
Improved Deterministic Algorithms
for Linear Programming

in Low Dimensions

Timothy Chan
School of CS
U of Waterloo



The Problem: LP

maximize c1x1 + · · ·+ cdxd

subject to
a11x1 + · · ·+ a1dxd ≤ b1...
an1x1 + · · ·+ andxd ≤ bn

over real variables x1, . . . , xd



The Problem: LP

• interested in runtime of alg’ms as a function of n & d

(not bit complexity)

• Big Open Q: ∃ strongly polynomial alg’m??

• Ex: simplex method is exponential, with upper bound
about

(
n
bd/2c

)
= O(n/d)d/2

whereas ellipsoid method & interior-point methods
(from Karmarkar’84 to . . . Lee–Sidford’15) aren’t applicable



The Problem: LP

Our Focus: when d is small

maximize



History: Prune&Search Alg’ms

• d = 2 or 3: Dyer’82 / Megiddo [FOCS’82]: O(n) time

T2(n) = T2(3n/4) + O(n)

T3(n) = T3(15n/16) + O(n)

• any constant d: Megiddo’84: O(n) time

Td(n) = Td((1− 1/22d−1
)n) + O(2dTd−1(n))

⇒ 2O(2d)n



History: Prune&Search Alg’ms

• Clarkson’86 / Dyer’86: O(3d2
)n time

• Dyer–Frieze’89: Õ(d)3dn time (but randomized)

• Agarwal–Sharir–Toledo’93: Õ(d)10dn (deterministic)



History: Rand. Sampling Alg’ms

• Clarkson [FOCS’88]: (recursive version)

Td(n) ≈ (d + 1) · (Td(d
√
n) + O(dn))

(with base case Td(d2) = O(d)d/2 by simplex method)

⇒ O(d2n) + O(d)d/2 (rand.)

• Clarkson [later]: (iterative reweighting version)

Td(n) ≈ d logn ·O(dn + Td(d2))

⇒ roughly the same

both simple!



History: Rand. Incremental Alg’ms

• Seidel [SoCG’90]:

Td(n) = Td(n− 1) + O((d/n) · Td−1(n))

⇒ O(d!n) (rand.) very simple!

• Kalai [STOC’92] / Matoušek–Sharir–Welzl [SoCG’92]:

2O(
√

d logn)n (rand.)

• combined with rand. sampling alg’ms

⇒ O(d2n) + 2O(
√
d log d) (rand.) current record

(Hansen–Zwick [STOC’15]: 2O(
√
d) rand. for n = O(d))



History: Back to Deterministic Alg’ms

• Chazelle–Matoušek [SODA’93]: derandomize Clarkson’s
recursive rand. sampling alg’m by designing an ε-net
alg’m (via “ε-approximations”, method of conditional probabilities,
& a clever merge&reduce technique)

⇒ Õ(d)7dn (det.)

• Brönnimann–Chazelle–Matoušek [FOCS’93]: throw in
“sensitive ε-approximations”

⇒ Õ(d)5dn (det.) current record. . . till now



Today: New Deterministic Alg’ms

• much simpler derandomization of Clarkson’s recursive
rand. sampling alg’m (without ε-approximations, method of
conditional probabilities, merge&reduce, . . . )

⇒ Õ(d)3dn (det.) ←−

• combined with a new variant of Clarkson’s iterative reweighting

alg’m⇒ Õ(d)2dn (det.)

• throw in combinatorial bounds on (≤ k)-levels

⇒ Õ(d)dn (det.)

• new ε-net alg’m (by throwing back in sensitive ε-approximation,
method of conditional probabilities, . . . & a new merge&reduce)

⇒ Õ(d)d/2n (det.) (new current record)



Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in Rd:

1. choose a subset R of H
2. repeat:
3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

Claim: # repeats ≤ d + 1

Proof: let B∗ = the d halfspaces defining optimal sol’n p∗

each iteration adds ≥ 1 halfspace of B∗ to R

(if not, p inside ⋂
B∗⇒ p worse than p∗: contradiction!) �



Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in Rd:

1. choose a subset R of H ← how?
2. repeat d + 1 times:
3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

Claim: # repeats ≤ d + 1

Proof: let B∗ = the d halfspaces defining optimal sol’n p∗

each iteration adds ≥ 1 halfspace of B∗ to R

(if not, p inside ⋂
B∗⇒ p worse than p∗: contradiction!) �



ε-Nets

Def: R ⊂ H is an ε-net iff ∀p ∈ Rd,

p violates > εn of H ⇒ p violates ≥ 1 of R

Fact: ∃ ε-net R of size Õ(d/ε)

Proof:
• call {all halfspaces violated by p} a “violation set”
• want R to hit all violation sets of size > εn

• # diff. violation sets = m = O(
(
n
d

)
) = O(n/d)d

• just take random sample of size O((1/ε) logm) �

Alternate Proof: run greedy hitting set alg’m �



Review of Clarkson’s Random Sampling
Alg’m (Recursive Version)

LP(H), given set H of n halfspaces in Rd:

1. choose ε-net R of size Õ(d/ε) by sampling
2. repeat d + 1 times:
3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R

By Def: p violates none of R ⇒ p violates ≤ εn of H

⇒ Td(n) ≈ (d + 1) · (Td((d/ε) + dεn) + O(dn))
d
√
n



Chazelle–Matoušek’s Derandomization

• gave complicated alg’m to compute ε-net R of size
Õ(d/ε) in Õ(d3/ε2)dn) time (det.)

• set ε ≈ 1/(Cd2)

⇒ Td(n) ≈ (d+1) ·(Td((d/ε) + dεn)+ Õ(d)7dn)
n/(Cd)

⇒ Õ(d)7dn (det.)

• New Obs: can afford ε-net of much larger size. . .



New Simple Derandomization

LP(H), given set H of n halfspaces in Rd:

1. divide H into groups of size b;
compute ε-net of each group by greedy hitting set alg’m;
R = union of these ε-nets

2. repeat d + 1 times:
3. recursively compute p = LP(R)

4. add {all halfspaces of H violated by p} to R



New Simple Derandomization
LP(H), given set H of n halfspaces in Rd:
1. divide H into groups of size b;

compute ε-net of each group by greedy hitting set alg’m;
R = union of these ε-nets

2. repeat d + 1 times:
3. recursively compute p = LP(R)
4. add {all halfspaces of H violated by p} to R

set ε = 1/(Cd2), b = Θ̃(d4)

size of ε-net = s = (n/b) · Õ(d/ε) ≤ n/(C′d)

time to compute ε-net = (n/b) ·O(b/d)d = Õ(d)3dn

⇒ Td(n) ≈ (d + 1) · (Td(s + dεn) + Õ(d)3dn)
n/(C′′d)

⇒ Õ(d)3dn (det.)



Conclusions

• simpler, even compared to Megiddo’s det. alg’m

• throw in a few more ideas⇒ Õ(d)d/2n (det.)

• one barrier: for the base case n ≈ d2, can we beat
O(

(
n
bd/2c

)
) = O(d)d/2 det. time?

• generalize to many LP-type problems (with Õ(d)dn

det. time)

• 2O(d)n det. alg’m??


