On the Inherent Level of Local Consistency in Constraint Networks

Peter van Beek
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
vanbeek@cs.ualberta.ca

Abstract

We present a new property called constraint loose-
ness and show how it can be used to estimate the
level of local consistency of a binary constraint net-
work. Specifically, we present a relationship between
the looseness of the constraints, the size of the do-
mains, and the inherent level of local consistency of a
constraint network. The results we present are useful
in two ways. First, a common method for finding solu-
tions to a constraint network is to first preprocess the
network by enforcing local consistency conditions, and
then perform a backtracking search. Here, our results
can be used in deciding which low-order local consis-
tency techniques will not change a given constraint
network and thus are not useful for preprocessing the
network. Second, much previous work has identified
conditions for when a certain level of local consistency
is sufficient to guarantee a network is backtrack-free.
Here, our results can be used in deciding which local
consistency conditions, if any, still need to be enforced
to achieve the specified level of local consistency. As
well, we use the looseness property to develop an al-
gorithm that can sometimes find an ordering of the
variables such that a network is backtrack-free.

Introduction

Constraint networks are a simple representation and
reasoning framework. A problem is represented as a
set of variables, a domain of values for each variable,
and a set of constraints between the variables. A cen-
tral reasoning task is then to find an instantiation of
the variables that satisfies the constraints. Examples
of tasks that can be formulated as constraint networks
include graph coloring (Montanari 1974), scene label-
ing (Waltz 1975), natural language parsing (Maruyama
1990), temporal reasoning (Allen 1983), and answering
conjunctive queries in relational databases.

In general, what makes constraint networks hard to
solve is that they can contain many local inconsisten-
cies. A local inconsistency is a consistent instantiation
of k — 1 of the variables that cannot be extended to a
kth variable and so cannot be part of any global solu-
tion. If we are using a backtracking search to find a
solution, such an inconsistency can lead to a dead end

in the search. This insight has led to the definition of
conditions that characterize the level of local consis-
tency of a network (Freuder 1985; Mackworth 1977,
Montanari 1974) and to the development of algo-
rithms for enforcing local consistency conditions by
removing local inconsistencies (e.g., (Cooper 1989;
Dechter & Pearl 1988; Freuder 1978; Mackworth 1977;
Montanari 1974; Waltz 1975)). However, the defini-
tions, or necessary and sufficient conditions, for all
but low-order local consistency are expensive to ver-
ify or enforce as the optimal algorithms are O(n*),
where k is the level of local consistency (Cooper 1989;
Seidel 1983).

In this paper, we present a simple, sufficient con-
dition, based on the size of the domains of the vari-
ables and on a new property called constraint loose-
ness, that gives a lower bound on the the inherent
level of local consistency of a binary constraint net-
work. The bound is tight for some constraint networks
but not for others. Specifically, in any constraint net-
work where the domains are of size d or less, and the
constraints have looseness of m or greater, the net-
work is strongly ([d/(d — m)])-consistent!. Informally,
a constraint network is strongly k-consistent if a solu-
tion can always be found for any subnetwork of size
k in a backtrack-free manner. The parameter m can
be viewed as a lower bound on the number of instan-
tiations of a variable that satisfy the constraints. We
also use the looseness property to develop an algorithm
that can sometimes find an ordering of the variables
such that all solutions of a network can be found in a
backtrack-free manner.

The condition we present is useful in two ways. First,
a common method for finding solutions to a constraint
network 1s to first preprocess the network by enforcing
local consistency conditions, and then perform a back-
tracking search. The preprocessing step can reduce the
number of dead ends reached by the backtracking al-
gorithm in the search for a solution. With a similar
aim, local consistency techniques can be interleaved
with backtracking search. The effectiveness of using

1127, the ceiling of «, is the smallest integer greater than
or equal to .

local consistency techniques in these two ways has
been studied empirically (e.g., (Dechter & Meiri 1989;
Gaschnig 1978; Ginsberg et al. 1990; Haralick & Elliott
1980; Prosser 1993)). In this setting, our results can
be used in deciding which low-order local consistency
techniques will not change the network and thus are
not useful for processing a given constraint network.
For example, we use our results to show that the n-
queens problem, a widely used test-bed for comparing
backtracking algorithms, has a high level of inherent
local consistency. As a consequence, it is generally
fruitless to preprocess such a network.

Second, much previous work has identified condi-
tions for when a certain level of local consistency is
sufficient to guarantee a solution can be found in a
backtrack-free manner (e.g., (Dechter 1992; Dechter
& Pearl 1988; Freuder 1982; 1985; Montanari 1974;
van Beek 1992)). These conditions are important in
applications where constraint networks are used for
knowledge base maintenance and there will be many
queries against the knowledge base. Here, the cost of
preprocessing will be amortized over the many queries.
In this setting, our results can be used in deciding
which local consistency conditions, if any, still need
to be enforced to achieve the specified level of local
consistency.

Background

We begin with some needed definitions.

Definition 1 (binary constraint networks; Montanari
(1974)) A binary constraint network consists of a set
X of n variables {xy1, s, ..., 2.}, a domain D; of pos-
sible values for each variable, and a set of binary con-
straints between variables. A binary constraint or re-
lation, R;;, between vartables x; and x;, ts any subset
of the product of their domains (i.e., R;; C D; x D;).
An instantiation of the varitables in X s an n-tuple
(X1, Xa,...,X,), representing an assignment of X; €
D; to x;. A consistent instantiation of a network is an
wnstantiation of the variables such that the constraints
between variables are satisfied. A consistent instantia-
tion s also called a solution.

Mackworth (1977; 1987) defines three properties of
networks that characterize local consistency of net-
works: node, are, and path consistency. Freuder (1978)
generalizes this to k-consistency.

Definition 2 (strong k-consistency; Freuder (1978;
1982)) A network is k-consistent if and only if given
any instantiation of any k — 1 variables satisfying all
the direct relations among those variables, there exists
an wstantiation of any kth vartable such that the k val-
ues taken together satisfy all the relations among the
k variables. A network is strongly k-consistent if and
only of 1t 1s j-consistent for all j < k.

Node, arc, and path consistency correspond to
strongly one-, two-, and three-consistent, respectively.

A strongly n-consistent network is called globally con-
sistent. Globally consistent networks have the property
that any consistent instantiation of a subset of the vari-
ables can be extended to a consistent instantiation of
all the variables without backtracking (Dechter 1992).

Following Montanari (1974), a binary relation R;;
between variables z; and x; is represented as a (0,1)-
matrix with |D;| rows and |D;| columns by imposing
an ordering on the domains of the variables. A zero
entry at row a, column b means that the pair consist-
ing of the ath element of D; and the bth element of D;
1s not permitted; a one entry means the pair is permit-
ted. A concept central to this paper is the looseness of
constraints.

Definition 3 (m-loose) A binary constraint is m-
loose if every row and every column of the (0,1)-matriz
that defines the constraint has at least m ones, where
0 <m < |D|—1. A binary constraint network is m-
loose if all its binary constraints are m-loose.

Q Q

Q
(a) (b)

Figure 1: (a) not 3-consistent; (b) not 4-consistent

Example 1. We illustrate some of the definitions
using the well-known n-queens problem. The prob-
lem is to find all ways to place n-queens on an n X n
chess board, one queen per column, so that each pair of
queens does not attack each other. One possible con-
straint network formulation of the problem is as fol-
lows: there is a variable for each column of the chess
board, x1,..., x,; the domains of the variables are the
possible row positions, D; = {1,...,n}; and the bi-
nary constraints are that two queens should not attack
each other. The (0,1)-matrix representation of the con-
straints between two variables z; and z; is given by,

1 ifa#bA|a—b]#|i—]
Rijap = 0

otherwise,
fora,b=1,...,n.

For example, consider the constraint network for the
4-queens problem. The constraint Ri5 between x; and
x5 18 given by,

0011
0001
Rz = 1000
1100

Entry Ris a3 is 0, which states that putting a queen
in column 1, row 4 and a queen in column 2, row 3

is not allowed by the constraint since the queens at-
tack each other. It can be seen that the network for
the 4-queens problem is 2-consistent since, given that
we have placed a single queen on the board, we can
always place a second queen such that the queens do
not attack each other. However, the network is not
3-consistent. For example, given the consistent place-
ment of two queens shown in Figure la, there is no way
to place a queen in the third column that is consistent
with the previously placed queens. Similarly the net-
work is not 4-consistent (see Figure 1b). Finally, every
row and every column of the (0,1)-matrices that define
the constraints has at least 1 one. Hence, the network
is 1-loose.

A Sufficient Condition for Local
Consistency

In this section, we present a simple condition that es-
timates the inherent level of strong k-consistency of a
binary constraint network. The condition is a sufficient
but not necessary condition for local consistency.

It is known that some classes of constraint net-
works already possess a certain level of local consis-
tency and therefore algorithms that enforce this level
of local consistency will have no effect on these net-
works. For example, Nadel (1989) observes that an arc
consistency algorithm never changes a constraint net-
work formulation of the n-queens problem, for n > 3.
Dechter (1992) observes that constraint networks that
arise from the graph k-coloring problem are inherently
strongly k-consistent. The following theorem charac-
terizes what it is about the structure of the constraints
in these networks that makes these statements true.

Theorem 1 If a binary constraint network, R, is m-
loose and all domains are of size |D| or less, then the

network s strongly ([lDllD_lmw) -consistent.

Proof. We show that the network is k-consistent
for all & < [|D|/(]D]—m)]. Suppose that variables
x1,...,Tp_1 can be consistently instantiated with val-
ues Xi,...,X;_1. To show that the network is k-
consistent, we must show that there exists at least one
instantiation Xj of variable z; that satisfies all the
constraints,

(Xi, Xi) € Rup i=1,..., k=1

simultaneously. We do so as follows. The instantia-
tions Xy,..., Xj_1 restrict the allowed instantiations
of . Let v; be the (0,1)-vector given by row X; of the
(0,1)-matrix R, ¢ = 1,...,k — 1. Let pos(v;) be the
positions of the zeros in vector v;. The zero entries in
the v; are the forbidden instantiations of x, given the
instantiations Xi,..., X;_1. No consistent instantia-
tion of #, exists if and only if pos(vy) U -U pos(vg_1)
= {1,...,|D|}. Now, the key to the proof is that all
the v; contain at least m ones. In other words, each v;

contains at most |D| — m zeros. Thus, if
(k = 1)(|D] —m) <|D],

it cannot be the case that pos(v1) U---U pos(vr—1)
={1,...,|D|}. (To see that this is true, consider the
“worst case” where the positions of the zeros in any
vector do not overlap with those of any other vector.
That is, pos(v;) N pos(v;) = 0, ¢ # j.) Thus, if

D]
k< |————
- [lDl —m|’
all the constraints must have a non-zero entry in com-
mon and there exists at least one instantiation of zj

that satisfies all the constraints simultaneously. Hence,
the network is k-consistent. O

Theorem 1 always specifies a level of local consis-
tency that is less than or equal to the actual level of in-
herent local consistency of a constraint network. That
is, the theorem provides a lower bound. Graph col-
oring problems provide examples where the theorem
1s exact, whereas n-queens problems provide examples
where the theorem underestimates the true level of lo-
cal consistency.

Example 2. Consider again the well-known n-
queens problem discussed in Example 1. The problem
is of historical interest but also of theoretical interest
due to its importance as a test problem in empirical
evaluations of backtracking algorithms and heuristic
repair schemes for finding solutions to constraint net-
works (e.g., (Gaschnig 1978; Haralick & Elliott 1980;
Minton et al. 1990; Nadel 1989)). For n-queens net-
works, each row and column of the constraints has
|D|—3 < m < |D|—1 ones, where |D| = n. Hence, The-
orem 1 predicts that n-queens networks are inherently
strongly ([n/3])-consistent. Thus, an n-queens con-
straint network is inherently arc-consistent for n > 4,
inherently path consistent for n > 7, and so on, and
we can predict where it is fruitless to apply a low or-
der consistency algorithm in an attempt to simplify
the network (see Table 1). The actual level of inherent
consistency is [n/2] for n > 7. Thus, for the n-queens
problem, the theorem underestimates the true level of
local consistency.

Table 1: Predicted ([n/3]) and actual (|n/2], for
n > 7) level of strong local consistency for n-queens
networks

n 4 5) 6 7 8 9110 | 11 | 12
pred. 2 2 2 3 3 3 4 4 4
actual 2 2 2 3 4 4 5 5 6

The reason Theorem 1 is not exact in general and,
in particular, for n-queens networks, is that the proof
of the theorem considers the “worst case” where the
positions of the zeros in any row of the constraints

Rix,i=1,... k=1, do not overlap with those of any
other row. For n-queens networks, the positions of
some of the zeros do overlap. However, given only the
looseness of the constraints and the size of the domains,
Theorem 1 gives as strong an estimation of the inherent
level of local consistency as possible as examples can
be given where the theorem is exact.

Example 3. Graph k-colorability provides exam-
ples where Theorem 1 is exact in its estimation of the
inherent level of strong k-consistency. The constraint
network formulation of graph coloring is straightfor-
ward: there is a variable for each node in the graph;
the domains of the variables are the possible colors,
D = {l,...,k}; and the binary constraints are that
two adjacent nodes must be assigned different colors.
As Dechter (1992) states, graph coloring networks are
inherently strongly k-consistent but are not guaranteed
to be strongly (k+1)-consistent. Each row and column
of the constraints has m = |D|—1 ones, where |D| = k.
Hence, Theorem 1 predicts that graph k-colorability
networks are inherently strongly k-consistent.

Example 4. We can also construct examples, for all
m < |D| — 1, where Theorem 1 is exact. For example,
consider the network where, n = 5, the domains are
D = {1,...,5}, and the binary constraints are given

by,

e ==
—_—_0 O
[e R e N
OO ==
O == =

and Rj; = RZ»T]», for j < i. The network is 3-loose and
therefore strongly 3-consistent by Theorem 1. This is

exact, as the network is not 4-consistent.

We conclude this section with some discussion on
what Theorem 1 contributes to our intuitions about
hard classes of problems (in the spirit of, for exam-
ple, (Cheeseman, Kanefsky, & Taylor 1991; Williams
& Hogg 1992)). Hard constraint networks are in-
stances which give rise to search spaces with many
dead ends. The hardest networks are those where
many dead ends occur deep in the search tree. Dead
ends, of course, correspond to partial solutions that
cannot be extended to full solutions. Thus, networks
where the constraints are loose are good candidates to
be hard problems since loose networks have a high level
of inherent strong consistency and strong k-consistency
means that all partial solutions are of at least size k.

Computational experiments we performed on ran-
dom problems provide evidence that loose networks
can be hard. Random problems were generated with
n =50, |D| =5,...10, and p,¢ = 1,...,100, where
p/100 is the probability that there is a binary con-
straint between two variables, and ¢/100 is the proba-
bility that a pair in the Cartesian product of the do-
mains is in the constraint. The time to find one solu-
tion was measured. In the experiments we discovered

that, given that the number of variables and the do-
main size were fixed, the hardest problems were found
when the constraints were as loose as possible without
degenerating into the trivial constraint where all tu-
ples are allowed. That networks with loose constraints
would turn out to be the hardest of these random prob-
lems is somewhat counter-intuitive, as individually the
constraints are easy to satisfy. These experimental re-
sults run counter to Tsang’s (1993, p.50) intuition that
a single solution of a loosely constrained problem “can
easily be found by simple backtracking, hence such
problems are easy,” and that tightly constrained prob-
lems are “harder compared with loose problems.” As
well, these hard loosely-constrained problems are not
amenable to preprocessing by low-order local consis-
tency algorithms, since, as Theorem 1 states, they pos-
sess a high level of inherent local consistency. This runs
counter to Williams and Hogg’s (1992, p.476) specu-
lation that preprocessing will have the most dramatic
effect in the region where the problems are the hardest.

Backtrack-free Networks

Given an ordering of the variables in a constraint
network, backtracking search works by successively
instantiating the next variable in the ordering, and
backtracking to try different instantiations for pre-
vious variables when no consistent instantiation can
be given to the current variable. Previous work has
identified conditions for when a certain level of local
consistency is sufficient to ensure a solution can be
found in a backtrack-free manner (e.g., (Dechter 1992;
Dechter & Pearl 1988; Freuder 1982; 1985; Montanari
1974; van Beek 1992)). Sometimes the level of inher-
ent strong k-consistency guaranteed by Theorem 1 is
sufficient, in conjunction with these previously derived
conditions, to guarantee that the network is globally
consistent and therefore a solution can be found in a
backtrack-free manner. Otherwise, the estimate pro-
vided by the theorem gives a starting point for apply-
ing local consistency algorithms.

In this section, we use constraint looseness to iden-
tify new classes of backtrack-free networks. First, we
give a condition for a network to be inherently glob-
ally consistent. Second, we give a condition, based on
a directional version of the looseness property, for an
ordering to be backtrack-free. We also give an efficient
algorithm for finding an ordering that satisfies the con-
dition, should it exist.

We begin with a corollary of Theorem 1.

Corollary 1 If a binary constraint network, R, ts m-
loose, all domains are of size |D| or less, and m >
Z—j|D|, the network is globally consistent.

Proof. By Theorem 1, the network is strongly n-
consistent if [|D|/(|D| —m)] > n. This is equivalent
to, |D|/(|D| = m) > n—1 and rearranging for m gives
the result. O

As one example, consider a constraint network with
n = b variables that has domains of at most size
|D| = 10 and constraints that are 8-loose. The net-
work is globally consistent and, as a consequence, a
solution can be found in a backtrack-free manner. An-
other example is networks with n = b, domain sizes of
|D| =5, and constraints that are 4-loose.

Global consistency implies that all orderings of the
variables are backtrack-free orderings. Sometimes,
however, there exists a backtrack-free ordering when
only much weaker local consistency conditions hold.
Freuder (1982) identifies a relationship between the
width of an ordering of the variables and the level
of local consistency sufficient to ensure an ordering is
backtrack-free.

Definition 4 (width; Freuder (1982)) Let o = (1,
..y Tn) be an ordering of the variables in a binary
constraint network. The width of a variable, x;, is the
number of binary constraints between x; and vartables
previous to x; in the ordering. The width of an order-
ing is the mazimum width of all variables.

Theorem 2 (Freuder (1982)) An ordering of the
variables in a binary constraint network ts backtrack-
free of the level of strong k-consistency of the network
1s greater than the width of the ordering.

Dechter and Pearl (1988) define a weaker version
of k-consistency, called directional k-consistency, and
show that Theorem 2 still holds. Both versions of k-
consistency are, in general, expensive to verify, how-
ever. Dechter and Pearl also give an algorithm, called
adaptive consistency, that does not enforce a uniform
level of local consistency throughout the network but,
rather, enforces the needed level of local consistency as
determined on a variable by variable basis. We adapt
these two insights, directionality and not requiring uni-
form levels of local consistency, to a condition for an
ordering to be backtrack-free.

Definition 5 (directionally m-loose) A binary con-
straint is directionally m-loose if every row of the
(0,1)-matriz that defines the constraint has at least m
ones, where 0 < m < |D|— 1.

Theorem 3 An ordering of the variables, o = (z1,
.., &), in a binary constraint network, R, is back-

track-free if [IDll?lm'-‘ > wj, 1 < j < n, where w;
7

15 the width of variable x; in the ordering, and m; s
the minimum of the directional looseness of the (non-
trivial) constraints Ri;, 1 <i < j.

Proof. Similar to the proof of Theorem 1. O

A straightforward algorithm for finding such a back-
track-free ordering of the variables, should it exist, is
given below.

FINDORDER(R, n)

1. IT—{1,2,...,n}

2. for p — n downto 1 do

3. find a j € I such that, for each R;;, ¢ € I and
i# j, [ID|/(|D]| — my;)] > wj, where w; is the
number of constraints R;;, 7 € [and ¢ # j, and
m;; 1s the directional m-looseness of R;;
(if no such j exists, report failure and halt)

4. put variable z; at position p in the ordering

5. I—1-1j}

Example 5. Consider the network in Figure 2.
The network is 2-consistent, but not 3-consistent and
not 4-consistent. Freuder (1982), in connection with
Theorem 2, gives an algorithm for finding an ordering
which has the minimum width of all orderings of the
network. Assuming that the algorithms break ties by
choosing the variable with the lowest index, the mini-
mal width ordering found is (@5, 4, 23, #2, #1), which
has width 3. Thus, the condition of Theorem 2 does
not hold. In fact, this ordering i1s not backtrack-free.
For example, the partial solution 5 — 1, 24 — 3, and
z3 — b 1s a dead end, as there is no instantiation for
zy. The ordering found by procedure FINDORDER is
(24,23, 22,21, 25), which has width 4. It can be ver-
ified that the condition of Theorem 3 holds. For ex-
ample, wq, the width at variable xq, 1s 2, and the con-

straints R41 and Rz are both 3-loose, so [DI 1 =

[D]—m1
3 > wy = 2. Therefore all solutions of the network can
be found with no backtracking along this ordering.

00111
10011
Rij=|11001 |, i=1,2j=3,4
11100
11110
1111
0111
1011 |, i=1,...,4
1101
1110
00110
01101
Rsa= | 11011
10110
01100

R]'Z'IRZ»T]»,j<i

Figure 2: Constraint network for which a backtrack-
free ordering exists

Conclusions and Future Work

Local consistency has proven to be an important con-
cept in the theory and practice of constraint networks.
However, the definitions, or necessary and sufficient

conditions, for all but low-order local consistency are
expensive to verify or enforce. We presented a suffi-
cient condition for local consistency, based on a new
property called constraint looseness, that is straight-
forward and inexpensive to determine. The condition
can be used to estimate the level of strong local con-
sistency of a network. This in turn can be used in
(i) deciding whether it would be useful to preprocess
the network before a backtracking search, and (ii) de-
ciding which local consistency conditions, if any, still
need to be enforced if we want to ensure that a solution
can be found in a backtrack-free manner. Finally, the
looseness property was used to identify new classes of
“easy” constraint networks.

A property of constraints proposed by Nudel (1983)
which 1s related to constraint looseness counts the
number of ones in the entire constraint. Nudel uses
this count, called a compatibility count, in an effective
variable ordering heuristic for backtracking search. We
plan to examine whether m-looseness can be used to
develop even more effective domain and variable or-
dering heuristics. We also plan to examine how the
looseness property can be used to improve the aver-
age case efficiency of local consistency algorithms. The
idea is to predict whether small subnetworks already
possess some specified level of local consistency, thus
potentially avoiding the computations needed to en-
force local consistency on those parts of the network.

Acknowledgements. Financial assistance was re-
ceived from the Natural Sciences and Engineering Re-
search Council of Canada.

References

Allen, J. F. 1983. Maintaining knowledge about tem-
poral intervals. Comm. ACM 26:832-843.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. M.
1991. Where the really hard problems are. In Proceed-
wngs of the Twelfth International Joint Conference on
Artificial Intelligence, 331-337.

Cooper, M. C. 1989. An optimal k-consistency algo-
rithm. Artificial Intelligence 41:89-95.

Dechter, R., and Meiri, I. 1989. Experimental evalua-
tion of preprocessing techniques in constraint satisfac-
tion problems. In Proc. of the Eleventh International
Joint Conference on Artificial Intelligence, 271-277.
Dechter, R., and Pearl, J. 1988. Network-based
heuristics for constraint satisfaction problems. Ar-
tificial Intelligence 34:1-38.

Dechter, R. 1992. From local to global consistency.
Artificial Intelligence 55:87-107.

Freuder, E. C. 1978. Synthesizing constraint expres-
sions. Comm. ACM 21:958-966.

Freuder, E. C. 1982. A sufficient condition for
backtrack-free search. J. ACM 29:24-32.

Freuder, E. C. 1985. A sufficient condition for
backtrack-bounded search. J. ACM 32:755-761.

Gaschnig, J. 1978. Experimental case studies of back-
track vs. waltz-type vs. new algorithms for satisficing
assignment problems. In Proceedings of the Second
Canadian Conference on Artificial Intelligence, 268—
277.

Ginsberg, M. L.; Frank, M.; Halpin, M. P.; and Tor-
rance, M. C. 1990. Search lessons learned from cross-
word puzzles. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 210-215.

Haralick, R. M., and Elliott, G. L. 1980. Increasing
tree search efficiency for constraint satisfaction prob-
lems. Artificial Intelligence 14:263-313.

Mackworth, A. K. 1977. Consistency in networks of
relations. Artificial Intelligence 8:99-118.

Mackworth, A. K. 1987. Constraint satisfaction. In
Shapiro, S. C.| ed., Encyclopedia of Artificial Intelli-
gence. John Wiley & Sons.

Maruyama, H. 1990. Structural disambiguation with
constraint propagation. In Proceedings of the 28th
Conference of the Association for Computational Lin-
guistics, 31-38.

Minton, S.; Johnston, M. D.; Philips, A. B.; and
Laird, P. 1990. Solving large-scale constraint sat-
isfaction and scheduling problems using a heuristic
repair method. In Proceedings of the Eighth National
Conference on Artificial Intelligence, 17-24.

Montanari, U. 1974. Networks of constraints: Fun-
damental properties and applications to picture pro-
cessing. Inform. Seci. 7:95-132.

Nadel, B. A. 1989. Constraint satisfaction algorithms.
Computational Intelligence 5:188-224.

Nudel, B. 1983. Consistent-labeling problems and
their algorithms: Expected-complexities and theory-
based heuristics. Artificial Intelligence 21:135-178.

Prosser, P. 1993. Hybrid algorithms for the con-
straint satisfaction problem. Computational Intelli-

gence 9:268-299.

Seidel, R. 1983. On the complexity of achieving k-
consistency. Department of Computer Science Tech-
nical Report 83-4, University of British Columbia.
Cited in: A. K. Mackworth 1987.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.

van Beek, P. 1992. On the minimality and decompos-
ability of constraint networks. In Proceedings of the
Tenth National Conference on Artificial Intelligence,
447-452.

Waltz, D. 1975. Understanding line drawings of
scenes with shadows. In Winston, P. H., ed., The
Psychology of Computer Vision. McGraw-Hill. 19—
91.

Williams, C. P., and Hogg, T. 1992. Using deep struc-
ture to locate hard problems. In Proceedings of the
Tenth National Conference on Artificial Intelligence,
472-477.

