological embeddings of L� into T and T �

such that conditions �a���d� are satis�ed�

Proof�As a consequence of Lemma ���� we can characterize each L in the set LCSe�a� u� by
observing that for any pair of embeddings 	 and 	 � from such an L into T and T �� one of the
following occurs�

�� 	�r�L�� � a and 	 ��r�L�� � w for w a proper descendant of u�

� 	 ��r�L�� � u and 	�r�L�� � c for c a proper descendant of a� or

�� 	�r�L�� � a and 	 ��r�L�� � u�

We will prove the lemma by considering each of these possible conditions in turn�
First suppose that 	�r�L�� � a� 	 ��r�L�� � w for w a descendant of u� and vp is the child of

u such that w � T �vp � Since L �e Ta and L �e T
�
w �e T

�
vp
� we can conclude that jLj � L�a� vp��

Moreover� by Lemma ��
� we know that L�a� vp� � jLj� Thus L � LCS�a� vp�� satisfying condition
�� The case in which 	�r�L�� is a descendant of a and 	 ��r�L�� � u is similar�

Finally� we consider the case in which 	�r�L�� � a and 	 ��r�L�� � u� By the de�nition of
topological embedding� each child g of r�L� must be mapped by 	 to the subtree rooted at a
distinct child b�g� of a and by 	 � to the subtree rooted at a distinct child v�g� of u� We can then
conclude that Lg � LCS�b�g�� v�g�� by noting that Lg �e Tb
g�� Lg �e T

�
v
g� and if there were a

larger tree L� such that L� �e Tb
g� and L� �e T �
v
g�� it would be possible to make L larger by

substituting L� for Lg� yielding a contradiction� Thus� conditions ��a�� ��d� are satis�ed� To see
that condition ��e� holds� notice that if a larger L� with appropriate topological embeddings existed�
then L would not be a largest subtree� contradicting the assumption that L is in LCS�a� u��

Notice that when r�L� maps to both a and u� we are matching some children of a with some
children of u in such a way that we maximize the sum of the sizes of the largest common subtrees
of the matched children�

In our algorithm� it will be the size of the largest common subtrees that will be used to work
our way up T and T �� The lemma below follows from Lemma ���� it suggests the structure of the
algorithm itself�

Lemma
��� For a� u� b�� � � � � bk� and v�� � � � � v� as in Lemma ��� we de�ne the following three
quantities�

M� � maxfL�a� vi� j � � i � �g

M� � maxfL�bj � u� j � � j � kg� and

M� �MaxWM�fb�� � � � � bkg� fv�� � � � � v�g� � ��

Then� L�a� u� � maxfM��M��M�g�

�

Proof�As before� let L � LCS�a� u� and let � and �� be the topological embeddings of L into Ta
and T �u� Once again we consider the three possible ways in which the root of L can be embedded�

If ��r�L�� � a and ���r�L�� � w for w a descendant of u� L�a� u� � L�a� vp� for w � T �vp and
therefore L�a� u� � M�� Similarly� if ���r�L�� � u and ��r�L�� � c for c a descendant of a� then
L�a� u� �M�� Finally if ��r�L�� � a and ���r�L�� � u the lemma holds by Corollary ����

It is now clear how the algorithm can be structured� For every node a of T proceeding from
leaves to root and for every node u of T � proceeding from leaves to root� L�a� u� can be computed
as follows� if a or u is a leaf� L�a� u� is set to �� otherwise� we can recursively computeM��M�� and
M� and then apply Lemma ��
 to determine L�a� u��

The above algorithm can easily be modi�ed to compute the largest common subtree by keeping
track of both the size and the subtree at every step�

Theorem
��� For trees T and T � of size O�n�� L�T� T �� and LCS�T� T �� can be computed in time
O�n��� logn��

Proof�The proof of correctness follows from the preceding discussion� It is not di�cult to see that
the computation of L�a� u� is dominated by the cost of determiningM�� as the cost of determining
M� is at most � and that of M� at most k� A bipartite weighted matching on an m node graph
with weights in O�n� can be computed in time O�m��� logn� 	�� Thus� summing over all values of
a and u� the total complexity of the algorithm is

O�
X

a�V
T �

X
u�V
T ��

�jchildren of aj� jchildren of uj���� logn�

�O��
X

a�V
T �

jchildren of aj�
X

u�V
T ��

jchildren of uj���� logn�

�O�n��� logn��

as claimed�

� The LCES problem � parallel topological embedding

As a starting point for discussing the parallel largest common embeddable subtree algorithm� we
note that a naive parallelization of the sequential algorithm described in Section � would be su�
perquadratic as both T and T � could have depth O�n�� To reduce the running time� we restructure
T � using Brent restructuring to form the tree BT � of depth O�logn�� We then work up level by level
in BT � from the leaves to the root� Suppose a vertex
 of BT � is labeled by the subgraph T �un

�T �y�
We compute the largest common subtree of T �un

�T �y and every subtree Tan�Ts of T � Similarly� if
 is
labeled by the subtree T �u� we compute the largest common subtree of T �u and Ta for every subtree
Ta of T �u�

For the remainder of this section� we only consider the case in which the label of
 is a scarred
tree� the unscarred case is very similar�

��� Case �� � occurs at a Brent break

In this section� we show how the L values for
 can be computed using previously computed L
values� For a Brent break node
 labeled T �un

�T �y in BT � � we can assume that the children of
 are
labeled by T �un

�T �x and T �xn
�T �y� where x � ��u� y�� Recall that our algorithm works up BT � from

�

leaves to root� computing L values for the label of each vertex in BT � and for all possible scarred and
unscarred trees in T � In particular� when we reach
� we will have computed� for all a� s � V �T �
and t � ��a� s�� the quantities

�� L�an�t� un�x��

� L�tn�s� xn�y��

�� L�a� un�x�� and

�� L�a� xn�y��

In the course of the algorithm� we must compute L�an�s� un�y� for every pair of nodes a and s

of T with a an ancestor of s and compute L�a� un�y� for every node a of T �

Lemma ���� For a� s� u� x� and y de�ned as above�

L�an�s� un�y� � max
t��
a�s�

fL�an�t� un�x� � L�tn�s� xn�y�� �g�

Proof�We prove the lemma by �nding a node t on ��a� s� such that L�an�s� un�y� � L�an�t� un�x��
L�tn�s� xn�y� � �� Let L � LCS�an�s� un�y� such that � and �� are topological embeddings of L
into Tan�Ts and T �un

�T �y respectively� and let d � V �L� such that ��d� � s and ���d� � y� Then�
����r�L�� d�� is a subpath of ��a� s� and �����r�L�� d�� is a subpath of ��u� y�� Since x � ��u� y�
and L �e T

�
un
�T �y � one of the following cases must hold�

�� x is ���h� for some node h in L�

� ���r�L�� is a proper descendant of x� or

�� there exists an edge �g� h� in E�L� such that x � ��v� w� for ����g� h�� � ��v� w��

We consider each of these cases in turn�
Case ��

If x is ���h� for some node h of L� we let t � ��h�� It is not di�cult to see that jLhj �
L�tn�s� xn�y�� since Lh is clearly a common subgraph of Ttn

�Ts and T �xn
�T �y � if there were a larger

common subgraph L�� then the graph formed by replacing Lh by L� in L would contradict the
assumption of the maximality of L� By a similar argument we can show that jLn�Lhj � L�an�t� un�x��
Since h is counted twice when the two quantities are added together� we subtract one to obtain the
value given in the statement of the lemma�
Case
�

If ���r�L�� is a proper descendant of x then we de�ne t to be a� Then clearly L�an�t� un�x� � ��
L�tn�s� xn�y� � jLj� and the result follows�
Case ��

It will su�ce to show that for t � ��h�� the lemma holds� that is� jLn�Lhj � L�an�t� un�x� and
jLhj � L�tn�s� xn�y�� If h � d� the argument is similar to that given in Case �� we now assume that
h �� d�

Suppose instead that jLn�Lhj � L�an�t� un�x�� Then� there is a tree L� bigger than Ln�Lh such
that L� �e Tan

�Tt and L� �e T
�
un
�T �x� with topological embeddings 	 and 	 � respectively such that

there is a node d� of L� with 	�d�� � t and 	 ��d�� � x� But then we can form the tree L�� from L� and
Lh by identifying d� and r�Lh�� L

�� is bigger than L and clearly L�� �e Tan
�Ts and L�� �e T

�
un
�T �y �

��

Similarly� if jLhj � L�tn�s� xn�y�� let L� be a tree bigger than Lh such that L� �e Ttn
�Ts and

L� �e T
�
xn
�T �y� But then the tree L�� formed by identifying h in Ln�Lh with r�L�� is bigger than L

and embeds in both Tan
�Ts and T �un

�T �y � a contradiction�

Lemma ���� For a� u� x� and y de�ned as above�

L�a� un�y� � maxfL�a� un�x�� max
t�V
Ta�

fL�an�t� un�x� � L�t� xn�y�g � �g�

Proof� If L � LCS�a� un�y�� then there are topological embeddings � and �� from L to Ta and T �u
respectively such that �� maps no node of L to y� If for every node h � V �L�� ���h� �� V �T �x�� then
clearly L � LCS�a� un�x� and the lemma holds�

Now� suppose that there is a node h � V �L� such that ���h� � V �T �x�� We must consider two
cases depending on whether or not �� maps some node of L to x� these cases are similar to those
in the proof of Lemma ����

��� Case �� � occurs at a child break

We now consider a child break node
 in BT � � Let the label of
 be a tree T �un
�T �y where u has

children v�� � � � � v�� assume the scar y is a descendant of vp� � � p � �� Let the children of
 be
��� � � � � �� where �i is labeled by the tree T �vi when i �� p and by the tree T �vpn

�T �y when i � p�
As in Case �� we can conclude that certain values have been computed when we reach
 in BT ��

In particular� for every pair of nodes a� s in T with b�� � � � � bk children of a and with s a descendant
of bq� we will have computed the following quantities�

�� L�a� vj�� � � j � �� j �� p�

� L�a� vpn
�y��

�� L�an�s� vpn�y��

�� L�bi� un
�y�� � � i � k� i �� q�

�� L�bqn
�s� un�y��

�� L�bi� vj�� � � i � k� � � j � �� i �� q� j �� p�

�� L�bi� vpn
�y�� � � i � k� i �� q� and

�� L�bqn�s� vpn�y��

As in the Brent break case� we must compute L�an�s� un�y� and L�a� un�y� for a� s � V �T � with
a an ancestor of s�

Lemma ���� For a� s� u� y� b�� � � � � bk� v�� � � � � v�� p� and q as above� let

M� � L�an�s� vpn
�y��

M� � L�bqn
�s� un�y�� and

M� �MaxWM�fb�� � � � � bkgnfbqg� fv�� � � � � v�gnfvpg� � L�bqn
�s� vpn

�y� � ��

Then� L�an�s� un�y� � maxfM��M��M�g�

��

Proof�Let L � LCS�an�s� un�y� and let � and �� be topological embeddings of L into Tan
�Ts and

T �un
�T �y respectively such that there exists a node d � V �L� for which ��d� � s and ���d� � y�

By a generalization of Lemma ��� to include scars� we can conclude that either ��r�L�� � a or
���r�L�� � u �or both�� we consider each case in turn�

Suppose ��r�L�� � a but ���r�L�� �� u� Since topological embeddings preserve descendant
relationships� and y is in the image of the embedding� ���r�L�� is a node �say w� in T �vpn

�T �y�
Clearly L � LCS�an�s� wn�y� and by a generalization of Lemma ��
 to scars� it can be shown that
L�an�s� un�y� �M�� The case when ��r�L�� �� a but ���r�L�� � u is similar� yielding L�an�s� un�y� �
M��

Finally� suppose ��r�L�� � a and ���r�L�� � u� Consider the child f of r�L� such that d is a
descendant of f � Since topological embeddings preserve descendant relationships� it must be the
case that ��f� is a node of Tbqn

�Ts and ���f� is a node of T �vpn
�T �y� Then� Lf � LCS�bqn

�s� vpn
�y�

since any common subtree larger than Lf could be substituted for Lf in L� thus contradicting the
choice of L as a largest common subtree� Similarly� for any other child g of r�L�� there must be
children bi of a and vj of u such that Lg � LCS�bi� vj�� By Corollary ���� maximizing the size of a
common subtree involves forming a maximumweighted matching between the children of a �except
bq� and children of u �except vp�� Thus� we must solve the indicated matching problem� yielding
L�an�s� un�y� �M��

Lemma ��	� For a� u� y� b�� � � � � bk� v�� � � � � v�� and p as de�ned above� let

M� � max
��j���j ��p

fL�a� vj�g�

M� � max
��i�k

fL�bi� un
�y�g�

M� � L�a� vpn
�y�� and

M� �MaxWM�fb�� � � � � bkg� fv�� � � � � v�g� � ��

Then� L�a� un�y� � maxfM��M��M��M�g�

Proof�As this proof is similar to that of Lemma ���� here we present only an outline�
Consider L � LCS�a� un�y� and let � and �� be topological embeddings of L into Ta and

T �un
�T �y respectively such that no node of L maps to y� If ��r�L�� � a and ���r�L�� �� u� then

���r�L�� � V �T �vj� for some vj a child of u� If j �� p then L�a� un�y� � M� and if j � p then
L�a� un�y� � M�� Similarly� if ��r�L�� �� a and ���r�L�� � u then L�a� un�y� � M�� Finally� if
��r�L�� � a and ���r�L�� � u we must solve a matching problem of the children of a and u and it
follows that L�a� un�y� �M��

��� Handling T

The only remaining bottleneck to a fast parallel algorithm is the handling of T � In this section
we show that when processing a vertex
 of BT � labeled by the tree T �un

�T �y� we can compute
L�an�s� un�y� in parallel for all node pairs a and s in T � It is not di�cult to verify that when

is a Brent break� this is possible by using the same procedure as outlined in the previous section�
The case of a child break� however� is more complicated� In particular� since we are handling
all pairs a� s in T simultaneously� we will not know the quantity L�bqn

�s� un�y� before determining
L�an�s� un�y�� and hence we will not be able to compute M� in Lemma ���� Similarly� we will not

�

know L�bi� un
�y�� � � i � k� i �� q� before we determine L�an�s� un�y� and therefore will not be able

to compute M� in Lemma ����
However� notice that in both these lemmas we can compute M� and M� �and in Lemma ����

M�� directly for all descendants c of a� In particular� to compute M� in Lemma ��� consider an
L � LCS�an�s� un�y� such that � and �� are topological embeddings of L into Tan

�Ts and T �un
�T �y

respectively such that ��r�L�� �� a and ���r�L�� � u� Then� there is a descendant c of a such that
��r�L�� � c with bq� c� and s on a root�leaf path in Tan

�Ts� Let d�� � � � � dk� be the children of c with
s a descendant of dm� Then�

L�cn�s� un�y� �MaxWM�fd�� � � � � dk�gnfdmg� fv�� � � � � v�gnfvqg� � L�dmn
�s� vpn

�y� � ��

Although we do not know which node of ��a� s� corresponds to c� we can try all of them in parallel
and choose the one that maximizes the weight of the matching� this will be the value of M��
Similarly� we can compute the value of M� in Lemma ��� as follows�

M� � max
c�V
Ta��c��a

fL�c� un�y�g

� max
c�V
Ta��c��a

fMaxWM�fd�� � � � � dk�g� fv�� � � � � v�g� � � j d�� � � � � dk� children of cg

We outline the algorithm below for the case in which we are computing L�an�s� un�y� at a child
break�

LP�� Form Brent Tree BT � of T ��

LP�� For every level in BT �� proceeding from leaves to root

LP�� In parallel for each
 at that level�

LP�� If
 is scarred then

LP�� Let the label of
 be T �un
�T �y�

LP	� In parallel� for every pair of nodes a� s in T with a an ancestor of s�

LP
� If
 is a leaf �i�e� y � u� then

LP� L�an�s� un�y� � �� Exit

LP�� Let b�� � � � � bk be the children of a� s � V �Tbq�
LP��� Let v�� � � � � v� be the children of u� y � V �T �vp�

LP��� M��a� s� � L�an�s� vpn
�y�

LP��� M��a� s� �MaxWM�fb�� � � � � bkgnfbqg� fv�� � � � � v�gnfvqg� � L�bqn�s� vpn�y� � �
LP��� L�an�s� un�y� � maxfM��a� s��M��c� s� j c on ��a� s�g
LP��� End For

LP��� End For

Notice that M��a� s� is not explicitly computed but rather is implicit in step LP�� of the
algorithm�

Theorem ��
� For trees T and T � of size O�n�� L�T� T �� and LCS�T� T �� can be computed in time
O�log� n� on a randomized O�n�����processor CREW PRAM�

Proof�We need only show that the algorithm outlined above meets the resource constraints in the
theorem� the correctness follows from the preceding discussion� Since the Brent tree of T � can be
created in time O�log� n� with O�n�� processors 	��� it will su�ce to show that each of the O�logn�
levels of the Brent tree can be processed in time O�log� n� using O�n���� processors� We give details

��

of the calculations for handling a scarred child break using Lemma ���� the remaining cases require
fewer resources�

For a particular vertex
� and a particular pair of nodes a and s in T � M� can be determined
using table look�up in O��� time using O��� processors� M� can be determined using a maximum
weight perfect matching� which can be set up and solved in randomized time O�log� n� with O�n����
processors for a problem of size n 	
�� L�an�s� un�y� can be determined in O�logn� time with O�n�
processors� Therefore� to compute M��a� s� for all nodes a and s in T requires a total of O�n����
processors� Since a particular level of the Brent tree is a partition of the nodes of T �� O�n����
processors su�ce overall�

� The SCES problem � topological embedding

The algorithms for the smallest common embeddable supertree �SCES� problem under topological
embedding are similar in structure to those for the largest common embeddable subtree problem�
However� some of the statements and proofs of lemmas di�er� for the sake of completeness� where
appropriate� we give these lemmas with their proofs in full� The algorithms for SCES under
subgraph isomorphism will be presented in Section ��

	�� Technical lemmas

For tree nodes a � V �T � and u � V �T ��� we de�ne SCSe�a� u� to be the set of smallest common
supertrees of Ta and T

�
u under topological embedding� This de�nition can immediately be extended

for use in conjunction with Brent restructuring� for s a descendant of a and y a descendant of
u� SCSe�an

�s� un�y� is the set of smallest common supertrees of Tan
�Ts and T �un

�T �y such that for
every S � SCSe�an

�s� un�y�� there are embeddings that map s and y to a distinguished node of S�
The set SCSe�a� un

�y� is the set of smallest common supertrees of Ta and T �un
�T �y � where y maps

to no node of a tree in SCSe�a� un
�y�� The notation S is used to indicate the size of trees in sets�

with Se�a� u�� Se�an
�s� un�y�� and Se�a� un

�y� referring to sets SCSe�a� u�� SCSe�an
�s� un�y�� and

SCSe�a� un
�y� respectively� For subgraph isomorphism� we de�ne SCSi and Si similarly and omit

subscripts when the embedding is clear from context� Furthermore� we extend the de�nition of S
so that S��� u� � jT �uj and S�a� �� � jTaj�

The �rst lemma follows directly from the fact that we are working with embeddings on rooted
trees�

Lemma ���� For any S � SCS�T� T �� and for any pair � and �� of embeddings �subgraph isomor�
phism or topological embedding� from T and T � to S� one of the following conditions must hold�
��r�T �� � ���r�T ���� ��r�T �� is a proper ancestor of ���r�T ���� or ��r�T �� is a proper descendant
of ���r�T ����

Next� we prove an analog of Lemma ����

Lemma ���� For any S � SCS�T� T �� �under either subgraph isomorphism or topological embed�
ding� and for every pair of embeddings � and �� from T and T � to S� either ��r�T �� � r�S� or
���r�T ��� � r�S� �or both��

Proof� Suppose ��r�T �� � g �� r�S� and ���r�T ��� � h �� r�S�� we will show that this contradicts
the minimality of S� If Sg and Sh are disjoint� then we can form S � by taking Sg and Sh and

��

identifying g and h� S� has size one smaller than S yet T and T � embed in S�� If Sg and Sh have a
node in common� then by Lemma ���� we can assume without loss of generality that g � V �Sh�� It
is not di�cult to see that both T and T � embed in Sh� a contradiction to the minimality of S�

For b�� � � � � bk nodes of T and v�� � � � � v� nodes of T
�� we de�neMinWM�fb�� � � � � bkg� fv�� � � � � v�g�

to be the minimum weight perfect matching in the weighted bipartite graph G�X� Y�E� where

�� X � fb�� � � � � bk� n�� � � � � n�g�

� Y � fv�� � � � � v�� m�� � � � � mkg�

�� for � � i � k and � � j � �� the edge �bi� vj� has weight S�bi� vj� and the edge �nj � mi� has
weight ��

�� for � � i � k� the edge �bi� mi� has weight S�bi� ��� and

�� for � � j � �� the edge �nj � vj� has weight S��� vj��

Results analogous to Lemma ��� and Corollary ��� are given below�

Lemma ���� Let X � fb�� � � � � bkg and Y � fv�� � � � � v�g be the children of r�T � and r�T ��� respec�
tively� If there is a perfect matching M of weight WM in G�X� Y�E� then there is a tree S of size
WM�� such that T and T � root�to�root embed in S� Conversely� if T and T � root�to�root embed in
a tree S of size W then there is a perfect matching of weight at most W � � in G�X� Y�E��

Proof�For M a perfect matching in G�X� Y�E� of weight WM� we can partition the edges of M
into sets M�� M�� M� and M� as follows�

�� M� is the set of all edges of the form �bi� vj�� without loss of generality we can assume that
M� � f�b�� v��� � � � � �bh� vh�g for some h�

� M� is the set of edges f�bh�� mh��� � � � � �bk� mk�g�

�� M� is the set of edges f�nh�� vh��� � � � � �n�� v��g� and

�� M� is the set of edges of the form �nj � mi��

For each edge �bi� vi� in M�� there is a tree Si of size S�bi� vi� such that Tbi and T �vi embed in Si�
For an edge �bi� mi� inM�� let Pi be a tree isomorphic to Tbi and for an edge �nj � vj� inM�� let Qj

be a tree isomorphic to T �vj � We de�ne S to be a root with children such that the subtrees rooted
at the children are the trees S�� � � � � Sh� Ph�� � � � � Pk� Qh�� � � � � Q�� Then S has size WM � � and
T and T � root�to�root embed in S�

For the converse� suppose T and T � root�to�root embed in a tree S of size W and suppose �
and �� are root�to�root embeddings of T and T � into S respectively� Then� the edges

f�bi� vj� j for some child f of r�S�� ��bi� � V �Sf� and ���vj� � V �Sf �g

�f�bi� mi� j for some child f of r�S�� ��bi� � V �Sf� and ���vj� �� V �Sf� for all jg

�f�nj � vj� j for some child f of r�S�� ���vj� � V �Sf � and ��bi� �� V �Sf � for all ig

�fa perfect matching of nj �s and mi�s unmatched aboveg

form a perfect matching in G�X� Y�E�� It is straightforward to show that this matching has weight
at most W � ��

Corollary ��	� For X and Y as in Lemma ���� MinWM�X� Y�E�� � is the size of the smallest
tree S such that both T and T � root�to�root embed in S�

��

	�� Sequential algorithm

The sequential algorithm is based on the following analog of Lemma ��
�

Lemma ��
� For any a � V �T � with children b�� � � � � bk and u � V �T �� with children v�� � � � � v�� we
de�ne the following three quantities�

M� � minfS�a� vi� � � �
X
j ��i

S��� vj� j � � i � �g�

M� � minfS�bi� u� � � �
X
j ��i

S�bj� �� j � � i � kg� and

M� �MinWM�fb�� � � � � bkg� fv�� � � � � v�g� � ��

Then� S�a� u� � minfM��M��M�g�

Proof�Let � and �� be topological embeddings of Ta and T �u respectively into S � SCS�a� u� such
that ��a� � g and ���u� � h� If h � r�S� and g �� r�S� then jSj � M� since Sg � SCS�a� vi� for
some child vi of u and SnSg � T �unT

�
vi
� Similarly� if h is a proper descendant of g then jSj � M��

Finally� if g � h then by Corollary ���� S�a� u� �M��

Our algorithm has the same structure as that for determining the largest common subtree using
the values of M�� M� and M�� It is not di�cult to show the following result�

Theorem ���� For T and T � trees of size O�n�� a smallest common supertree of T and T � under
topological embedding can be computed in time O�n��� logn��

	�� Parallel algorithm

For our parallel algorithm� we will proceed by forming the Brent tree of T � and processing it level
by level from leaves to root� At each vertex
 labeled by� for example� the scarred tree T �un

�T �y� we
will compute the quantities S�an�s� un�y� and S�a� un�y� for every pair of nodes a and s of T � s a
descendant of a� We will only consider the case of scarred labels of the Brent tree� as unscarred
labels are handled analogously�

For
 occurring at a Brent break� let the children of
 be labeled by T �un
�T �x and T

�
xn
�T �y for some

x � ��u� y�� Then we have�

Lemma ���� For a� s� u� x� and y de�ned as above�

S�an�s� un�y� � min
t��
a�s�

fS�an�t� un�x� � S�tn�s� xn�y�� �g

and

S�a� un�y� � minfS�a� un�x� � S��� xn�y�� �� min
t�V
Ta�

fS�an�t� un�x� � S�t� xn�y�� �gg�

Proof�Let S � SCS�an�s� un�y� with � and �� topological embeddings from Tan
�Ts and T

�
un
�T �y to S�

respectively� Since either ��a� is an ancestor of ���u� or vice�versa� it follows that ��a�� ���u�� ���x��
and ���y� � ��s� all occur on a common root�leaf path in S� To prove the �rst part of the lemma�
it will su�ce to �nd a node t � ��a� s� such that S�an�s� un�y� � S�an�t� un�x� � S�tn�s� xn�y�� ��

��

If ��a� � V �S��
x��� then all of TanTs must map to S��
x�� and SnS��
x� is identical to T �unT
�
x�

Choosing t � a� we can conclude that S�an�s� un�y� � jSj � jT �unT
�
xj � jS��
x�j � S�an�a� un�x� �

S�an�s� xn�y�� �� as required�
When ��a� �� V �S��
x��� we can choose as t the unique node in ��a� s� such that ��t� is in

V �S��
x�� but the parent of t is not in V �S��
x��� We then have S�an�s� un�y� � jSj � jSnS��
x�j �
jS��
x�j � S�an�t� un�x� � S�tn�s� xn�y�� �� as required�

The argument for S�a� un�y� is similar�

We next consider the case in which
 occurs at a child break�

Lemma ��� For a� s� u� and y as above� b�� � � � � bk the children of a such that s is a descendant of
bq and v�� � � � � v� the children of u with y a descendant of vp� let

M� � S�an�s� vpn
�y� � S��� un�vp�� ��

M� � S�bqn
�s� un�y� � S�an�bq� ��� �� and

M� �MinWM�fb�� � � � � bkgnfbqg� fv�� � � � � v�gnfvpg� � S�bqn
�s� vpn

�y� � ��

Then� S�an�s� un�y� � minfM��M��M�g�

Proof�Let � and �� be the required topological embeddings from Tan
�Ts and T �un

�T �y into S �
SCS�an�s� un�y� such that ��s� � ���y�� Then� by Lemma ��
� either ��a� � r�S�� ���u� � r�S� or
both� we consider each case in turn�

If ��a� � r�S� and ���u� �� r�S�� then ���u� � S�
bq�� Hence� the image of T �un
�T �y is con�

tained entirely in S�
bq� and S�
bq� � SCS�bqn
�s� un�y�� Moreover� the subtrees of T rooted at the

children of a �with the exception of Tbq� are all contained in SnS�
bq�� Thus� since bq is counted
twice� S�an�s� un�y� � M�� Similarly� we can show that if ��a� �� r�S� and ���u� � r�S� then
S�an�s� un�y� �M��

If ��a� � ���u�� then since ��u� � ���y� there must be a child f of S such that ��bq�� �
��vp� � Sf

and no other node of either TanTbq or T �unT
�
vp

maps to Sf � Therefore� Sf � SCS�bqn
�s� vpn

�y��
By Corollary ���� SnSf has size MinWM�fb�� � � � � bkgnfbqg� fv�� � � � � v�gnfvpg� and it follows that
S�an�s� un�y� �M��

Due to its similarity to the preceding lemma� the following lemma is stated without proof�

Lemma ���� For a� u� y� b�� � � � � bk� v�� � � � � v�� p� and q as de�ned above� let

M� � min
��j���j ��p

fS�a� vj� � S��� un�vj�� �g�

M� � min
��i�k�i��q

fS�bi� un
�y� � S�an�bi� ��� �g�

M� � S�a� vpn
�y� � S��� un�vp�� �� and

M� �MinWM�fb�� � � � � bkg� fv�� � � � � v�gnfvpg� � S��� vpn
�y� � ��

Then� S�a� un�y� � minfM��M��M��M�g�

We again note that working up the Brent tree of T �� we can compute M�� M� �and M� in
Lemma ���� using previously computed values� The value of M� cannot be computed directly�
However� in that case ���u� is the same as ��c� for some c � ��a� s�� Then� S�an�s� un�y� �
S�cn�s� un�y� in Lemma ���� and S�a� un�y� � S�c� un�y� in Lemma ���� The value S�cn�s� un�y� is
obtained by solving a matching problem� This yields the following parallel algorithm for computing
values of the form S�an�s� un�y� at a child break�

��

SP�� Form Brent Tree BT � of T ��

SP�� For every level in BT �� proceeding from leaves to root

SP�� In parallel for each
 at that level�

SP�� If
 is scarred then

SP�� Let the label of
 be T �un
�T �y�

SP	� In parallel� for every pair of nodes a� s nodes in T with a an ancestor of s�

SP
� If
 is a leaf �i�e� y � u� then

SP� S�an�s� un�y� � jTan
�Tsj� Exit

SP�� Let b�� � � � � bk be the children of a� s � V �Tbq�
SP��� Let v�� � � � � v� be the children of u� y � V �T �vp�

SP��� M��a� s� � S�an�s� vpn
�y� � S��� un�vp�� �

SP��� M��a� s� �MinWM�fb�� � � � � bkgnfbqg� fv�� � � � � v�gnfvqg� � S�bqn
�s� vpn

�y� � �
SP��� S�an�s� un�y� � minfM��a� s��M��c� s� j c on ��a� s�g
SP��� End For

SP��� End For

Theorem ����� For trees T and T � of size O�n�� S�T� T �� and SCS�T� T �� can be computed in
time O�log� n� on a randomized O�n�����processor CREW PRAM�

	 Ordered trees

Despite the same overall structure� there are a number of distinctions between our algorithms for
the LCES and SCES problems for unordered and ordered trees� The key di�erence is the type of
matching problem that must be solved� In particular� we must �nd matchings that preserve the
ordering of the children�

�� Planar Matchings

Let G�X� Y�E� be a bipartite graph with X � fx�� � � � � xkg and Y � fy�� � � � � y�g� A planar
matching on G is a subset M of E such that for any two edges e � �xi� yj� and e� � �xi� � yj�� of M�
i � i� if and only if j � j�� If G is edge weighted �with edge e having weight w�e��� the maximum
weight planar matching problem is the problem of �nding the planar matching that maximizes the
sum of the edge weights of the edges in the matching� We denote the maximum weight of a planar
matching by MaxWPM�X� Y�E��

Our algorithm for computingMaxWPM�X� Y�E� is based on the problem of leveling a weighted
directed acyclic graph�

De�nition� For G a weighted directed acyclic graph where w�x� y� is the weight of the edge �x� y��
the weighted level number ��v� of a node v is de�ned as follows�

�� for v a source node� ��v� � �� and

� for v a non�source node and u�� � � � � uk the set of nodes with edges to v� ��v� � maxf��u�� �
w�u�� v��� � � � � ��uk� � w�uk� vk�g�

The weighted level number of a node is the weight of the heaviest path from a source to the
node� For a graph G with a single source �which can be formed from any directed acyclic graph
by adding one node connected to all sources�� the following algorithm computes all weighted level
numbers�

��

LNS�� Let v�� � � � � vn be a topological sort of V �G�
LNS�� Set ���vi� � � for every i

LNS�� For i � � to n

LNS�� Set ��vi� � ���vi�
LNS�� For every j � i such that �vi� vj� � E�G�
LNS	� Let ���vj� � maxf���vj�� ��vi� � w�vi� vj�g
LNS
� End For

LNS� End For

For the parallel algorithm we use pointer doubling to propagate information more quickly�

LNP�� For every node v in parallel� set ���v� � maxfw�u� v� j �u� v� � E�G�g
LNP�� For logn� � rounds

LNP�� In parallel� for every triple of nodes v� x� y

LNP�� If �v� x�� �x� y� � E�G� then

LNP�� Let wv�x�y � ���v� � w�v� x� � w�x� y�
LNP
� Add the edge �v� y� to E�G�
LNP� Else wv�x�y � �
LNP�� For each node y� let wy � maxfwv�x�y j v� x � V �G�g
LNP��� For each node y� let ���y� � maxf���y�� wyg
LNP��� End For

LNP��� For each node v in parallel� set ��v� � ���v�

Lemma ��� For G a weighted acyclic directed graph� the weighted level numbers of the nodes in G
can be computed sequentially in time O�n�� and in parallel in time O�log� n� on an O�n���processor
CREW PRAM�

Proof� It is clear that the sequential algorithm above correctly computes weighted level numbers�
the complexity is obtained by noting that each edge of the graph is examined only once�

For the parallel algorithm� a straightforward proof by induction shows that for any node v at
distance i from the source� after log i � � iterations of Step LNP
� ���v� will equal ��v�� In the
for loop at Step LNP
� step LNP� takes O�logn� time with all other steps running in O��� time�
Therefore the total running time is O�log� n�� For the processor count� we see that O�n�� triples of
nodes are selected in step LNP�� assigning a processor to each of these triples allows us to compute
the maximum at step LNP��

We are now ready to compute maximum weight planar matchings�

Lemma ��� For G�X� Y�E� a bipartite graph with edge weights such that jX j � n and jY j � n�
the maximum weight planar matching problem can be solved sequentially in time O�n�� and in
parallel in time O�log� n� on an O�n	��processor deterministic CREW PRAM�

Proof�We will reduce this problem to �nding the level numbers of a weighted directed acyclic
graph�

We denote the weight of the edge from a node x to a node y by w�x� y�� Without loss of
generality we assume there is an edge between every xi and yj � if no edge exists between some xi
and yj � we place an edge of weight � between these two nodes�

��

Our algorithm is based on a similar formulation of Jiang� Wang� and Zhang in their work on
tree alignment 	���

MaxWPM�X� Y � � max

���
��

MaxWPM�Xnfxng� Y nfyng� � w�xn� yn�
MaxWPM�Xnfxng� Y �
MaxWPM�X� Y nfyng�

Therefore� to computeMaxWPM�X� Y � we computeMaxWPM�fx�� � � � � xig� fy�� � � � � yjg� for ev�
ery i and j� for a particular i and j this is computed fromMaxWPM�fx�� � � � � xi��g� fy�� � � � � yjg��
MaxWPM�fx�� � � � � xig� fy�� � � � � yj��g�� and MaxWPM�fx�� � � � � xi��g� fy�� � � � � yj��g��

We construct a weighted directed acyclic graph H where

�� V �H� consists of one node for each pair �i� j� with � � i� j � n� where the nodes are labeled
by the pairs�

� there are edges from �i� j� to �i� �� j� and to �i� j � �� of weight �� and

�� there is an edge from �i� j� to �i� �� j � �� of weight w�xi� yj��

We claim that the weighted level number of ��� ��� ����� ���� isMaxWPM�X� Y �� First consider
a path in H from �n� n� to ��� �� of weight ����� ���� we construct a matching M in G�X� Y�E� of
the same weight� For two consecutive nodes �i�� j�� and �i�� j�� in this path� if i� � i� � � and
j� � j� � �� we put the edge �xi� � yi�� into M� Then M will form a planar matching of weight
����� ���� hence ����� ����MaxWPM�X� Y ��

To show that MaxWPM�X� Y � � ����� ���� we consider a maximum weight planar matching
M in G�X� Y�E� with edges �xi� � yj��� �xi� � yj��� � � � � �xik � yjk� with i� � i� � 	 	 	 � ik and j� � j� �

	 	 	 � jk� Since M has maximum weight� for consecutive edges �xih�� � yjh��� and �xih � yjh�� either
ih � ih�� � � or jh � jh�� � �� We construct paths P�� � � � � Pk� as follows�

�� Pk� is any path of weight � edges from �n� n� to �ik� jk��

� for � � h � k� if ih � ih�� � � then Ph is the path �ih� jh�� �ih� jh � ��� � � � � �ih� jh�� �
��� �ih��� jh����

�� for � � h � k� if jh � jh�� � � then Ph is the path �ih� jh�� �ih � �� jh�� � � � � �ih�� �
�� jh�� �ih��� jh���� and

�� P� is any path of weight � edges from �i�� j�� to ��� ���

We form the path P from �n� n� to ��� �� by concatenating Pk�� Pk� � � � � P� and P�� the sum of the
weights along this path is the weight of M and is at least ����� ����

Since the graph H has O�n�� nodes and edges� using our leveling algorithm to compute ����� ���
results in the stated resource bounds�

For the supertree problem� we will instead �nd a planar matching of minimumweight� However�
because edge weights are nonnegative� the matching will always consist of the trivial empty set of
edges� To circumvent this problem� we impose a penalty for not matching a node� In particular�
suppose G�X� Y�E� is an edge� and node�weighted bipartite graph� Then� M � E is a minimum
weight planar matching if it is a planar matching which minimizes the sum of the edge weights of
M plus the weight of the vertices not adjacent to any edge of M� The weight of this matching is
denoted by MinWPM�X� Y�E��

Algorithms for minimumweight planar matchings are similar in structure to those for maximum
weight planar matchings� We outline these results below�

�

Lemma ��� For G�X� Y�E� a bipartite graph with edge and node weights such that jX j � jY j � n�
the minimum weight planar matching problem can be solved sequentially in time O�n�� and in
parallel in time O�log� n� on a deterministic O�n	��processor CREW PRAM�

Proof�Let MinWPM�X� Y � be the weight of the maximum weight planar matching in G and let
the weight of edge �xi� yj� be w�i� j� and the weight of vertex v be w�v�� Without loss of generality�
we assume there is an edge between every xi and yj �

The algorithms follow from the formulation�

MinWPM�X� Y � � min

���
��

MinWPM�Xnfxkg� Y nfy�g� � w�xk� y��
MinWPM�Xnfxkg� Y � � w�xk�
MinWPM�X� Y nfy�g� � w�y��

We now form the graph H as in the proof of Lemma ��
 with the only di�erence being that an
edge from �i� j� to �i� �� j� has weight w�xi� and from �i� j� to �i� j � �� has weight w�yj�� Then�
MinWPM�X� Y�E� is the length of the shortest path in H from �n� n� to ��� ��� such lengths can
be computed sequentially in timeO�n�� using Dijkstra�s algorithm and in parallel in timeO�log� n�
with O�n	� processors 	��� The proof of correctness is similar to that in Lemma ��
�

�� Algorithms for Ordered Trees

Algorithms for ordered trees can be formed from algorithms for unordered trees by substituting
MaxWPM for MaxWM in the largest common embeddable subtree algorithms and MinWPM

forMinWM in the smallest common embeddable supertree algorithms� Unlike the use of random�
ization in parallel algorithms in the unordered case� here all algorithms are deterministic�

Theorem �	� For T and T � ordered trees of size O�n�� the largest common embeddable subtree
problem and smallest common embeddable supertree problem can be solved sequentially in time O�n��
and in parallel in time O�log� n� on a deterministic O�n���processor CREW PRAM�

Proof�The sequential algorithm follows from the fact that the matching problems being solved are
all disjoint� The parallel algorithm takes O�log� n� time for the matching problems on each level of
the Brent tree with O�logn� levels in total� Matchings at a particular level of the Brent tree can
be accomplished by O�n	� processors� Since there are O�n�� choices for the nodes a and s in T � a
total of O�n�� processors su�ces�

 Subgraph isomorphism

Our algorithms for subgraph isomorphism are slight modi�cations of those for topological embed�
ding� In this section we outline the modi�cations and prove that they su�ce� We begin with
the largest common subtree problem and then show that for subgraph isomorphism� the smallest
common supertree can be obtained directly from the largest common subtree�

��� Largest common subtrees

Under both subgraph isomorphism and topological embedding� when we are computing a largest
subtree L of trees Ta and T �u� r�L� maps to a� or to u� or to both a and u� It is the last case in which

�

subgraph isomorphism di�ers from topological embedding� In particular� the children of r�L� must
map to the children of a and u rather than arbitrary descendants of these children� Therefore� we
must keep track of not only the largest supertree of Tbi and T �vj for every child bi of a and vj of u�
but also the size of the largest supertree under a root�to�root embedding� We de�ne the following
notation� LCSr�a� u� is the set of largest trees L that are root�to�root subgraph isomorphic to Ta
and T �u and Lr�a� u� is the size of the trees in LCSr�a� u��

For X � fb�� � � � � bkg nodes of Ta and Y � fv�� � � � � v�g nodes of T �u� we de�ne G
r�X� Y�E� to

be the same graph as G�X� Y�E� except that the weight on the edge �bi� vj� is L
r�bi� vj� instead of

L�bi� vj�� Then� MaxWM r�X� Y�E� is the size of the maximum weight matching in Gr�X� Y�E��
It is straightforward to prove the following variant of Corollary ����

Corollary ���� For X and Y the sets of children of a and u respectively� MaxWM r�X� Y�E�� �
is the size of the largest tree that is root�to�root subgraph isomorphic to Ta and T �u�

Our sequential algorithm is based on the following observation�

Lemma ���� For any a � V �T � with children b�� � � � � bk and any u � V �T �� with children v�� � � � � v��
one of the following conditions must hold for every L � LCS�a� u��

�� L � LCS�a� vp� for some p� � � p � ��

	� L � LCS�bq� u� for some q� � � q � k� or

�� L � LCSr�a� u��

We can compute LCSr�a� u� for every pair of nodes a and u using Corollary ���� Recalling that
it is su�cient to compute the sizes of largest subtrees instead of the actual subtrees� we can obtain
a sequential algorithm by using the following lemma�

Lemma ���� For a� u� b�� � � � � bk� and v�� � � � � v� as in Lemma ��	� we de�ne the following three
quantities�

M� � maxfL�a� vi� j � � i � �g�

M� � maxfL�bj � u� j � � j � kg�mbox and

M� �MaxWM�fb�� � � � � bkg� fv�� � � � � v�g� � ��

Then� L�a� u� � maxfM��M��M�g and Lr�a� u� �M��

Notice that we must keep track of both L�a� u� and Lr�a� u� since the latter quantities are
required to compute future maximumweight matchings� It is not di�cult to see that the complexity
of this algorithm is the same as that of the topological embedding algorithm�

For the parallel algorithm� we can again use Brent restructuring on the tree T �� Here� we
must compute quantities Lr�a� un�y� and Lr�an�s� un�y� as well as the other quantities described
in Section �� the modi�cations of Lemmas ��� to ��� are straightforward� as is the substitution of
MaxWM r for MaxWM in the matchings�

Theorem ��	� For T and T � trees of size O�n�� a largest common subtree of T and T � under sub�
graph isomorphism can be found sequentially in time O�n��� logn� and in parallel in time O�log� n�
on a randomized O�n�����processor CREW PRAM�

��� Smallest common supertree

In this section we show that the smallest supertree problem for subgraph isomorphism can be
directly reduced to the largest subtree problem�

Theorem ��
� For any trees T and T �� S�r�T �� r�T ��� � jT j� jT �j � L�r�T �� r�T ����

Proof�We �rst show that there is a tree S of size jT j� jT �j�L�r�T �� r�T ��� such that T and T � are
subgraphs of S� this will allow us to conclude that S�r�T �� r�T ��� � jT j� jT �j � L�r�T �� r�T ���� We
will then show that the size of any tree in SCS�r�T �� r�T ��� is at least jT j� jT �j � L�r�T �� r�T ����
completing the proof of the theorem�

We form a tree S from T and T � by adding to T those nodes of T � that are not part of a
largest common subtree in T �� More formally� for L � LCS�r�T �� r�T ��� and � and �� subgraph
isomorphisms from L to T and T �� let R and R� be the subgraphs of T and T � that are the images
of L under � and ��� We de�ne the node set of S to be V �T ��V �T ��nV �R��� and the edge set to be
the union of the following� all edges in E�T �� all edges in E�T �� except those with one endpoint in
R�� and all edges of the form �a� y� where a � V �R�� y � V �T ��nV �R�� and ��������a��� y� � E�T ���

It is clear that T is a subgraph of S� To see that T � is a subgraph of S� consider the replacement
of R� by R in S� Since jSj � jT j� jT �j � jLj� S�r�T �� r�T ��� � jT j� jT �j � L�r�T �� r�T ����

We now show that S�r�T �� r�T ���
 jT j� jT �j � L�r�T �� r�T ���� For S � SCS�r�T �� r�T ��� and
� and �� subgraph isomorphisms from T and T � to S� let Q be the subgraph of S induced on those
nodes which are in the image of both T and T �� Since Q is connected �and therefore a tree�� Q is
a subgraph of both T and T �� Then jQj � L�r�T �� r�T ��� and therefore jSj � jT j � jT �j � jQj

jT j� jT �j � L�r�T �� r�T ���� This completes the proof of the theorem�

Since we have already developed algorithms for �nding the largest common subtree� we obtain
the following result�

Theorem ���� For T and T � trees of size O�n�� a smallest common supertree of T and T � un�
der subgraph isomorphism can be found sequentially in time O�n��� logn� and in parallel in time
O�log� n� on a randomized O�n�����processor CREW PRAM�

�� Conclusions and directions for further research

In this paper we have presented a basic paradigm for sequential and parallel algorithms for the
Largest Common Embeddable Subtree Problem and the Smallest Common Embeddable Supertree
Problem for the subgraph isomorphism and topological embedding relations where the underlying
trees can be ordered or unordered� For unordered trees� we have obtained sequential algorithms
running in time O�n��� logn� and randomized parallel algorithms running in O�log� n� time with
O�n���� processors� In the ordered case� our algorithms for all these problems take O�n�� time
sequentially and O�log� n� time deterministically in parallel with O�n�� processors�

Although all the algorithms in this paper have been based on the assumption that T and T �

are unlabeled� it is straightforward to extend the algorithms to handle the cases in which T and
T � are labeled� The known algorithms for computing smallest supertrees for minor containment
handle ordered� labeled trees 	�� and unordered� leaf�labeled trees 	��� it would be interesting to
solve the problem for other possible labeling schemes�

The work on the Smallest Common Embeddable Supertree Problem� and most of the work on
the Largest Common Embeddable Subtree Problem� has concentrated on two�input versions of the

�

problem� Keselman and Amir have shown that the three�input version of the Largest Common
Embeddable Tree Problem is NP�complete for subgraph isomorphism 	��� There are no known such
results for the Smallest Common Embeddable Supertree Problem�

It remains to be seen whether or not the basic paradigm can be further modi�ed to hone running
times and processor counts for special cases� for embeddings listed here and potentially for others
as well� for both labeled and unlabeled trees� Further progress on parallel algorithms for weighted
bipartite matching could have a serious impact on the possibility of such improvements�

Acknowledgements

We are grateful to Ernst Mayr for pointers to references on weighted bipartite matching� and to
Jianghai Fu for bringing to our attention the work of Jiang� Wang� and Zhang and the subject of
supertrees in general�

References

��� H� Alblas� Iteration of transformation passes over attributed program trees� Acta�Informatica �� �����	� pp� �
���

�� R� Brent� The parallel evaluation of general arithmetic expressions� Journal of the ACM ��� �����	� pp� ��
���

��� M� J� Chung� O�n���	 time algorithms for the subgraph homeomorphism problem on trees� Journal of Algorithms
�� �����	� pp� ���
���

��� M� Dubiner� Z� Galil� and E� Magen� Faster tree pattern matching� Proceedings of the ��st Annual Symposium on
Foundations of Computer Science� pp� ���
���� �����

��� M� Farach and M� Thorup� Fast comparison of evolutionary trees� Proceedings of the Fifth Annual ACM�SIAM
Symposium on Discrete Algorithms� pp� ���
���� �����

��� M� Farach and M� Thorup� Optimal evolutionary tree comparison by sparse dynamic programming� Proceedings of
the ��th Annual Symposium on Foundations of Computer Science� pp� �������� �����

��� C�R� Finden and A�D� Gordon� Obtaining common pruned trees� Journal of Classi�cation �� �����	� pp� ��
���

��� J� Friedman� Expressing logical formulas in natural language� Formal methods in the study of language� Part I�
Math� Centrum� Amsterdam� ����� pp� ���
����

��� H� Gabow and R� Tarjan� Faster scaling algorithms for network problems� SIAM Journal on Computing ��� �
�����	� pp� ����
�����

���� P� Gibbons� R� Karp� G� Miller� and D� Soroker� Subtree isomorphism is in random NC� Discrete Applied Mathe�
matics �� �����	� pp� ��
��

���� R� Grossi� On �nding common subtrees� Theoretical Computer Science ��� �����	� pp� ���
����

��� A� Gupta and N� Nishimura� Finding largest common embeddable subtrees� Proceedings of the Twelfth Annual
Symposium on Theoretical Aspects of Computer Science� pp� ���
���� �����

���� A� Gupta and N� Nishimura� The parallel complexity of tree embedding problems� Journal of Algorithms ��� �
�����	� pp� ���
���

���� A� Gupta and N� Nishimura� Sequential and parallel algorithms for embedding problems on classes of partial
k�trees� Proceedings of the Fourth Scandinavian Workshop on Algorithm Theory� pp� ��
��� �����

���� T� Jiang� L� Wang� and K� Zhang� Alignment of trees
 an alternative to tree edit� Combinatorial Pattern Matching�
pp� ��
��� �����

���� R� Karp and V� Ramachandran� Parallel Algorithms for Shared Memory Machines� in Handbook of Theoretical
Computer Science� Vol� A� Algorithms and Complexity� editor J� van Leeuwen� The MIT Press� Cambridge� pp�
���
���� �����

�

���� D� Keselman and A� Amir� Maximum agreement subtree in a set of evolutionary trees � metrics and e�cient
algorithms� Proceedings of the ��th Annual Symposium on Foundations of Computer Science� pp� �������� �����

���� P� Kilpel�ainen� Tree matching problems with applications to structured text databases� Ph�D� thesis� University
of Helsinki� Department of Computer Science� November ����

���� P� Kilpel�ainen and H� Mannila� Grammatical tree matching� Combinatorial Pattern Matching� ����

��� P� Kilpel�ainen and H� Mannila� Ordered and unordered tree inclusion� SIAM Journal on Computing ��� �����	�
pp� ���
����

��� S� R� Kosaraju� E�cient tree pattern matching� Proceedings of the �	th Annual Symposium on Foundations of
Computer Science� pp� ���
���� �����

�� E� Kubicka� G� Kubicki� and F�R� McMorris� On agreement subtrees of binary trees� Congressus�Numerantium
�� ����	� pp� ��
��

��� A� Lingas and M� Karpinski� Subtree isomorphism is NC reducible to bipartite perfect matching� Information
Processing Letters �� �����	� pp� �
��

��� P� Materna� P� Sgall and Z� Hajicova� Linguistic constructions in transparent intensional logic� Prague�Bulletin
on Mathematical Linguistics �� �����	� pp� �
��

��� D� Matula� Subtree isomorphism in O�n���	� Annals of Discrete Mathematics � �����	� pp� ��
����

��� K� Mulmuley� U� Vazirani� and V� Vazirani� Matching is as easy as matrix inversion� Proceedings of the �
th
Annual ACM Symposium on the Theory of Computing� pp� ���
���� �����

��� P� Powell and V� Ngo� Complexity of optimal vector code generation� Theoretical Computer Science �� �����	�
pp� ���
����

��� S� W� Reyner� An analysis of a good algorithm for the subtree problem� SIAM Journal on Computing 	� ��
�����	� pp� ���
���

��� N� Robertson and P� Seymour� Graph Minors III� Planar tree�width� Journal of Combinatorial Theory �Ser� B�
�	 �����	� pp� ��
���

���� N� Robertson and P� Seymour� Graph Minors II� Algorithm aspects of tree�width� Journal of Algorithms � �����	�
pp� ���
��

���� M� Steel and T� Warnow� Kaikoura tree theorems� Computing the maximum agreement subtrees� Submitted for
publication�

��� R� M� Verma and S� W� Reyner� An analysis of a good algorithm for the subtree problem� corrected� SIAM
Journal on Computing ��� � �����	� pp� ���
����

���� T� Warnow� Tree compatibility and inferring evolutionary history� Proceedings of the Fourth Annual ACM�SIAM
Symposium on Discrete Algorithms� pp� ��
���� �����

���� K� Zhang and D� Shasha� Simple fast algorithms for the editing distance between trees and related problems�
SIAM Journal on Computing ��� � �����	� pp� ���
���

�

