
A Heuristic Incremental Modeling Approach to

Course Timetabling

Don Banks�� Peter van Beek�� and Amnon Meisels�

� Department of Computing Science
University of Alberta

Edmonton� Alberta� Canada T�G �H�
fbanks�vanbeekg�cs�ualberta�ca

� Department of Mathematics and Computer Science
Ben�Gurion University of the Negev

Beer�Sheva� Israel �����
am�cs�bgu�ac�il

Abstract� The general timetabling problem is an assignment of activ�
ities to 	xed time intervals� adhering to a prede	ned set of resource
availabilities
 Timetabling problems are di�cult to solve and can be ex�
tremely time�consuming without some computer assistance
 In this paper
the application of constraint�based reasoning to timetable generation is
examined
 Speci	cally� we consider how a timetabling problem can be
represented as a Constraint Satisfaction Problem �CSP
� and propose an
algorithm for its solution which improves upon the basic idea of back�
tracking
 Normally� when a backtracking routine fails to 	nd a solution�
there is nothing of value returned to the user� however� our algorithm
extends this process by iteratively adding constraints to the CSP repre�
sentation
 A generalized random model of timetabling problems is pro�
posed
 This model creates a diverse range of problem instances� which
are used to verify our search algorithm and identify the characteristics
of di�cult timetabling problems


� Introduction

Timetabling problems arise in many real world situations� Although many com�
puterized techniques exist for timetable construction� obtaining acceptable re�
sults is often di�cult� In this paper we address the problem of constructing
a master timetable of multiple�section courses� along with scheduling students
into sections of their requested courses� Thus the global problem consists of
two subproblems�often called in the literature the master timetabling subprob�
lem and the student sectioning �or grouping� subproblem� The two subproblems
have been addressed separately in the past �see� for example� ���	� �
� and refer�
ences therein�� More recently� methods have been proposed which solve the two
subproblems in tandem� Aubin and Ferland ��� propose an iterative method to
solving the global problem which alternately solves the two subproblems until
no further improvement to the solution can be found� The method is heuristic



and is not guaranteed to �nd a global optimum� Hertz �
� adopts the solution
method of Aubin and Ferland and shows how tabu search techniques can be
used to potentially �nd an improved optimum�

In recent years� constraint�based reasoning has gained much attention in
the Arti�cial Intelligence community� Previous constraint�based approaches to
timetabling only address one of the two subproblems� For example� Meisels et
al� ��� and Yoshikawa et al� ���� consider a high school timetabling problem where
each class of students remains together for the entire term and Lajos ��� and
Henz and Wurtz ��� address the master timetabling subproblem in a university
setting� Feldman and Golumbic ��� address the use of priority constraints in their
CSP solution to the student sectioning or grouping subproblem� Chan� Lau� and
Sheung ��� present a constraint�based approach to time�tabling that iteratively
relaxes some constraints and then �repairs��

In this paper� we propose a novel constraint�based model and solution tech�
nique to the global problem for modeling general timetabling problems found
in high schools in Edmonton� Alberta� Canada� The problem involves creating
a master timetable of multiple�section courses and creating individual student
schedules� The schools being studied have eight periods per week� and the weekly
schedule remains constant throughout the term� Courses are divided into sec�
tions of students� and each section is scheduled into its own period� The input
to the problem consists of a list of students� course selections� The objective is
to satisfy as many of the student course selections as possible by scheduling the
sections of the courses into the eight weekly periods subject to a limit on the
size of the classes� limits on the number of teachers of each subject� and a limit
on the total number of rooms in the school�

In our CSP model of the problem� we de�ne binary constraints to occur be�
tween pairs of courses chosen by the same students� and non�binary constraints
to occur over groups of courses to enforce constraints on available teachers and
rooms� A novel feature of our CSP model is that our model is heuristic� Satisfying
all of the constraints does not guarantee �

� students satisfaction� While the
non�binary teacher and room constraints are exact in the model� the domains of
the variables are drastically pruned before solving and the binary constraints are
heuristic estimations of complex non�binary constraints� However� we �nd that
adding all of the possible binary estimation constraints between pairs of cho�
sen courses often results in no solution existing� The proposed solution method
heuristically and incrementally models and solves a timetabling problem� By pri�
oritizing the various binary estimation constraints� our algorithm will iteratively
add the constraints to the problem� building upon the solution until no further
improvements can be made�

Our algorithm� which iteratively adds constraints before proceeding with a
backtracking search� should be contrasted with �i� Aubin and Ferland ��� who it�
erate between the two subproblems of assigning students to the generated master
schedule and regenerating a master schedule �that solves also the con�icts that re�
sult from the assignment of students to the last master schedule�� and �ii� Chan�
Lau� and Sheung ��� who iteratively relax constraints rather than strengthen



constraints� Our approach can also be contrasted with a widely used optimiza�
tion technique for CSPs which incrementally adds a constraint which enforces a
new cost bound and resolves the model ���� p�	��� In our method all potential
constraints are generated by the students� selection of courses� The iterations
are generated by incrementally adding more constraints �from a �xed set� to the
problem� A constraint weighting function is required to decide which constraints
will satisfy the most students� A threshold value is used to determine the mini�
mumweighting to include the binary constraints� and a forward checking routine
is used to solve the speci�ed CSP�which implies assigning periods to sections�
and a master timetable is speci�ed� Then� the procedure iterates and raises the
threshold to include more binary constraints� which should increase the number
of students successfully scheduled� The iterations continue until too many binary
constraints have been added and no solution can be found� In further contrast
to Aubin and Ferland� in their method the problem is modeled exactly using an
integer linear programming formulation and then is solved heuristically� In our
method� the problem is modeled heuristically�in that we add constraints that
prune away large parts of the search space �and may prune away an optimal
solution��and then is solved exactly� Similar to Aubin and Ferland� we do not
both model and solve our model exactly because it is computationally infeasible
to do so ����

We demonstrate the robustness of our algorithm by de�ning a random time�
tabling problem generator� based on actual high school data� and then solving a
diverse range of timetabling problems�We show that in the majority of test cases�
our algorithm can satisfactorily schedule 	�� of the students on the randomly
generated data and the amount of computational time required by the algorithm
is reasonable� Furthermore� the generator helps us to identify di�cult to solve
timetabling problems� These problems can then be recreated for testing on future
timetabling algorithms�

The software we have developed is a batch scheduling system� We envision
the current scheduler as being part of an interactive decision support system
where it would provide the initial schedule which the user could then analyze
and modify �see� for example� �����

� The Timetabling Problem

The high school timetabling problems that are the center of the present in�
vestigation arise from schools in Edmonton� Alberta� Canada� They are large
problems ranging in size from ��
 to ��

 students and having between �� and
�

 courses to timetable� A course is de�ned as a group of students who meet
three times per week for instruction� There is one and only one teacher assigned
to instruct each of these three lessons� The students have much freedom in the
courses they will take� Each student provides the school with a list of desired
courses four months in advance of the school year� Students have individualized
schedules based on the courses that they select�



Mon
 Tue
 Wed
 Thr
 Fri


���� � � � � �

����� � � � � �

����� � � � � �

����� � � � � �

����� � � � � �

Fig� �� Sample blank timetable

There are � periods in each week� with each period divided into � non�
overlapping time slots of one hour in duration� Each day has � time slots� A
sample blank timetable is shown in Fig� �� If a student is scheduled to have
Chemistry �
 in period �� she would attend this class every Monday� Wednesday
and Friday at 	�

 am� A student may register in at most � di�erent courses in
a term� but may register in fewer�

Some courses may be in high demand and hence be divided into multiple
sections� where each section refers to a speci�c group of students who will always
meet at the same period for the lesson� Most courses have between � and �
sections� but some� such as English �
� have as many as ��� Each section will
then be assigned a period number of � through �� Therefore� part of the goal of
this timetabling problem is� given all of the student�s requests� assign a period
number from � to � to each section of each course� and assign the students to
a section for each course chosen� such that no student is assigned to more than
one section in the same period� An important constraint is that no more than
�
 students may be scheduled into one particular section� Another constraint is
that we may not have more courses scheduled in any one period than there are
rooms in the school�

The other piece of the puzzle is scheduling the teachers� However� the actual
process of determining the teachers� schedules is not a part of the problem at
hand� since the administration of the high school prefers to do this themselves�
Nonetheless� one of our goals is to have a �nal solution which guarantees that
valid teachers� schedules can be generated from the resulting master timetable�
Two constraints are that no teacher may teach two lessons at the same time
and there is one and only one teacher for every section� Another constraint is
that teachers are only available to teach certain subjects� For example� suppose
there are exactly � Physics teachers� A constraint would therefore assert that



no more than � Physics courses can be scheduled in the same period� otherwise
there would not be enough teachers for all of them�

The overall terminology and de�nition of the problem is as follows�

� A school has n students� r rooms� and o�ers c courses from s subjects�
� Every course Ci� � � i � c� has an associated subject� For example� Math
�
 through Math ��� all belong to the subject� Math�

� Every course Ci� � � i � c is subdivided into sections� The local policy is that
a section of a course can have at most �
 students in it� Thus� the number of
sections needed for a course is determined by dividing the number of students
enrolled in the course by �
 and rounding up to the nearest integer�

� Each subject Si� � � i � s� has a number of available teachers Ti�
� Each student submits a list of desired courses Li� � � i � n� where each
Li � fC�� � � � � Ccg�

The problem is to generate a master schedule which assigns each section of
each course to a period from � � � ��� Additionally� we desire the n individual
student timetables to be generated from the resulting assignment of periods to
sections� such that each list of course selections Li is satis�ed� This goal is also
subject to the constraint that no more than �
 students can be scheduled into
one section� The main constraint� that the students must have the courses they
have chosen available to them� is of the not�equals variety �e�g� there must be
sections of all these courses that are not assigned equal periods�� However� there
are also two distinct capacity constraints in this problem� �i� the total number
of sections of each subject Si must not exceed Ti during any period� and �ii� the
total number of sections must not exceed r during any period� The quality of a
master schedule is measured by how many students have con�ict free schedules�
Any solution is guaranteed to have con�ict free schedules for the teachers�

� A Constraint Satisfaction Model

The constraint satisfaction model is a simplemeans of representing a wide variety
of problems� The CSP has three components� variables� domains� and constraints�
Each CSP consists of a set of variables fx� � � �xng� each with an associated do�
main of values D� � � �Dn� A solution to a constraint satisfaction problem is an
instantiation of each variable to one particular value from its domain� such that
none of the constraints are violated� Constraints� therefore� are relations be�
tween variables which describe their legal values� For example� suppose variable
x has the domain f�� �� �g and variable y has the domain f�� �� �g� A binary

constraint�one that proposes the valid instantiations between two variables�
may exist which says that x �� y� Not all constraints are binary� A unary con�
straint is one that applies to a single variable� A non�binary constraint which
includes all n variables of the CSP is known as a global constraint�

In order to formulate the timetabling problem as a CSP� we must de�ne what
are to be the variables� domains� and constraints�



��� Variables

Each variable represents a course Ci� such as Math �
� and all sections of that
course� Associated with each variable or course is a number of attributes includ�
ing the number of students enrolled in that course and the subject Si of that
course� Assigning a value to a variable represents assigning a time period to each
section of that course�

��� Domains

The domains of the variables each consist of an m�tuple of periods� where m is
the number of sections of each course� Each tuple consists of m periods in the
range f� � � ��g� Therefore� in the general case a ��sections course would have the
domain values ��� �� ��� ��� �� ��� ��� �� ��� � � � and so on� The result of this choice
is that domain sizes becomes an unmanageable �m� where m is the number of
sections of the course� We can remove equivalent solutions by enforcing that the
periods occur in ascending order since master timetables that di�er only in that
they swap two sections of the same course are equivalent� Further� a natural
heuristic for the domains we have discovered is to exclude the possibility of du�
plicate periods appearing in the corresponding tuple of values� If we enforce that
no period�s value appears more than once in each permutation� then the domain
values for the ��section course become ��� �� ��� ��� �� ��� �������� � � ��
� �� ��� The
domain size in this case would be �
� instead of ���� The natural heuristic of
disallowing multiple sections in the same period reduces the size of the domains
from �m to at most �
� and therefore the total search space is reduced expo�
nentially� albeit at the expense of potentially ruling out valid solutions� The
maximum domain size of �
 occurs when the number of sections is four� This
heuristic directly corresponds to what the actual high school schedulers do� only
rarely will a course be �doubled up� in the same period�

A variable representing a course with � sections would have a domain size of
�� simply containing ��� �� �� �� ��
� �� ��� In the event that the course has more
than � sections� some overlap is impossible to avoid� So� in this case we assume
that the �rst � sections of the course have the implicit ��� � � � � �� distribution�
while the remaining sections obey the non�overlap rule�

��� Constraints

Student Course Selection Constraints� The given input to the problem
consists of the student course selections� The resulting �nal timetable must be
one that somehow has the necessary available sections open for all of the student
requests�

We propose a binary constraint which will estimate the section assignment
needs� the subset constraint� Subset constraints occur between courses in the
same term� This constraint between two courses says that one course�s permuta�
tion of period values cannot be a subset of the other� The idea of this constraint
is to avoid a student being left with the same period as the only open time for



two courses that he�she is registered for� For example� suppose a student chooses
three courses� A� B and C� the �rst two having two sections� and the latter with
one section� If both A and B are given the permutation ������ one might con�
clude that this was �ne� the student could take A in period �� and B in period
�� However� if C were now given the value ���� this is not acceptable� Thus�
between one pair of these courses there is a subset constraint necessary� which
would deem that the two courses� permutation may not be equal to or a subset
of the other� With just one subset constraint� together with the natural heuristic
of avoiding duplicate courses� we have now guaranteed that the assignment of
periods to sections for these three courses will satisfy the student� The general
rule for applying estimator constraints is given below� together with examples�

Estimator Rule� If a student selects a course of n sections� and also
selects d courses �in the same term� with n or fewer sections� d � n� the
n�section course is subset�constrained by d� n� � of the other courses�

Example �� A student picks � courses� A� B� and C� A has � section� B has �� C
has �� No binary constraints are needed� Any combination of values for A�B and
C will allow the student to attend all three courses� Applying the rule speci�cally
to course C� n is equal � sections� but d is equal to � sections with � or fewer
courses� Since d is less than n� the estimator rule does not apply�

Example �� A student picks � courses� A through E� A� B� and C each have
� sections� D has �� E has �� Subset constraints are needed between A�B� A�
C and B�C� These will guarantee that � di�erent periods will appear in the
permutations of A� B and C� D and E could then be anything� and are not
constrained�

Example �� A student picks � courses� A through H� Course A has � sections�
while the rest have only �� Course A must be constrained with one of the other
courses� while each pair of courses B through H must be constrained� for a total
of twenty�two binary constraints�

In the third example� the algorithmwas left with a seemingly arbitrary choice
of which single section course to constrain with course A� However� this selec�
tion need not be done randomly� Our algorithm would �rst check if there are
any existing constraints� from previously examined student selections� between
course A and courses B through H� If there are any� no new constraint would be
needed involving course A� Otherwise� the selection may be made by choosing
the course B through H which has the most students also registered in course A�

Non�binary Constraints� The non�binary constraints are not meant to be
estimations� instead they are exact� All of the non�binary constraints are included
in any solution attempt� There exists a non�binary teacher�s constraint� which
is designed to ensure the �nal solution will allow for successful scheduling of
the teachers� There is one such constraint for each of the sixteen subjects� and
the constraint covers all of the courses in each subject� If there are Ti full�time



teachers for a given subject� this constraint says that there may not be more
than Ti courses of the subject scheduled at one particular period� The other
non�binary constraint is the global room constraint� This constraint is meant to
enforce that the school cannot exceed its� capacity� If there are r rooms� then
there may not be more than r courses scheduled during one particular period�

� Solving the High School Timetabling Problem

A CSP with no solution is highly undesirable� since there is nothing of value re�
turned to the scheduler� We need some additional rules which dictate the number
of constraints to be used by the CSP solver routine� The algorithm we have de�
veloped operates iteratively� The CSP begins with no binary constraints at all�
and some instantiation of the variables is found which satis�es the non�binary
and unary constraints� The process continues by adding binary constraints that
pertain to courses of one section and later to courses with more sections� In other
words� the CSP is �repaired� by adding more binary constraints� This value� one
section� may be thought of as a threshold� The threshold will be incremented
as necessary until there is either �

 percent student satisfaction or no solution
is found�and the algorithm halts� The general pseudocode of the algorithm is
summarized below�

Timetabling Algorithm


� Determine enrollment matrix
�� Initialize thresholds
�� Repeat
�� GenerateCSP�threshold�
�� For i�� to nattempts Do
�� Randomly order domains

� Heuristically order variables
�� Solve CSP
�� Schedule students
	� Add constraints by increasing thresholds
�
�Until no solution exists� or nsat� of the students are scheduled

Step �� Determine Enrollment matrix� The enrollment matrix is used
to determine which pairs of courses are taken together by students� and the
frequency of these combinations�

Step �� GenerateCSP�threshold	� This step determines which binary
constraints are included in the problem� based on the current thresholds� The
algorithm considers adding a binary constraint between two courses only if one
or more students has requested that pair of courses� The decision of whether
or not to include a binary constraint is based on how many sections each of
the courses has and on how many students have requested that pair of courses�
Initially� binary constraints are only added between courses that have a single
section and which have high demand� On the next iteration� binary constraints



are added between single section courses that have moderate demand� On the
iteration after that� those with low demand� On the iteration after that� binary
constraints are added between courses that have one or two sections and high
demand� and so on�

Step 
� For i � � to nattempts� Within this algorithm lies a loop that
randomizes the domains and solves the CSP� nattempts number of times� For our
experiments� nattempts was set at two�

Step �� Order Variables� The order of the variables refers to the order
in which the backtracking routine will assign values to the variables� A good
heuristic ordering of the variables can greatly reduce the cost of �nding a solution
����� In our work� the best ordering strategy that has been found is by domain
size� smallest to largest�

Step �� Solve CSP� This step involves most of the computational time and
could be any existing CSP algorithm� For our experiments we use a backtracking
algorithm known as forward�checking� If no solution is found �either because it
is proven that no solution exists or because some prede�ned time limit has been
exceeded�� for all of the nattempts CSPs at the current threshold settings� the
program terminates� since too many constraints have been added� �Proceeding to
add more binary constraints to an over�constrained problem could not possibly
help�� The solution found which satis�es the most students course selections is
then returned�

Step 
� Schedule the students� After the CSP has been solved� and we
are left with a master timetable� the individual students must be scheduled so
that their course requests are met� We have determined that the ordering of the
students to be scheduled can make a di�erence� We choose to order the most

di�cult to schedule students �rst� a �di�cult� student to schedule is one who
chooses many courses with few sections in them� thereby causing less �exibility
in the student�s timetable� The number of successfully scheduled students is
recorded� If this value exceeds the previous best� the solution is saved� and will
be available once the program terminates�

Step �� Adding constraints by increasing the thresholds�The thresh�
olds are manipulated in order to increase the number of constraints that are in
the CSP� and hopefully yield a better solution�

Step ��� Program halting criteria� The algorithm halts once no further
improvements can be made� The user can also specify a pre�desired student
satisfaction rate� which also results in program termination� once attained� For
our experiments� nsat was 		�� In reality� high school timetablers in large schools
are pleased to reach 	�� student satisfaction�

� Experimental Results

We gathered data from three local high schools� but we did not proceed to solve
the actual high school timetabling problems as some of the data was incom�
plete and unexplained� As well� each school had their own �exceptions� to the
scheduling process� For example� some schools have half credit and double credit



courses that last a single term rather than the full year� some courses are taken
by correspondence and not actually attended at the school� and one school has
an International Baccalaureate Program whose students are treated di�erently
in the scheduling process� The local high school timetablers solve the problem
by hand on a school by school basis� a project with requires many hours of e�ort
beginning months in advance of the new school year�

The approach we took was to create an abstract random model of the high
school timetabling problem based on courses that are all full year and one credit�
Our goal was to create a wide range of realistic data in order to examine what ef�
fect varying the parameters of our problem has on the time required to solve the
problem and the overall quality �number of students scheduled� of the solution�
A further motivation in creating a random problem generator is in identifying
�hard� timetabling problem instances� Our random problem generator is able to
create a broad range of timetabling problems� including some that are particu�
larly di�cult to solve�

We �rst identi�ed three critical parameters of the high school timetabling
problem at hand� n� the numbers of students in the school� c� the number of
courses o�ered by the school� and r� the number of rooms in the school� We
varied the number of students from ��
 to �


 by increments of ��
� and the
number of courses from�

 to �

 by �
� The number of rooms is a function of the
capacity of the school� Given the n students� who choose from the c courses� the
minimumvalue of r is the smallest number of rooms which can accommodate all
of the resulting classes� The actual value of r will include �spare� rooms� varied
at 
�
�� ����� ��
� and ���� of the minimum in our experiments�

To generate a random timetabling problem� one needs a random set of student
course selections� From these selections� the constraints can be formulated� as
described in Section �� The student course selections are modeled by four discrete
random variables� There is one random variable to model the grade that the
student is in �grade �
� ��� or ��� and one to model the number of courses selected
�between � and �
�� Students from a particular grade are not limited to choosing
courses of their grade level� The frequency of the random course selections� as
well as frequency of students choosing particular courses at a higher or lower
grade level� were estimated from data supplied by local high schools�

Some of our experimental results on our random timetablingmodel are shown
in Table �� The values shown in the table are the averages of �

 experiments at
each of the di�erent values of n� the number of students� c� the number of courses�
and r� the number of rooms� For all experiments� the timetabling algorithm was
run with nattempts equal to �
 �see Step �� Section ��� and the algorithm halted
if a prede�ned limit of �

 backtracks was reached �see Step �� or the number
of satis�ed students� nsat� was greater than or equal to 		� �see Step �
��

The results are encouraging� In the case where the percentage of spare rooms
was ���� or greater� which are the realistic cases� we found a master timetable
that satis�ed 	�� of the students in approximately two�thirds of the experi�
ments� The most di�cult to solve problems occurred when the number of courses
o�ered was high in comparison to the number of students� such as when ��
 stu�



Table �� E�ect of varying number of students� number of courses� and percentage
of spare rooms� on percentage of students satis	ed
 Each data point is the average of
��� trials on random problems
 In all trials� the algorithm was terminated when ���
student satisfaction was attained


�a
 Percentage of spare rooms is �� �b
 Percentage of spare rooms is �
��

Students
Courses ��� ���� ���� ���� ���� ����
��� ��
� ��
� ��
� ��
� ��
� ��
�
��� ��
� ��
� ��
� ��
� ��
� ��
�
��� ��
� ��
� ��
� ��
� ��
� ��
�

Students
Courses ��� ���� ���� ���� ���� ����
��� ��
� ��
� ��
� ��
� ��
� ��
�
��� ��
� ��
� ��
� ��
� ��
� ��
�
��� ��
� ��
� ��
� ��
� ��
� ��
�

dents could select from �

 di�erent courses� In this case� the number of courses
with just one section of students �less than thirty enrolled� is high� These courses
are the most di�cult to schedule� since there is the least �exibility for the stu�
dents� as they are only o�ered at one time� Because of the Estimation Rule�
these single section courses participate in the most binary subset constraints� In
general� as the number of courses �variables in the CSP� increased� the quality
of the solutions decreased�

Further results can be seen in viewing the data as the number of students in
the random model is varied� In general� as the number of students increase� the
overall quality of the solutions also increased� This trend is also a consequence of
having fewer single section courses� Having more students in each course results
in more sections being allotted� which gives greater �exibility as the students
are scheduled into courses�

Varying the number of courses and students has a direct implication on the
number of binary constraints in the problem� In order to manipulate the non�

binary constraints� we have also varied the number of rooms in the school� The
global capacity constraint says that no more than r courses can be scheduled
at one period� given that there are r rooms in the school� As the number of
rooms decreases� the quality of the solutions decrease� because in some cases no
solution exists at all� For example� when the percentage of spare rooms is 
�
��
the average success rate of the algorithm on a school with �


 students and
�

 courses is �	�
�� However� of the �

 experiments on random problems at
these settings� 

 of the experiments terminated with no initial solution found�
and in that case the recorded result was 
� student satisfaction� No statistically
signi�cant di�erence was found between the results for ���� spare rooms and
the results for ��
� and ����� This is somewhat surprising since for the smaller
problems where the minimum number of rooms is around ��� ���� spare rooms
only adds one room slack� and for the larger problems where the minimum
number of rooms is around 

� ���� spare rooms only adds two rooms slack�
Nevertheless� it was found that having this few of a number of �spare� rooms
was su�cient and greatly improved the quality of the master schedule found by
the algorithm as measured by the number of satis�ed students�



0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

600 800 1000 1200 1400 1600 1800 2000

N
um

be
r o

f c
on

si
st

en
cy

 c
he

ck
s

Number of students (n)

100 courses
150 courses
200 courses

Fig� �� E�ect of number of students on number of consistency checks
 For these exper�
iments� the parameters are c � ���� ��� and ��� courses� and r � Rmin����� rooms

Each data point represents the average of ��� trials


The experimental results are also encouraging for their low required run�time�
Each solution attempt� whether terminating with no solution� or completing with
a master timetable and individual timetables� required less than one hour on a
Sun SS���
���� The most di�cult problems� found when the number of courses
was �

 and the number of students was ��

� required approximately 	
 mil�
lion consistency checks on average to reach 		� student satisfaction� On these
problems the average run�time was ��
� seconds and the hardest problem took
��
� seconds� The experiments with poor results �less than �
� satisfaction�
actually terminated quite quickly� requiring between one and two million con�
sistency checks� The easiest problems occurred when the number of courses was
low� and the number of students was high� These problems achieved 		� student
satisfaction in roughly two hundred thousand consistency checks�less than �ve
minutes of run�time� Therefore� we conclude that some problems are naturally
easy� while in some cases good solutions can be found with more iterations of
adding binary constraints� The average number of consistency checks is displayed
in Fig� �� We found that in our experiments the number of consistency checks
was an extremely good predictor of run�time and that a plot of average run�time
gives the same qualitative shape as in Fig� �� Thus� for each value c� number of
courses� there is an associated number of students n where a peak in problem
di�culty is observed�



� Conclusions

We have proposed a constraint satisfaction model for a local high school time�
tabling problem� The problem we have studied involves an assignment of eight
weekly periods to the sections of school courses� Each of the students provides a
list of course selections which are to be satis�ed� The sections of the course are
scheduled such that there is at least one section for each course available to the
student� In the case where there was a small number of spare rooms� which is
the realistic case� we found a master timetable that satis�ed 	�� of the students
in two�thirds of the experiments on a random testbed of timetabling problems�

The innovation in our solution method is in the heuristic modeling of the
problem�which prunes away large parts of the search space�and in the process
of iteratively adding constraints to the network� Iterative solutions may be poor
at �rst but will improve to some upper limit� until no solution can be found�
The main advantage of our iterative method is there will always be a timetable
output to the scheduler� unless the school has too few rooms to accommodate
all of the courses� Because of the iterative constraint addition� a �best� solution
always exists at any point in the search� The students are individually scheduled
using a simple greedy algorithm once the master timetable is completed�

Finally� we have proposed a random model of the school timetabling prob�
lem� By identifying the three critical parameters of number students� number of
classrooms and number of courses� we have created a diverse testbed of realistic
timetabling problems� Furthermore� we have identi�ed some particularly di��
cult to solve timetabling instances� These particular instances can be recreated�
by giving the generator the same parameters and same random seed� so that
comparisons can be made with other� improved timetabling algorithms�

References

�
 J
 Aubin and J
A
 Ferland
 A large scale timetabling problem
 Computers �

Operations Research� ��������� ����

�
 H
 W
 Chan� C
 K
 Lau� and J
 Sheung
 Practical school timetabling� A hybrid

approach using solution synthesis and iterative repair
 In Proceedings of the Second
International Conference on the Practice and Theory of Automated Timetabling�
pages �������� Toronto� Canada� ����


�
 R
 Feldman and M
 C
 Golumbic
 Constraint satis	ability algorithms for interactive
student scheduling
 In Proceedings of the Eleventh International Joint Conference

on Arti�cial Intelligence� pages ���������� Detroit� Mich
� ����

�
 J
 A
 Ferland and C
 Fleurent
 SAPHIR� A decision support system for course

scheduling
 INTERFACES� ����������� ����

�
 M
 Henz and J
 Wurtz
 Using Oz for college time tabling
 In Proceedings of the First

International Conference on the Practice and Theory of Automated Timetabling�
pages �������� ����
 Available as� Springer Lecture Notes in Computer Science
����


�
 A
 Hertz
 Tabu search for large scale timetabling problems
 European Journal of

Operational Research� ��������� ����




�
 G
 Lajos
 Complete university modular timetabling using constraint logic pro�
gramming
 In Proceedings of the First International Conference on the Practice

and Theory of Automated Timetabling� pages �������� ����
 Available as� Springer
Lecture Notes in Computer Science ����


�
 A
 Meisels� J
 El�Saana� and E
 Gudes
 Comments on CSP algorithms applied to
timetabling
 Technical report� Department of Mathematics and Computer Science�
Ben�Gurion University� ����


�
 A
 Schaerf
 A survey of automated timetabling
 Technical Report Report CS�
R����� Centrum voor Wiskund en In	rmatica �CWI
� Amsterdam� The Nether�
lands� ����
 To appear in Arti�cial Intelligence Review


��
 G
 Schmidt and T
 Strohlein
 Timetable construction � an annotated bibliography

The Computer Journal� ����������� ����


��
 E
 Tsang
 Foundations of Constraint Satisfaction
 Academic Press� ����

��
 P
 van Hentenryck
 Constraint Satisfaction in Logic Programming
 MIT Press�

Cambridge� Massachusetts� ����

��
 M
 Yoshikawa� K
 Kaneko� Y
 Nomura� and M
 Watanabe
 A constraint�based

approach to high�school timetabling problems� A case study
 In Proceedings of the

Twelfth National Conference on AI� pages ���������� Seattle� Wash
� ����



