
Fast Optimal Instruction Scheduling for

Single�issue Processors with Arbitrary Latencies

Peter van Beek� and Kent Wilken�

� Department of Computer Science
University of Waterloo

Waterloo� ON� Canada N�L �G�
vanbeek�uwaterloo�ca

� Department of Electrical and Computer Engineering
University of California
Davis� CA� USA �����

wilken�ece�ucdavis�edu

Abstract Instruction scheduling is one of the most important steps for
improving the performance of object code produced by a compiler� The
local instruction scheduling problem is to �nd a minimum length instruc	
tion schedule for a basic block subject to precedence� latency� and re	
source constraints� In this paper we consider local instruction scheduling
for single	issue processors with arbitrary latencies� The problem is con	
sidered intractable� and heuristic approaches are currently used in pro	
duction compilers� In contrast� we present a relatively simple approach
to instruction scheduling based on constraint programming which is fast
and optimal� The proposed approach uses an improved constraint model
which allows it to scale up to very large� real problems� We describe
powerful redundant constraints that allow a standard constraint solver
to solve these scheduling problems in an almost backtrack	free manner�
The redundant constraints are lower bounds on selected sub	problems
which take advantage of the structure inherent in the problems� Under
speci�ed conditions� these constraints are sometimes further improved
by testing the consistency of a sub	problem using a fast test� We experi	
mentally evaluated our approach by integrating it into the Gnu Compiler
Collection
GCC� and then applying it to the SPEC�� �oating point
benchmarks� All
��� of the benchmarks� basic	blocks were optimally
scheduled� including basic	blocks with up to ���� instructions� Our re	
sults compare favorably to the best previous approach which is based
on integer linear programming
Wilken et al�� ������ Across the same
benchmarks� the total optimal scheduling time for their approach is ��
seconds while the total time for our approach is less than � seconds�

� Introduction

Instruction scheduling is one of the most important steps for improving the per�
formance of object code produced by a compiler� The local instruction scheduling
problem is to �nd a minimum length instruction schedule for a basic block�a

straight�line sequence of code with a single entry point and a single exit point�
subject to precedence� latency� and resource constraints� In this paper we con�
sider local instruction scheduling for single�issue processors with arbitrary la�
tencies� This is a classic problem which has received a lot of attention in the
literature and remains important as single�issue RISC processors are increas�
ingly being used in embedded systems such as automobile brake systems and
air�bag controllers�

Instruction scheduling for a single�issue processor is NP�complete if there is
no �xed bound on the maximumlatency ������� Such negative results have led to
the belief that in production compilers one must take a heuristic or approxima�
tion algorithmapproach� rather than an exact approach to basic�block scheduling
	e�g�� see ��
��� Recently� however� Wilken et al� ���� showed that through various
modeling and algorithmic techniques� integer linear programming could be used
to produce optimal instruction schedules for large basic blocks in a reasonable
amount of time�

In this paper� we present a relatively simple constraint programming ap�
proach to instruction scheduling which is fast and optimal� The key to scaling up
to very large� real problems is an improved constraint model� We describe pow�
erful redundant constraints that allow a standard constraint solver to solve these
scheduling problems in an almost backtrack�free manner� The redundant con�
straints are lower bounds on selected sub�problems which take advantage of the
structure inherent in the problems� Under speci�ed conditions� these constraints
are sometimes further improved by testing the consistency of a sub�problem
using a fast test�

We experimentally evaluated our approach by integrating it into the Gnu
Compiler Collection 	GCC� and then applying it to the SPEC
� �oating point
benchmarks� All
��� of the benchmarks� basic�blocks were optimally scheduled�
including basic�blocks with up to ���� instructions� Our results compare favor�
ably to the best previous approach which is based on integer linear programming
	Wilken et al�� ������ Across the same benchmarks� the total optimal scheduling
time for their approach is
� seconds while the total time for our approach is
less than � seconds�

� Background and De�nitions

We �rst de�ne the instruction scheduling problem studied in this paper followed
by a brief review of the needed background from constraint programming 	for
more background on these topics see� for example� �
���� �
���

Throughout the paper� the number of elements in a set U is denoted by jU j�
the minimum and maximum values in a �nite set U of integers are denoted by
min	U � and max	U �� respectively� and the interval notation �a� b� is used as a
shorthand for the set of integers fa� a� �� � � � � bg�

We consider single�issue pipelined processors 	see �
��� On such processors a
single instruction can be issued 	begin execution� each clock cycle� but for some

33

1 3

D C

A B

E

�a�

A r� � a

B r� � b

nop

nop

D r� � r� � r�
C r� � c

nop

nop

E r� � r� � r�

�b�

A r� � a

B r� � b

C r� � c

nop

D r� � r� � r�
E r� � r� � r�

�c�

Figure��
a� Dependency DAG associated with the instructions to evaluate
a� b� �
c on a processor where loads from memory have a latency of � cycles and integer
operations have a latency of � cycle�
b� non	optimal schedule�
c� optimal schedule�

instructions there is a delay or latency between when the instruction is issued
and when the result is available for other instructions which use the result�

We use the standard labeled directed acyclic graph 	DAG� representation of
a basic�block� where each node corresponds to an instruction 	see ��
��� There
is an edge from i to j labeled with a positive integer l	i� j� if j must not be
issued until i has executed for l	i� j� cycles� In particular� if l	i� j� � �� j can
be issued in the next cycle after i has been issued and if l	i� j� � �� there must
be some intervening cycles between when i is issued and when j is subsequently
issued� These cycles can possibly be �lled by other instructions� The critical path
distance from a node i to a node j in a DAG is the length of the longest path
from i to j� if there exists a path from i to j� �� otherwise�

De�nition �� �Local Instruction Scheduling Problem� Given a labeled
dependency DAG G � 	N�E� for a basic�block� a schedule S for a single�issue
processor speci�es an issue or start time S	i� for each instruction or node such
that S	i� �� S	j�� i� j � N� i �� j �no two instructions are issued simultaneously��
and S	j� � S	i� � l	i� j�� 	i� j� � E �the issue or start time of an instruction
depends upon the issue times and latencies of its predecessors� The local in�
struction scheduling problem is to construct a schedule with minimum length�
i�e�� maxfS	i� j i � Ng is minimized�

Example �� Figure � shows a simple dependency DAG and two possible sched�
ules for the DAG� The non�optimal schedule requires four nop instructions 	null
operations� because the values loaded are used by the following instructions� The
optimal schedule requires one nop and completes in three fewer cycles�

Constraint programming is a methodology for solving combinatorial prob�
lems� A problem is modeled by specifying constraints on an acceptable solution�
where a constraint is simply a relation among several unknowns or variables�
each taking a value in a given domain� Such a model is often referred to as a
constraint satisfaction problem or CSP model�

De�nition � �Constraint Satisfaction Problem �CSP��� A constraint sat�
isfaction problem consists of a set of n variables� fx�� � � � � xng� a �nite domain
dom	xi� of possible values for each variable xi� � � i � n� and a collection of
r constraints� fC�� � � � � Crg� Each constraint Ci� � � i � r� is a constraint over
some set of variables� denoted by vars	C�� that speci�es the allowed combinations
of values for the variables in vars	C�� A solution to a CSP is an assignment of
a value to each variable that satis�es all of the constraints�

CSPs are often solved using a backtracking algorithm� At every stage of the
backtracking search� there is some current partial solution which the algorithm
attempts to extend to a full solution by assigning a value to an uninstantiated
variable� One of the keys behind the success of constraint programming is the
idea of constraint propagation� During the backtracking search when a variable is
assigned a value� the constraints are used to reduce the domains of the uninstan�
tiated variables by ensuring that the values in their domains are �consistent�
with the constraints� The form of consistency we use in our approach to the
instruction scheduling problem is bounds consistency�

De�nition � �Bounds Consistency�� Given a constraint C� a value d �
dom	x� for a variable x � vars	C� is said to have a support in C if there
exist values for each of the other variables in vars	C�� fxg such that C is sat�
is�ed� A constraint C is bounds consistent if for each x � vars	C�� the value
min	dom	x�� has a support in C and the value max	dom	x�� has a support in
C�

A CSP can be made bounds consistent by repeatedly removing unsupported
values from the domains of its variables�

Example �� Consider the CSP model of the small instruction scheduling problem
in Example � with variables A� � � � � E� each with domain f�� � � � � �g� and the
following constraints�

C�� D � A� �� C�� E � C � �� C�� all�di�erent	A� B� C� D� E��
C�� D � B � �� C�� E � D� ��

where constraint C� enforces that its arguments are pair�wise di�erent� The
constraints are not bounds consistent� For example� the minimum value � in
the domain of D does not have a support in constraint C� as there is no corre�
sponding value for A that satis�es the constraint� Enforcing bounds consistency
using constraints C� through C� reduces the domains of the variables as fol�
lows� dom	A� � f�� �g� dom	B� � f�� �g� dom	C� � f�� �� �g� dom	D� � f�� �g�
and dom	E� � f�� �g� Subsequently enforcing bounds consistency using con�
straint C� further reduces the domain of C to be dom	C� � f�g� Now constraint
C� is no longer bounds consistent� Re�establishing bounds consistency causes
dom	E� � f�g�

� Previous Work

Instruction scheduling for a single�issue processor is NP�complete if there is no
�xed bound on the maximum latency d ��� ����

Previous work has identi�ed polynomial algorithms for the special case when
d � �� These algorithms can also be used as approximation algorithms for the
general problem� Bernstein and Gertner ��� give a polynomial time algorithm
based on list scheduling when d � �� The algorithm can be used as an approxi�
mation algorithm when d � � and is guaranteed to give a schedule whose length
is no more than a factor of �� ��d times that of an optimal schedule ���� Palem
and Simons ���� extend this work by allowing timing constraints in the form of
release times 	the earliest time at which an instruction can start� and deadlines
	the latest time by which an instruction must complete�� Such constraints can
be important in embedded systems�� Recently� Wu et al� ���� gave an improved
algorithm for the case when d � � and timing constraints are allowed� It is a
long�standing open problem whether there exists a polynomial time algorithm
for any �xed d � ��

Previous work has also developed optimal algorithms for the general problem
when d � �� The approaches taken include dynamic programming ����� integer
linear programming ��� �� ��� ���� and constraint programming �
�� However� with
the exception of ���� 	to which we do a detailed comparison later in the paper��
these previous approaches have only been evaluated on a few problems with the
sizes of the problems ranging between �� and �� instructions� Further� their ex�
perimental results suggest that none of them would scale up beyond problems
of this size� For example� Ertl and Krall �
� present a constraint programming
approach which solves the problem optimally� Their CSP model has latency con�
straints and an all�di�erent constraint� As our experiments con�rm 	see Table �
and the discussion at the end of Section ��� such a model does not scale be�
yond �� instructions� However� real problems can contain a thousand or more
instructions�

� CSP Model

In this section� we present our CSP model of the local instruction scheduling
problem� In the constraint programming methodology we cast the problem as a
CSP in terms of variables� values� and constraints� The choice of variables de�nes
the search space and the choice of constraints de�nes how the search space can
be reduced so that it can be e�ectively searched using backtracking search� Each
constraint can be classi�ed as to whether it is redundant or non�redundant� A
constraint is redundant if its removal from the CSP does not change the set of
solutions�

� Note that timing constraints can be viewed as just a special case of latency con	
straints� Thus� any approach that solves the general problem by allowing arbitrary
latencies
such as the one in this paper�� can also handle timing constraints�

Table �� Notation used in specifying the constraints�

lower
i� lower bound of domain of variable i

upper
i� upper bound of domain of variable i

pred
i� set of immediate predecessors of node i in DAG
succ
i� set of immediate successors of node i in DAG
between
i� j� set of nodes between nodes i and j

l
i� j� latency on edge between nodes i and j

cp
i� j� critical path distance between nodes i and j

d
i� j� lower bound on distance between nodes i and j

We model each instruction by a variable with names �� � � � � n 	we use i to
refer interchangeably to variable i� instruction i� and node i in the DAG�� Each
variable takes a value from the domain f�� � � � �mg which are the available time
cycles� Assigning a value t � dom	i� to a variable i has the intended meaning
that instruction i will be issued at time cycle t�

We now specify the �ve types of constraints in the model� latency� all�
di�erent� distance� predecessor and successor constraints� The notation we use
is summarized in Table �� As is clear� for a minimal correct model of the in�
struction scheduling problem all that is needed are the latency and all�di�erent
constraints� The distance� predecessor� and successor constraints are therefore
redundant� However� they were found to be essential in improving the e�ciency
of the search for a schedule�

Latency constraints� Given a labeled dependency DAG G � 	N�E�� for each
pair of variables i and j such that 	i� j� � E� a latency constraint of the form
j � i � l	i� j� is considered for addition to the constraint model� A latency
constraint is added if it is not redundant� A latency constraint between i and
j is redundant if there exists a k � j such that� l	i� j� � l	i� k� � cp	k� j�� In
other words� the constraint is redundant if there is a path from i to j that goes
through k that is equal to or longer than the direct path l	i� j�� 	If the constraint
is redundant� adding it will have no e�ect as the remaining latency constraints
will derive a stronger result�� Since we are enforcing bounds consistency� the
actual form of the constraints added to the constraint model are�

lower	j� � lower	i� � l	i� j�

and its symmetric version�

upper	i� � upper	j� � l	i� j��

The latency constraints are easy to propagate when establishing lower and up�
per bounds for the variables� and easy to propagate incrementally during the
backtracking search�

All�di	erent constraints� A single all�di�erent constraint over all n of the vari�
ables is needed to ensure that at most one instruction is issued each cycle� Fast

algorithms for enforcing bounds consistency on an all�di�erent constraint have
been proposed� In our implementation� we used the O	n�� propagator described
in ���� and included the optimization suggested by Puget ���� of �rst remov�
ing any �xed values 	time cycles that have already been assigned to variables�
from the lower and upper bounds of the uninstantiated variables� and the tech�
niques suggested by Leconte ���� for taking advantage of the fact that� when
propagating the all�di�erent constraint during the backtracking search� we are
re�establishing bounds consistency� i�e�� the constraint was previously bounds
consistent��

Distance constraints� Dependency DAGs that arise from real instruction schedul�
ing problems appear to contain much structure� no doubt because they arise
from high�level programming languages� In what follows� we are interested in
sub�DAGS called regions ���� which are induced from a given dependency DAG�
Real problems typically contain many such regions embedded within them� with
larger problems containing many thousands�

De�nition �� �Region ���	� Given a labeled dependency DAG G � 	N�E�� a
pair of nodes i� j � N de�ne a region in G if there is more than one path between
i and j and there does not exist a node k distinct from i and j such that every
path between i and j goes through k� A node h distinct from i and j that lies on
a path from i to j is said to be between i and j and the set of all such nodes is
denoted by between	i� j��

For each pair of nodes i and j which de�ne a region� a distance constraint
of the form j � i � d	i� j� is considered for addition to the constraint model�
A distance constraint is added if it is an improvement over the critical path
distance� i�e�� d	i� j� � cp	i� j�� 	If the distance is not greater than the critical
path distance� adding the constraint will have no e�ect as the latency constraints
will derive a stronger result�� The distance constraints are lower bounds on the
number of cycles that must elapse between when i is scheduled and j is scheduled�
Although syntactically identical to latency constraints and hence propagated
in the same manner� they are conceptually distinct and are key to e�ectively
reducing the size of the search space�

An initial estimate of d	i� j� is given by the following�

d	i� j� � minfl	i� k� j k � 	succ	i� � between	i� j��g � �

� j between	i� j� j

� minfl	h� j� j h � 	pred	j� � between	i� j��g � �

� �

To explain� the nodes in between	i� j� must all be scheduled after node i and
before node j� We do not know which node in between	i� j� will be or must be

� Propagators with better worst case complexity are known� O
n log n� ���� and O
n�
����� Since the all	di�erent propagator is a bottle	neck in our current implementation�
it would be interesting to investigate whether these algorithms would work better in
practice on instruction scheduling problems�

scheduled �rst� However� it can be seen that any successor of node i that is
in between	i� j� can only be scheduled once the minimum latency among those
successors has been satis�ed� As well� once all of the nodes in between	i� j� have
been scheduled� node j can only be scheduled once the minimum latency of its
predecessors in between	i� j� has been satis�ed� The number of nodes that are
between node i and node j can quickly be determined given the critical path
distances between all pairs of nodes� since a node k is on a path from i to j if
cp	i� k� � � and cp	k� j� � �� The initial estimate of d	i� j� can be viewed as a
generalization of rules which were proposed for bounding the range of values for
variables in integer programming formulations of instruction scheduling ��� ����
although in that work it was not applied to regions�

Example
� Consider the dependency DAG shown in Figure � 	ignore for now
the lower and upper bounds associated with the nodes�� For the region de�
�ned by A and H� d	A�H� � 	minfl	A�B�� l	A�C�g � �� � jbetween	A�H�j �
	minfl	F�H�� l	G�H�g � �� � � � � � � � � � � �
� Similarly� d	A�F� � � and
d	E�H� � �� The distance constraint H � E � � would be added to the con�
straint model and the distance constraint F � A � � would not be added 	as
it is not an improvement over the critical path distance between A and F�� The
distance constraint between A and H is taken up again in Example ��

An attempt is made to improve the initial estimate of d	i� j� for the distance
constraints if the number of nodes between i and j is su�ciently small� We
found that a value of �� was robust on real problems� This was determined
empirically using a set of �ve instruction scheduling examples of varying size
and then veri�ed on an additional set of ten examples�

The method for improvement works as follows� Given an initial estimate of
d	i� j�� the region de�ned by i and j is 	conceptually� extracted from the DAG
and considered in isolation� We test whether scheduling node i at time � and
node j at time d	i� j� � � is consistent� The test for consistency is done by
propagating the relevant latency constraints and any previously added distance
constraints� and an all�di�erent constraint over the variables in the region� If
the constraints are inconsistent� the value of d	i� j� is incremented and the test
is repeated� stopping when a value is found for d	i� j� such that the constraints
over the region are found to be consistent� Note that we are determining lower
bounds� not solving the region exactly� as the idea is to test the consistency of the
constraints quickly and approximately� The regions in the DAG are examined
in an �inside�out� manner so that distance constraints for inner regions can be
used in the consistency tests of the larger outer regions�

Example �� Consider again the dependency DAG shown in Figure � and pre�
viously discussed in Example �� The initial estimate of d	A�H� �
 can be
improved� Figure �a shows the bounds on the variables after propagating the
latency and previously added distance constraints� Propagating the all�di�erent
constraint determines that the constraints are inconsistent� because four instruc�
tions 	D� E� F and G� must be issued in the three�cycle interval ���
�� Figure �b
shows the bounds on the variables after propagating all the constraints for the

[10, 10]

[6, 7] [6, 7]

[5, 6][5, 6]

[2, 3] [2, 3]

[1, 1]

33

3 3

11

1 1

1

A

F

E

B

H

C

D

G

�a�

[11, 11]

[6, 8] [6, 8]

[5, 7][5, 7]

[2, 4] [2, 4]

[1, 1]

33

3 3

11

1 1

1

A

F

E

B

H

C

D

G

�b�

Figure�� Example of improving the lower bound estimate for the distance constraint
for the region de�ned by A and H�

improved estimate d	A�H� � ��� The constraints are consistent� so the constraint
H � A � �� is added to the constraint model�

Predecessor and successor constraints� For each node i which has more than one
immediate predecessor� a single predecessor constraint of the following form is
added�

lower	i� � minflower	k� j k � Pg

� jP j � �

� minfl	k� i� j k � Pg�

for every subset P of pred	i� where jP j � ��

The predecessor constraints can be viewed as both a generalization of the la�
tency constraints and as an adaptation of edge �nding rules ��� ���� It can be
seen that a predecessor constraint can be propagated in O	jpred	i�j�� time by
�rst sorting the predecessors of i by increasing lower bounds and then stepping
through the lower bounds� each time �nding the minimum latency among the
remaining predecessors� A symmetric version� called successor constraints� for
the immediate successors of a node is given by the following�

upper	i� � maxfupper	k� j k � Pg

� jP j� �

� minfl	i� k� j k � Pg�

for every subset P of succ	i� where jP j � ��

[5, 8]

[6, 9] [5, 9] [5, 9]

[11, 14] ⇒ [12, 14]

[8, 12] ⇒ [9, 12][9, 12]

[4, 7] ⇒ [4, 6]

22

3 3 3

1

1 1

1
A

F

E

B

H

C D

G

�a�

[6, *] [7, *] [8, *]

[10, *]

2 2 2

CA B

D

�b�

Figure�� Examples of improving the lower and upper bounds of variables using the
predecessor and successor constraints�

Example �� Suppose that the sub�DAG shown in Figure �a is embedded in a
larger dependency DAG and that it has been determined that lower	A� � �
and upper	H� � ��� Propagating the latency constraints results in the domains
shown closest to the associated node� Propagating the predecessor and successor
constraints improves the bounds of A� G� and H� The earliest that one of the
predecessors of node G can be scheduled is cycle � and therefore cycle � is the
earliest that the last of its predecessors could be scheduled� Therefore� because
the minimum latency between G and its predecessors is �� the earliest that G can
be scheduled is cycle
� Once the lower bound of G has been raised� in a similar
manner the lower bound of H can be raised� As well� the latest that one of the
successors of node A can be scheduled is cycle
 and therefore cycle
 is the latest
that the last of its successors could be scheduled� Therefore� the latest that A can
be scheduled is cycle �� Figure �b shows an example of a predecessor constraint
that initially has no e�ect but could become e�ective during the backtracking
search as� if either lower	A� or lower	B� are raised during the search� lower	D�
can also be raised�

To solve an instance of an instruction scheduling problem� we start by us�
ing the constraints to establish the lower bounds of the variables and a lower
bound on the length m of an optimal schedule� Given m� the upper bounds of
the variables are similarly established and the CSP is passed to the backtracking
algorithm� If no solution is found� a length m schedule does not exist and the
value of m is incremented� the upper bounds of the variables are re�established
using the new value of m� and the new CSP is passed to the backtracking algo�

rithm� This is repeated� each time incrementing m until a solution is found� The
backtracking search interleaves constraint propagation with branching on vari�
ables� A dynamic variable ordering is used which selects as the next variable to
instantiate the variable with the least number of values remaining in its domain�
breaking ties by choosing the variable that participates in the most constraints�
Given a selected variable x� the backtracking search �rst branches on x assigned
to lower	x�� then on x assigned to lower	x���� and so on� until either a solution
is found or the domain of x is exhausted�

Before turning to our experimental results� it is worthwhile summarizing
three of the ideas that did not make it into the �nal version with which we did our
full scale experimentation� Our goal was to design an approach that was as simple
as possible while maintaining robustness and while the following ideas proved
promising when evaluated in isolation on a set of test examples� they appeared
to become unnecessary when combined with the improved constraint model we
described above� The �rst technique was identifying cycle cutsets ��� and thereby
decomposing a problem into independent subproblems� We found that most of
the larger problems in our test suite 	not the full benchmark set� but a small
subset consisting of some of the harder problems� had small cutsets ranging
from two to �� nodes that approximately evenly decomposed the problem� The
second technique was a variation on singleton consistency 	see� e�g�� ��
�� where
one temporarily instantiates a variable to a single value and tests the consistency
of a subproblem that includes that variable� If the consistency test fails� the value
can be removed from the domain of the variable� Wilken et al� ���� showed that
a related technique called probing in the context of integer linear programming
worked well on the instruction scheduling problem� We found that singleton
consistency could sometimes dramatically reduce the domains of the variables
prior to search� The third technique was the inclusion of symmetry�breaking
constraints which rule out symmetric 	non� schedules� Although each of these
techniques was not included in our �nal prototype� it is possible of course that
they may still prove important should we encounter harder problems in practice
than we have yet seen�

� Experimental Results

The CSP model was implemented and was embedded inside the Gnu Compiler
Collection 	GCC� �http���gnu�gcc�org�� version ������ The CSP model was com�
pared experimentally with critical�path list scheduling and with the integer linear
programming 	ILP� formulation proposed in ����� The SPEC
� �oating point
benchmarks �http���www�specbench�org� were compiled by GCC using GCC�s
native instruction scheduler� which uses critical�path list scheduling� the most
popular heuristic scheduling method ��
�� The same benchmarks were also com�
piled using the CSP scheduler� The compilations were done using GCC�s highest
level of optimization 	�O�� and were targeted to a single�issue processor with a
maximum latency of three cycles� The target processor has a latency of � cycles
for loads� � cycles for all �oating point operations and � cycle for all integer op�

Table �� Experimental results for the CSP instruction scheduler�

Total Basic Blocks
BB�
����
BB Passed to CSP Scheduler ��

BB Solved Optimally by CSP Scheduler ��

BB with Improved Schedule ��
Cycles Improved ��
Total Benchmark Cycles ��
����
CSP Scheduling Time
sec�� ���
Baseline Compile Time
sec��
��

erations� The SPEC
� integer benchmarks are not included in this experiment
because for this processor model there would be no instructions with a ��cycle la�
tency� which makes the scheduling problems easier to solve� The SPEC
� �oating
point benchmarks were chosen rather than the more recent SPEC���� bench�
marks to allow a direct comparison with the ILP optimal scheduling results in
����� The optimal schedule length produced by the CSP scheduler was compared
with that from the ILP scheduler from ���� for each basic block to verify the
correctness of both formulations� The experiments were run on an HP C����
workstation with a ���MHz PA����� processor and ���MB of main memory�
the same processor that produced the results in �����

The �lter used in ���� was applied prior to the CSP scheduler to eliminate
the trivial scheduling problems� and so that the CSP scheduler solved the same
set of problems solved by the ILP scheduler in ����� The GCC list scheduler is
�rst run to produce an initial feasible schedule of length u� which is an upper
bound on the length of an optimal schedule� A lower bound on the schedule
length m is determined by the maximum of the critical path from a root node
to a leaf node and the node count� If u � m the list schedule is optimal and the
CSP scheduler is not called� Also� for each node i the initial domain is tightened
using latency constraints for a schedule length of u � �� If the domain of any
i is empty� the length u list schedule is optimal and the CSP scheduler is not
called� A summary of the results for the CSP scheduler is shown in Table � and
more detailed results for the CSP scheduler and the ILP scheduler are shown in
Figure ��

The results in Table � are identical with the results in ���� with the notable
exception that the ILP scheduler uses
��� seconds to optimally schedule these
benchmarks 	a noticeable ��� compile�time increase�� whereas the CSP sched�
uler is �� times faster� using only ��� seconds 	a negligible ���� compile�time
increase�� As a point of reference� the GCC list scheduler takes ��� seconds to
schedule these benchmarks� The cycles measured in Table � are static cycles� one
cycle for each clock cycle in each schedule� On average static cycles are reduced
by ����� using the CSP scheduler versus the list schedule� The dynamic cycle
savings will tend to be higher because the more complex basic blocks tend to
appear in loops where the execution counts are higher 	the improvement can
be as high as several percent should an improved basic block appear within an

1 10 100 1000 10000
Instructions in Basic Block

0.001

0.01

0.1

1

10

100

1000

T
ot

al
 S

ch
ed

ul
in

g
T

im
e

(s
ec

s.
)

CP 2001
PLDI 2000

Figure�� Scattergram of basic block size versus optimal scheduling time for the CSP
and ILP schedulers�

application�s critical inner loop�� Also performance improvement is expected to
be much higher for processors that issue multiple instructions per clock cycle� a
harder scheduling problem which will be considered in future work�

Figure � shows a scattergram of scheduling time versus basic block size which
includes a point for each of the ��
 basic blocks scheduled by the CSP scheduler
in the present experiment� The scattergram also shows corresponding points for
the ILP scheduler from the experiment in ����� The system timer used in both
experiments has a resolution of ���� seconds and rounds up to the nearest ����
second increment� Most of these basic blocks are scheduled within the minimum
timer resolution for both schedulers� The CSP scheduler takes more than ����
second for only �� basic blocks while the ILP scheduler takes more than ����
second for �� basic blocks� The maximumtime the CSP scheduler takes to sched�
ule an individual basic block is ��� seconds 	for a �����instruction block� and
the maximum time for the ILP scheduler is ���� seconds 	for a �

�instruction
block�� For the basic blocks which take more than ���� second for either scheduler
	�� basic blocks�� the CSP scheduler is faster in �� cases and the ILP scheduler
is faster in only � cases�

Besides being faster and more robust than the ILP scheduler� the code for
the CSP scheduler is signi�cantly smaller� which implies it would be easier to
implement and maintain in a production compiler� The CSP solver is also self
contained� whereas the ILP scheduler uses an external 	potentially expensive�
commercial ILP solver�

Table � shows the results from a set of experiments which were run to quantify
the contributions of the three CSP model improvements� The experiments used
various of levels of model improvement run at various time limits� applied to
�fteen representative hard problems ranging in size from �
 to ���� instructions
that were taken from the SPEC
� �oating point� SPEC���� �oating point and

Table �� Hard problems out of �� not solved within speci�ed time limit
seconds�
using�
a� minimal constraint model
only latency and all	di�erent constraints��
b�
minimal model plus predecessor and successor constraints�
c� minimal model plus
distance constraints based only on initial estimate� no consistency testing�
d� minimal
model plus complete distance constraints� and
e� full constraint model
minimal model
plus complete distance constraints and predecessor and successor constraints��

Time Limit
a�
b�
c�
d�
e�
�� �� �� � � �
��� �� �� � � �
���� �� �� � � �

MediaBench ���� benchmarks� The results show that the minimal constraint
model proposed by Ertl and Krall �
� has poor scaling behavior 	see column 	a�
in Table �� and that together the three improvements dramatically improve the
scaling behavior of a constraint programming approach�

� Conclusions

We presented a constraint programming approach to instruction scheduling for
single�issue processors with arbitrary latencies� The problem is considered in�
tractable� yet our approach is optimal and fast on very large� real problems�
The key to scaling up to very large� real problems was in the development of an
improved constraint model by identifying techniques for generating powerful re�
dundant constraints� These techniques allow a standard constraint solver to solve
these scheduling problems in an almost backtrack�free manner� We performed
an extensive experimental evaluation and demonstrated that our approach has
the advantage over other previous approaches in terms of the robustness and
speed with which optimal schedules can be found�

References

�� S� Arya� An optimal instruction	scheduling model for a class of vector processors�
IEEE Transactions on Computers� C	��
������������ �����

�� D� Bernstein and I� Gertner� Scheduling expressions on a pipelined processor with
a maximal delay of one cycle� ACM Transactions on Programming Languages and
Systems� ��
����
���� �����

�� D� Bernstein� M� Rodeh� and I� Gertner� On the complexity of scheduling problems
for parallel�pipelined machines� IEEE Transactions on Computers� ��
��������
����� �����

�� J� Carlier and E� Pinson� Adjustment of heads and tails for the job	shop problem�
European Journal of Operational Research�
���������� �����

�� C�	M� Chang� C�	M� Chen� and C�	T� King� Using integer programming for in	
struction scheduling and register allocation in multi	issue processors� Computers
and Mathematics with Applications� ��
�������� ���
�

�� R� Dechter� Enhancement schemes for constraint processing� Backjumping� learn	
ing� and cutset decomposition� Arti�cial Intelligence� ����
������ �����

� M� A� Ertl and A� Krall� Optimal instruction scheduling using constraint logic
programming� In Programming Language Implementation and Logic Programming
�PLILP�� �����

�� J� Hennessy and T� Gross� Postpass code optimization of pipeline constraints�
ACM Transactions on Programming Languages and Systems� �
����������� �����

�� J� Hennessy and D� Patterson� Computer Architecture� A Quantitative Approach�
Morgan Kaufmann� second edition� �����

��� C� W� Kessler� Scheduling expression DAGs for minimal register need� Computer
Languages� ��
��������� �����

��� C� Le Pape and P� Baptiste� Constraint	based scheduling� A theoretical comparison
of resource constraint propagation rules� In Proceedings of the ECAI Workshop on
Non�Binary Constraints� Brighton� UK� August �����

��� M� Leconte� A bounds	based reduction scheme for constraints of di�erence� In
Proceedings of the Constraint��� InternationalWorkshop on Constraint�BasedRea�
soning� pages ������ Key West� Florida� May �����

��� C� Lee� M� Potkonjak� and W� Manginoe	Smith� MediaBench� A tool for evaluating
and synthesizing multimedia and communications� In Proceedings of International
Symposium on Microarchitecture� pages �������� December ���
�

��� R� Leupers and P� Marwedel� Time	constrained code compaction for DSPs� IEEE
Trans� VLSI Systems� �
����������� ���
�

��� K� Marriott and P� J� Stuckey� Programming with Constraints� The MIT Press�
�����

��� K� Mehlhorn and S� Thiel� Faster algorithms for bound	consistency of the sort	
edness and alldi�erent constraint� In Proceedings of the Sixth International Con�
ference on Principles and Practice of Constraint Programming� pages ��������
Singapore� September �����

�
� S� Muchnick� Advanced Compiler Design and Implementation� Morgan Kaufmann�
���
�

��� K� Palem and B� Simons� Scheduling time	critical instructions on RISC machines�
ACM Transactions on Programming Languages and Systems� ��
����������� �����

��� P� Prosser� K� Stergiou� and T� Walsh� Singleton consistencies� In Proceedings
of the Sixth International Conference on Principles and Practice of Constraint
Programming� pages �������� Singapore� September �����

��� J�	F� Puget� A fast algorithm for the bound consistency of alldi� constraints� In
Proceedings of the Fifteenth National Conference on Arti�cial Intelligence� pages
�������� Madison� WI� July �����

��� K� Wilken� J� Liu� and M� He�ernan� Optimal instruction scheduling using integer
programming� In Proceedings of the SIGPLAN �			 Conference on Programming
Language Design and Implementation �PLDI�� pages �������� Vancouver� BC�
June �����

��� H� Wu� J� Ja�ar� and R� Yap� Instruction scheduling with timing constraints on a
single RISC processor with ��� latencies� In Proceedings of the Sixth International
Conference on Principles and Practice of Constraint Programming� pages ��
�����
Singapore� September �����

