
Computational Geometry,
from Low to High Dimensions

Timothy Chan
School of CS
U of Waterloo

Classic Problems in CG:
Orthogonal Range Search

• preprocess n points in Rd, to detect/report/count points
inside any query rectangle q

q

Classic Problems in CG:
Dominance Range Search

• preprocess n points in Rd, to detect/report/count points
dominated by any query point q

q

(orthogonal range in Rd reduces to dominance range in R2d)

Classic Problems in CG:
`∞ Nearest Neighbor Search

• preprocess n points in Rd, to find nearest point to any
query point q

q

(`∞ nearest neighbor search reduces to orthogonal range search)

Classic Problems in CG:
`2 Nearest Neighbor Search

• preprocess n points in Rd, to find `2 nearest point to
any query point q

q

Standard Alg’ms in Low Dimensions:
k-d Trees [Bentley’75]

• divide by median x-coord.
• then by median y-coord.
• etc.

⇒ O(n) space, O(n1−1/d) query time

Standard Alg’ms in Low Dimensions:
Range Trees [Lueker’78, Willard’79, Bentley’79, Lee–Wong’80]

• divide by median x-coord.
• recurse on left & right
• recurse on projection

q

⇒ Sd(n) ≤ 2Sd(n/2) + Sd−1(n)

Qd(n) ≤ Qd(n/2) +Qd−1(n)

⇒ O(n logd n) space, O(logd n) query time

Improvements
for Orthogonal Range Reporting

space query time

Willard’85 n logd−1 n logd−1 n

Chazelle [FOCS’83] n logd−1 n/ log logn logd−1 n

Chazelle [FOCS’85] n logd−2+ε n logd−1 n

Willard [SODA’92] n logd−1 n/ log logn logd−1 n/ log logn
Subramanian–
Ramaswamy [SODA’95] n logd−1 n logd−2 n log∗∗ n
Alstrup–Brodal–
Rauhe [FOCS’00] n logd−2+ε n logd−2 n/ logd−3 logn
Nekrich [SoCG’07] n logd+1+ε n logd−3 n/ logd−5 logn
Afshani’08 n logd+ε n logd−3 n/ logd−5 logn
Karpinski–Nekrich’09 n logd−2+ε n logd−3 n/ logd−6 logn
C. [SODA’11] n logd−2+ε n logd−3 n/ logd−5 logn
C.–Larsen–Pǎtraşcu [SoCG’11] n logd−2+ε n logd−3 n/ logd−4 logn

Improvements
for Offline Dominance Range Detection

total time for n queries

Kung–Luccio–Preparata’75 n logd−2 n

Gabow–Bentley–Tarjan [STOC’84] n logd−3 n log logn
C.–Larsen–Pǎtraşcu [SoCG’11] n logd−3 n

Improvements
for Offline Dominance Range Counting

total time for n queries

Bentley’80 n logd−1 n

Willard [SODA’02] n logd−1 n/ log logn

C.–Pǎtraşcu [SODA’10] n logd−2+1/d n

Known Alg’ms in Low Dimensions
for `2 Nearest Neighbor Search

space query time

Dobkin–Lipton [STOC’74] n2d+1
logn

Clarkson [STOC’85] ndd/2e+ε logn

Haussler–Welzl [SoCG’86] n n1−1/(d(d+1)+1)+ε

Chazelle–Sharir–Welzl [SoCG’90] n n1−1/(d+1)+ε

Matoušek [SoCG’91] n n1−1/(d+1)polylogn
Matoušek [FOCS’91] n n1−1/dd/2epolylogn

“Curse of Dimensionality”

• all these alg’ms have exponential dependencies in d

e.g., range tree’s O(logd n) time is sublinear only for
d� logn/ log logn

[C.’05: range tree still OK for d� 0.29 logn]

[Short Proof:
Qd(n) ≤ Qd(n/2) +Qd−1(n) ⇒ O(

(logn+d
d

)
)]

In Very High Dimensions. . .

• Let M(n, d, n) be time to multiply n× d & d× n matrix

• Folklore: offline `2 nearest neighbor search in
O(M(n, d, n)) time

e.g., O∗(n2) for d� n0.30 [Coppersmith’82 . . . Le Gall’12]

• Matoušek’91: offline dominance range search in
O(M(n, ds, n) + dn2/s) time

e.g., O∗(n2) for d� n0.15 (by picking s = d)

Focus of This Talk

For what d can we obtain subquadratic exact
alg’ms?

Part I: Range Trees Strike Back
(or, How CG can help nongeometric problems. . .)

Surprisingly. . .

• range-tree-like divide&conquer can still work well
beyond log dimensions!

• Impagliazzo–Lovett–Paturi–Schneider’14:

offline dominance range search in n2−1/Õ(c15) time
for d = c logn

• C. [SODA’15]: improves to n2−1/Õ(c) time

(e.g., subquadratic for d� log2 n)

Range-Tree-Like Method for Offline
Dominance [Impagliazzo–Lovett–Paturi–Schneider’14]

• divide by some vertical
hyperplane

• recurse on left & right

• recurse on projection of
left data pts with
projection of right query
pts αm query pts

(1− β)n data pts
(1− α)m query pts
βn data pts

⇒ Td(m,n) = Td(αm, (1−β)n) + Td((1−α)m,βn)
+ Td−1((1−α)m, (1−β)n)

• pick dividing hyperplane s.t. α = β

Analysis
[C. (SODA’15)]

Td(m,n) = Td(αm, (1−α)n) + Td((1−α)m,αn)
+ Td−1((1−α)m, (1−α)n)

• How to solve recurrence: guess!

• suppose Td(m,n) ≤ (1 + δ)d(nm1−ε +mn1−ε)

• induction goes through by picking δ ≈ 1/c2, ε ≈ 1/c

⇒ n2−1/Õ(c) time

Remark: Online Dominance?

• C.’17(?): O(n1+ε) space/preproc. time, n1−1/Õ(c)

expected query time

by k-d-tree-like divide&conquer (lopsided, randomized, with
secondary structures for lower-dimensional projections. . .)

Application 1: All-Pairs Shortest Paths
(APSP)

• given a real-weighted dense graph with n vertices,
compute shortest path from s to t for every pair (s, t)

• Textbook [Floyd–Warshall]: O(n3) time
• Subcubic?

From APSP to Dominance [C.’05]

• Main Case: n× d× n tripartite graph

vd

v1

2

3
6

8
Subproblem: which shortest
paths go through v1?

• same as reporting all pairs (s, t) s.t. ∀k = 1, . . . , d,

w(s, v1) + w(v1, t) ≤ w(s, vk) + w(vk, t), i.e.,
w(s, v1)− w(s, vk) ≤ w(vk, t)− w(v1, t)

⇒ offline dominance for n pts in d dimensions!

• implies APSP alg’m in Õ(n3/ log2 n) time

• C.’17(?): combine with bit packing tricks
⇒ APSP alg’m in Õ(n3/ log3 n) time (combinatorial)

• extends earlier Õ(n3/ log3 n) combinatorial alg’m for
Boolean matrix multiplication [C. (SODA’15)]

Application 2: 0-1 Integer Linear
Programming (ILP)

• Find an assignment of n variables x1, . . . , xn ∈ {0,1}
to satisfy cn given constraints

• Beating brute-force 2n time?

From 0-1 ILP to Dominance
[Impagliazzo–Lovett–Paturi–Schneider’14]

• same as finding (x1, . . . , xn/2), (xn/2+1, . . . , xn) ∈ {0,1}n/2

s.t. ∀i = 1, . . . , cn,

ai,1x1 + · · ·+ ai,nxn ≤ bi, i.e.,

ai,1x1 + · · ·+ ai,n/2xn/2 ≤ bi − ai,n/2+1xn/2+1 − · · · − ai,nxn

⇒ offline dominance for 2n/2 pts in cn dimensions!

• implies 0-1 ILP alg’m in (2n/2)2−1/Õ(c) =

2(1−1/Õ(c))n time

Part II: The Polynomial Method
(or, How nongeometric techniques can help CG. . .)

Recent Breakthrough

• Williams [STOC’14]:
APSP in n3/2Ω(

√
logn) rand. time

• Abboud–Williams–Yu [SODA’15]:
offline dominance range detection in Boolean case in
n2−1/O(log c) rand. time for d = c logn

e.g., n2/2Ω(
√

logn) for d� 2
√

logn

(derandomized by C.–Williams [SODA’16])

• C.’17(?): same for offline dominance in general case

Polynomial Method for Offline Boolean
Dominance [Abboud–Williams–Yu (SODA’15)]

• Given group of s data pts x ∈ ({0,1}d)s & a query pt
y ∈ {0,1}d, define predicate

F (x, y) = [all s pts in x are not dominated by y]

• Goal: evaluate F over all n/s groups x &
all n query pts y

• Approach: express F as a multivariate polynomial!

Polynomial Method for Offline Boolean
Dominance [Abboud–Williams–Yu (SODA’15)]

• e.g., F (x, y) = x1y2 + 5x2y1y2 + 4x1x2y1

= (x1,5x2,4x1x2) · (y2, y1y2, y1)

• goal reduces to computing dot products between n/s
vectors & n vectors with
dimension d′ = # monomials in F

i.e., multiply an n/s× d′ with d′ × n matrix
⇒ Õ(n2/s) time for d′� (n/s)0.1 [Coppersmith’82]

Polynomial Method for Offline Boolean
Dominance [Abboud–Williams–Yu (SODA’15)]

• New Problem: express

F (x, y) = [all s pts in x are not dominated by y]

=
s∧

i=1

d∨
j=1

(xij ∧ yj)

as a polynomial with small # monomials

• aim for small degree. . .

OR Polynomial [Razborov–Smolensky’87]

• Subproblem: express
d∨

j=1
zj as a polynomial

• Easy Sol’n: 1−
d∏

j=1
(1− zj) (but degree = d, too big!)

OR Polynomial [Razborov–Smolensky’87]

• Subproblem: express
d∨

j=1
zj as a polynomial

• Rand. Sol’n: take random vector r ∈ {0,1}d

return
d∑

j=1
rjzj (mod 2)

• degree = 1!
• 1-sided error prob. = 1/2

• can lower error prob. to 1/s by repeating log s times &
taking product ⇒ degree ≈ log s

F (x, y) =
s∧

i=1

d∨
j=1

(xij ∧ yj)

• apply Razborov–Smolensky twice
(for top AND, use de Morgan & const error prob.)

• degree ≈ log s

• # monomials ≈ s ·
(
d

log s

)

= s ·
(
c logn
α logn

)
for d = c logn, s = nα

≤ (c/α)O(α logn)

= nO(α log(c/α))

� (n/s)0.1 for α ≈ 1/O(log c)

Offline Dominance:
From Boolean to General [C.’17(?)]

• Idea: combine with range-tree divide&conquer!

• assume all but the first j coordinates are in {1, . . . , b}

Td,j(n) =


n2−1/O(log(bc)) if j = 0
bTd,j(n/b) + Td,j−1(n) else

⇒ n2−1/O(log c) (by guessing, picking b = cO(1). . .)

More Developments

• Alman–Williams [FOCS’15]: offline nearest/farthest
neighbor search in Hamming case in n2−1/Õ(c) rand.
time for d = c logn

• Alman–C.–Williams’16(?): improves to n2−1/Õ(
√
c)

e.g., subquadratic for d� log3 n

Polynomial Method for Offline Hamming
Farthest Neighbor [Alman–Williams (FOCS’15)]

• again consider group of s data pts x ∈ ({0,1})d)s &
a query pt y ∈ {0,1}d

• New Problem: express

F (x, y) = [one of the s pts in x has dist. > t from y]

=
s∨

i=1

 d∑
j=1

(xij − yj)2 > t2


as a polynomial with small # monomials/degree

Threshold Polynomial: Method 1
[Alman–Williams (FOCS’15)]

• Subproblem: express

 d∑
j=1

zj > t

 as a polynomial

• Idea 1: take rand. sample R of size d/2

• degree D(d) ≈ D(d/2) +
√
d log s

↑
interpolating polynomial

≈
√
d log s (optimal)

F (x, y) =
s∑

i=1

 d∑
j=1

(xij − yj)2 > t2



• degree ≈
√
d log s

• # monomials ≈ s ·
(

d√
d log s

)

≈ s ·
(
c logn√
cα logn

)
for d = c logn, s = nα

≤ (c/α)O(
√
cα logn)

= nO(
√
cα log(c/α))

� (n/s)0.1 for α ≈ 1/Õ(c)

Threshold Polynomial: Method 2
[Alman–C.–Williams’16(?)]

• Subproblem: express

 d∑
j=1

zj > t

 as a polynomial

• Idea 2: just take Tq
(∑d
j=1 zj/t

)
, where Tq is the

degree-q Chebyshev polynomial (1854)!

Tq(x) = cos(q arccos(x))

= cosh(q arcosh(x))

=
bq/2c∑
i=0

(q
2i

)
(x2 − 1)ixq−2i

Threshold Polynomial: Method 2
[Alman–C.–Williams’16(?)]

• Subproblem: express

 d∑
j=1

zj > t

 as a polynomial

• Idea 2: just take Tq
(∑d
j=1 zj/t

)
, where Tq is the

degree-q Chebyshev polynomial (1854)!

1 + 1/d1

eq/
√
d

1

−1

Tq(x)
false⇒ output ∈ [−1,1]

true⇒ output > 100s

by picking q ≈
√
d log s

Threshold Polynomial: Method 2
[Alman–C.–Williams’16(?)]

• Subproblem: express

 d∑
j=1

zj > t

 as a polynomial

• Idea 2: just take Tq
(∑d
j=1 zj/t

)
, where Tq is the

degree-q “discrete” Chebyshev polynomial (1864)!

1 + 1/d1

eq/
√
d

1

−1

Tq(x)
false⇒ output ∈ [−1,1]

true⇒ output > 100s

by picking q ≈
√
d log s

(no improvement, sadly. . .)

Threshold Polynomial: Final Method
[Alman–C.–Williams’16(?)]

• Subproblem: express

 d∑
j=1

zj > t

 as a polynomial

• Final Idea: combine!

• take rand. sample R of size r

• degree ≈
√
r log s +

√
(d/
√
r)
√

log s log s

↑ ↑
Method 1 Method 2

≈ d1/3 log2/3 s

F (x, y) =
s∑

i=1

 d∑
j=1

(xij − yj)2 > t2



• degree ≈ d1/3 log2/3 s

• # monomials ≈ s ·
(

d
d1/3 log2/3 s

)

= s ·
(

c logn
c1/3α2/3 logn

)
for d = c logn, s = nα

≤ (c/α)O(c1/3α2/3 logn)

= nO(c1/3α2/3 log(c/α))

� (n/s)0.1 for α ≈ 1/Õ(
√
c)

Remark: Offline Approximate Nearest
Neighbor Search

• LSH [Indyk–Motwani’98, Andoni–Indyk’06]:
Õ(n1+1/(1+ε)2

) rand. time

• Data-dependent LSH [Andoni–Indyk–Nguyen–
Razenshteyn’14, Andoni–Razenshteyn’15]:
Õ(n1+1/(2(1+ε)2−1)) = n2−Ω(ε)

• G. Valiant [FOCS’12]: n2−Ω(
√
ε)

• Alman–C.–Williams’16(?): n2−Ω̃(ε1/3)

Final Remarks

• further consequences [Alman–C.–Williams’16(?)]:

– faster exponential alg’ms for MAX-SAT with cn
constraints

– circuit lower bounds (for depth-2 threshold
circuits. . .)

• many open problems:

– online nearest neighbor search, for general `2?
– on threshold polynomials: o(d1/3) degree?
– on range-tree-like methods: lower bounds?

THE END

