
A Domain Consistency Algorithm for the

Stretch Constraint

Lars Hellsten1, Gilles Pesant2, and Peter van Beek1

1 University of Waterloo, Waterloo, Canada
2 École Polytechnique de Montréal, Montreal, Canada

lars@uwaterloo.ca, pesant@crt.umontreal.ca, vanbeek@uwaterloo.ca

Abstract. The stretch constraint occurs in many rostering problems
that arise in the industrial and public service sectors. In this paper we
present an efficient algorithm for domain consistency propagation of the
stretch constraint. Using benchmark and random instances, we show that
this stronger consistency sometimes enables our propagator to solve more
difficult problems than a previously proposed propagation algorithm for
the stretch constraint. We also discuss variations of the stretch constraint
that seem simple and useful, but turn out to be intractable to fully
propagate.

1 Introduction

Many rostering and scheduling problems that arise in the industrial and public
service sectors involve constraints on stretches of variables, such as limits on the
maximum number of shifts a person may work consecutively and limits on the
minimum number of days off between two consecutive work stretches. Typical
examples arise in automotive assembly plants, hospitals, and fire departments,
where both multi-shift rotating schedules and personalized schedules within some
scheduling time window are often needed.

Pesant [5] introduced the stretch global constraint and offered a filtering al-
gorithm for the constraint which is capable of providing significant pruning and
works well on many realistic problems. In this paper, we present an algorithm
based on dynamic programming that achieves a stronger, fully domain consis-
tent level of constraint propagation. This stronger consistency, although more
expensive to achieve by a linear factor, enables our algorithm to solve more dif-
ficult problems. We also present some natural extensions of the constraint that
seem simple and useful, but turn out to be NP-complete to fully propagate.

In Section 2, we provide some background on the stretch constraint. Section
3 presents the main algorithm. A discussion of the algorithm’s runtime and
correctness is given in Section 4. Section 5 offers some empirical results and
discusses some advantages and disadvantages of our algorithm. In Section 6, we
examine extensions of the stretch constraint.

2 The Stretch Constraint

The stretch constraint applies to a sequence of n shift variables, which we
will denote s0, s1, . . . , sn−1. We index from 0 to n − 1 for convenience when
performing modular arithmetic for cyclic instances. A stretch formulation also
includes a set of m values representing shift types, T = {τ1, τ2, . . . , τm}. Each
variable si has associated with it a set dom(si) ⊆ T representing values it is
allowed to take. An assignment of values to variables is an n-tuple from the set
dom(s0) × · · · × dom(sn−1). We use the notation value(si) to denote the value
assigned to si when its domain contains exactly one value.

For a given assignment of values to variables, a stretch is a maximal sequence
of consecutive shift variables that are assigned the same value. Thus, a sequence
si, si+1, . . . si+k−1 is a stretch if si = si+1 = · · · = si+k−1, i = 0 or si−1 �= si,
and i + k = n or si+k �= si. We say that such a stretch begins at si, has span
(alternatively, length) k, and is of type value(si). We write span(sj) = k once
the value of sj has been bound to denote the span of the stretch through sj .

The following parameters specify a problem instance of stretch. A vari-
able assignment is a solution if it satisfies the requirements specified by these
parameters.

– Π ⊂ T × T is a set of ordered pairs, called patterns. A stretch of type τi

is allowed to be followed by a stretch of type τj , τj �= τi, if and only if
(τi, τj) ∈ Π . Note that pairs of the form (τk, τk) are redundant, since by the
definition of a stretch two consecutive stretches do not have the same value.

– shortest [τ] denotes the minimum length of any stretch of type τ .
– longest [τ] denotes the maximum length of any stretch of type τ .

We call a stretch of type τ through a variable sj feasible if it satisfies

shortest [τ] ≤ span(sj) ≤ longest [τ].

A feasible sequence of stretches is a sequence of feasible stretches which do
not overlap, cover a contiguous range of variables, and for which each pair of
types of consecutive stretches is in Π .

The kind of rostering problems stretch solves can also be cyclic, in that the
roster repeats itself and we assume there is no beginning or end. Such problems
are similar enough to the non-cyclic version that only some slight changes to
the algorithm and analysis are necessary. Therefore, the discussion in this paper
applies to both versions, except where otherwise stated.

3 Propagation Algorithm

Here we present a propagator for stretch that enforces domain consistency.
In general, a constraint is said to be domain consistent (also referred to as
generalized arc consistent) if for each variable in the constraint, each value in
the domain of the variable is part of a solution to the constraint (when the

constraint is looked at in isolation). A constraint can be made domain consistent
by repeatedly removing values from the domains of the variables that could not
be part of a solution to the constraint. Our domain consistency propagation
algorithm for the stretch constraint enforces both stretch length constraints and
allowed pattern constraints. It is based on a dynamic programming algorithm for
the corresponding decision problem, and extended to perform pruning. Initially
we will consider only the non-cyclic version.

3.1 Computing Reachability

The main observation we use is that any stretch that appears in a solution is in-
dependent of the stretches chosen before and after it, aside from the enforcement
of the patterns. Pattern enforcement only depends on the variables adjacent to
the stretch. Therefore, a particular stretch appears in a solution if and only if
there exists a sequence of stretches ending with a compatible shift type covering
the preceding variables, and a sequence of stretches beginning with a compatible
shift type covering the subsequent variables.

An alternate way to look at the problem is one of computing reachability in
a graph; the nodes in the graph are (variable, type) pairs, and edges correspond
to stretches. Our goal is to find all edges that are in some path from some node
(s0, τi) to some node (sn−1, τj). If the roster needs to be cyclic, then we may
have edges between the ending and beginning positions, and will want to find a
cycle rather than a path. The set of all edges found will indicate which values
are part of some solution, and which values can be safely removed.

The basis of our algorithm is to use dynamic programming to compute, for
each variable si, and type τj , whether there is a feasible sequence of stretches
covering the variables s0, s1, . . . , si−1 such that the value of si−1 is compatible
with τj with respect to Π . The results of this computation are stored in a table of
values, forward (see Algorithm ComputeForward). Likewise, we compute whether
there is a feasible sequence of stretches covering variables si+1, si+2, . . . , sn−1

such that the value of si+1 is compatible with τj , and store the result in backward
(see Algorithm ComputeBackward).

Once the reachability information is computed, it is used by a second step
that prunes the domains. To make the first step as efficient as possible, we
actually store the reachability information in forward and backward as arrays of
prefix sums over the variables. The element forward [τ, i] indicates the number of
variables sj with j < i−1 such that a feasible sequence covers s0, s1, . . . , sj , and
ends with a stretch type compatible with τ . The prefix sums allow us to, for a
given type, query whether a compatible sequence ends within an arbitrary range
in constant time. For example, the difference forward [τ, i + 1] − forward [τ, j]
(j ≤ i) is greater than zero if and only if there is some feasible sequence of
stretches beginning at s0 and ending between sj−1 and si−1 (inclusive) that is
compatible with τ .

Another prefix array, runlength, is precomputed at the beginning of each
stage of the algorithm. For each type τ and variable si, it stores the size of
the maximal contiguous block of variables whose domains contain τ , up to and

including si (or including and following si for ComputeBackward). This gives an
upper bound on the maximum length of a stretch ending (or beginning) at si,
which may be less than longest [τ]. Note that to make the algorithm concise, we
use 1-based indices when looping over variables, rather than the 0-based indices
used for shift variables. Indices 0 and n + 1 correspond to initial values.

Algorithm ComputeForward()
1. forward [τj , 0] ← 0 for all τj

2. forward [τj , 1] ← 1 for all τj

3. runlength[τj , i] ← 0 for all τj , i
4. for j ← 1 to m do
5. for i ← 1 to n do
6. if τj ∈ dom(si−1) then runlength[τj , i] ← runlength[τj , i − 1] + 1
7. for i ← 1 to n do
8. for j ← 1 to m do forward [τj , i + 1] ← forward [τj , i]
9. for j ← 1 to m do
10. hi ← i − shortest [τj]
11. lo ← i − min(longest [τj], runlength[τj , i])
12. if hi ≥ lo and forward [τj , hi + 1] − forward [τj , lo] > 0 then
13. for k ← 1 to m do
14. if (τj , τk) ∈ Π then forward [τk, i + 1] ← forward [τk, i] + 1

Algorithm ComputeBackward()
1. backward [τj , n + 1] ← 0 for all τj

2. backward [τj , n] ← 1 for all τj

3. runlength[τj , i] ← 0 for all τj , i
4. for j ← 1 to m do
5. for i ← n downto 1 do
6. if τj ∈ dom(si−1) then runlength[τj , i] ← runlength[τj , i + 1] + 1
7. for i ← n downto 1 do
8. for j ← 1 to m do backward [τj , i − 1] ← backward [τj , i]
9. for j ← 1 to m do
10. lo ← i + shortest [τj]
11. hi ← i + min(longest [τj], runlength[τj , i])
12. if hi ≥ lo and backward [τj , lo − 1] − backward [τj , hi] > 0 then
13. for k ← 1 to m do
14. if (τk, τj) ∈ Π then backward [τk, i − 1] ← backward [τk, i] + 1

The following small example demonstrates how our prefix sums are com-
puted. We consider a roster with three shift types A, B, and C with the bounds
on the stretch lengths and initial domains as shown in Table 1 and pattern set
Π = {(A, B), (A, C), (B, A), (C, A)}. It is easy to see that the initial configura-
tion is domain consistent. There are five solutions: {AAABBBAA, AABBBAAA,
AAACCCCC, CCCCCAAA, AACCCCAA}. Each value present in the domains
is used in at least one solution. Now, suppose we assign s2 ← A (see Table 5).
This has the effect of reducing the set of possible solutions to {AAABBBAA,

AAACCCCC}. When we run our algorithm, it should remove the value C from
the domains of s0, s1, and s2, and A from s5.

Table 1. (left) Bounds on stretch length; (right) Initial domains;

τk shortest [τk] longest [τk]

A 2 4
B 3 3
C 4 5

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A
B B B B

C C C C C C C C

Table 2 shows a trace of the state after each iteration of the outermost loop
in ComputeForward. Table 3 shows the final form of the backward table. It is
constructed in the same manner as the forward table.

Table 2. Building the forward table.

i = 0 0 1 2 3 4 5 6 7 8 9

A 0 1
B 0 1
C 0 1

i = 1 0 1 2 3 4 5 6 7 8 9

A 0 1 1
B 0 1 1
C 0 1 1

i = 2 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1
B 0 1 1 2
C 0 1 1 2

i = 3 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1
B 0 1 1 2 3
C 0 1 1 2 3

i = 4 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1
B 0 1 1 2 3 3
C 0 1 1 2 3 3

i = 5 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1 1
B 0 1 1 2 3 3 3
C 0 1 1 2 3 3 3

i = 6 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1 1 2
B 0 1 1 2 3 3 3 3
C 0 1 1 2 3 3 3 3

i = 7 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1 1 2 3
B 0 1 1 2 3 3 3 3 4
C 0 1 1 2 3 3 3 3 4

i = 8 0 1 2 3 4 5 6 7 8 9

A 0 1 1 1 1 1 1 2 3 4
B 0 1 1 2 3 3 3 3 4 5
C 0 1 1 2 3 3 3 3 4 5

Table 3. The final backward table.

0 1 2 3 4 5 6 7 8 9

A 3 3 3 3 2 1 1 1 1 0
B 5 4 3 3 3 3 2 1 1 0
C 5 4 3 3 3 3 2 1 1 0

3.2 Pruning Values

Once we have computed the forward and backward reachability information,
we are ready to begin pruning values from domains. This process proceeds by

considering, for each type, every possible stretch of that type. We check if a
stretch is in a solution by examining the forward and backward tables to see if
there are feasible sequences of stretches that can come before and after the one
we are considering. If so, we mark the type we are considering, for each of the
variables in the stretch. The final pruning step then prunes any value that has
not been marked.

In order to make the marking linear in n for each τj , we traverse the variables
in reverse order, maintaining a queue of possible ending positions. For each
position i, we pop any elements from the front of the queue that cannot possibly
end a stretch of type τj beginning at i. A position j ≥ i is not a possible ending
position if j − i + 1 > longest [τj], or if there exists some k, i ≤ k ≤ j such that
the variable sk does not contain τj in its domain, i.e. j − i + 1 > runlength[τj , i].
Notice that if a position is not a valid ending position for i, it is also not valid
for any position smaller than i, so it is always safe to remove invalid positions
from the queue.

We also need to ensure that recording the marked intervals is efficient. How-
ever, this is easy, since the ending positions we consider are non-increasing.
Therefore, each interval we add either extends the previous interval, or is dis-
joint from the previous interval. We end up with an ordered list of O(n) disjoint
intervals which cover a total of O(n) values. We can therefore iterate through
the list of intervals and mark all variables within each interval in O(n) time. The
details of this part of the algorithm are omitted for clarity.

Algorithm MarkValues()
1. runlength[τj , i] ← 0 for all τj , i
2. for j ← 1 to m
3. for i ← 1 to n do
4. if τj ∈ dom(si−1) then runlength[τj , i] ← runlength[τj , i − 1] + 1
5. for j ← 1 to m do
6. clear queue and list of intervals
7. for i ← n downto 0 do
8. if i > 0 and backward [τj , i] − backward [τj , i + 1] > 0 then
9. push i − 1 onto queue
10. if forward [τj , i + 1] − forward [τj , i] = 0 then continue
11. repeat
12. e ← front of queue
13. remove ← (longest [τj] < e− i+1) or (runlength[τj , e] < e− i+1)
14. if remove = true then pop front of queue
15. until remove = false or queue is empty
16. if queue is not empty then
17. e ← front of queue
18. if e − i + 1 ≥ shortest [τj] then
19. merge [i, e] into the interval list
20. foreach (s, e) ∈ the list of intervals do
21. mark all (i, τj) where s ≤ i ≤ e

Table 4 shows an execution trace of MarkValues on the example from the
previous section. Finally, Table 5 shows the result, in which domain consistency
has been re-established.

Table 4. Trace of MarkValues.

queue
τj i contents intervals

A 8 7 {}
7 7 {}
6 7 {[6, 7]}
5 {[6, 7]}
4 {[6, 7]}
3 2 {[6, 7]}
2 2 {[6, 7]}
1 2 {[6, 7]}
0 2 {[0, 2], [6, 7]}

queue
τj i contents intervals

B 8 {}
7 {}
6 5 {}
5 5 {}
4 5 {}
3 5 {[3, 5]}
2 {[3, 5]}
1 {[3, 5]}
0 {[3, 5]}

queue
τj i contents intervals

C 8 7 {}
7 7 {}
6 7, 5 {}
5 7, 5, 4 {}
4 7, 5, 4 {}
3 7, 5, 4 {[3, 7]}
2 {[3, 7]}
1 0 {[3, 7]}
0 {[3, 7]}

Table 5. (left) Domains after setting s2 ← A; (right) Domains after re-establishing
domain consistency.

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A
B B B

C C C C C C C

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A
B B B
C C C C C

4 Analysis of the Algorithm

It is clear that the three stages of the algorithm all terminate, and that each prim-
itive operation in the pseudo-code can be performed in O(1) time. Examining
the bounds of the for loops, we see that ComputeForward and ComputeBackward
run in O(nm2) time, where n is the number of shift variables and m is the num-
ber of shift types. MarkValues runs in O(nm) time, since we iterate through
all variables once for each shift type, building a list of disjoint intervals over
[1, n]. To achieve domain consistency, we simply need to run these three stages,
and remove values which were not marked. The latter step can be performed in
O(nm) time, simply by iterating over an n×m table indicating which variable-
value pairs (si, τ) are contained in some solution. The overall algorithm therefore
runs in O(nm2) time, and requires O(nm) space. In contrast, Pesant’s original
stretch propagator runs in O(m2l2) time, where l is the maximum of the max-
imum lengths of the shift types. In applications of the stretch constraint that

have been seen thus far, l is a small value (6 ≤ l ≤ 9). Thus, our algorithm is
more expensive to achieve by a linear factor.

One of the limitations of Pesant’s algorithm that he discusses is its inability
to consider the entire sequence. It is possible for a value in a variable’s domain to
be inconsistent because it is incompatible with the domain values of a different,
far away variable in the sequence of shifts. Even though the domain filtering acts
locally, considering variables near a variable that was assigned to, sometimes the
changes will cascade throughout the roster. However, this is not always the case,
and particularly for large instances can cause Pesant’s filtering method to fail
where ours succeeds.

The following is a small example that proves our algorithm achieves stronger
propagation (see Table 6). We begin with an instance that is initially domain
consistent, thus ensuring that any inconsistent values are introduced by incom-
plete pruning, and were not present to begin with. The problem instance is for
a circular roster, with n = 8, m = 3, and no pattern restrictions (Π contains all
ordered pairs of shift types).

Table 6. (left) Bounds on stretch lengths; (right) Initial domains.

τk shortest [τk] longest [τk]

A 2 4
B 5 5
C 2 4

s0 s1 s2 s3 s4 s5 s6 s7

A A A A A A
B B B B B

C C C C C

It is easy to see that this configuration is domain consistent. There are three
solutions: AAAACCCC, ABBBBBAA, and CBBBBBCC. Each value of each
variable is used in some solution. We first assign the value C to variable s7, and
then to variable s0 (see Table 7).

Table 7. (left) Domains after setting s7 ← C; (right) Domains after setting s0 ← C.

Algorithm s0 s1 s2 s3 s4 s5 s6 s7

Pesant’s A A A A
Algorithm B B B B B

C C C C C

Domain A A A A
Consistency B B B B B

C C C C C

Algorithm s0 s1 s2 s3 s4 s5 s6 s7

Pesant’s A A A
Algorithm B B B B B

C C C C C

Domain
Consistency B B B B B

C C C

After the second assignment, since no stretch of B’s can be shorter than 5,
clearly choosing the value A for s1, s2 or s3 requires a stretch of 5 C’s, which is a
violation of the maximum stretch of C’s. Therefore, after the second assignment,

the solution can be determined. Pesant’s algorithm observes that it is possible to
choose a stretch of A’s or B’s beginning at s1 without violating the length con-
straints for those values, but does not consider the cascading effect of removing
values from those domains.

Having shown that our algorithm enforces a stronger level of consistency
than Pesant’s algorithm, we now show that our algorithm achieves domain con-
sistency. In order to justify that our algorithm achieves domain consistency, we
must prove that a value is removed from a variable if and only if that value is
not contained in some solution to the constraint. We turn our attention to some
facts about the intermediate computations.

Lemma 1. The prefix sums computed by ComputeForward and ComputeBackward
record, for each type τ and position p, the number of previous positions for which
some sequence of stretches exists that can be appended with a stretch of type τ .
More precisely:

(a) The value of forward [τ, p], 1 ≤ p ≤ n + 1 as computed by ComputeForward
is equal to the number of variables si with i < p such that some feasible
sequence of stretches spans variables s0, s1, . . . , si−1, and is either the empty
sequence, or ends with a stretch of type τ ′ where (τ ′, τ) ∈ Π.

(b) The value of backward [τ, p], 0 ≤ p ≤ n as computed by ComputeBackward
is equal to the number of variables si with i ≥ p such that some feasible se-
quence of stretches spans variables si, si+1, . . . , sn−1, and is either the empty
sequence, or begins with a stretch of type τ ′ where (τ, τ ′) ∈ Π.

Proof. We prove (a) by induction on p. Case (b) is analogous and omitted. In the
base case, p = 1, an empty sequence of stretches is compatible with any type.
The algorithm handles this on lines 1-2. For p > 1, suppose as our induction
hypothesis that the lemma holds for p′ < p. Clearly this hypothesis implies
that if we already know forward [τ, p − 1], it is sufficient to take forward [τ, p] =
forward [τ, p − 1] and then increment this count by one if and only if there is
a sequence of stretches compatible with τ spanning s0, . . . , sp−2. All feasible
sequences ending at an earlier shift variable have already been counted. We
must show that this is precisely what the algorithm does.

Consider iteration p−1 of the outer loop, on lines 7-14. This is the only time
a given forward [τ, p] entry will be modified. Line 8 initializes forward [τ, p] to the
count for the previous variables. All types τ ′ compatible with τ are considered
in the j loop, on lines 9-14. The values lo and hi computed give the range of all
possible starting points for a stretch of type τ ′ ending at sp−2. Moreover, by our
induction hypothesis, forward [τ ′, hi+1]−forward [τ ′, lo] gives the number of vari-
ables between lo−1 and hi−1 (inclusive) where a sequence of stretches compati-
ble with τ ′ ends. If this value is greater than zero, we can append a stretch of type
τ ′ to one such sequence, and obtain a sequence of stretches spanning s0, . . . , sp−2,
which corresponds to the algorithm setting forward [τ, p] = forward [τ, p− 1] + 1.
If there is no such sequence, the count will never be incremented.

Theorem 1 (Correctness of the algorithm). MarkValues marks a value
(p, τj) if and only if there is some solution which assigns shift type τj to sp.

Proof. First, suppose (p, τj) is marked. This means that during iteration j of
the outer for loop, and some iteration u ≤ p of the inner for loop, the interval
[u, v] was recorded, for some v ≥ p. Thus, forward [τj , u+1]− forward [τj , u] > 0.
By the lemma, there exists a feasible sequence of stretches spanning variables
s0, s1, . . . , su−1, such that the sequence is either empty, or the last stretch is
compatible with τj . We also know that v was removed from the front of the
queue, and must have been pushed onto the queue during some iteration k ≥ u.
Therefore, backward [τj , k]−backward [τj , k+1] > 0, so there exists some sequence
of stretches spanning variables sk+1, sk+2, . . . , sn−1 such that the sequence is
either empty, or the first stretch is compatible with τj . Moreover, line 13 removes
any positions v′ from the front of the queue which are too distant from u to
satisfy longest [τj], or for which a stretch from u to v′ is impossible. Meanwhile,
line 18 ensures e is far enough from u to satisfy shortest [τj]. Hence, we can form
a feasible stretch of type τj covering variables su, su+1, . . . , sv, prefix this stretch
with a sequence of stretches covering all of the preceding variables, and append
to it a sequence of stretches covering all of the remaining variables, giving a
solution which assigns τj to sp.

Conversely, consider a solution which assigns τj to sp. Let su and sv be the
first and last variables in the stretch containing τj . We have backward [τj , v +
1]− backward [τj , v +2] > 0 by the lemma. Therefore, inside the j th iteration of
the outermost loop, we will push v onto the queue when i = v. When i = u, we
have forward [τj , u + 1]− forward [τj , u] > 0, so the repeat loop will be entered.
Following this loop, v must remain on the queue; the condition on line 13 cannot
have been satisfied yet, as we know a stretch of type τj can exist spanning
su, su+1, . . . , sv. Therefore, in line 21 [u, v′] will be added to the list of intervals,
for some v′ ≥ v. It follows that all pairs (i, τj) such that u ≤ i ≤ v will be
marked, including (p, τj).

4.1 Cyclic Rosters

For the cyclic version of the problem we are not assured that a stretch starts
at position 0, and the first and last stretch must differ. These requirements are
easy to account for by simply trying all possible starting positions and starting
values, and adding a check to ensure that a stretch that ends at position n − 1
does not have the same value as the initial stretch. Naively, this adds a factor of
O(nm) to the running time. We can improve this by choosing some fixed variable
si and only considering the possible stretches through si. Then the slowdown
is at worst O(m×max {longest [τ] : τ ∈ T }). By always choosing the variable si

that minimizes the product |dom(si)| × max{longest [τ] : τ ∈ dom(si)} we can
greatly reduce this slowdown in most typical problems. If si is simply the most
recently bound variable, we will have |dom(si)| = 1, giving an upper bound of
O(max{longest [τ] : τ ∈ T }) on the slowdown for cyclic instances.

5 Empirical Results

We implemented our new domain consistency algorithm for the stretch con-
straint (denoted hereafter as DC) using the ILOG Solver C++ library, Version
4.2 [3] and compared it to an existing implementation of Pesant’s [5] algorithm
which enforces a weaker form of consistency (denoted hereafter as WC; also
implemented using ILOG Solver).

We compared the algorithms experimentally on various benchmark and ran-
dom instances. The experiments on the benchmark instances were run on a
3.0 GHz Pentium 4 with 1 gigabyte of main memory. The experiments on the
random instances were run on a 2.40 GHz Pentium 4 with 1 gigabyte of main
memory.

We first consider benchmark problems. Our benchmark instances were gath-
ered by Laporte and Pesant [4] and are known to correspond to real-life situa-
tions. The problems range from rostering an aluminum smelter to scheduling a
large metropolitan police department (see [4] for a description of the individual
problems). The constraint models of the benchmark instances combine one or
more cyclic stretch constraints with many other constraints including global car-
dinality constraints [6] and sequencing constraints [7]. The problems are large:
the largest stretch constraint has just over 500 variables in the constraint.

Table 8. Number of failed branches and CPU time (sec.) for cyclic rostering problems
from the literature. The variable ordering heuristic fills in weekends first, followed by
week days chronologically, and within days either (left) chooses the next shift using
minimum domain size, or (right) lexicographically. The value ordering is random.

WC DC
fails time fails time

atc-1 6 0.01 4 0.00
atc-2 11 0.01 0 0.08
atc-3 48335 13.02 9 0.06
atc-4 108 0.03 25 0.18
alcan-1 0 0.00 0 0.01
alcan-2 970 0.17 967 0.39
burns 1 0.00 80 0.08
butler 2 0.01 1 0.10
heller 3671 1.34 88 0.27
horot 0 0.01 0 0.01
hung 22 0.05 0 0.93
laporte 200 0.04 37 0.05
lau 3 0.01 0 0.09
mot-1 0 0.00 0 0.05
mot-2 9 0.01 9 0.05
mot-3 3331 0.76 17 0.06
slany1 0 0.00 0 0.00

WC DC
fails time fails time

atc-1 2 0.00 2 0.01
atc-2 266 0.04 1 0.06
atc-3 100982 21.86 2 0.04
atc-4 2356 0.30 1 0.09
alcan-1 0 0.00 0 0.01
alcan-2 955 0.17 995 0.39
burns 6 0.01 6 0.04
butler 2 0.00 2 0.10
heller 3259 1.24 88 0.27
horot 1 0.01 0 0.01
hung 3 0.04 0 0.93
laporte 223 0.04 28 0.04
lau 6 0.01 0 0.09
mot-1 3 0.00 3 0.05
mot-2 9 0.01 9 0.05
mot-3 2799 0.59 39 0.08
slany1 0 0.01 0 0.00

On the benchmark problems, our DC propagator offers mixed results over the
previously proposed propagator when considering just CPU time (see Table 8).
When the number of fails is roughly equal, our stronger consistency can be
slower because it is more expensive to enforce. However, our DC propagator
also sometimes leads to substantial reductions in number of fails and CPU time.
Overall, we conclude that our propagator leads to more robust and predictable
performance on these problems. All of the benchmark problems are solved in
under one second by our propagator, whereas the propagator based on the weaker
form of consistency cannot solve one of the problems in less than twenty seconds.

Table 9. Number of failed branches, CPU time (sec.), and number of problems solved
within 10 minutes when finding first solution for random cyclic stretch problems. Each
fail and time value is the average of only the tests that completed within the time
bound of 10 minutes. A total of 50 tests were performed for each combination of n and
m.

WC DC
n m fails time solved fails time solved

50 4 7628.1 0.09 50 0 0.01 50
6 100089.6 1.21 48 0 0.04 50
8 138855.7 2.14 50 0 0.08 50

100 4 666002.1 10.17 42 0 0.06 50
6 281044.4 3.15 38 0 0.15 50
8 757859.3 11.32 40 0 0.30 50

200 4 246781.2 4.40 19 0 0.26 50
6 3.5 2.64 24 0 0.59 50
8 2.9 6.60 22 0 1.09 50

400 4 50653.1 1.19 15 0 1.02 50
6 90051.8 1.75 17 0 2.40 50
8 10.2 0.01 14 0 4.25 50

To systematically study the scaling behavior of the algorithm, we next con-
sider random problems. In our first random model, problems were generated
that consisted of a single cyclic stretch over n shift variables and each variable
had its initial domain set to include all m shift types. The minimum shortest [τ]
and the maximum longest [τ] of the lengths of any stretch of type τ where set
equal to a and a + b respectively, where a was chosen uniformly at random from
[1, 4] and b was chosen uniformly at random from [0, 2]. These particular small
constants were chosen to make the generated problems more realistic, but the
experimental results appear to be robust for other choices of small values. No
pattern restrictions were enforced (all ordered pairs of shift types were allowed).
A random variable ordering was used to approximate a realistic context in which
fragments of the sequence may be preassigned or fixed through the intervention
of other constraints. In such scenarios, there is no guarantee that the chosen
variable ordering will be favourable to the stretch propagator. Predictable per-

formance under arbitrary variable orderings indicates that the propagator is
robust. In these pure problems nearly all of the run-time is due to the stretch
propagators. These problems are trivial for domain consistency, but not so for
the weaker form of consistency. We recorded the number of problems that were
not solved by WC within a fixed time bound (see Table 9). As n increases, the
difference between DC and WC becomes dramatic.

Table 10. WC versus DC when finding first solution for random non-cyclic stretch
problems: ten best improvements in time (sec.) of WC over DC and ten best improve-
ments in time (sec.) of DC over WC. A total of 1500 tests were performed for each
value of n. A blank entry means the problem was not solved within a 10 minute time
bound.

10 best for WC 10 best for DC
n WC DC WC DC

100 0.05 0.13 0.00
0.00 0.06 0.05
0.00 0.06 0.05
0.00 0.06 164.69 0.05
0.00 0.06 145.58 0.05
0.00 0.06 126.70 0.00
0.00 0.06 51.64 0.05
0.00 0.06 38.11 0.05
0.00 0.06 0.80 0.00
0.00 0.06 0.69 0.00

10 best for WC 10 best for DC
n WC DC WC DC

200 0.06 0.88 0.06
0.05 0.77 0.06
0.05 0.77 0.06
0.05 0.55 0.06
0.06 0.41 0.06
0.13 0.48 0.06
0.13 0.42 0.08
0.11 0.42 0.11
0.17 0.44 0.17
0.17 0.42 0.17

In our second random model, problems were generated that consisted of a
single non-cyclic stretch. The domain of each variable was set in two steps. First,
the initial domain of the variable was set to include all m shift types (m = 4,
6, or 8). Second, each of the shift types was removed from the domain with
some given probability p, 0.0 ≤ p < 0.2. The minimum and the maximum of the
lengths of any stretch of type where set equal to a and a + b respectively, where
a was chosen uniformly at random from [1, 25] and b was chosen uniformly at
random from [0, 2]. No pattern restrictions were enforced and a random variable
ordering was again used. The WC propagator finds these non-cyclic problems
much easier than the previous cyclic problems. Nevertheless, on these problems
whenever WC is faster than DC the improvement is negligible, whereas our DC
propagator can be dramatically faster than WC (see Table 10).

6 Extending Stretch

Now that we have an efficient algorithm for the Stretch constraint, we turn
to the possibility of extending the approach. In this section, we present some

variations of the constraint that seem simple and useful, but turn out to be
NP-complete to fully propagate.

It is often useful to force a shift of a certain type to occur at least once.
For example, there may be a mandatory cleaning shift that we want to include
in a daily roster, but we don’t care when it occurs. One approach would be to
simply schedule the cleaning shift at a fixed time by binding variables ahead of
time to create a pre-defined stretch. This has the drawback that it may limit the
possible arrangements for the remaining shifts though. It would be better if we
were to incorporate this capability directly into the constraint:

ForcedShiftStretch(B1, . . . , Bm, s0, . . . , sn−1)

Here dom(Bi) = {0, 1} initially. When Bi = 1, a solution includes a stretch
of type τi, and when it does not, Bi = 0. If we want to force a stretch of a
certain type to appear, we can set the domain of the corresponding Bi variable
accordingly.

Unfortunately, this constraint turns out to be much harder than Stretch.

Theorem 2. Deciding whether an instance of ForcedShiftStretch has a
solution is NP-complete.

Proof. A witness for the problem is a set of supports, one for each value in
each variable’s domain. This is polynomial in n and m, which shows that the
problem is in NP. To show completeness, we proceed with a reduction from
HamiltonianPath.

An instance of HamiltonianPath consists of an undirected graph G =
(V, E), and the answer is “yes” if and only if there is a path in G that visits
each vertex precisely once. We introduce a shift type τv for each vertex v ∈ V ,
and |V | shift variables. Each shift variable’s domain contains all types. For each
edge uv ∈ E, we let τuτv be a pattern in Π . Finally, set Bv = {1} for each
v ∈ V . It is easy to see that by construction, G contains a Hamiltonian path if
and only if the corresponding ForcedShiftStretch instance has a solution,
and the construction has size O(|V |2).

Corollary 1. Enforcing domain consistency for ForcedShiftStretch is NP-
hard.

A consequence of this is that any stretch constraint which individually re-
stricts the number of occurrences of each shift type is intractable. Consider the
stretch constraint where the minimum length shortest [τi] and the maximum
length longest [τi] of every stretch of type τi is replaced with a set li which con-
tains the lengths of the possible stretches of that type. Unfortunately, it is in-
tractable to enforce domain consistency on such a generalized stretch constraint.

As another example, consider the stretch constraint which is extended to
include domain variables ci, where ci denotes the number of possible stretches
of type τi. Such a constraint would prove useful in modeling real-life rostering
problems (see [4] for examples). Unfortunately, it is intractable to enforce do-
main consistency on this extended stretch constraint. One can model restrictions

on the number of stretches of a certain type using a combination of a (regular)
stretch constraint and a generalized cardinality constraint over auxiliary vari-
ables. However, the amount of pruning achieved by enforcing domain consistency
on such a decomposition will necessarily be less than on the extended stretch
constraint since individually the problems are tractable but the combination is
intractable (see [2]).

On a more positive note, we are currently examining a simple extension to
the stretch constraint where a single domain variable c is added with domain
[l, u], where c denotes the total number of stretches. Such a constraint appears
promising as it can be used to model Beldiceanu’s [1] change/ �= constraint (and
perhaps other constraints in the cardinality-path constraint family; see [1]), yet
seems to require only small changes to our algorithm in order to enforce domain
consistency on the constraint.

7 Conclusion

We presented an efficient algorithm for domain consistency propagation of the
stretch constraint, proved its correctness, and showed its usefulness on a set
of benchmark and random problems. We also discussed natural generalizations
of the stretch constraint that seemed simple and useful, but turned out to be
intractable to fully propagate.

An important problem that we have not addressed in this paper, but one
that we are currently working on, is to make our propagator incremental to be
more efficient in the case where only a few of the domains have been changed
since the most recent previous run of the propagator.

References

1. N. Beldiceanu. Pruning for the cardinality-path constraint family. Technical Report
T2001/11A, SICS, 2001.

2. C. Bessière, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global con-
straints. In Proceedings of the Nineteenth National Conference on Artificial Intelli-
gence, San Jose, California, 2004.

3. ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.
4. G. Laporte and G. Pesant. A general multi-shift scheduling system. J. of the

Operational Research Society, 2004. Accepted for publication.
5. G. Pesant. A filtering algorithm for the stretch constraint. In Proceedings of the

Seventh International Conference on Principles and Practice of Constraint Pro-
gramming, pages 183–195, Paphos, Cyprus, 2001.

6. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence, pages 209–
215, Portland, Oregon, 1996.

7. J.-C. Régin and J.-F. Puget. A filtering algorithm for global sequencing constraints.
In Proceedings of the Third International Conference on Principles and Practice of
Constraint Programming, pages 32–46, Linz, Austria, 1997.

