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Regression

® Given training data |(x;,y;)!, find /' : X' — ) such that [(x;) ~ v
- x; € X C RY: feature vector for the i-th training example

— y; €Y C RY: t responses, e.g. t =1 or even t = oc

® data

linear

== cubic
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® Prior knowledge on the functional form of [

® Linear vs. nonlinear
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The Difficulty

Theorem: Exact interpolation is always possible

For any” finite training data , there exist infinitely many
functions / such that for all 7,

® No amount of training data is enough to decide on a unique [!

On new data x, our prediction y = f(x) can vary wildly!

This is where prior knowledge of / comes into play

. . “the simplest explanation is usually the correct one”
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Statistical Learning

Training and test data are both iid samples from the distribution P
- (X;,Y:) ~P and (X,Y) ~ P

° on: ‘ — :
sl 1 E| f(X) = Y5

o : m(x) = E[Y|X =x]

Needs to know the distribution PP, i.e., pairs (X,Y)!

Changing the square loss changes the regression function accordingly



m(x3)
m(xs)
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Bias-Variance Decomposition

E|lf(X) = Yz = E[f(X) = m(X) + m(X) = Y[}3
= E[|f(X) - mX)|3 + E[m(X) - Y|3

+2F (f X) =)
= E||l/(X) = m(X)|5 + Ellm(X) — Y[
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Bias-Variance Decomposition

E|lf(X) = Yz = E[f(X) = m(X) + m(X) = Y[}3
= E[|f(X) —m(X)Il3 + E[m(X) - Y3

+2F (f m(X) = Y)
= E||f(X) = m(X)||2 + E[|m(X) — Y]

bias? noise variance

® The noise variance does not depend on our choice of f!

— it is an inherent measure of the difficulty of our problem

e \We aim to choose [ = m to minimize bias hence squared error
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Sampling — Training

. N i 1 n ’ )
Jaim, BISOO =Yl = 311506 = Vil

® Replace expectation with sample average: (X;.Y;) e

® Finite training set — exact interpolation paradox!

® Need to restrict the form of [, using prior knowledge

° . as training data size n — oo,

E — E and (hopefully) argmin £ — argmin E
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Least Squares Regression

S. M. Stigler. “Gauss and the Invention of Least Squares”.

The Annals of Statistics, vol. 9, no. 3 (1981), pp. 465—-474.
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Linear Least Squares Regression

e Affine function: f(x) = 1Vx + b with W € R™? and b € R!
o : x < (), W < [W,b], hence f(x) =Wx
® In matrix form: £ > ||f(x;) —yill3 = 2[|WX—-Y]}

- X=[x1,...,%,] € REFDX" Y — [y, y,.] € REX"
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Linear Least Squares Regression

e Affine function: f(x) = 1Vx + b with W € R™? and b € R!
o : x < (), W < [W,b], hence f(x) =Wx
® In matrix form: £ > ||f(x;) —yill3 = 2[|WX—-Y]}

- X=[x1,...,%,] € REFDX" Y — [y, y,.] € REX"

- [|Alle = \/Zv’,j “42]

min  L[|[WX - Y|

WeR?EX (d+1) w

S. M. Stigler. “Gauss and the Invention of Least Squares’. The Annals of Statistics, vol. 9, no. 3 (1981), pp. 465—474.
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Calculus Detour

® Let /: R’ — R be a smooth real-valued function
® Fix an inner product (-, -)
® Define the gradient V[ : R” — R” as

df(w + tz) ,
————— lizo = (Vf(w),z)

dt
— LHS is the usual (scalar) derivative of the univariate function ¢t — f(w + tz)

— w and z are fixed as constants: directional derivative

— gradient V[ is representation of directional derivative over the inner product we choose

® Chain rule still holds
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Example: Univariate functions

Consider (i.e., ) and the standard inner product
chain rule:

. What is the gradient if we choose

Example: Partial derivatives

Consider and the standard inner product . Choose
the direction (i.e., 1 at the j-th entry and 0 elsewhere):
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Example: Quadratic function

Consider the quadratic function

* (a+b,x+y)=(ax)+(ay)+(bx) +(by)
® (a,tb) = (ta,b) =t (a,b)
o (w,Az) = (ATw,z), (Aw,z) = (w,ATz)
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Optimality Condition

Theorem: 's necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function
then

N
global maximum

local maximum

local minimum

N
global minimum

over an open set,
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Optimality Condition

Theorem: 's necessary condition for extremity

If w is a minimizer (or maximizer) of a differentiable function f over an open set,
then

N
global maximum

local maximum

local minimum

N
global minimum



https://en.wikipedia.org/wiki/Pierre_de_Fermat

Solving Linear Regression

WX = Y|} = (WX — Y, WX —Y)
= (W, WXX" —2YX") +(Y,Y)

(WXXT = YX | = W = YXT(XXT)! = YX!
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Solving Linear Regression

WX — Y2 = (WX —-Y WX —-Y)
= (W, WXX" —2YX") + (Y,Y)

Taking derivative w.r.t. W and setting to zero:

(WXXT = YX | = W = YXT(XXT)"! = YX!

X € R@HD*n hence XX € RETD*(@+D): may not be invertible if n < d + 1, but
a solution always exists

Even when invertible,

Instead, solve the linear system or apply iterative gradient algorithm

16/23
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Prediction

® Once solved W on the training set (X,Y), can Xiest:
?LCSL — Wxtcst

® \We may evaluate our if true labels were available:

|Ytest e ?test ||;23

Ntest
® \We may compare to the

%HY—?HE where Y := WX

® Sometimes we even evaluate the test error using a different loss 1.(Y ... Ymsl)

— leads to a beautiful theory of loss calibration

17/23
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lll-conditioning

‘ASHTOIN KUTCHER ‘MY SMART .

x—ﬁ j y=[1 —1]

® Solving linear least squares regression:

w=yX '=[1 —1] [_1%6 (1)] = [-2/e 1]

® Slight perturbation leads to chaotic behaviour!

® Happens whenever X is ill-conditioned, i.e.,
(close to) rank deficient




Tikhonov Regularization, a.k.a. Ridge Regression

L02

min [|WX — Y|z +
w n

AWl

A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method”. Soviet Mathematics, vol. 4, no. 4 (1963),
pp. 1035-1038, A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthogonal problems”.

no. 1 (1970), pp. 55-67

Technometrics, vol. 12,
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® Normal equation: W(XX" + A1) = YX'

® Regularization const. \ controls trade-off

— X = 0 reduces to ordinary linear regression

— X = oo reduces to W =0

— intermediate \ restricts output to be
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Tikhonov Regularization, a.k.a. Ridge Regression

min L[WX — Y[ + [ AW

® Normal equation: W(XX" + A1) = YX'

® Regularization const. \ controls trade-off

— X = 0 reduces to ordinary linear regression

— X = oo reduces to W =0

— intermediate \ restricts output to be
proportional to input

® May choose to not regularize offset b

A. N. Tikhonov. “Solution of incorrectly formulated problems and the regularization method”. Soviet Mathematics, vol. 4, no. 4 (1963),
pp. 1035-1038, A. E. Hoerl and R. W. Kennard. “Ridge regression: Biased estimation for nonorthogonal problems”. Technometrics, vol. 12,
no. 1 (1970), pp. 55-67
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Data Augmentation

LIwWX — Y|} +

AWIE

= LW [X VurI]-[Y 0]

x{
{

2
F
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Data Augmentation

LIWX — Y[2 +[AIW[E] = LW [X vaAr] - [Y o] |I
———— N——
X A%

® Augment X with VnA/, i.e. p data points x; = Vnle;,j =1,...,p
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Data Augmentation

2 IWX — Y& + | A|WJE

| S —
X

= LW [X vl = [Y 0|

~——
Y

2
=

® Augment X with VnA/, i.e. p data points x; = Vnle;,j =1,...,p

® Augment Y with zero

LO2
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Data Augmentation

LIWX — Y2+ [X[W[Z] = 1w [X vaAz] - [¥ o] |
———— N——
X A%

® Augment X with v/nA/, i.e. p data points x; = Vnle;,j =1,...,
® Augment Y with zero

® Shrinks W towards origin

regularization = data augmentation

2
F

P



Sparsity
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Sparsity

® Regularization < constraint: Wy
: 1 2
min - ||WX — Y|
[WI[[F<y
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Sparsity

® Regularization < constraint: Wy
min  L[WX - Y|3
IWIlF<y
® Ridge regression — dense W o
\%%

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
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Sparsity

® Regularization < constraint: Wy
: 1 2
min - ||WX — Y|
[WI[[F<y

® Ridge regression — dense W °
— more computation / communication
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Sparsity

® Regularization < constraint: Wy
min  [|WX — Y|
W]l <~y

® Ridge regression — dense W °

— more computation / communication
— harder to interpret
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Sparsity

® Regularization < constraint: ws
: 1 2
min - ||WX — Y|
W]l <~y

® Ridge regression — dense W °

— more computation / communication
— harder to interpret

® Lasso (Tibshirani, 1996):
min  [|WX — Y|
<y

)

W w1
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Sparsity

L02

® Regularization < constraint:
: 1 2
min - ||WX — Y|
W]l <~y

® Ridge regression — dense W

— more computation / communication
— harder to interpret

® Lasso (Tibshirani, 1996):

min %HWX—YH%
Wi <y

® Regularization < constraint:

min LIWX = Y| + AW

R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”.

pp. 267-288

Wo

)

w1

Journal of the Royal Statistical Society: Series B, vol. 58, no. 1 (1996),
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Task Regularization

mln LIWX - Y[+ A[W[E = mm Llw X —y [} + Allw- |3, VT =1,...,¢

R. Caruana. “Multitask Learning”. Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou et al. “Convex multi-task feature learning”.
Machine Learning, vol. 73 (2008), pp. 243-272.

Lo2 22/23


https://en.wikipedia.org/wiki/Matrix_norm
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/s10994-007-5040-8

Task Regularization

mm LIWX — Y[ + A|W|; = mm Lw, X —y-[If + Mjw, |3, Vr=1,...,¢

® |n other words, the tasks are independent and can be solved separately
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Task Regularization

mm LIWX — Y[ + A|W|; = mln || , VT =1,.

24+ \|lw-|3

® |n other words, the tasks are independent and can be solved separately

e Sometimes lumping tasks together (LHS) is computationally more efficient

R. Caruana. . Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou et al.
Machine Learning, vol. 73 (2008), pp. 243-272.
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Task Regularization

Zr M wol5, Vr=1,...,t

111111 LIWX — Y[ + A|W|; = 111111 ||

® |n other words, the tasks are independent and can be solved separately
e Sometimes lumping tasks together (LHS) is computationally more efficient

e |f tasks are related, can consider regularization:

mln LIWX = Y| + \[|W|fg:,

where || Al|, is the sum of singular values (i.e., the ).

R. Caruana. . Machine Learning, vol. 28 (1997), pp. 41-75, A. Argyriou et al.
Machine Learning, vol. 73 (2008), pp. 243-272.
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For each lambda, perf
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For each lambda, perf, + perf, + ... + perf,




Cross-validation

For each lambda, perf(lambda) = perf, + perf, + ... + perf,




Cross-validation

-

For each lambda, perf(lambda) = perf, + perf, + ... + perf,

lambda’ = argmax, ,,,4, Perf(lambda)




Cross-validation
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Cross-validation

Wlambda*
‘

-

For each lambda, perf(lambda) = perf, + perf, + ... + perf,

lambda’ = argmax, ,,,4, Perf(lambda)







