
Determining the Number of Games Needed to
Guarantee an NHL Playoff Spot

Tyrel Russell and Peter van Beek

Cheriton School of Computer Science
University of Waterloo

{tcrussel,vanbeek}@uwaterloo.ca

Abstract. Many sports fans invest a great deal of time into watching
and analyzing the performance of their favourite team. However, the
tools at their disposal are primarily heuristic or based on folk wisdom.
This paper provides a concrete mechanism for calculating the minimum
number of points needed to guarantee a playoff spot in the National
Hockey League (NHL). Along with determining how many games need
to be won to guarantee a playoff spot comes the notion of “must win”
games. Our method can identify those games where, if a team loses, they
no longer control their own playoff destiny. As a side effect of this, we
can also identify when teams get lucky and still make the playoffs even
though another team could have eliminated them.

1 Introduction

Hockey fans are interested in knowing when their team clinches a playoff spot.
This problem can be modelled as a satisfaction problem and solved using con-
straint programming [1]. However, if the team has not clinched a playoff spot,
this method provides no information about how close a team is to earning a
playoff position. The problem of determining how close a team is to clinching
a playoff spot can be modelled as an optimization problem that determines the
minimum number of points that is necessary to guarantee a spot. This bound on
the number of points can also be used to determine when a team has no guar-
antee of making the playoffs and when a team has lost a crucial game and left
destiny in the hands of another team. These factors are interesting to hockey fans
and can be generalized to other sports with playoff structures, such as baseball
and basketball.

We solve the problem using a constraint model and a mixture of techniques
from constraint programming and operations research including network flows,
constraint propagation and dominance constraints. We decompose the problem
so that we can use a multi-stage approach that adds constraints at each stage
if no feasible solution is found. The NHL determines positioning by points and,
if tied by points, by several tie breaking conditions. The stages of the solver
correspond to the extra constraints needed to determine the extra tie breaking
conditions. The first stage uses a combination of enumeration and network flows
to determine a tight lower bound on the points needed and whether there exists

a feasible solution using only points as a criterion. The second stage also uses
network flows to check the first tie breaking condition. The third stage uses a
backtracking constraint solver to determine if there are any solutions using the
second tie breaking condition.

Our solver can determine the minimum number of points for a given team,
at any point in the season, within ten minutes and, for dates near the end of the
season, in seconds. In sports, analysts, reporters and coaches often refer to “must
win” games. The method used in this paper can identify games where losing that
game, the team puts its playoff aspirations into the hands of its opponents. While
this does not mean the team will not qualify for the playoffs, it does mean that
nothing the team does guarantees a playoff spot. We identify nine teams in the
2006-07 season that lost one of these “must win” games and found themselves
in a position to earn a playoff spot again through the actions of their opponents.
Several teams experienced this phenomenon four times during the season.

In the remainder of the paper, we give a brief description of the mechanics
of playoff qualification in the NHL. Some related work is presented in Section
3. A formal definition of the optimization problem for determining the minimal
number of points needed to guarantee a team makes the playoffs is presented.
Afterwards, we introduce the concept of an elimination set and explain how
this is used to determine tight lower bound values on the optimal value. Since
the bound requires the relaxation of tie breaking conditions, we discuss how
we can reincorporate those conditions using the same sets. Finally, the specific
constraint model is introduced along with some optimizations in the form of
exploited dominance and combined consistency checking.

2 The NHL Playoff System

Since the last expansion of the league in 2000, the NHL has consisted of thirty
teams arranged into two conferences of fifteen teams. Each conference is broken
into three divisions with five teams each. Each team in the NHL plays eighty two
games with 41 home games and 41 away games. Eight teams make the playoffs
from each conference and to earn a playoff position a team must either be a
division leader or one of the five best teams in their conference not including
division leaders, called wild card teams.

Positioning in the NHL is determined by one primary criterion and several
secondary tie breaking criteria. The primary criterion is the number of points
earned by a team. The two common secondary criteria are total wins and points
earned against teams with the same number of points and wins. A third tie
breaking criteria, which is the number of goals scored on opponents, is sometimes
used to break ties between teams tied applying the first three criteria.

Like many North American sports, an NHL game must end in a win or loss.
However, the NHL has a unique scoring system as there are points awarded for
reaching overtime even if a team does not win the game. The game is separated
into three twenty minute periods and, if teams are tied after sixty minutes, a
five minute overtime period. If teams are tied after overtime, there is a shootout

to decide the winner. If the game ends during regulation time— the first sixty
minutes— then the winner of the game is awarded two points and the loser earns
no points. If, however, the game ends either during the overtime period, which
is sudden death, i.e. ends when a goal is scored, or the shootout, which must
conclude with a winner, then the winner still earns two points but the loser earns
a single point in consolation.

3 Related Work

Russell and van Beek [1] created a constraint programming model for calculating
whether a given team had clinched a playoff spot. However, the optimization
of the decision model requires a relaxation of the dominance constraints. This
relaxation of the constraints along with the increased search space leads to a
significant increase in the execution time of the solver such that relatively late
season instances could not be solved within a day.

Approaches for determining the minimum number of games needed to guar-
antee a playoff spot have been proposed for the Brazilian football championship
[2] and in Major League Baseball [3]. These sports either have a simpler scoring
model or a simpler playoff qualification method. Robinson [4] suggested a model
for the NHL but his model did not allow for wild card teams or tie breaking
conditions. As well, only a theoretical model was presented without experimen-
tal results. Gusfield and Martel [5] show that this problem is NP-Hard. They
put forth a method for calculating bounds on when a team has been eliminated
from the playoffs but their method only works for a single wild card team and a
simple win-loss scoring model. Our technique uses a similar method but differs
in approach as we must account for multiple wild card teams.

Wayne [6] introduced the concept of a constant that could be used to deter-
mine whether or not a team was eliminated from the playoffs. Specifically, he
introduced the concept of lower bound constant W ∗ which denoted the mini-
mum number of points needed to earn a playoff spot. Gusfield and Martel [5]
show how this idea can be extended to include a single wild card team and
multiple division leaders. In this paper, we will also discuss the existence of an
upper bound constant which represents the minimum number of points needed
to guarantee a playoff spot.

4 A Formal Problem Definition

To define the problem formally, certain concepts and notations must first be
introduced. We denote the set of teams in the NHL as T . We denote the confer-
ence that team i belongs to as Ci and the division that team i belongs to as Di.
Table 1a shows the different time variables that we use to superscript the other
feature-based variables. Table 1b shows the different features in the NHL and
the notation for each feature based on the number and type of opponent. For
each instance, there is a schedule and a date d0 along with the results of games
prior to d0. We define a scenario S to be a completion of the schedule from d0

Date Notation

Current d0

End de

Generic dt

Feature vs. j vs. Opposite Conference Total

Points pdt
i,j ocpdt

i pdt
i

Wins wdt
ij ocwdt

i wdt
i

Overtime Losses oldt
ij ocoldt

i oldt
i

Games Remaining gd0
ij ocgdt

i gdt
i

(a) (b)

Table 1. Variable Notation (a) The variables representing the different dates under
consideration. (b) The variables representing the current state of the results at a given
time dt.

by assigning wins, losses, and overtime losses to the games scheduled after d0.
We refer to the maximum possible points that could be earned by a team i if
they won all of their remaining games from a given date dt as mppdt

i . We refer
to the maximum points over all teams T ′ ⊆ T at a given time dt as maxdt (T ′)
and the minimum points over all teams T ′ ⊆ T at a given time dt as mindt (T ′).

A team only qualifies for a playoff spot if they are a division leader or a wild
card team. We define a division leader to be the team i that has the maximal
points at the end of the season within their own division (i.e. pde

i = maxde(Di))
and has better tie breakers than any team with equivalent points in their division
at time de. We define a wild card team i to be any team that is not a division
leader but has a pde

i greater than at least seven other teams in i’s conference
that are also not division leaders.

Given team k, a given date of the season, d0, a given schedule of remaining
games and given results up to d0 in the season, a Playoff Optimization Problem
is to determine the minimal number of points at the end of the season, pde

k , such
that there exists no scenario where k does not qualify for the playoffs as either
the leader of the division or one of the five wild card teams. Note that we refer
to the given team as either the elimination team or simply k for the remainder
of the document.

5 Solution Overview

In this section, we provide an overview to the solver that we use to solve the
optimization problem. In order to solve all instances, we use a multi-stage solver
that applies different techniques at each stage. In the first stage, we enumerate
all of the feasible elimination sets of teams (see Sec. 6) and derive a tight lower
bound for the number of points needed. If pd0

k is greater than the bound then
they have already qualified and if mppd0

k is less than the bound then they can no
longer guarantee. If the bound falls in between those values then with each set

that obtains our lower bound, we check each tie break condition to determine
if this lower bound is a feasible number of points to guarantee a playoff spot.
The second stage checks to see if the first tie break condition, wins, is enough
to eliminate k. We do this by enumerating the possible win values and checking
them with a feasible flow algorithm (see Sec. 7). If there is no feasible solution
using only points and wins as criteria, the third stage again uses a feasible flow
algorithm to check if there are any sets where teams are tied in both points and
wins (see Sec. 7). If there exists feasible tie breaking sets, we use a backtracking
constraint solver to determine if one of the sets can eliminate k (see Sec. 8). If
there are no solutions at this point then k can guarantee a playoff spot if they
earn enough points to reach the bound. Otherwise, the solution to the problem
is one greater than our lower bound.

6 Generating and Bounding the Elimination Sets

In this section, we define elimination sets and present a method for determining
a bound on the points achievable by that set. To calculate the lower bound, we
generate all sets of eight teams that could compose the three division leaders
and five wild card teams. Each of these sets has the potential to eliminate k at
some point bound. The largest bound over all of these sets forms a tight lower
bound on the solution to our problem, differing by at most one point.

We define an Elimination Set, E, as a set of eight teams from the same
conference with at least one team from each division and does not include k. For
each team i, they must either have mppd0

i > pd0
k or be the only team in the set

from a division Di such that Di 6= Dk.
We define the bound of an elimination set, E, as the max (minde (E)) under

all scenarios S where either pde

k = minde (E) or pde

k = mppd0
k . The maximum

bound over all elimination sets is a tight lower bound on the solution to the
complete problem differing by at most one point.

6.1 Calculating the Bound

To calculate the bound for a given elimination set, we adapt an idea by Brown [7]
using iterative max flows to solve a sharing problem. We implemented a similar
algorithm that shares the games between the teams so that the worst team in
the set has the most points possible. By constructing a flow graph that allows
us to determine a feasible share, we iterate until a valid distribution of games is
found. We start out with a possible bound and determine its feasibility. If the
bound is not feasible, we update the bound and check the feasibility of the new
bound.

In order to find the best bound, teams win as many points as possible. This
means that every loss by a team in the elimination set is an overtime loss and
teams in the elimination set win all of their games against teams that are not
except k. We formalize the points earned by a team i under this situation as,

(a) (b) (c) (d)

Fig. 1. The relaxed bound algorithm. (a) The original problem with 6 games remain-
ing. The solid rectangles represents pd0

i and the dashed rectangles represents mppd0
i .

The first step is to sort the teams by pd0
i . (b) shows the sorted teams with the

min (mppd0
i) shown as the solid horizontal line. (c) We assign games to the teams

with the least points. In this case, one game to the first team. (d) In the next iter-
ation, four teams need games and we allocate four of the remaining five games. The
bound is reached and the final solution has one game remaining.

p′i = pd0
i + 2ocgd0

i + 2
∑

j /∈E∪{k}

gd0
ij +

∑
j∈E∪{k}

gd0
ij . (1)

Equation (1) represents the sum of the points already earned (pd0
i), the wins

against teams not in the set E ∪ {k} (2ocgd0
i + 2

∑
j /∈E∪{k} gd0

ij) and one point
each from games against teams in E ∪{k} (

∑
j∈E∪{k} gd0

ij). These preprocessing
steps are valid dominance relations as we are looking for the scenario where we
get the maximum minde (E) and these steps either increase the points of a team
in E or leave them the same while not affecting the maximum possible points of
the teams in E.

6.2 The Relaxed Bound

To determine the starting point for the lower bound, we solve a relaxation of the
bound calculation where we relax the constraint that a specific number of games
must be played between two teams. Instead, we consider all games as a pool of
unplayed games with no assigned opponents and assign them to the worst team
until the games are used or the mini∈E(mppd0

i) is reached. Figure 1 shows an
example bound calculation.

6.3 The Flow Network and the Bound

Once we have a starting point calculated by the relaxed bound algorithm, we are
looking to find the first feasible bound when we include the constraints removed

bound ← InfeasibleBound(E,k);
repeat

Needs ← CalculateNeeds(E,k,bound);
need←

P
i∈E ni;

G ← ConstructGraph(Needs);
flow ← CalculateFlow(G);
if flow < need then

bound← bound− 1;

until flow ≥ need ;
return bound

Algorithm 1: This algorithm shows the steps for calculating the bound for a given
elimination set, E. First, we generate an infeasible bound as a starting point. From
that starting point, we generate, for each team, the number of points needed to reach
the bound, denoting the set of needs as Needs. Then we check feasibility using a flow
algorithm. If the flow meets the needs, we return the bound. Otherwise, we reduce
the bound and iterate.

during the infeasible calculations. We formulate this as a feasible flow problem
[8] with an artificial sink and source. These graphs look similar to the graphs
constructed by Schwartz [9] in his paper on baseball elimination.

Every team in the elimination set and the team k needs to win a certain
number of games to reach the bound and this must be incorporated into the
graph. We define the need of a team i, ni, to be bound− p′i (where bound is the
current lower bound on points and p′i is defined in (1)). The exception to this
rule is k where the bound may be greater than mppk. In that case, we calculate
nk as mppk − p′k. We use the p′ values since we are still looking for best case
results for the set E∪{k}. A bound is feasible if the maximum flow in the graph
is equal to the sum of the needs of the teams in the elimination set. If not, a new
bound must be tried. Algorithm 1 describes the process by which the bound is
calculated. We denote the maximum bound calculated by the algorithm over all
elimination sets as p and prune any set that does not reach that bound.

Once we know the needs for a given elimination set, it is relatively simple to
construct the graph. An example graph is in Fig. 2 showing the variables and
the associated capacities in the graph. We create two nodes s and t to be the
source and sink, respectively. We add one node for each pair of teams in the set
and one node for each team in the set. On top of this, we add an extra node that
represents games played against k by any team in E. Each node representing
a pair of teams has three edges where one is an incoming edge from s with a
capacity equal to the number of games between those two teams gd0

ij and two
are outgoing edges to the nodes for the teams with the same capacity as the
incoming edge. There is also an edge from each node representing a team in
the set to the sink node t with a capacity equal to the need of the node. Last,
the node representing the games against k has an edge from the source with a
capacity of gd0

k −nk and one link each to every team node with a capacity equal
to the number of games played between them.

s 1, 3

1, 2

2, 3

k

2

1

3

t

g1
2

g13

g
23

g
k
−

n
k

w12

w
21

w13

w
31

w23

w32
w
1k

w
2k

w3k

[n
1 , g

1]

[n2, g2]

[n
3
, g

3
]

s 1, 3

1, 2

2, 3

k

2

1

3

t

g1
2

g13

g
23

g
k
−

n
k

g12

g21

g13

g31

g23

g32

g 1
k

g 2
k

g3k

n
1

n2

n3

(a) (b)

Fig. 2. (a) A variable representation of the values in the flow graph for a three team
elimination set ({1, 2, 3}). The implementation of the graph uses the domain of the
variables as the capacity bounds. (b) The capacities to determine feasibility for the
flow graph. All variables are given their domain maximum. Since the flow is split in
nodes (1, 2), (1, 3) and (2, 3), a feasible flow is a valid assignment. If the max flow can
saturate the needs of the teams then there is a feasible solution for this elimination set.

7 Win Values and Tie Breaking Sets

In this section, we describe how win values are used to determine if an instance
has a solution and how to generate feasible tie break sets. Once we have a point
bound and set of teams that could potentially reach that bound, we determine
the possible values for the secondary criteria and only solve feasible instances.
This means that we determine if the elimination set can eliminate k with only
wins or whether some teams must be tied. We use a modification of the original
flow problem to determine both of these quantities. First, observe that if a team
earns p points then we have the following constraint,

(pde
i = p) ⇒ (p− pd0

i)− gd0
i ≤ wde

i − wd0
i ≤

⌊
(p− pd0

i)
2

⌋
. (2)

This constraint represents that any team i with p points at the end of the season
would have earned the fewest extra wins if every loss was an overtime loss thus
earning at least one point per game and the most extra wins when they win as
many games as possible while still only earning p points. This constraint also
holds true for k so we can determine a feasible range of wins for the elimination
team given the elimination set, E, and the point bound p. For each possible
number of wins w for k, we determine if the set can eliminate with that number
of wins and, if not, which sets of teams can be tied.

Both of these tasks can be solved by checking for feasible flows on the same
graph using slightly different needs in each case. We modify the graph for calcu-

s 1, 2

1

2

t

[0, g13
]

[g12, g12]

[0, g23]

[0
, g

12
]

[0, g
12]

[n
1 , g1]

[n2,
n2]

v 1, 2

1

2

t s

w
g12

n
1
+

n
2

g
13

g
23

g 1
2

g1
2

g
12

g 1
−

n
1

n1

n2

∞

(a) (b)

Fig. 3. (a) A network flow graph with three teams. Team 1 has a lower bound con-
straint on the number of wins and is in the elimination set and not in the tie break
set, team 2 is in the tie break set and has a fixed number of possible wins, and team
3 is in neither the elimination set or the tie break set and has no bounds on either
points or wins. (b) A flow graph transformed to remove the lower bound capacities.
Two additional nodes are added v and w. A feasible flow exists in the original graph
if the maximum flow is equal to the sum of the lower bounds on the original graph
(n1 + n2 + g12).

lating point bounds by allowing k as a proper team on the right hand side and
adding links directly to the nodes for games outside the set (see Fig. 3a). Games
against opponents outside E ∪ {k} do not have to be won by any team in the
set so they have no lower bound but those in the set must be won by one of the
teams; therefore, they have a lower bound. We construct the graph so that each
team that must be tied with k in wins has a lower and upper bound equal to
their need. The need calculation for this graph is different than the point graph.
Since both points and wins are both fixed, we get the following equation for
calculating need,

ni =


w− wd0

i if (pde
i = p) ∧ (wde

i = w)
0 if (p− pd0

i)− gd0
i < 0

(p− pd0
i)− gd0

i if (p− pd0
i)− gd0

i + wd0
i > w

(p− pd0
i)− gd0

i + 1 otherwise

. (3)

Each condition of Equation (3) represents the number of wins needed to
eliminate k in the best case scenario using as few wins as possible. The first
condition denotes that the elimination team must have exactly w wins. The
second condition denotes that teams that would have equal or more points using
only extra points from overtime losses do not have to win any more games. The
third condition ensures that teams that win the minimal number of games to
reach p have more wins than k and eliminate k. The fourth condition corrects
the number of wins needed when the second and third condition do not hold by
adding an additional win to the minimal number of wins. For teams tied with k
in wins, we introduce a tie break set. We define a Tie Break Set as any subset

of the teams in Ck where every team can reach both the point bound p and the
win bound w exactly. We test all subsets by setting the need of teams in the tie
break equal to w− wd0

i .
Since our graph has minimum and maximum capacities on the edges, we

transform the graph into a different max flow problem as described by Ahuja
et al. [8]. The transformation can be seen in Fig. 3. Once we have checked the
wins tie breaker with the flow graph and determined which sets of nodes can
be tied in both points and wins, we determine if any of those tie break sets can
eliminate k with points against teams that are tied. We model this problem as
a satisfaction problem and solve it using backtracking search as described next.

8 The Decision Problem

In this section, we describe the constraint model used to determine if the final tie
breaks eliminate k. Once we have fixed the elimination set (E), point bound (p),
win bound (w) and tie break set (TB), we verify this combination eliminates the
team k. We examine possible scenarios of wins (wi,j) and overtime losses (oli,j)
as these are the two factors that affect the points and hence the outcome of a
given scenario. We break the teams into four mutually exclusive classes to help
describe our model.

A = {i | i ∈ E ∧ i /∈ TB} C = {i | i /∈ E ∧ i ∈ TB}
B = {i | i ∈ E ∧ i ∈ TB} D = {i | i /∈ E ∧ i /∈ TB}

8.1 The Model

There are four major constraints to this model. Each of which is modified slightly
depending on which class a given team belongs. Constraint (4) represents the
constraint that each of the teams must either meet or exceed the bounds de-
pending on their class. These rules are derived from the NHL tie breaking rules.
Constraint (5) represents the constraint that each game must have a winner. The
exception to both of these constraints are those teams in D. These teams are
not restricted by the bounds and thus we can ignore any game where they are
playing other teams in D. We also must constrain the number of overtime losses
so that the team does not earn more overtime losses than losses. This constraint
is reflected in (6). Lastly, we must deal with constraints on games played against
teams in the opposite conference. Teams in A can win these games freely, teams
in D can lose them freely and teams in B and C can win them depending on
the constraints applied in (4). We define these constraints explicitly in (7).

pde
i > p ∨ (pde

i = p ∧ wde
i > w) if i ∈ A .

pde
i = p ∧ wde

i = w ∧

2
∑

j∈TB

wde
ij +

∑
j∈TB

olde
ij > 2

∑
j∈TB

wde

kj +
∑

j∈TB

olde

kj if i ∈ B .

pde
i = p ∧ wde

i = w if i ∈ C . (4)

∀j wde
ij + wde

ji = gij if i /∈ D .

(∀j∈A wde
ij = wd0

ij ∧ wde
ji = wd0

ji + gd0
ij ∧

(∀j∈B∪C wde
ij + wde

ji = wd0
ji + gd0

ij ∧

(∀j∈D wde
ij = wd0

ij ∧ wde
ji = wd0

ij) if i ∈ D . (5)

∀j wde
ij + olde

ij = wd0
ij + old0

ij + gd0
ij if i ∈ A .

∀j wde
ij + olde

ij ≤ wd0
ij + old0

ij + gd0
ij if i ∈ B ∪ C .

∀j olde
ij = old0

ij if i ∈ D . (6)

ocwde
i = ocwd0

i + ocgd0
i ∧ ocolde

i = ocold0
i if i ∈ A .

ocwde
i + ocolde

i ≤ ocwd0
i + ocold0

i + ocgd0
i if i ∈ B ∪ C .

ocwde
i = ocwd0

i ∧ ocolde
i = ocold0

i if i ∈ A . (7)

8.2 Updating Dominance During Search

As the search progresses, it is often possible to force the assignment of certain
games. The most important dominance is to notice that only win variables within
the tie break and elimination set must be set via search. Once those variables
have been set, all that remains is to ensure teams meet or exceed p and w and
to make sure teams trying to beat k earn as many of their necessary overtime
losses within the tie break set and k wins as many of them as possible out of the
tie break set. These dominances lead to a correct solution and makes sure teams
in B earn as many points within the tie break as possible.

Another opportunity is when teams have satisfied (4). Specifically, once a
team in A has met the conditions of (4), they may give points to other teams
in A without any consequences. Another dominance is that once a team in the
tie break set has achieved both p and w they must lose any remaining games in
regulation time.

8.3 Pruning Values from Constrained Teams via Flow Manipulation

As mentioned in Sec. 7, the feasibility of the tie break set depends on whether
there exists a max flow equal to the needs of the teams in the flow graph repre-
sented by Fig. 3. An important observation that can be made is that any feasible
flow is a valid assignment of the win variables of the teams in the elimination
and tie break sets. We can prune the variables within the solver by attempting
to update an already existing flow to contain a specific test value using a method
adapted from Maher et al.[10]. If there is a flow that contains the value then
there is a support for that value and that value is kept. If not, then we prune
the value from the domain of the variable. The idea is similar to the idea used
in the Ford-Fulkerson algorithm. However, in our case, we are trying to find a
path not from s to t but from j to i. We must repeat the update at most d times
where d is the size of the domain of wij and wji.

v 1, 2

1

2

t s

w
0/3

0/4

0
/
1

0/1 0/
3

0/
3

0/3

0
/
1

0/2

0/2

0/∞

v 1, 2

1

2

t s

w
3

4

1
1

3

1

2

2

1

1

2

2

∞

4

(a) (b)

Fig. 4. (a) An example flow graph for three teams where Team 1 must earn between
2 and 3 games, Team 2 must earn exactly 2 games and Team 3 is unbounded. (b) The
residual graph containing a maximum flow.

1

2

t

s

1

1

12

1

∞ 4

1

2

t

s

1

1

1+12−1

1

∞ 4

1

2

t

s

1

1

21

1

∞ 4

1

2

t

s

1

1

21

1

∞ 4

(a) (b) (c) (d)

Fig. 5. Reduced Pruning Graph. (a) shows the reduced residual graph of Figure 4. In
(b), we reduce the link between nodes 1 and 2 and increase the link between nodes 2
and 1, which ensures the constraint that the flow between them equals some mutual
capacity. (c) shows the path that is found from node 2 to node 1 correcting the imbal-
ance. Once a path is found, the flow is redirected and the opposite edges are updated
by the change. (d) shows the new stable solution showing support for the assignments
of w12 = 1 and w21 = 2.

To reduce the practical complexity of the algorithm, we reduce the residual
graph to only those components that will be updated. In a graph containing a
feasible flow, the edges out of v and into w are completely saturated. Since any
modification must also be a feasible flow, these edges must remain saturated
and any modification should not alter these edges. The other reduction that we
can make to the graph depends on the symmetry between nodes representing
teams and the links to their matched games. This allows us to remove the nodes
representing the matched games and link the nodes directly together.

Example 1. Examine Fig. 4b and note that in the residual graph links into v
and out of w are saturated and can be removed. Also observe that the edge
from node 1 to node (1, 2) is the same as the edge from node (1, 2) to node 2.
Therefore, we can remove node (1, 2) and directly link (2, 1). Figure 5 shows the
reduced pruning graph along with a single variable update.

Solver Stage & Result Number of Instances (/5430)

Solved via Enumeration 1212
Solved via Win Checks (Positively) 2249
Solved via Win Checks (Negatively) 1524
Solved via Backtracking Search (Positively) 338
Solved via Backtracking Search (Negatively) 107

Table 2. The counts of problems solved via the various stages of the solver. Positively
solved instances means a solution was found and the bound must be increased. Neg-
atively solved instances means that bound was valid for that instance. Any problem
without a definitive solution was passed to the next phase of the solver.

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180

P
o
i
n
t
s

Days

Toronto

Bound
Points

Max Points

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180

P
o
i
n
t
s

Days

Pittsburgh

Bound
Points

Max Points

(a) (b)

Fig. 6. The minimum number of points needed by Toronto and Pittsburgh to guarantee
a playoff spot in the 2006-07 NHL season.

9 Results

We implemented the solver in C++ using the Boost Graph Library [11] for the
feasible flow calculations and ILOG Solver[12] to solve the final constraint model.
In order to test our solver, we used the 2006-07 season results to calculate the
minimum points needed to clinch a playoff spot. Table 2 shows the results of
those calculations. In total, determining the bound for all 30 teams on all 181
game days of the 2006-07 NHL season (5430 problems) took a little over 46 hours.
Each individual instance, representing a team at a given date, took less than ten
minutes to calculate the bound and those problems near the end of the season,
where the results matter the most, were calculated in seconds. We note that our
enumeration techniques solves 1212 of the 5430 of the problems and when we add
first level tie breaking with wins we solve a further 3773 problems, which makes

Feature Value Team(s)

Earliest Day where a Team could
not Guarantee

64 days St. Louis

Most Days where a Team could not
Guarantee

118 days St. Louis

Most Times a Team got Lucky 4 Toronto, Boston and NY Rangers
Number of Teams that got Lucky
and Earned a Spot

2 NY Islanders and NY Rangers

Number of Teams that got Lucky
but Failed to Earn a Spot

7 Toronto, Boston, Washington,
Carolina, Edmonton, Phoenix and
Columbus

Table 3. Shows some of the features that can be highlighted by calculating the mini-
mum number of points needed to guarantee a playoff spot.

up about 92% of the problems. However, the remaining 8% problems require a
backtracking constraint solver to calculate the final number. Also, note that in
47% of the total instances, which amounts to 61% of the instances not solved
directly by enumeration, the answer differs from the initial lower bound given
by enumeration.

We plot the result against both the current points of the team and maximum
possible points of the team. If the result is greater than the maximum possible
points, then the team is no longer able to guarantee a playoff spot. If the result
is equal to the number of points needed by the team then that team has clinched
a playoff spot. Figure 6 shows the result calculated for Toronto and Pittsburgh.
Note that Toronto did not make the playoffs because they never reached the
bound value. Also note that Toronto placed themselves in a position where they
could not guarantee a playoff spot and got lucky four times. In other words, they
lost a “must win” game five times during the 2006-07 season while Pittsburgh
was never in that situation. Another interesting feature is that we can see, in
both graphs, the bound on points, 145, needed at the start of the season to
guarantee a playoff spot.

Table 3 shows an overview of the results of the 2006-07 NHL season in terms
of the minimum points needed to guarantee a playoff spot. One interesting ob-
servation that can be made from this table is that of the nine teams that got
a second chance only two of those teams ended up earning a playoff spot. As
well, of those seven teams, two of them had four chances to make the playoffs
after losing a must win game. Another interesting note is that St. Louis could
not guarantee a playoff spot after only the sixty-fourth game day and never
recovered during the final one hundred and eighteen game days.

10 Conclusion

As the season winds down, the fans of the NHL are interested in knowing how far
their team is from clinching a playoff spot. We present a method for calculating

the minimum number of points that must be earned in order to ensure that
the team reaches a playoff spot. We preform this calculation efficiently by using
a multi-stage solver that combines enumeration, flow network calculations and
backtracking search.

A side effect of this calculation is the ability to determine when the team
is in danger of losing control of their destiny. These games, often described
by coaches as “must win” games, can be identified by their loss reducing the
maximum possible points to below the bound of the team. We identified nine
different teams in the 2006-07 NHL season that lost control of their fate and then
gained that control back through mistakes by their opponents. We also noted
that only two of these teams took full advantage of this situation and clinched
a playoff spot.

Our solver used a decomposition of the problem to allow us to effectively
apply several different strategies in several stages to ensure a quick solution to
the problem. The results of this work could be applied to other sports. One area
that seems to be missed entirely is basketball, especially NBA basketball, where
that league shares many similarities with the NHL. The tie breaking conditions
vary slightly and the NBA uses a simpler scoring model with only wins and
losses.

References

1. Russell, T., van Beek, P.: Mathematically clinching a playoff spot in the NHL and
the effect of scoring systems. In: Proceedings of the 21st Canadian Conference on
Artificial Intelligence. (2008)

2. Ribeiro, C.C., Urrutia, S.: An application of integer programming to playoff elim-
ination in football championships. International Transactions in Operational Re-
search 12 (2005) 375–386

3. Adler, I., Erera, A.L., Hochbaum, D.S., Olinick, E.V.: Baseball, optimization and
the world wide web. Interfaces 32 (2002) 12–22

4. Robinson, L.W.: Baseball playoff eliminations: an application of linear program-
ming. Operations Research Letters 10 (1991) 67–74

5. Gusfield, D., Martel, C.E.: The structure and complexity of sports elimination
numbers. Algorithmica 32 (2002) 73–86

6. Wayne, K.D.: A new property and a faster algorithm for baseball elimination.
SIAM Journal on Discrete Mathematics 14 (2001) 223–229

7. Brown, J.R.: The sharing problem. Operations Research 27 (1979) 324–340
8. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and

Applications. Prentice Hall (1993)
9. Schwartz, B.: Possible winners in partially completed tournaments. SIAM Review

8 (1966) 302–308
10. Maher, M., Narodytska, N., Quimper, C.G., Walsh, T.: Flow-based propagators

for the sequence and related global constraints. In: Proceedings of the 14th Inter-
national Conference on Principles and Practice of Constraint Programming. (2008)

11. Siek, J., Lee, L.Q., Lumsdaine, A.: Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2001)

12. ILOG S.A.: ILOG Solver 4.2 user’s manual (1998)

