A Heuristic Incremental Modeling Approach to
Course Timetabling

Don Banks!, Peter van Beek!, and Amnon Meisels?

! Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
{banks,vanbeek}@cs.ualberta.ca
2 Department of Mathematics and Computer Science
Ben-Gurion University of the Negev
Beer-Sheva, Israel 84105
am@cs.bgu.ac.il

Abstract. The general timetabling problem is an assignment of activ-
ities to fixed time intervals, adhering to a predefined set of resource
availabilities. Timetabling problems are difficult to solve and can be ex-
tremely time-consuming without some computer assistance. In this paper
the application of constraint-based reasoning to timetable generation is
examined. Specifically, we consider how a timetabling problem can be
represented as a Constraint Satisfaction Problem (CSP), and propose an
algorithm for its solution which improves upon the basic idea of back-
tracking. Normally, when a backtracking routine fails to find a solution,
there is nothing of value returned to the user; however, our algorithm
extends this process by iteratively adding constraints to the CSP repre-
sentation. A generalized random model of timetabling problems is pro-
posed. This model creates a diverse range of problem instances, which
are used to verify our search algorithm and identify the characteristics
of difficult timetabling problems.

1 Introduction

Timetabling problems arise in many real world situations. Although many com-
puterized techniques exist for timetable construction, obtaining acceptable re-
sults is often difficult. In this paper we address the problem of constructing
a master timetable of multiple-section courses; along with scheduling students
into sections of their requested courses. Thus the global problem consists of
two subproblems—often called in the literature the master timetabling subprob-
lem and the student sectioning (or grouping) subproblem. The two subproblems
have been addressed separately in the past (see, for example, [1,9,10] and refer-
ences therein). More recently, methods have been proposed which solve the two
subproblems in tandem. Aubin and Ferland [1] propose an iterative method to
solving the global problem which alternately solves the two subproblems until
no further improvement to the solution can be found. The method is heuristic

and is not guaranteed to find a global optimum. Hertz [6] adopts the solution
method of Aubin and Ferland and shows how tabu search techniques can be
used to potentially find an improved optimum.

In recent years, constraint-based reasoning has gained much attention in
the Artificial Intelligence community. Previous constraint-based approaches to
timetabling only address one of the two subproblems. For example, Meisels et
al. [8] and Yoshikawa et al. [13] consider a high school timetabling problem where
each class of students remains together for the entire term and Lajos [7] and
Henz and Wurtz [5] address the master timetabling subproblem in a university
setting. Feldman and Golumbic [3] address the use of priority constraints in their
CSP solution to the student sectioning or grouping subproblem. Chan, Lau, and
Sheung [2] present a constraint-based approach to time-tabling that iteratively
relaxes some constraints and then “repairs.”

In this paper, we propose a novel constraint-based model and solution tech-
nique to the global problem for modeling general timetabling problems found
in high schools in Edmonton, Alberta, Canada. The problem involves creating
a master timetable of multiple-section courses and creating individual student
schedules. The schools being studied have eight periods per week, and the weekly
schedule remains constant throughout the term. Courses are divided into sec-
tions of students, and each section is scheduled into its own period. The input
to the problem consists of a list of students’ course selections. The objective is
to satisfy as many of the student course selections as possible by scheduling the
sections of the courses into the eight weekly periods subject to a limit on the
size of the classes, limits on the number of teachers of each subject, and a limit
on the total number of rooms in the school.

In our CSP model of the problem, we define binary constraints to occur be-
tween pairs of courses chosen by the same students, and non-binary constraints
to occur over groups of courses to enforce constraints on available teachers and
rooms. A novel feature of our CSP model is that our model is heuristic. Satisfying
all of the constraints does not guarantee 100% students satisfaction. While the
non-binary teacher and room constraints are exact in the model, the domains of
the variables are drastically pruned before solving and the binary constraints are
heuristic estimations of complex non-binary constraints. However, we find that
adding all of the possible binary estimation constraints between pairs of cho-
sen courses often results in no solution existing. The proposed solution method
heuristically and incrementally models and solves a timetabling problem. By pri-
oritizing the various binary estimation constraints, our algorithm will iteratively
add the constraints to the problem, building upon the solution until no further
improvements can be made.

Our algorithm, which iteratively adds constraints before proceeding with a
backtracking search, should be contrasted with (i) Aubin and Ferland [1] who it-
erate between the two subproblems of assigning students to the generated master
schedule and regenerating a master schedule (that solves also the conflicts that re-
sult from the assignment of students to the last master schedule), and (ii) Chan,
Lau, and Sheung [2] who iteratively relar constraints rather than strengthen

constraints. Qur approach can also be contrasted with a widely used optimiza-
tion technique for CSPs which incrementally adds a constraint which enforces a
new cost bound and resolves the model [12, p.94]. In our method all potential
constraints are generated by the students’ selection of courses. The iterations
are generated by incrementally adding more constraints (from a fired set) to the
problem. A constraint weighting function is required to decide which constraints
will satisfy the most students. A threshold value is used to determine the mini-
mum weighting to include the binary constraints, and a forward checking routine
1s used to solve the specified CSP—which implies assigning periods to sections—
and a master timetable is specified. Then, the procedure iterates and raises the
threshold to include more binary constraints, which should increase the number
of students successfully scheduled. The iterations continue until too many binary
constraints have been added and no solution can be found. In further contrast
to Aubin and Ferland, in their method the problem is modeled exactly using an
integer linear programming formulation and then is solved heuristically. In our
method, the problem is modeled heuristically—in that we add constraints that
prune away large parts of the search space (and may prune away an optimal
solution)—and then is solved exactly. Similar to Aubin and Ferland, we do not
both model and solve our model exactly because it is computationally infeasible
to do so [1].

We demonstrate the robustness of our algorithm by defining a random time-
tabling problem generator, based on actual high school data, and then solving a
diverse range of timetabling problems. We show that in the majority of test cases,
our algorithm can satisfactorily schedule 98% of the students on the randomly
generated data and the amount of computational time required by the algorithm
is reasonable. Furthermore, the generator helps us to identify difficult to solve
timetabling problems. These problems can then be recreated for testing on future
timetabling algorithms.

The software we have developed 1s a batch scheduling system. We envision
the current scheduler as being part of an interactive decision support system
where it would provide the initial schedule which the user could then analyze
and modify (see, for example, [4]).

2 The Timetabling Problem

The high school timetabling problems that are the center of the present in-
vestigation arise from schools in Edmonton, Alberta, Canada. They are large
problems ranging in size from 250 to 2200 students and having between 45 and
400 courses to timetable. A course is defined as a group of students who meet
three times per week for instruction. There 1s one and only one teacher assigned
to instruct each of these three lessons. The students have much freedom in the
courses they will take. Each student provides the school with a list of desired
courses four months in advance of the school year. Students have individualized
schedules based on the courses that they select.

Mon. Tue. Wed. Thr. Fri.

9:00 1 2 1 2 1
10:00 3 4 3 3 2
11:00 5 5 4 5 4
13:00 6 7 6 6 7
14:00 8 8 7 8 -

Fig. 1. Sample blank timetable

There are 8 periods in each week, with each period divided into 3 non-
overlapping time slots of one hour in duration. Each day has 5 time slots. A
sample blank timetable is shown in Fig. 1. If a student is scheduled to have
Chemistry 30 in period 1, she would attend this class every Monday, Wednesday
and Friday at 9:00 am. A student may register in at most 8 different courses in
a term, but may register in fewer.

Some courses may be in high demand and hence be divided into multiple
sections, where each section refers to a specific group of students who will always
meet at the same period for the lesson. Most courses have between 1 and 4
sections, but some, such as English 10, have as many as 13. Each section will
then be assigned a period number of 1 through 8. Therefore, part of the goal of
this timetabling problem is, given all of the student’s requests, assign a period
number from 1 to 8 to each section of each course, and assign the students to
a section for each course chosen, such that no student is assigned to more than
one section in the same period. An important constraint is that no more than
30 students may be scheduled into one particular section. Another constraint is
that we may not have more courses scheduled in any one period than there are
rooms in the school.

The other piece of the puzzle is scheduling the teachers. However, the actual
process of determining the teachers’ schedules is not a part of the problem at
hand, since the administration of the high school prefers to do this themselves.
Nonetheless, one of our goals is to have a final solution which guarantees that
valid teachers’ schedules can be generated from the resulting master timetable.
Two constraints are that no teacher may teach two lessons at the same time
and there is one and only one teacher for every section. Another constraint is
that teachers are only available to teach certain subjects. For example, suppose
there are exactly 3 Physics teachers. A constraint would therefore assert that

no more than 3 Physics courses can be scheduled in the same period, otherwise
there would not be enough teachers for all of them.
The overall terminology and definition of the problem is as follows:

— A school has n students, r rooms, and offers ¢ courses from s subjects.

— Every course C;, 1 < i < ¢, has an associated subject. For example, Math
10 through Math 33, all belong to the subject, Math.

— Every course C;, 1 <t < cis subdivided into sections. The local policy is that
a section of a course can have at most 30 students in it. Thus, the number of
sections needed for a course is determined by dividing the number of students
enrolled in the course by 30 and rounding up to the nearest integer.

— Each subject S;, 1 < <s, has a number of available teachers 7;.

— Each student submits a list of desired courses L;, 1 < ¢ < n, where each

Li C {Cla"'acc}'

The problem is to generate a master schedule which assigns each section of
each course to a period from 1...8. Additionally, we desire the n individual
student timetables to be generated from the resulting assignment of periods to
sections, such that each list of course selections L; is satisfied. This goal is also
subject to the constraint that no more than 30 students can be scheduled into
one section. The main constraint, that the students must have the courses they
have chosen available to them, is of the not-equals variety (e.g. there must be
sections of all these courses that are not assigned equal periods). However, there
are also two distinct capacity constraints in this problem: (i) the total number
of sections of each subject S; must not exceed T; during any period, and (ii) the
total number of sections must not exceed r during any period. The quality of a
master schedule is measured by how many students have conflict free schedules.
Any solution is guaranteed to have conflict free schedules for the teachers.

3 A Constraint Satisfaction Model

The constraint satisfaction model is a simple means of representing a wide variety
of problems. The CSP has three components: variables, domains, and constraints.
Each CSP consists of a set of variables {#,...2,}, each with an associated do-
main of values D;...D,. A solution to a constraint satisfaction problem is an
instantiation of each variable to one particular value from i1ts domain, such that
none of the constraints are violated. Constraints, therefore, are relations be-
tween variables which describe their legal values. For example, suppose variable
z has the domain {1,2,5} and variable y has the domain {2,3,4}. A binary
constraint—one that proposes the valid instantiations between two variables—
may exist which says that # # y. Not all constraints are binary. A unary con-
straint is one that applies to a single variable. A non-binary constraint which
includes all n variables of the CSP is known as a global constraint.

In order to formulate the timetabling problem as a CSP, we must define what
are to be the variables, domains, and constraints.

3.1 Variables

Each variable represents a course C;, such as Math 10, and all sections of that
course. Associated with each variable or course 1s a number of attributes includ-
ing the number of students enrolled in that course and the subject S; of that
course. Assigning a value to a variable represents assigning a time period to each
section of that course.

3.2 Domains

The domains of the variables each consist of an m-tuple of periods, where m is
the number of sections of each course. Each tuple consists of m periods in the
range {1...8}. Therefore, in the general case a 3-sections course would have the
domain values (1,1,1),(1,1,2),(1,1,3),... and so on. The result of this choice
is that domain sizes becomes an unmanageable 87 where m is the number of
sections of the course. We can remove equivalent solutions by enforcing that the
periods occur in ascending order since master timetables that differ only in that
they swap two sections of the same course are equivalent. Further, a natural
heuristic for the domains we have discovered is to exclude the possibility of du-
plicate periods appearing in the corresponding tuple of values. If we enforce that
no period’s value appears more than once in each permutation, then the domain
values for the 3-section course become (1,2,3),(1,2,4),(1,2,5),...(6,7,8). The
domain size in this case would be 56, instead of 512. The natural heuristic of
disallowing multiple sections in the same period reduces the size of the domains
from 8™ to at most 70, and therefore the total search space is reduced expo-
nentially, albeit at the expense of potentially ruling out valid solutions. The
maximum domain size of 70 occurs when the number of sections is four. This
heuristic directly corresponds to what the actual high school schedulers do; only
rarely will a course be “doubled up” in the same period.

A variable representing a course with 8 sections would have a domain size of
1, simply containing (1,2,3,4,5,6,7,8). In the event that the course has more
than 8 sections, some overlap is impossible to avoid. So, in this case we assume
that the first 8 sections of the course have the implicit (1,...,8) distribution,
while the remaining sections obey the non-overlap rule.

3.3 Constraints

Student Course Selection Constraints. The given input to the problem
consists of the student course selections. The resulting final timetable must be
one that somehow has the necessary available sections open for all of the student
requests.

We propose a binary constraint which will estimate the section assignment
needs, the subset constraint. Subset constraints occur between courses in the
same term. This constraint between two courses says that one course’s permuta-
tion of period values cannot be a subset of the other. The idea of this constraint
is to avoid a student being left with the same period as the only open time for

two courses that he/she is registered for. For example, suppose a student chooses
three courses, A, B and C, the first two having two sections, and the latter with
one section. If both A and B are given the permutation (4,7), one might con-
clude that this was fine, the student could take A in period 4, and B in period
7. However, if C were now given the value (4), this is not acceptable. Thus,
between one pair of these courses there 1s a subset constraint necessary, which
would deem that the two courses’ permutation may not be equal to or a subset
of the other. With just one subset constraint, together with the natural heuristic
of avoiding duplicate courses, we have now guaranteed that the assignment of
periods to sections for these three courses will satisfy the student. The general
rule for applying estimator constraints is given below, together with examples.

Estimator Rule: If a student selects a course of n sections, and also
selects d courses (in the same term) with n or fewer sections, d > n, the
n-section course is subset-constrained by d — n + 1 of the other courses.

Ezxample 1. A student picks 3 courses, A, B, and C. A has 1 section, B has 2, C
has 3. No binary constraints are needed. Any combination of values for A B and
C will allow the student to attend all three courses. Applying the rule specifically
to course C, n is equal 3 sections, but d is equal to 2 sections with 3 or fewer
courses. Since d is less than n, the estimator rule does not apply.

Ezrample 2. A student picks 5 courses, A through E. A, B, and C each have
3 sections, D has 2, E has 1. Subset constraints are needed between A-B, A-
C and B-C. These will guarantee that 5 different periods will appear in the
permutations of A, B and C. D and E could then be anything, and are not
constrained.

Ezrample 3. A student picks 8 courses, A through H. Course A has 7 sections,
while the rest have only 1. Course A must be constrained with one of the other
courses, while each pair of courses B through H must be constrained, for a total
of twenty-two binary constraints.

In the third example, the algorithm was left with a seemingly arbitrary choice
of which single section course to constrain with course A. However, this selec-
tion need not be done randomly. Our algorithm would first check if there are
any existing constraints, from previously examined student selections, between
course A and courses B through H. If there are any, no new constraint would be
needed involving course A. Otherwise, the selection may be made by choosing
the course B through H which has the most students also registered in course A.

Non-binary Constraints. The non-binary constraints are not meant to be
estimations, instead they are exact. All of the non-binary constraints are included
in any solution attempt. There exists a non-binary teacher’s constraint, which
is designed to ensure the final solution will allow for successful scheduling of
the teachers. There is one such constraint for each of the sixteen subjects, and
the constraint covers all of the courses in each subject. If there are T; full-time

teachers for a given subject, this constraint says that there may not be more
than T; courses of the subject scheduled at one particular period. The other
non-binary constraint is the global room constraint. This constraint is meant to
enforce that the school cannot exceed its’ capacity. If there are r rooms, then
there may not be more than r courses scheduled during one particular period.

4 Solving the High School Timetabling Problem

A CSP with no solution is highly undesirable, since there is nothing of value re-
turned to the scheduler. We need some additional rules which dictate the number
of constraints to be used by the CSP solver routine. The algorithm we have de-
veloped operates iteratively. The CSP begins with no binary constraints at all,
and some instantiation of the variables is found which satisfies the non-binary
and unary constraints. The process continues by adding binary constraints that
pertain to courses of one section and later to courses with more sections. In other
words, the CSP 1s “repaired” by adding more binary constraints. This value, one
section, may be thought of as a threshold. The threshold will be incremented
as necessary until there is either 100 percent student satisfaction or no solution
is found—and the algorithm halts. The general pseudocode of the algorithm is
summarized below.

TIMETABLING ALGORITHM

0. Determine enrollment matrix
1. Initialize thresholds

2. Repeat

3 GenerateCSP (threshold)

4. For i=1 to nastempts Do

5. Randomly order domains

6 Heuristically order variables

7 Solve CSP

8 Schedule students

9 Add constraints by increasing thresholds

10. Until no solution exists, or n,.% of the students are scheduled

Step 0. Determine Enrollment matrix. The enrollment matrix is used
to determine which pairs of courses are taken together by students, and the
frequency of these combinations.

Step 3. GenerateCSP(threshold). This step determines which binary
constraints are included in the problem, based on the current thresholds. The
algorithm considers adding a binary constraint between two courses only if one
or more students has requested that pair of courses. The decision of whether
or not to include a binary constraint is based on how many sections each of
the courses has and on how many students have requested that pair of courses.
Initially, binary constraints are only added between courses that have a single
section and which have high demand. On the next iteration, binary constraints

are added between single section courses that have moderate demand. On the
iteration after that, those with low demand. On the iteration after that, binary
constraints are added between courses that have one or two sections and high
demand, and so on.

Step 4. For i = 1 to nNaemprs. Within this algorithm lies a loop that
randomizes the domains and solves the CSP, ngttempss number of times. For our
experiments, Nattempts Was set at two.

Step 6. Order Variables. The order of the variables refers to the order
in which the backtracking routine will assign values to the variables. A good
heuristic ordering of the variables can greatly reduce the cost of finding a solution
[11]. In our work, the best ordering strategy that has been found is by domain
size, smallest to largest.

Step 7. Solve CSP. This step involves most of the computational time and
could be any existing CSP algorithm. For our experiments we use a backtracking
algorithm known as forward-checking. If no solution is found (either because it
is proven that no solution exists or because some predefined time limit has been
exceeded), for all of the nasremprs CSPs at the current threshold settings, the
program terminates, since too many constraints have been added. (Proceeding to
add more binary constraints to an over-constrained problem could not possibly
help). The solution found which satisfies the most students course selections is
then returned.

Step 8. Schedule the students. After the CSP has been solved, and we
are left with a master timetable, the individual students must be scheduled so
that their course requests are met. We have determined that the ordering of the
students to be scheduled can make a difference. We choose to order the most
difficult to schedule students first; a “difficult” student to schedule is one who
chooses many courses with few sections in them, thereby causing less flexibility
in the student’s timetable. The number of successfully scheduled students is
recorded. If this value exceeds the previous best, the solution is saved, and will
be available once the program terminates.

Step 9. Adding constraints by increasing the thresholds. The thresh-
olds are manipulated in order to increase the number of constraints that are in
the CSP, and hopefully yield a better solution.

Step 10. Program halting criteria. The algorithm halts once no further
improvements can be made. The user can also specify a pre-desired student
satisfaction rate, which also results in program termination, once attained. For
our experiments, ngq: was 99%. In reality, high school timetablers in large schools
are pleased to reach 95% student satisfaction.

5 Experimental Results

We gathered data from three local high schools, but we did not proceed to solve
the actual high school timetabling problems as some of the data was incom-
plete and unexplained. As well, each school had their own “exceptions” to the
scheduling process. For example, some schools have half credit and double credit

courses that last a single term rather than the full year; some courses are taken
by correspondence and not actually attended at the school, and one school has
an International Baccalaureate Program whose students are treated differently
in the scheduling process. The local high school timetablers solve the problem
by hand on a school by school basis, a project with requires many hours of effort
beginning months in advance of the new school year.

The approach we took was to create an abstract random model of the high
school timetabling problem based on courses that are all full year and one credit.
Our goal was to create a wide range of realistic data in order to examine what ef-
fect varying the parameters of our problem has on the time required to solve the
problem and the overall quality (number of students scheduled) of the solution.
A further motivation in creating a random problem generator is in identifying
“hard” timetabling problem instances. Our random problem generator is able to
create a broad range of timetabling problems, including some that are particu-
larly difficult to solve.

We first identified three critical parameters of the high school timetabling
problem at hand: n, the numbers of students in the school; ¢, the number of
courses offered by the school; and r, the number of rooms in the school. We
varied the number of students from 750 to 2000 by increments of 250, and the
number of courses from 100 to 200 by 50. The number of rooms is a function of the
capacity of the school. Given the n students, who choose from the ¢ courses, the
minimum value of r is the smallest number of rooms which can accommodate all
of the resulting classes. The actual value of r will include “spare” rooms, varied
at 0.0%, 2.5%, 5.0% and 7.5% of the minimum in our experiments.

To generate a random timetabling problem, one needs a random set of student
course selections. From these selections, the constraints can be formulated, as
described in Section 3. The student course selections are modeled by four discrete
random variables. There is one random variable to model the grade that the
student is in (grade 10, 11, or 12) and one to model the number of courses selected
(between 1 and 16). Students from a particular grade are not limited to choosing
courses of their grade level. The frequency of the random course selections, as
well as frequency of students choosing particular courses at a higher or lower
grade level, were estimated from data supplied by local high schools.

Some of our experimental results on our random timetabling model are shown
in Table 1. The values shown in the table are the averages of 100 experiments at
each of the different values of n, the number of students, ¢, the number of courses,
and r, the number of rooms. For all experiments, the timetabling algorithm was
run with nattempes equal to 10 (see Step 4, Section 4), and the algorithm halted
if a predefined limit of 100 backtracks was reached (see Step 7) or the number
of satisfied students, n;q:, was greater than or equal to 99% (see Step 10).

The results are encouraging. In the case where the percentage of spare rooms
was 2.5% or greater, which are the realistic cases, we found a master timetable
that satisfied 98% of the students in approximately two-thirds of the experi-
ments. The most difficult to solve problems occurred when the number of courses
offered was high in comparison to the number of students, such as when 750 stu-

Table 1. Effect of varying number of students, number of courses, and percentage
of spare rooms, on percentage of students satisfied. Each data point is the average of
100 trials on random problems. In all trials, the algorithm was terminated when 99%
student satisfaction was attained.

(a) Percentage of spare rooms is 0% (b) Percentage of spare rooms is 2.5%
Students Students
Courses| 750 1000 1250 1500 1750 2000 Courses| 750 1000 1250 1500 1750 2000
100 ([88.6 84.5 94.3 84.7 53.0 62.0 100 |91.4 98.9 99.2 99.6 99.9 99.9
150 [72.7 78.9 70.9 81.2 45.7 38.9 150 [82.1 95.2 99.1 99.1 99.3 99.7
200 |67.5 67.8 72.9 75.7 47.4 39.6 200 |75.8 85.7 94.5 98.9 99.1 97.2

dents could select from 200 different courses. In this case, the number of courses
with just one section of students (less than thirty enrolled) is high. These courses
are the most difficult to schedule, since there is the least flexibility for the stu-
dents, as they are only offered at one time. Because of the Estimation Rule,
these single section courses participate in the most binary subset constraints. In
general, as the number of courses (variables in the CSP) increased, the quality
of the solutions decreased.

Further results can be seen in viewing the data as the number of students in
the random model is varied. In general, as the number of students increase, the
overall quality of the solutions also increased. This trend is also a consequence of
having fewer single section courses. Having more students in each course results
in more sections being allotted, which gives greater flexibility as the students
are scheduled into courses.

Varying the number of courses and students has a direct implication on the
number of binary constraints in the problem. In order to manipulate the non-
binary constraints, we have also varied the number of rooms in the school. The
global capacity constraint says that no more than r courses can be scheduled
at one period, given that there are r rooms in the school. As the number of
rooms decreases, the quality of the solutions decrease, because in some cases no
solution exists at all. For example, when the percentage of spare rooms is 0.0%,
the average success rate of the algorithm on a school with 2000 students and
200 courses is 39.6%. However, of the 100 experiments on random problems at
these settings, 60 of the experiments terminated with no initial solution found,
and in that case the recorded result was 0% student satisfaction. No statistically
significant difference was found between the results for 2.5% spare rooms and
the results for 5.0% and 7.5%. This is somewhat surprising since for the smaller
problems where the minimum number of rooms is around 25, 2.5% spare rooms
only adds one room slack, and for the larger problems where the minimum
number of rooms is around 60, 2.5% spare rooms only adds two rooms slack.
Nevertheless, it was found that having this few of a number of “spare” rooms
was sufficient and greatly improved the quality of the master schedule found by
the algorithm as measured by the number of satisfied students.

9e+07 T T

o]
. 100 courses ——
| - 150 courses -+--— |
8e+07 " 200 courses -&---
o 7e+07 i
@ S
E 6e+07 ,/':/’ﬁ i
> AN
o *
S o
L 5e+07 4
@
[%2]}
c
8 4e+07 .
ks
S Be+07 -
IS
=]
< 2e+07 \ 1
1e+07 | 4
0 ‘ ‘ ‘ ‘ [
600 800 1000 1200 1400 1600 1800 2000

Number of students (n)

Fig. 2. Effect of number of students on number of consistency checks. For these exper-
iments, the parameters are ¢ = 100, 150 and 200 courses, and r = Rynin + 2.5% rooms.
Fach data point represents the average of 100 trials.

The experimental results are also encouraging for their low required run-time.
Each solution attempt, whether terminating with no solution, or completing with
a master timetable and individual timetables, required less than one hour on a
Sun SS4/70-32. The most difficult problems, found when the number of courses
was 200 and the number of students was 1500, required approximately 90 mil-
lion consistency checks on average to reach 99% student satisfaction. On these
problems the average run-time was 2107 seconds and the hardest problem took
3404 seconds. The experiments with poor results (less than 80% satisfaction)
actually terminated quite quickly, requiring between one and two million con-
sistency checks. The easiest problems occurred when the number of courses was
low, and the number of students was high. These problems achieved 99% student
satisfaction in roughly two hundred thousand consistency checks—Iless than five
minutes of run-time. Therefore, we conclude that some problems are naturally
easy, while in some cases good solutions can be found with more iterations of
adding binary constraints. The average number of consistency checks is displayed
in Fig. 2. We found that in our experiments the number of consistency checks
was an extremely good predictor of run-time and that a plot of average run-time
gives the same qualitative shape as in Fig. 2. Thus, for each value ¢, number of
courses, there is an associated number of students n where a peak in problem
difficulty is observed.

6 Conclusions

We have proposed a constraint satisfaction model for a local high school time-
tabling problem. The problem we have studied involves an assignment of eight
weekly periods to the sections of school courses. Each of the students provides a
list of course selections which are to be satisfied. The sections of the course are
scheduled such that there is at least one section for each course available to the
student. In the case where there was a small number of spare rooms, which is
the realistic case, we found a master timetable that satisfied 98% of the students
in two-thirds of the experiments on a random testbed of timetabling problems.
The innovation in our solution method is in the heuristic modeling of the
problem—which prunes away large parts of the search space—and in the process
of iteratively adding constraints to the network. Iterative solutions may be poor
at first but will improve to some upper limit, until no solution can be found.
The main advantage of our iterative method is there will always be a timetable
output to the scheduler, unless the school has too few rooms to accommodate
all of the courses. Because of the iterative constraint addition, a “best” solution
always exists at any point in the search. The students are individually scheduled
using a simple greedy algorithm once the master timetable is completed.
Finally, we have proposed a random model of the school timetabling prob-
lem. By identifying the three critical parameters of number students, number of
classrooms and number of courses, we have created a diverse testbed of realistic
timetabling problems. Furthermore, we have identified some particularly diffi-
cult to solve timetabling instances. These particular instances can be recreated,
by giving the generator the same parameters and same random seed, so that
comparisons can be made with other, improved timetabling algorithms.

References

1. J. Aubin and J.A. Ferland. A large scale timetabling problem. Computers €
Operations Research, 16:67-77, 1989.

2. H. W. Chan, C. K. Lau, and J. Sheung. Practical school timetabling: A hybrid
approach using solution synthesis and iterative repair. In Proceedings of the Second
International Conference on the Practice and Theory of Automated Timetabling,
pages 123-131, Toronto, Canada, 1997.

3. R. Feldman and M. C. Golumbic. Constraint satisfiability algorithms for interactive
student scheduling. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, pages 1010-1016, Detroit, Mich., 1989.

4. J. A. Ferland and C. Fleurent. SAPHIR: A decision support system for course
scheduling. INTFRFACES, 24:105-115, 1994.

5. M. Henz and J. Wurtz. Using Oz for college time tabling. In Proceedings of the First
International Conference on the Practice and Theory of Automated Timetabling,
pages 162180, 1995. Available as: Springer Lecture Notes in Computer Science
1153.

6. A. Hertz. Tabu search for large scale timetabling problems. Furopean Journal of
Operational Research, 54:39-47, 1991.

10.

11.
12.

13.

G. Lajos. Complete university modular timetabling using constraint logic pro-
gramming. In Proceedings of the First International Conference on the Practice
and Theory of Automated Timetabling, pages 146-161, 1995. Available as: Springer
Lecture Notes in Computer Science 1153.

. A. Meisels, J. El-Saana, and E. Gudes. Comments on CSP algorithms applied to

timetabling. Technical report, Department of Mathematics and Computer Science,
Ben-Gurion University, 1993.

A. Schaerf. A survey of automated timetabling. Technical Report Report CS-
R9567, Centrum voor Wiskund en Infirmatica (CWI), Amsterdam, The Nether-
lands, 1996. To appear in Artificial Intelligence Review.

G. Schmidt and T. Strohlein. Timetable construction — an annotated bibliography.
The Computer Journal, 23:307-316, 1979.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
Cambridge, Massachusetts, 1989.

M. Yoshikawa, K. Kaneko, Y. Nomura, and M. Watanabe. A constraint-based
approach to high-school timetabling problems: A case study. In Proceedings of the
Twelfth National Conference on Al pages 1111-1116, Seattle, Wash., 1994.

