Improved Deterministic Algorithms for Linear Programming in Low Dimensions

Timothy Chan School of CS U of Waterloo

The Problem: LP

maximize $c_1 x_1 + \dots + c_d x_d$ subject to $a_{11}x_1 + \dots + a_{1d}x_d \le b_1$ \vdots $a_{n1}x_1 + \dots + a_{nd}x_d \le b_n$

over real variables x_1, \ldots, x_d

The Problem: LP

- interested in runtime of alg'ms as a function of n & d (not bit complexity)
- Big Open Q: ∃ strongly polynomial alg'm??
- Ex: simplex method is exponential, with upper bound about $\binom{n}{\lfloor d/2 \rfloor} = O(n/d)^{d/2}$

whereas ellipsoid method & interior-point methods (from Karmarkar'84 to ... Lee–Sidford'15) aren't applicable

The Problem: LP

Our Focus: when d is small

History: Prune&Search Alg'ms

- d = 2 or 3: Dyer'82 / Megiddo [FOCS'82]: O(n) time $T_2(n) = T_2(3n/4) + O(n)$ $T_3(n) = T_3(15n/16) + O(n)$
- any constant d: Megiddo'84: O(n) time $T_d(n) = T_d((1 - 1/2^{2^{d-1}})n) + O(2^d T_{d-1}(n))$ $\Rightarrow 2^{O(2^d)}n$

History: Prune&Search Alg'ms

- Clarkson'86 / Dyer'86: $O(3^{d^2})n$ time
- Dyer–Frieze'89: $\widetilde{O}(d)^{3d}n$ time (but randomized)
- Agarwal–Sharir–Toledo'93: $\widetilde{O}(d)^{10d}n$ (deterministic)

History: Rand. Sampling Alg'ms

Clarkson [FOCS'88]: (recursive version)

$$T_d(n) \approx (d+1) \cdot (T_d(d\sqrt{n}) + O(dn))$$

(with base case $T_d(d^2) = O(d)^{d/2}$ by simplex method) $\Rightarrow O(d^2n) + O(d)^{d/2}$ (rand.)

• Clarkson [later]: (iterative reweighting version) $T_d(n) \approx d \log n \cdot O(dn + T_d(d^2))$ \Rightarrow roughly the same

both simple!

History: Rand. Incremental Alg'ms

• Seidel [SoCG'90]:

$$T_d(n) = T_d(n-1) + O((d/n) \cdot T_{d-1}(n))$$

 $\Rightarrow O(d!n)$ (rand.) very simple!

- Kalai [STOC'92] / Matoušek–Sharir–Welzl [SoCG'92]: $2^{O(\sqrt{d \log n})}n$ (rand.)
- combined with rand. sampling alg'ms $\Rightarrow O(d^2n) + 2^{O(\sqrt{d \log d})} \text{ (rand.) } \text{ current record}$

(Hansen–Zwick [STOC'15]: $2^{O(\sqrt{d})}$ rand. for n = O(d))

History: Back to Deterministic Alg'ms

Chazelle–Matoušek [SODA'93]: derandomize Clarkson's recursive rand. sampling alg'm by designing an ε-net alg'm (via "ε-approximations", method of conditional probabilities, & a clever merge&reduce technique)

$$\Rightarrow \widetilde{O}(d)^{7d}n$$
 (det.)

 Brönnimann–Chazelle–Matoušek [FOCS'93]: throw in "sensitive ε-approximations"

 $\Rightarrow \widetilde{O}(d)^{5d}n$ (det.) current record...till now

Today: New Deterministic Alg'ms

- much simpler derandomization of Clarkson's recursive rand. sampling alg'm (without ε -approximations, method of conditional probabilities, merge&reduce, ...) $\Rightarrow \widetilde{O}(d)^{3d}n$ (det.) \leftarrow
- combined with a new variant of Clarkson's iterative reweighting alg'm $\Rightarrow \widetilde{O}(d)^{2d}n$ (det.)
- throw in combinatorial bounds on $(\leq k)$ -levels $\Rightarrow \widetilde{O}(d)^d n$ (det.)
- new ε -net alg'm (by throwing back in sensitive ε -approximation, method of conditional probabilities, ... & a new merge&reduce) $\Rightarrow \widetilde{O}(d)^{d/2}n$ (det.) (new current record)

Review of Clarkson's Random Sampling Alg'm (Recursive Version)

- LP(H), given set H of n halfspaces in \mathbb{R}^d :
- 1. choose a subset $R \mbox{ of } H$
- 2. repeat:
- 3. recursively compute p = LP(R)
- 4. add {all halfspaces of H violated by p} to R

Claim: # repeats $\leq d + 1$

Proof: let B^* = the *d* halfspaces defining optimal sol'n p^* each iteration adds ≥ 1 halfspace of B^* to R(if not, *p* inside $\cap B^* \Rightarrow p$ worse than p^* : contradiction!) \Box

Review of Clarkson's Random Sampling Alg'm (Recursive Version)

- LP(H), given set H of n halfspaces in \mathbb{R}^d :
- **1.** choose a subset R of $H \leftarrow how$?
- 2. repeat d + 1 times:
- 3. recursively compute p = LP(R)
- 4. add {all halfspaces of H violated by p} to R

ε -Nets

Def: $R \subset H$ is an ε -net iff $\forall p \in \mathbb{R}^d$, p violates $> \varepsilon n$ of $H \Rightarrow p$ violates ≥ 1 of R

Fact: $\exists \varepsilon$ -net R of size $\widetilde{O}(d/\varepsilon)$

Proof:

- call {all halfspaces violated by p} a "violation set"
- want R to hit all violation sets of size $> \varepsilon n$
- # diff. violation sets = $m = O(\binom{n}{d}) = O(n/d)^d$
- just take random sample of size $O((1/\varepsilon) \log m)$ \Box

Alternate Proof: run greedy hitting set alg'm

Review of Clarkson's Random Sampling Alg'm (Recursive Version)

- LP(H), given set H of n halfspaces in \mathbb{R}^d :
- 1. choose ε -net R of size $\widetilde{O}(d/\varepsilon)$ by sampling
- 2. repeat d + 1 times:
- 3. recursively compute p = LP(R)
- 4. add {all halfspaces of H violated by p} to R

By Def: *p* violates none of $R \Rightarrow p$ violates $\leq \varepsilon n$ of H $\Rightarrow T_d(n) \approx (d+1) \cdot (T_d(\frac{d}{c} + d\varepsilon n) + O(dn))$

Chazelle–Matoušek's Derandomization

- gave complicated alg'm to compute ε -net R of size $\widetilde{O}(d/\varepsilon)$ in $\widetilde{O}(d^3/\varepsilon^2)^d n$) time (det.)
- set $\varepsilon \approx 1/(Cd^2)$ $\Rightarrow T_d(n) \approx (d+1) \cdot (T_d((d/\varepsilon) + d\varepsilon n) + \widetilde{O}(d)^{7d}n)$ n/(Cd) $\Rightarrow \widetilde{O}(d)^{7d}n$ (det.)
- New Obs: can afford ε -net of much larger size...

New Simple Derandomization

LP(H), given set H of n halfspaces in \mathbb{R}^d :

- 1. divide H into groups of size b; compute ε -net of each group by greedy hitting set alg'm; R = union of these ε -nets
- 2. repeat d + 1 times:
- 3. recursively compute p = LP(R)
- 4. add {all halfspaces of H violated by p} to R

New Simple Derandomization

LP(H), given set H of n halfspaces in \mathbb{R}^d :

- 1. divide *H* into groups of size *b*; compute ε -net of each group by greedy hitting set alg'm; R = union of these ε -nets
- 2. repeat d + 1 times:
- 3. recursively compute p = LP(R)
- 4. add {all halfspaces of H violated by p} to R

set
$$\varepsilon = 1/(Cd^2)$$
, $b = \widetilde{\Theta}(d^4)$
size of ε -net $= s = (n/b) \cdot \widetilde{O}(d/\varepsilon) \leq n/(C'd)$
time to compute ε -net $= (n/b) \cdot O(b/d)^d = \widetilde{O}(d)^{3d}n$
 $\Rightarrow T_d(n) \approx (d+1) \cdot (T_d(s+d\varepsilon n) + \widetilde{O}(d)^{3d}n)$
 $n/(C''d)$
 $\Rightarrow \widetilde{O}(d)^{3d}n$ (det.)

Conclusions

- simpler, even compared to Megiddo's det. alg'm
- throw in a few more ideas $\Rightarrow \widetilde{O}(d)^{d/2}n$ (det.)
- one barrier: for the base case $n \approx d^2$, can we beat $O(\binom{n}{\lfloor d/2 \rfloor}) = O(d)^{d/2}$ det. time?
- generalize to many LP-type problems (with \$\tilde{O}(d)^d n\$ det. time)
- $2^{O(d)}n$ det. alg'm??