On Levels in Arrangements of Curves, III:

Further Improvements

Timothy Chan
School of CS
U of Waterloo

Back Story

- [FOCS'00] "On Levels in Arrangements of Curves"
- [FOCS'03] "On Levels in Arrangements of Curves, II"
- [SODA'05] " ... of Surfaces in 3D"
- [SODA'08] "On the Bichromatic k-Set Problem"

The k-Set Problem

- Given n pts P in 2D \& k, a k-set is a subset $P \cap h$ of size k for some halfplane h

(k=3)
- How many k-sets possible (as fn of n)?

Equiv. Dual Problem: k-Level of Lines

- Given n lines in 2D \& k, k-level := all pts that lie on 1 line \& above $k-1$ other lines
(k=2)
- How many vertices on k-level?

Known Upper Bds

- Lovász'71
- Gusfield'79
- Edelsbrunner,Welzl'85
- Pach,Steiger,Szemerédi'89
- Dey'97
$O\left(n^{3 / 2}\right)$
$O\left(n^{3 / 2}\right)$
$O\left(n^{3 / 2}\right)$
$O\left(n^{3 / 2} / \log ^{*} n\right)$
$O\left(n^{4 / 3}\right)$
(by counting crossings in a geometric graph in primal space)

Known Lower Bds

- Erdős,Lovász,Simmons,Straus'73
- Klawe,Paterson,Pippenger'82
(for k-level of pseudo-lines)
- Tóth'00
$\Omega(n \log n)$ $n 2^{\Omega(\sqrt{\log n})}$
$n 2^{\Omega(\sqrt{\log n})}$
- Conjecture by Erdős et al.'73:

$$
o\left(n^{1+\varepsilon}\right) ? ?
$$

Going "Retro"

- Chan [FOCS'03]
- a completely different pf of $O\left(n^{3 / 2}\right)$
(by a simple inequality in dual space)

Going "Retro"

- Chan [FOCS'03]
- a completely different pf of $O\left(n^{3 / 2}\right)$ (by a simple inequality in dual space)
- Today:
- a new pf of $O\left(n^{1.4999999999999999999999 ~}\right)$

Going "Retro"

- Chan [FOCS'03]
- a completely different pf of $O\left(n^{3 / 2}\right)$ (by a simple inequality in dual space)
- Today:
- a new pf of $O\left(n^{3 / 2-\delta}\right)$ for a concrete but small $\delta>0$
(by refining the inequality)

Why Interesting, Despite of Dey?

- Because the inequality approach
- is "completely different"
- is the only approach known for k-level of general sintersecting curves [FOCS'03]
- gives current best bds for k-level of specific curve families [FOCS'O3] \& for related problems (e.g., klevel of surfaces in 3D [SODA'05], "bichromatic" ksets in 2D \& 3D [SODA'08])

The k-Level Problem for Curves

- Given $n \times$-monotone curves in 2D \& k, k-level :=all pts that lie on 1 curve \& above k-1 other curves

- How many vertices on k-level?

Known Upper Bds

- Pseudo-lines:

Dey + Tamaki,Tokuyama'97 $O\left(n^{4 / 3}\right)$

- Pseudo-parabolas:

Tamaki, Tokuyama'95
Dey'97
[FOCS'00]
$O\left(n^{23 / 12}\right)$
$O\left(n^{17 / 9}\right)$
$O\left(n^{16 / 9} \log ^{2 / 3} n\right)$
Agarwal,Nevo,Pach,Pinchasi,
Sharir,Smorodinsky'02
$O\left(n^{26 / 15} \log ^{2 / 3} n\right)$
[FOCS'03]
Marcus, Tardos'04
Today
$O\left(n^{8 / 5}\right)$
$O\left(n^{3 / 2} \log ^{2} n\right)$
$O\left(n^{3 / 2} \log n\right)$

Known Upper Bds (cont'd)

- Pseudo-segments:
[FOCS'00]
Today
$O\left(n^{4 / 3} \log ^{2 / 3} n\right)$
$O\left(n^{4 / 3} \log ^{1 / 3-\delta} n\right)$
- Degree-s polynomials:
[FOCs'00]
$O\left(n^{2}-O\left(1 / 2^{5}\right)\right)$
- General s-intersecting curves/curve segments:
[FOCS'03]
$O\left(n^{2-1 /(2 s)}\right)$ for s odd
$O\left(n^{2}-1 /(2 s-2)\right)$ for $s \geq 4$ even
Today

The Inequality Approach [FOCs'03]: The (Pseudo-)Line Case

- Let $t_{i}=\#$ vertices at levels in interval ($k-i, k+i$)
- Let $\Delta t_{i}=t_{i+1}-t_{i}$
- Obs: $t_{i}<2 i \Delta t_{i}$
- Pf:

(k+i)-level
$2 i$ lines
(k-i)-level

The Inequality Approach (contd)

- Solve $t_{i} \leqslant 2 i\left(t_{i+1}-t_{i}\right)$

$$
\begin{aligned}
\Rightarrow t_{i} & \geqq[2 i /(2 i+1)] t_{i+1} \\
\Rightarrow t_{1} & \geqq 2 / 3 \cdot 4 / 5 \cdot 6 / 7 \cdots[2 n /(2 n+1)] t_{n} \\
& \leq O\left(1 / n^{1 / 2}\right) t_{n} \\
& =O\left(n^{3 / 2}\right)
\end{aligned}
$$

- Rmk: $O\left(n^{3 / 2}+B\right)$ for "almost" pseudo-lines/segments with B "bad" pairs

New Idea 1: Look for Slack

- Define helpers:

(k+i)-level

(k-i)-level
- Obs: $t_{i} \leqslant 2 i \Delta t_{i}-\Omega(\#$ helpers $)$
- But how to find helpers?

New Idea 2: Look at Two Intervals

$\left(k+i{ }^{\prime}\right)$-level

New Idea 3: Look at The "Side" Intervals

(k-i)-level
$\left(k-i^{\prime}\right)$-level

Obs: $t_{i^{\prime}}-t_{i} \gtrsim\left(i^{\prime}-i\right) / 2\left(\Delta t_{i}+\Delta t_{i^{\prime}}\right)$

- O (\# strong helpers in side intervals)

New Idea 4: Surprise!

- Lemma: \# helpers in the two intervals
z c • strong helpers in side intervals
- Pf: Long case analysis...
e.g.,

helper

New Inequality

$$
\begin{aligned}
t_{i}+t_{i^{\prime}}< & 2 i \Delta t_{i}+2 i \Delta t_{i^{\prime}} \\
& -c\left[\left(i^{\prime}-i\right) / 2\left(\Delta t_{i}+\Delta t_{i^{\prime}}\right)-\left(t_{i^{\prime}}-t_{i}\right)\right]
\end{aligned}
$$

- Solve
$\Rightarrow t_{i} \leq O\left(1 / n^{1 / 2+\delta}\right) t_{n}=O\left(n^{3 / 2-\delta}\right)$

Further Results/Open Questions

- Another, simpler way to refine the inequality for sintersecting curves for odd $s \geq 3$ (but not curve segments or evens)
- Original k-set problem: $O\left(n^{4 / 3-\delta}\right)$??
- Another observation:
- Better bds for const $n \Rightarrow$ better asymptotic upper bds
- k-level of curves: better upper or lower bds ??

