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Abstract

We present a new property called constraint loose�

ness and show how it can be used to estimate the
level of local consistency of a binary constraint net�
work� Speci�cally� we present a relationship between
the looseness of the constraints� the size of the do�
mains� and the inherent level of local consistency of a
constraint network� The results we present are useful
in two ways� First� a common method for �nding solu�
tions to a constraint network is to �rst preprocess the
network by enforcing local consistency conditions� and
then perform a backtracking search� Here� our results
can be used in deciding which low�order local consis�
tency techniques will not change a given constraint
network and thus are not useful for preprocessing the
network� Second� much previous work has identi�ed
conditions for when a certain level of local consistency
is su�cient to guarantee a network is backtrack�free�
Here� our results can be used in deciding which local
consistency conditions� if any� still need to be enforced
to achieve the speci�ed level of local consistency� As
well� we use the looseness property to develop an al�
gorithm that can sometimes �nd an ordering of the
variables such that a network is backtrack�free�

Introduction

Constraint networks are a simple representation and
reasoning framework� A problem is represented as a
set of variables� a domain of values for each variable�
and a set of constraints between the variables� A cen�
tral reasoning task is then to �nd an instantiation of
the variables that satis�es the constraints� Examples
of tasks that can be formulated as constraint networks
include graph coloring �Montanari �	
��� scene label�
ing �Waltz �	

�� natural language parsing �Maruyama
�		��� temporal reasoning �Allen �	���� and answering
conjunctive queries in relational databases�
In general� what makes constraint networks hard to

solve is that they can contain many local inconsisten�
cies� A local inconsistency is a consistent instantiation
of k � � of the variables that cannot be extended to a
kth variable and so cannot be part of any global solu�
tion� If we are using a backtracking search to �nd a
solution� such an inconsistency can lead to a dead end

in the search� This insight has led to the de�nition of
conditions that characterize the level of local consis�
tency of a network �Freuder �	�
� Mackworth �	

�
Montanari �	
�� and to the development of algo�
rithms for enforcing local consistency conditions by
removing local inconsistencies �e�g�� �Cooper �	�	�
Dechter � Pearl �	��� Freuder �	
�� Mackworth �	

�
Montanari �	
�� Waltz �	

��� However� the de�ni�
tions� or necessary and su�cient conditions� for all
but low�order local consistency are expensive to ver�
ify or enforce as the optimal algorithms are O�nk��
where k is the level of local consistency �Cooper �	�	�
Seidel �	����
In this paper� we present a simple� su�cient con�

dition� based on the size of the domains of the vari�
ables and on a new property called constraint loose�
ness� that gives a lower bound on the the inherent
level of local consistency of a binary constraint net�
work� The bound is tight for some constraint networks
but not for others� Speci�cally� in any constraint net�
work where the domains are of size d or less� and the
constraints have looseness of m or greater� the net�
work is strongly �dd��d�m�e��consistent�� Informally�
a constraint network is strongly k�consistent if a solu�
tion can always be found for any subnetwork of size
k in a backtrack�free manner� The parameter m can
be viewed as a lower bound on the number of instan�
tiations of a variable that satisfy the constraints� We
also use the looseness property to develop an algorithm
that can sometimes �nd an ordering of the variables
such that all solutions of a network can be found in a
backtrack�free manner�
The condition we present is useful in two ways� First�

a common method for �nding solutions to a constraint
network is to �rst preprocess the network by enforcing
local consistency conditions� and then perform a back�
tracking search� The preprocessing step can reduce the
number of dead ends reached by the backtracking al�
gorithm in the search for a solution� With a similar
aim� local consistency techniques can be interleaved
with backtracking search� The e�ectiveness of using

�dxe� the ceiling of x� is the smallest integer greater than
or equal to x�



local consistency techniques in these two ways has
been studied empirically �e�g�� �Dechter � Meiri �	�	�
Gaschnig �	
�� Ginsberg et al� �		�� Haralick � Elliott
�	��� Prosser �		���� In this setting� our results can
be used in deciding which low�order local consistency
techniques will not change the network and thus are
not useful for processing a given constraint network�
For example� we use our results to show that the n�
queens problem� a widely used test�bed for comparing
backtracking algorithms� has a high level of inherent
local consistency� As a consequence� it is generally
fruitless to preprocess such a network�
Second� much previous work has identi�ed condi�

tions for when a certain level of local consistency is
su�cient to guarantee a solution can be found in a
backtrack�free manner �e�g�� �Dechter �		�� Dechter
� Pearl �	��� Freuder �	��� �	�
� Montanari �	
��
van Beek �		���� These conditions are important in
applications where constraint networks are used for
knowledge base maintenance and there will be many
queries against the knowledge base� Here� the cost of
preprocessing will be amortized over the many queries�
In this setting� our results can be used in deciding
which local consistency conditions� if any� still need
to be enforced to achieve the speci�ed level of local
consistency�

Background
We begin with some needed de�nitions�

De�nition � �binary constraint networks� Montanari
��	
��� A binary constraint network consists of a set
X of n variables fx�� x�� � � � � xng� a domain Di of pos�
sible values for each variable� and a set of binary con�
straints between variables� A binary constraint or re�
lation� Rij� between variables xi and xj� is any subset
of the product of their domains �i�e�� Rij � Di �Dj��
An instantiation of the variables in X is an n�tuple
�X�� X�� � � � � Xn�� representing an assignment of Xi �
Di to xi� A consistent instantiation of a network is an
instantiation of the variables such that the constraints
between variables are satis�ed� A consistent instantia�
tion is also called a solution�

Mackworth ��	

� �	�
� de�nes three properties of
networks that characterize local consistency of net�
works� node� arc� and path consistency� Freuder ��	
��
generalizes this to k�consistency�

De�nition � �strong k�consistency� Freuder ��	
��
�	���� A network is k�consistent if and only if given
any instantiation of any k � � variables satisfying all
the direct relations among those variables� there exists
an instantiation of any kth variable such that the k val�
ues taken together satisfy all the relations among the
k variables� A network is strongly k�consistent if and
only if it is j�consistent for all j � k�

Node� arc� and path consistency correspond to
strongly one�� two�� and three�consistent� respectively�

A strongly n�consistent network is called globally con�
sistent� Globally consistent networks have the property
that any consistent instantiation of a subset of the vari�
ables can be extended to a consistent instantiation of
all the variables without backtracking �Dechter �		���
Following Montanari ��	
��� a binary relation Rij

between variables xi and xj is represented as a ������
matrix with jDij rows and jDjj columns by imposing
an ordering on the domains of the variables� A zero
entry at row a� column b means that the pair consist�
ing of the ath element of Di and the bth element of Dj

is not permitted� a one entry means the pair is permit�
ted� A concept central to this paper is the looseness of
constraints�

De�nition � �m�loose� A binary constraint is m�
loose if every row and every column of the ������matrix
that de�nes the constraint has at least m ones� where
� � m � jDj � �� A binary constraint network is m�
loose if all its binary constraints are m�loose�

Q

Q
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Q

Q

Q

�b�

Figure �� �a� not ��consistent� �b� not ��consistent

Example �� We illustrate some of the de�nitions
using the well�known n�queens problem� The prob�
lem is to �nd all ways to place n�queens on an n � n
chess board� one queen per column� so that each pair of
queens does not attack each other� One possible con�
straint network formulation of the problem is as fol�
lows� there is a variable for each column of the chess
board� x�� � � � � xn� the domains of the variables are the
possible row positions� Di � f�� � � � � ng� and the bi�
nary constraints are that two queens should not attack
each other� The ������matrix representation of the con�
straints between two variables xi and xj is given by�

Rij�ab �

�
� if a �� b � ja� bj �� ji� jj

� otherwise�

for a� b � �� � � � � n�
For example� consider the constraint network for the

��queens problem� The constraint R�� between x� and
x� is given by�

R�� �

�
��

� � � �
� � � �
� � � �
� � � �

�
���

Entry R����� is �� which states that putting a queen
in column �� row � and a queen in column �� row �



is not allowed by the constraint since the queens at�
tack each other� It can be seen that the network for
the ��queens problem is ��consistent since� given that
we have placed a single queen on the board� we can
always place a second queen such that the queens do
not attack each other� However� the network is not
��consistent� For example� given the consistent place�
ment of two queens shown in Figure �a� there is no way
to place a queen in the third column that is consistent
with the previously placed queens� Similarly the net�
work is not ��consistent �see Figure �b�� Finally� every
row and every column of the ������matrices that de�ne
the constraints has at least � one� Hence� the network
is ��loose�

A Su�cient Condition for Local
Consistency

In this section� we present a simple condition that es�
timates the inherent level of strong k�consistency of a
binary constraint network� The condition is a su�cient
but not necessary condition for local consistency�
It is known that some classes of constraint net�

works already possess a certain level of local consis�
tency and therefore algorithms that enforce this level
of local consistency will have no e�ect on these net�
works� For example� Nadel ��	�	� observes that an arc
consistency algorithm never changes a constraint net�
work formulation of the n�queens problem� for n � ��
Dechter ��		�� observes that constraint networks that
arise from the graph k�coloring problem are inherently
strongly k�consistent� The following theorem charac�
terizes what it is about the structure of the constraints
in these networks that makes these statements true�

Theorem � If a binary constraint network� R� is m�
loose and all domains are of size jDj or less� then the

network is strongly
�l

jDj
jDj�m

m�
�consistent�

Proof� We show that the network is k�consistent
for all k � djDj��jDj �m�e� Suppose that variables
x�� � � � � xk�� can be consistently instantiated with val�
ues X�� � � � � Xk��� To show that the network is k�
consistent� we must show that there exists at least one
instantiation Xk of variable xk that satis�es all the
constraints�

�Xi� Xk� � Rik i � �� � � � � k� �

simultaneously� We do so as follows� The instantia�
tions X�� � � � � Xk�� restrict the allowed instantiations
of xk� Let vi be the ������vector given by row Xi of the
������matrix Rik� i � �� � � � � k � �� Let pos�vi� be the
positions of the zeros in vector vi� The zero entries in
the vi are the forbidden instantiations of xk� given the
instantiations X�� � � � � Xk��� No consistent instantia�
tion of xk exists if and only if pos�v�� � � � �� pos�vk���
� f�� � � � � jDjg� Now� the key to the proof is that all
the vi contain at least m ones� In other words� each vi

contains at most jDj �m zeros� Thus� if

�k � ���jDj �m� � jDj�

it cannot be the case that pos�v�� � � � �� pos�vk���
� f�� � � � � jDjg� �To see that this is true� consider the
�worst case� where the positions of the zeros in any
vector do not overlap with those of any other vector�
That is� pos�vi� 	 pos�vj� � 
� i �� j�� Thus� if

k �

	
jDj

jDj �m



�

all the constraints must have a non�zero entry in com�
mon and there exists at least one instantiation of xk
that satis�es all the constraints simultaneously� Hence�
the network is k�consistent� �

Theorem � always speci�es a level of local consis�
tency that is less than or equal to the actual level of in�
herent local consistency of a constraint network� That
is� the theorem provides a lower bound� Graph col�
oring problems provide examples where the theorem
is exact� whereas n�queens problems provide examples
where the theorem underestimates the true level of lo�
cal consistency�

Example �� Consider again the well�known n�
queens problem discussed in Example �� The problem
is of historical interest but also of theoretical interest
due to its importance as a test problem in empirical
evaluations of backtracking algorithms and heuristic
repair schemes for �nding solutions to constraint net�
works �e�g�� �Gaschnig �	
�� Haralick � Elliott �	���
Minton et al� �		�� Nadel �	�	��� For n�queens net�
works� each row and column of the constraints has
jDj�� � m � jDj�� ones� where jDj � n� Hence� The�
orem � predicts that n�queens networks are inherently
strongly �dn��e��consistent� Thus� an n�queens con�
straint network is inherently arc�consistent for n � ��
inherently path consistent for n � 
� and so on� and
we can predict where it is fruitless to apply a low or�
der consistency algorithm in an attempt to simplify
the network �see Table ��� The actual level of inherent
consistency is bn��c for n � 
� Thus� for the n�queens
problem� the theorem underestimates the true level of
local consistency�

Table �� Predicted �dn��e� and actual �bn��c� for
n � 
� level of strong local consistency for n�queens
networks

n � 
 � 
 � 	 �� �� ��
pred� � � � � � � � � �
actual � � � � � � 
 
 �

The reason Theorem � is not exact in general and�
in particular� for n�queens networks� is that the proof
of the theorem considers the �worst case� where the
positions of the zeros in any row of the constraints



Rik� i � �� � � � � k � �� do not overlap with those of any
other row� For n�queens networks� the positions of
some of the zeros do overlap� However� given only the
looseness of the constraints and the size of the domains�
Theorem � gives as strong an estimation of the inherent
level of local consistency as possible as examples can
be given where the theorem is exact�

Example �� Graph k�colorability provides exam�
ples where Theorem � is exact in its estimation of the
inherent level of strong k�consistency� The constraint
network formulation of graph coloring is straightfor�
ward� there is a variable for each node in the graph�
the domains of the variables are the possible colors�
D � f�� � � � � kg� and the binary constraints are that
two adjacent nodes must be assigned di�erent colors�
As Dechter ��		�� states� graph coloring networks are
inherently strongly k�consistent but are not guaranteed
to be strongly �k����consistent� Each row and column
of the constraints has m � jDj�� ones� where jDj � k�
Hence� Theorem � predicts that graph k�colorability
networks are inherently strongly k�consistent�

Example �� We can also construct examples� for all
m � jDj � �� where Theorem � is exact� For example�
consider the network where� n � 
� the domains are
D � f�� � � � � 
g� and the binary constraints are given
by�

Rij �

�
���

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
���� � � i � j � n�

and Rji � RT
ij� for j � i� The network is ��loose and

therefore strongly ��consistent by Theorem �� This is
exact� as the network is not ��consistent�

We conclude this section with some discussion on
what Theorem � contributes to our intuitions about
hard classes of problems �in the spirit of� for exam�
ple� �Cheeseman� Kanefsky� � Taylor �		�� Williams
� Hogg �		���� Hard constraint networks are in�
stances which give rise to search spaces with many
dead ends� The hardest networks are those where
many dead ends occur deep in the search tree� Dead
ends� of course� correspond to partial solutions that
cannot be extended to full solutions� Thus� networks
where the constraints are loose are good candidates to
be hard problems since loose networks have a high level
of inherent strong consistency and strong k�consistency
means that all partial solutions are of at least size k�
Computational experiments we performed on ran�

dom problems provide evidence that loose networks
can be hard� Random problems were generated with
n � 
�� jDj � 
� � � ���� and p� q � �� � � � � ���� where
p���� is the probability that there is a binary con�
straint between two variables� and q���� is the proba�
bility that a pair in the Cartesian product of the do�
mains is in the constraint� The time to �nd one solu�
tion was measured� In the experiments we discovered

that� given that the number of variables and the do�
main size were �xed� the hardest problems were found
when the constraints were as loose as possible without
degenerating into the trivial constraint where all tu�
ples are allowed� That networks with loose constraints
would turn out to be the hardest of these random prob�
lems is somewhat counter�intuitive� as individually the
constraints are easy to satisfy� These experimental re�
sults run counter to Tsang�s ��		�� p�
�� intuition that
a single solution of a loosely constrained problem �can
easily be found by simple backtracking� hence such
problems are easy�� and that tightly constrained prob�
lems are �harder compared with loose problems�� As
well� these hard loosely�constrained problems are not
amenable to preprocessing by low�order local consis�
tency algorithms� since� as Theorem � states� they pos�
sess a high level of inherent local consistency� This runs
counter to Williams and Hogg�s ��		�� p��
�� specu�
lation that preprocessing will have the most dramatic
e�ect in the region where the problems are the hardest�

Backtrack�free Networks

Given an ordering of the variables in a constraint
network� backtracking search works by successively
instantiating the next variable in the ordering� and
backtracking to try di�erent instantiations for pre�
vious variables when no consistent instantiation can
be given to the current variable� Previous work has
identi�ed conditions for when a certain level of local
consistency is su�cient to ensure a solution can be
found in a backtrack�free manner �e�g�� �Dechter �		��
Dechter � Pearl �	��� Freuder �	��� �	�
� Montanari
�	
�� van Beek �		���� Sometimes the level of inher�
ent strong k�consistency guaranteed by Theorem � is
su�cient� in conjunction with these previously derived
conditions� to guarantee that the network is globally
consistent and therefore a solution can be found in a
backtrack�free manner� Otherwise� the estimate pro�
vided by the theorem gives a starting point for apply�
ing local consistency algorithms�
In this section� we use constraint looseness to iden�

tify new classes of backtrack�free networks� First� we
give a condition for a network to be inherently glob�
ally consistent� Second� we give a condition� based on
a directional version of the looseness property� for an
ordering to be backtrack�free� We also give an e�cient
algorithm for �nding an ordering that satis�es the con�
dition� should it exist�
We begin with a corollary of Theorem ��

Corollary � If a binary constraint network� R� is m�
loose� all domains are of size jDj or less� and m �
n��

n��
jDj� the network is globally consistent�

Proof� By Theorem �� the network is strongly n�
consistent if djDj��jDj �m�e � n� This is equivalent
to� jDj��jDj�m� � n� � and rearranging for m gives
the result� �



As one example� consider a constraint network with
n � 
 variables that has domains of at most size
jDj � �� and constraints that are ��loose� The net�
work is globally consistent and� as a consequence� a
solution can be found in a backtrack�free manner� An�
other example is networks with n � 
� domain sizes of
jDj � 
� and constraints that are ��loose�

Global consistency implies that all orderings of the
variables are backtrack�free orderings� Sometimes�
however� there exists a backtrack�free ordering when
only much weaker local consistency conditions hold�
Freuder ��	��� identi�es a relationship between the
width of an ordering of the variables and the level
of local consistency su�cient to ensure an ordering is
backtrack�free�

De�nition � �width� Freuder ��	���� Let o � �x��
� � � � xn� be an ordering of the variables in a binary
constraint network� The width of a variable� xi� is the
number of binary constraints between xi and variables
previous to xi in the ordering� The width of an order�
ing is the maximum width of all variables�

Theorem � �Freuder �����		 An ordering of the
variables in a binary constraint network is backtrack�
free if the level of strong k�consistency of the network
is greater than the width of the ordering�

Dechter and Pearl ��	��� de�ne a weaker version
of k�consistency� called directional k�consistency� and
show that Theorem � still holds� Both versions of k�
consistency are� in general� expensive to verify� how�
ever� Dechter and Pearl also give an algorithm� called
adaptive consistency� that does not enforce a uniform
level of local consistency throughout the network but�
rather� enforces the needed level of local consistency as
determined on a variable by variable basis� We adapt
these two insights� directionality and not requiring uni�
form levels of local consistency� to a condition for an
ordering to be backtrack�free�

De�nition 
 �directionally m�loose� A binary con�
straint is directionally m�loose if every row of the
������matrix that de�nes the constraint has at least m
ones� where � � m � jDj � ��

Theorem � An ordering of the variables� o � �x��
� � � � xn�� in a binary constraint network� R� is back�

track�free if
l

jDj
jDj�mj

m
� wj� � � j � n� where wj

is the width of variable xj in the ordering� and mj is
the minimum of the directional looseness of the �non�
trivial� constraints Rij� � � i � j�

Proof� Similar to the proof of Theorem �� �

A straightforward algorithm for �nding such a back�
track�free ordering of the variables� should it exist� is
given below�

FindOrder�R�n�

�� I � f�� �� � � � � ng
�� for p� n downto � do
�� �nd a j � I such that� for each Rij� i � I and

i �� j� djDj��jDj �mij�e � wj� where wj is the
number of constraints Rij� i � I and i �� j� and
mij is the directional m�looseness of Rij

�if no such j exists� report failure and halt�
�� put variable xj at position p in the ordering

� I � I � fjg

Example 
� Consider the network in Figure ��
The network is ��consistent� but not ��consistent and
not ��consistent� Freuder ��	���� in connection with
Theorem �� gives an algorithm for �nding an ordering
which has the minimum width of all orderings of the
network� Assuming that the algorithms break ties by
choosing the variable with the lowest index� the mini�
mal width ordering found is �x�� x�� x�� x�� x��� which
has width �� Thus� the condition of Theorem � does
not hold� In fact� this ordering is not backtrack�free�
For example� the partial solution x� � �� x� � �� and
x� � 
 is a dead end� as there is no instantiation for
x�� The ordering found by procedure FindOrder is
�x�� x�� x�� x�� x��� which has width �� It can be ver�
i�ed that the condition of Theorem � holds� For ex�
ample� w�� the width at variable x�� is �� and the con�

straints R�� and R�� are both ��loose� so
l

jDj
jDj�m�

m
�

� � w� � �� Therefore all solutions of the network can
be found with no backtracking along this ordering�

mx�

nx�

mx�

mx�mx�

Q
Q
Q
Q
Q
Q
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A
A
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�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
CC

�
�

�
�

�

�
�
�
��
�

�
�

�
�

�
��

Rij �

�
���

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
���� i � �� �� j � �� �

Ri� �

�
���

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
���� i � �� � � � � �

R�� �

�
���

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
���

Rji � RT
ij� j � i

Figure �� Constraint network for which a backtrack�
free ordering exists

Conclusions and Future Work

Local consistency has proven to be an important con�
cept in the theory and practice of constraint networks�
However� the de�nitions� or necessary and su�cient



conditions� for all but low�order local consistency are
expensive to verify or enforce� We presented a su��
cient condition for local consistency� based on a new
property called constraint looseness� that is straight�
forward and inexpensive to determine� The condition
can be used to estimate the level of strong local con�
sistency of a network� This in turn can be used in
�i� deciding whether it would be useful to preprocess
the network before a backtracking search� and �ii� de�
ciding which local consistency conditions� if any� still
need to be enforced if we want to ensure that a solution
can be found in a backtrack�free manner� Finally� the
looseness property was used to identify new classes of
�easy� constraint networks�
A property of constraints proposed by Nudel ��	���

which is related to constraint looseness counts the
number of ones in the entire constraint� Nudel uses
this count� called a compatibility count� in an e�ective
variable ordering heuristic for backtracking search� We
plan to examine whether m�looseness can be used to
develop even more e�ective domain and variable or�
dering heuristics� We also plan to examine how the
looseness property can be used to improve the aver�
age case e�ciency of local consistency algorithms� The
idea is to predict whether small subnetworks already
possess some speci�ed level of local consistency� thus
potentially avoiding the computations needed to en�
force local consistency on those parts of the network�
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