Improved Deterministic Algorithms
for Linear Programming
in Low Dimensions

Timothy Chan

School of CS
U of Waterloo

The Problem: LP

maximize cix1 + - - - + CAT 4

subject to
a1171 + -+ aygrg < by

Ap1%1 + - 1 ApgZg < bn

over real variables z1, ...,z

The Problem: LP

e interested in runtime of alg'ms as a function of n & d
(not bit complexity)

e Big Open Q: 3 strongly polynomial alg’m??

e Ex: simplex method is exponential, with upper bound

whereas ellipsoid method & interior-point methods
(from Karmarkar'84 to ... Lee-Sidford’15) aren’'t applicable

The Problem: LP

Our Focus: when d is small

|

maximize

History: Prune&Search Alg'ms

e d = 2 or 3: Dyer'82 / Megiddo [FOCS’82]:
T>(n) = T»(3n/4) + O(n)
T3(n) = T3(15n/16) + O(n)

e any constant d: Megiddo’84: |O(n)|time

O(n)

time

Ty(n) = Ty((1—1/22" Hn) + 0(24T,_1(n))

= 20(2%),,

History: Prune&Search Alg'ms

e Clarkson’86 / Dyer’'86: O(3d2)n time

e Dyer—Frieze’89: | O(d)3%n time (but randomized)

e Agarwal-Sharir—Toledo’93: |O(d) 1%y | (deterministic)

History: Rand. Sampling Alg'ms

e Clarkson [FOCS’88]: (recursive version)
Tg(n) = (d+ 1) - (Ty(dy/n) + O(dn))
(with base case T;;(d?) = O(d)%/? by simplex method)
= 0(d?n) + O(d)?/2| (rand.)

e Clarkson [later]: (iterative reweighting version)
T;(n) ~ dlogn-O(dn + Ty(d?))
= roughly the same

both simple!

History: Rand. Incremental Alg'ms

e Seidel [SoCG'90]:

Ty(n) = Ty(n—1) 4+ 0((d/n) - Ty_1(n))
= 0(d!n)| (rand.) very simple!

e Kalai [STOC'92] / Matousek—Sharir—Welz| [SoCG’92]:

~>O0(y/dlogn),,

(rand.)

e combined with rand. sampling alg'ms

= 0(d?n) 4 20(Vdlogd)| (rand.) current record

(Hansen—Zwick [STOC’15]: 20(Vd) rand. for n = O(d))

History: Back to Deterministic Alg'ms

e Chazelle—Matousek [SODA’93]: derandomize Clarkson’s
recursive rand. sampling alg'm by designing an e-net
alg’'m (via “c-approximations”, method of conditional probabilities,
& a clever merge&reduce technique)

=

O(d)"%n

(det.)

e Bronnimann—Chazelle—Matousek [FOCS’93]: throw in
“sensitive e-approximations”

=

O(d)>%n

(det.) current record.. . till now

Today: New Deterministic Alg'ms

e much simpler derandomization of Clarkson’s recursive
rand. sampling alg’m (without e-approximations, method of
conditional probabilities, merge&reduce, ...)

O(d)3%| (det.) +—

=

e combined with a new variant of Clarkson’s iterative reweighting

algm =

O(d)?%| (det.)

e throw in combinatorial bounds on (< k)-levels

=

® New <-net a

O(d)%n

(det.)

g'm (by throwing back in sensitive e-approximation,

method of conditional probabilities, ... & a new merge&reduce)
O(d)%/2n| (det.) (new current record)

=

Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in R?:

1. choose a subset R of H

2. repeat:

3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

Claim: #repeats < d+ 1

Proof: let B* = the d halfspaces defining optimal sol'n p*
each iteration adds > 1 halfspace of B* to R
(if not, p inside N B* = p worse than p*: contradiction!)

Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in R%:

1. choose a subset Rof H <+ how?

2. repeat d + 1 times:

3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

e-Nets

Def: R C H is an e-net iff Vp € RY,
pviolates > en of H = pviolates > 1 of R

-act: 3 e-net R of size O(d/¢)

Proof:

e call {all halfspaces violated by p} a “violation set”
e want R to hit all violation sets of size > en

o # diff. violation sets = m = O((}})) = O(n/d)?
e just take random sample of size O((1/¢) logm)

Alternate Proof: run greedy hitting set alg'm

Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in R%:

1. choose e-net R of size O(d/e) by sampling
2. repeat d + 1 times:

3. recursively compute p = LP(R)
4. add {all halfspaces of H violated by p} to R

By Def: p violates none of R = p violates < en of H

= Ty(n) = (d+1)- (Td(éd%?\/—_l—deﬁ) + O(dn))

Chazelle—Matousek’s Derandomization

e gave complicated alg’'m to compute e-net R of size
O(d/e) in O(d3/£2)%) time (det.)

e sete = 1/(Cd?)

= Ty(n) =~ (d+1) - (Ty({dte)y+-der) +O(d)9n)
n/(Cd)

= |0(d)"%n| (det.)

e New Obs: can afford e-net of much larger size...

New Simple Derandomization

LP(H), given set H of n halfspaces in R%:

1. divide H into groups of size b;
compute e-net of each group by greedy hitting set alg'm;
R = union of these e-nets

2. repeat d + 1 times:

3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

New Simple Derandomization

LP(H), given set H of n halfspaces in R%:

1. divide H into groups of size b;
compute e-net of each group by greedy hitting set alg'm;
R = union of these e-nets

2. repeat d + 1 times:
3. recursively compute p = LP(R)
4. add {all halfspaces of H violated by p} to R

sete = 1/(Cd?), b= ©(d?)
size of e-net =s = (n/b) - O(d/e) < n/(C'd)
time to compute e-net = (n/b) - O(b/d)¢ = O(d)3%n

= Ty(n) = (d4 1) - (T (s—4-den) + O(d)3n)
2 n/(C"d)
= |O(d)3%n| (det.)

Conclusions

e simpler, even compared to Megiddo’s det. alg'm

e throw in a few more ideas = |O(d)%/2n| (det.)

e one barrier: for the base case n ~ d<, can we beat
O((Ld72J)) = 0(d)%/2 det. time?

e generalize to many LP-type problems (with O(d)%n
det. time)

o 20(d)p det. alg'm??

