
Geometric Optimization Problems over Sliding

Windows?

Timothy M. Chan and Bashir S. Sadjad

School of Computer Science
University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
{tmchan,bssadjad}@uwaterloo.ca

Abstract. We study the problem of maintaining a (1+ε)-factor approx-
imation of the diameter of a stream of points under the sliding window
model. In one dimension, we give a simple algorithm that only needs to
store O(1

ε
logR) points at any time, where the parameter R denotes the

“spread” of the point set. This bound is optimal and improves Feigen-
baum, Kannan, and Zhang’s recent solution by two logarithmic factors.
We then extend our one-dimensional algorithm to higher constant dimen-
sions and, at the same time, correct an error in the previous solution. In
high nonconstant dimensions, we also observe a constant-factor approx-
imation algorithm that requires sublinear space. Related optimization
problems, such as the width, are also considered in the two-dimensional
case.

1 Introduction

In conventional settings an algorithm has access to the whole input at once.
In the data stream model [12, 15], however, data elements come in one by one.
In this model, we want to maintain some function over the input (for example,
statistical information) but because of space limitations, we are not allowed to
store all data in memory. In the more general sliding window model, the setting
is similar but the goal function should be maintained over a window containing
the N newest elements in the stream. In some cases the value of N is fixed in
advance, but in some applications the size of the window may be dynamic. (For
example, we may want to maintain the goal function over data received within
the last one hour.)
The objective of this paper is to study some well-known optimization prob-

lems in computational geometry, e.g., the diameter and the width, under the
sliding window model. For a set P of n points in d-dimensional space, the diam-
eter ∆(P) is the distance between the furthest pair of points in P . The width
of P is the minimum distance between two parallel hyperplanes where all points
lie between them. We focus primarily on the case where d is a small constant.
? Work done by the first author was supported by an NSERC Research Grant and
a Premiere’s Research Excellence Award. This work has appeared as part of the
second author’s Master’s thesis.

The diameter problem has been studied extensively in the traditional model.
Although O(n log n) algorithms have been given for d = 2 [16] and d = 3 [8, 17],
only slightly subquadratic algorithms are known for higher dimensions. This has
prompted researchers [2, 4, 6] to consider approximation algorithms. For exam-
ple, with the latest algorithm [7], a (1+ ε)-factor approximation of the diameter
can be found in O(n+(1ε)

d−1.5) time. Earlier Agarwal et al. [2] observed a simple

approximation algorithm that runs in O((1ε)
(d−1)/2n) time and is in fact a data-

stream algorithm requiring just O((1ε)
(d−1)/2) space. Other data-stream approxi-

mation algorithms in the two-dimensional case were considered by Feigenbaum et
al. [10] and Hershberger and Suri [13]. (No efficient data-stream exact algorithm
is possible even in one dimension [10].) For the high-dimensional case, where d
is not a fixed constant, Goel et al. [11] have proposed a (1 + ε)-approximation
algorithm in the traditional model that runs in O(n1+1/(1+ε) + dn) time, and
Indyk [14] has developed a (c + ε)-approximation algorithm in the data stream

model with sublinear space complexity O(dn1/(c2−1) log n) for c >
√
2.

The width problem has also been extensively studied in the traditional model,
both in terms of exact algorithms [3, 16] and approximation algorithms [6, 9]. The
recent approximation algorithm by Chan [7], for example, runs in O(n+(1ε)

d−1)
time for any fixed d. An efficient approximation algorithm in the data stream
model has also been proposed by Chan, using only O((1ε log

1
ε)

d−1) space.

The previous (and perhaps the only) approximate diameter algorithm in
the sliding window model was proposed by Feigenbaum et al. [10]. Their one-
dimensional algorithm (briefly reviewed in Section 2) requires O(1ε log

3 N(logR+
log logN + log 1

ε)) bits of space, where N is the size of the sliding window and
R is the spread of the points in the window; the spread is defined as the ratio
between the diameter and the minimum non-zero distance between any two
points in the window. Also Feigenbaum et al. have shown a lower bound of
Ω(1ε logR logN) bits of space. They also claimed that their one-dimensional
algorithm can be used to approximate the diameter in any fixed dimension d,
with O((1ε)

(d+1)/2 log3 N(logR+ log logN + log 1
ε)) bits of space.

To our knowledge, there is no existing solution for the width problem in the
sliding window model.

In this paper, we give a number of new results in the sliding window model:

– For diameter in one dimension (Section 3), we present a simpler and more
efficient algorithm that stores only Θ(1ε logR) points. Under the assump-
tion (made also by Feigenbaum et al.) that coordinates can be encoded with
O(logN) bits, our algorithm thus uses O(1ε logR logN) bits of space, match-
ing the known lower bound. Our algorithm is also faster, requiring O(1) time
per point (Feigenbaum et al.’s method requires O(logN) time per point).

– For diameter in a fixed dimension (Section 4), we point out a small error
in Feigenbaum et al.’s previous solution. In addition, we show that our one-
dimensional algorithm can be extended to higher dimensions. The number
of points stored is O((1ε)

(d+1)/2 log R
ε), which again improves the previous

(claimed) bound.

– For diameter in a higher non-constant dimension, or more generally, in a
metric space (Section 5), we mention a (6+ ε)-approximation algorithm that
uses sublinear space. (Although a constant-factor result is trivial for the data
stream model, it is not as obvious for sliding windows.)

– We also give the first solution for the width problem in the sliding window
model in the two-dimensional case (Section 6). More generally, we show how
to maintain an ε-core-set [1]. Although the space requirement of this method
is dependent on a new variable R′, defined as the ratio between diameter
and the minimum width of a consecutive triple of points, we show such a
dependence is necessary in the sliding window model.

2 Diameter in One Dimension: The Previous Algorithm

In this section, we briefly review the previous technique of Feigenbaum et al.
[10] for maintaining the diameter of a one-dimensional point set over a sliding
window of size at most N , as the ideas here will be helpful later (in Sections 5
and 6). At any particular time we have a set of points (or numbers) P in the
sliding window, where an arrival time is associated to each point. We say that p
is newer than q if the arrival time of p is greater than the arrival time of q (older
otherwise). We want to approximate the diameter ∆(P) = maxp,q∈P ||p − q||,
where ||p− q|| denotes the distance between two points p and q.
The basic approach is similar to the logarithmic method of Bentley and Saxe

[5] (which was also used in some previous data stream algorithms, e.g., [1]). The
input is split into several clusters. Each cluster represents an interval of time
and the size of each cluster is a power of two. In each cluster C, a small subset
NC ⊆ C of points (called representative points) is recorded as an approximation
of C and obeys the following rules:

1. For each cluster C, the exact location of the newest point oC is recorded as
the center of C.

2. Each new point p forms a cluster C of size one.
3. For each point p in cluster C there exists q ∈ NC such that both p and q are
on one side of oC , q is not older than p, and

1

1 + ε
||oC − q|| ≤ ||oC − p|| ≤ (1 + ε)||oC − q||; (1)

we say that q is a representative of p (or p is rounded to q).
4. When there are more than two clusters of size k, the two older clusters C1

and C2 are combined to form a cluster C of size 2k and a merge procedure
is applied to form NC from NC1

and NC2
.

To construct a subset NC satisfying Inequality 1 from C, the basic strategy is
as follows: let o be the newest point in C and let δ be the distance of the closest
point in C from o. For each i ≥ 0, find the newest point at distance between
(1 + α)iδ and (1 + α)i+1δ (for an α to be determined later) and put this point
in NC .

To merge two clusters C1 and C2, the idea is to apply the above procedure
to compute NC not from C but from just the points in NC1

∪ NC2
(ignoring

details about what δ should be for NC).
A problem that arises is that each merge may cause an additional additive

error of α∆(P). In other words, p might be rounded to q and then after a merge,
q might be rounded to another point r. To overcome this problem, the idea is
to use α = ε

logN . Since at most logN merges can happen to a point p, it always

has a representative q with ||q − p|| ≤ (logN)α∆(P) = ε∆(P).
In each cluster C, we keep O(log1+α R) = O(1ε logN logR) points in NC ,

and there are O(logN) clusters, so the space complexity of this method is about
the space needed for O(1ε log

2 N logR) points, i.e., about O(1ε log
3 N logR) bits.

3 Diameter in One Dimension: The New Algorithm

We now present a more direct algorithm for one-dimensional diameter that avoids
working with multiple clusters. To find the furthest pair in P , it is enough
to find the largest and smallest numbers, and we do this by two similar data
structures that maintain an approximate maximum and minimum of the points.
An “approximate maximum” here refers to a q ∈ P such that ||q − p|| ≤ ε∆(P)
where p ∈ P is the maximum point.
We now describe a data structure that maintains a subset of O(log1+ε R)

points of P , the largest of which is an approximate maximum. The data structure
supports insertion of a new point and deletion of the oldest point. The key idea
is in the following definition:

Definition 1. Let Q = 〈q1, q2, . . . , qk〉 be a subsequence of P such that q1 <
q2 < · · · < qk. Let predQ(p) be the maximum value in Q that is at most p and
succQ(p) be the minimum value that is at least p. We call Q a summary sequence
of P if the following conditions hold:

1. The qi’s are in decreasing order of arrival time.
2. For all p, predQ(p), if it exists, is not older than p.
3. For all p, either ||p− predQ(p)|| ≤ ε∆p(P) or succQ(p) is not older than p.

Here, ∆p(P) denotes the diameter of all points in P not older than p.

Let us see why summary sequences are important. First notice that upon
insertion of a new point p, we can delete all points b ∈ P that are not greater
than p. This is because from now on p is a better approximation than b for the
maximum value. So, condition 1 can be guaranteed. Conditions 2 and 3 ensure
that predQ(p) or succQ(p) can be used as a “representative” of p.
Notice that the summary sequence is not unique. For example in Figure 1,

from the summary sequence a1, a2, . . . , a7, we can get another summary sequence
by deleting a3, a4, and a5 while ensuring condition 3. The interesting question
is to how to maintain small summary sequences.
Our algorithm to maintain a summary sequence Q is remarkably simple and

is described completely in the pseudocode below. We assume that Q is stored in
a doubly linked list.

���
�
���
�

���
�

���
�
��	
	

�
�

��

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

���
�

 !
!

""#
#

$$%
%
&&'
'

(()
)

**+
+

,,-
-

../
/

010101010101010101010101010101010101010212121212121212121212121212121212121212

p19p21p25p15 p23 p24 p13p20 p17p14p18p22 p12p17

a1 = p25 a7 = p16

f

(1 + ε)f

a5 = p19a4 = p21a2 = p24 a3 = p22 a6 = p18

q1 = p25 q2 = p24 q3 = p18

Fig. 1. An example of a summary sequence. (The index of each point is equal to its
arrival time.)

Insert(p): /* given a new point p */
1. Remove all points in Q that are less than p, and put p at the begin-
ning.

2. After every 1
ε logR insertions, run Refine.

Refine:
1. Let q1 and q2 be the first and the second points in Q respectively.
2. Let q := q2.
3. While q is not the last element of Q do
4. Let x and y be the elements before and after q in Q.
5. If (1 + ε)||q1 − x|| ≥ ||q1 − y|| then remove q from Q.
6. Continue with q equal to y.
Delete(p): /* given the oldest point p */
1. Just remove p from Q if p ∈ Q.

We prove the correctness of our algorithm:

Lemma 1. After the refine algorithm, Q is still a summary sequence of P .
Furthermore, |Q| = O(1ε logR).

Proof: We show that conditions 1–3 remain valid each time a single point is
removed from Q. This is obvious for condition 1. Regarding condition 2, just note
that the new predecessor of a point is not older than the previous predecessor
by condition 1.
We now consider condition 3. Let p ∈ P . Before the removal, we have either

||p − predQ(p)|| ≤ ε∆p(P) or succQ(p) is newer than p. Set q = predQ(p) in
the former case, and q = succQ(p) in the latter. If q is not the point being
removed, then the condition clearly remains true for the point p. Otherwise, by
the design of the refine algorithm, the predecessor x and successor y of q must
satisfy (1 + ε)||q1 − x|| ≥ ||q1 − y||. This implies that ||p − x|| ≤ ||y − x|| ≤
ε||x− q1|| ≤ ε∆p(P), because x and q1 are newer than q by condition 1. Since x
is the new predecessor of p, condition 3 remains true for the point p.

For the second part of the lemma, let Q = 〈q1, q2, . . . qk〉 after the refine
algorithm. Then for each 1 < i < k − 2 we have ||q1 − qi+2|| > (1 + ε)||q1 − qi||,
because otherwise we would have removed qi+1. Since ||q1 − q2|| is at least the
minimum non-zero distance δ(P), and ||q1−qk|| is at most the maximum distance
∆(P), we have k ≤ 2 log1+ε

∆(P)
δ(P) ≤ 2 log1+ε R = O(1ε logR). ¤

It is easy to check that conditions 1-3 remain true after line 1 of the insert
algorithm, or after a deletion.

Theorem 1. There is a data structure, storing O(1ε logR) points, that main-
tains a (1+ε)-approximation of the diameter of a one-dimensional point set over
a sliding window of variable size. Insertion of a new point takes O(1) amortized
time. Deletion of the oldest point can be done in O(1) time.

Proof: The number of points in the summary sequence is O(1ε logR) after each
refine, and we do refine after each 1

ε logR insertions. Thus, the space complexity
of this method is O(1ε logR). Upon insertion of a new point, we may remove
O(1ε logR) points from the current summary sequence, but each point will be
removed at most once. On the other hand, an execution of the refine algorithm
requires O(1ε logR) time but is done once per

1
ε logR insertions. Thus, the amor-

tized insertion time is O(1). ¤

Remarks. The algorithm can be modified by standard techniques so that the
worst-case insertion time is O(1).
Besides being space-optimal (assuming coordinates have O(logN) bits), a

desirable new feature of our data structure is that the size of the window need
not be known in advance and can change dynamically (i.e., each insertion does
not have to be followed by one deletion, or vice versa).

4 Diameter in Higher Fixed Dimensions

Feigenbaum et al. have extended their one-dimensional diameter algorithm to
any fixed dimensions. They use the following well-known lemma:

Lemma 2. There is a set L of Θ
(

(1ε)
(d−1)/2

)

lines, in Rd such that for each
vector x ∈ Rd, the angle between x and some ` ∈ L is at most arccos(1

1+ε).

Such a set L can be constructed in Θ(|L|) time, for example, by a grid method
[7]. The idea is to construct this set L and use the one-dimensional structure to
maintain the diameter of the projection of the point set to each line ` ∈ L.

Lemma 3. Let L be the set of lines in Lemma 2. Assume that there is a black box
B that, given a set of one-dimensional points, returns a (1+ ε)-approximation of
its diameter. For a set of points P in Rd, project each point to each line ` ∈ L and
run B on it. The maximum of the returned values is a (1+O(ε))-approximation
of the diameter ∆ of P .

Proof: Let p, q ∈ P be the furthest pair of points in P . Suppose the angle
between line←→pq and ` ∈ L is at most arccos(1

1+ε). Let p
′ and q′ be the projection

of p and q on `. Then ||p−q|| ≤ (1+ε)||p′−q′||. On the other hand, the maximum
returned value is at least 1

1+ε ||p′ − q′|| ≥ 1
(1+ε)2 ∆. ¤

Feigenbaum et al. did not observe the following problem: If we naively apply
this projection approach, the spread of the one-dimensional point sets could be
much bigger than the spread R of the actual point set P (because the closest-pair
distance of the one-dimensional sets could be much smaller).
To fix this problem, we extend our one-dimensional approach using the above

lemma but in a more creative way. (Our idea can also extend the result of
Feigenbaum et al. to higher dimensions, but our data structure is more efficient.)
We always keep the location of the two newest points p1 and p2 in the current
window. If Q(`) = 〈q1, q2, . . . , qk〉 is a summary sequence of projection of the
given point set P on line `, then before line 2 of the refine algorithm, we remove
all qi’s that satisfies ||q1−qi|| ≤ ε||p1−p2|| (after the points are projected). These
points are too close to q1, and q1 can serve as their representative. Condition 3
of summary sequences is still satisfied. Let δ(P) be the closest-pair distance of

P . After the refine algorithm, |Q| would then be bounded by 2 log1+ε
∆(P)
εδ(P) =

O(1ε log
R
ε).

Theorem 2. There is a data structure, storing O((1ε)
(d+1)/2 log R

ε) points, that
maintains a (1 + ε)-approximation of the diameter of a point set in Rd over
a sliding window of variable size. Insertion of a new point to the window takes
O((1ε)

(d−1)/2) amortized time, and deletion of the oldest point takes O((1ε)
(d−1)/2)

time.

Proof: Each of the O((1ε)
(d−1)/2) one-dimensional structures stores O(1ε log

R
ε)

points. An approximate diameter can be computed by Lemma 3. An inser-
tion/deletion of a point may cause insertions/deletions in any of these one-
dimensional structures. ¤

Remark. In the above theorem, we can also redefine R to be the ratio between
the diameter and the minimum distance over all consecutive pairs (instead of all
arbitrary pairs).

5 Diameter in Higher Non-Constant Dimensions

Although our algorithm can work in any fixed dimension, the complexity grows
exponentially if d is not constant. If we allow a larger approximation factor,
more precisely,

√
d(1 + ε), we can still apply the projection approach to each

of d main axes and get a structure that stores O(d logR) points for a fixed
constant ε > 0. To get an approximation factor independent of d, we suggest a
different approach that requires larger (though sublinear) space. This approach
in fact works for any metric space, where the distance function d(·, ·) satisfies
the triangle inequality.

Lemma 4. Let o′, o, p, q be four points. If d(o, p) ≤ αd(o, q), then there exists
q′ ∈ {o, q} such that d(o′, p) ≤ (2α+ 1)d(o′, q′).

Proof:

d(o′, p) ≤ d(o′, o) + d(o, p) ≤ d(o, o′) + αd(o, q)

≤ d(o, o′) + α[d(o, o′) + d(o′, q)] ≤ (2α+ 1)max{d(o′, o), d(o′, q)}.
¤

For a sequence of points C in a metric space, let oC be the newest point in
C and let δC be the distance of the closest point in C to oC . Define QC , the
summary set of C, as follows: For each i ≥ 0, put the newest point among points
at distance between (1 + ε)iδC and (1 + ε)i+1δC into QC ; also put oC into QC .

Our algorithm proceeds as follows. We keep new points as they enter, and
after every k insertions (for a parameter k to be determined later), we let C to
be the set of k newest points (which we call a cluster) and replace C with QC .
The main property regarding the summary set is that each point p ∈ C has a
representative q ∈ QC , not older than p, such that 1

1+εd(oC , q) ≤ d(oC , p) ≤
(1 + ε)d(oC , q). Since |QC | = O(log1+ε R) for each C, our data structure keeps
O(k + n

k log1+ε R) points.

To approximate the diameter of the whole window, we consider the center
oC of the newest cluster C and find the furthest point from oC among all of
the points kept in our data structure. (Note that the furthest point from oC can
be updated in O(1) time after an insertion.) By the main property of summary
sets and Lemma 4, if p is the furthest point from oC in the whole window,
then we have kept a point q not older than p such that d(oC , p) ≤ (2(1 + ε) +
1)d(oC , q). Since d(oC , p) is a 2-approximation of the diameter, we have a 6+O(ε)
approximation of the diameter.

Deletion of the oldest point is easy. Setting k =
√

N yields the following
result:

Theorem 3. For any fixed ε > 0, there is a data structure, storing O(
√

N logR)
points, that maintains a (6 + ε)-approximation of the diameter over a sliding
window of N points in a metric space. Insertion takes an O(1) amortized number
of distance computations. Deletion of the oldest point requires O(logR) time.

Remark. The above method is similar to Feigenbaum et al.’s one-dimensional
method (Section 2), but instead of O(logN) levels of merging, we use only
one level. In fact, if we use multiple levels of merging, we can get better space
complexity at the expense of a bigger approximation factor. More precisely,

for any constant m, if we build a cluster for every N
1

m+1 points and merge

the summary sets of every N
1

m+1 clusters of the same size together, then we

can obtain a (2m+2− 2+ ε)-approximation algorithm by storing O(N
1

m+1 logR)
points.

6 Two-Dimensional Core-Sets

In this section, we consider geometric problems more difficult than the diameter
under the sliding window model. Specifically, we show how to maintain an ε-
core-set of a two-dimensional point set, as defined by Agarwal et al. [1]:

Definition 2. Given a point set P in Rd, the extent measure is defined as the
function ω(P, x) = maxp,q∈P (p−q)·x for each x ∈ Rd. An ε-core-set of P (under
the extent measure) is a subset E ⊆ P such that ω(E, x) ≥ 1

1+εω(P, x) for all x.

Clearly, if S is an ε-core-set of a set P , then the width of S is a (1 + ε)-
approximation of the width of P . Agarwal et al. [1] and Chan [7] gave efficient
algorithms for constructing core-sets and applied them to develop approximation
algorithms for various geometric optimization problems in both the traditional
and data stream model.
Our algorithm in this section is for a fixed window size, and unfortunately

its space bound depends on a new parameter in addition to ε, N , and R. This
new parameter is the ratio between the diameter and the smallest width of each
consecutive triple of points in the window and is denoted by R′. In Section 7 we
show that the dependence on this new parameter is necessary for any algorithm
that maintains an approximate width over a sliding window.
Our algorithm is a nontrivial combination of the diameter methods of Sec-

tions 2–4 with Chan’s core-set method for data streams [7]. We start by using
the clustering approach of Section 2 as in Feigenbaum et al. [10], i.e., we store
O(logN) clusters, and in each cluster C we attempt to keep a small subset of
points NC as the representative points of C.

The Subsets DC : For each cluster C, we first maintain a set DC of candidate
points for a constant-factor approximation of the farthest point in C to the
center oC . This is done by following the diameter structure of Section 4, with say
ε = 1/2 (which maintains a constant number of summary sequences). Whenever
two clusters C1 and C2 are combined to form C, we can compute DC from DC1

and DC2
by combining the corresponding summary sequences of DC1

and DC2
.

More precisely to combine two summary sequences both on the same line, we
put the two sequences together and run the refine algorithm. When a point is
deleted from C, we simply delete it from DC .

Lemma 5. Let p be an arbitrary point in a cluster C, then there exists a point
q ∈ DC such that q is not older than p and ||oC − p|| ≤ 3||oC − q||.

Proof: Let q and r be the two furthest points in DC ; we know (1+ ε)||q− r|| ≥
∆p(C), where ∆p(C) denotes the diameter of points in C that are not older than
p. Then

||oC − p|| ≤ ∆p(C) ≤ (1 + ε)||q − r|| ≤ 2(1 + ε)max{||oC − q||, ||oC − r||}.

The lemma follows as we have chosen ε = 1
2 . ¤

The Representatives: For each q ∈ DC , consider
6
α lines perpendicular to

←→oCq
at distances 0, α||oC − q||, 2α||oC − q||, . . . , 3||oC − q|| from oC , and call this set
of lines Lq (the value of α will be specified later). For a point p and line `, let
d(p, `) be the distance between p and `. For ` ∈ Lq, let C` be the set of points
p ∈ C such that ||oC − p|| ≤ 3||oC − q|| and ` is the closest line to p in Lq. Let
o be the newest point in C`. Let oC , s1, and s2 be the newest, second newest,
and third newest points C respectively and let wC be the width of these three
points.
Fix a point q ∈ DC and a line ` ∈ Lq. Let p′ denote the projection of

a point p to ` and C ′` = {p′ | p ∈ C`}. For each i ≥ 0, among the set of
points whose projections are at distance between (1+α)iαwC and (1+α)i+1αwc

from o′, choose the newest point as the representative of these points. Also for
points whose projection are at distance at most αwC from o′, choose o as their
representative. With this selection, each point p ∈ Cl has a representative v such
that either ||v′ − p′|| ≤ αwC or

1

1 + α
max{||o′−v′||, ||o′−p′||} ≤ ||o′−v′|| ≤ (1+α)min{||o′−v′||, ||o′−p′||}. (2)

We let vq(p) denote such a representative v. Notice that here each point may
have several representatives (possibly a different one for each q ∈ DC). Notice
that if ||p− oC || > 3||q − oC ||, then vq(p) does not exist.
The above approach and the proof of the following lemma are similar to

Chan’s approach for data streams [7].

Lemma 6. For a cluster C and a point p ∈ C there exists a point q ∈ DC such
that q is not older than p and for each vector x, |(vq(p)− p) ·x| ≤ O(α)ωp(C, x),
where ωp(C, x) = maxa,b(a − b) · x and the maximum is over all a, b ∈ C not
older than p.

Proof: By Lemma 5, pick a point q ∈ DC that is not older than p and ||oC−p|| ≤
3||oC − q||. Let v = vq(p) and o be the center of the set C` that contains p. Then
for any a ∈ C`,

|(a− a′) · x| ≤ |α
2
(o− q) · x| ≤ α

2
ωp(C, x), (3)

since neither q nor o is older than p. Applying this to p and v, we have

|(v−p) ·x| ≤ |(v−v′) ·x|+ |(v′−p′) ·x|+ |(p′−p) ·x| ≤ |(v′−p′) ·x|+αωp(C, x).

If ||v′−p′|| ≤ αwC , then we are done. Otherwise, by Inequality 2,
1

1+α ||o′−v′|| ≤
||o′ − p′|| ≤ (1 + α)||o′ − v′||, implying that |(v′ − p′) · x| ≤ α|(o′ − p′) · x|. Then

|(o′ − p′) · x| ≤ |(o′ − o) · x|+ |(o− p) · x|+ |(p− p′) · x| ≤ (1 + α)ωp(C, x)

=⇒ |(v − p) · x| ≤ (α(1 + α) + α)ωp(C, x).
¤

The Subsets NC : Whenever two clusters C1 and C2 are combined to form C, we
construct NC to be the set of all representatives of NC1

∪ NC2
. When a point

is deleted from C, we simply delete it from NC . By Lemma 6, each merging
may cause an additive error of O(α)ωp(C, x). After a point p has experienced k
merges, the additive error is O(kα)ωp(C, x). Since there could be logN merges,
the final error will be O(α logN), so to get an ε-core-set, we set α = ε

logN .

Analysis: For the space requirement of our method, observe that |DC | = O(logR),
as in Theorem 2. For each q ∈ DC , there are O(1

α) lines, each of which has

O(log1+α
R′

α) representatives. So, |NC | = O(1
α logR log1+α

R′

α) = O(1
α2 logR log

R′

α).

Since α = ε
logN , the number of points in each cluster isO(

1
ε2 log

2 N logR log R′ logN
ε).

As there are logN clusters, we obtain the following theorem:

Theorem 4. There is a data structure, storing O(1
ε2 log

3 N logR(logR′+log logN+
log 1

ε)) points, that maintains an ε-core-set of a two-dimensional point set over
a sliding window of size N .

Remark. Using core-sets, approximation algorithms can be developed for many
geometric optimization problems, including the smallest enclosing rectangle and
the smallest enclosing circle [1].

7 A Lower Bound for Width

We now prove a space lower bound for any algorithm that maintains an approx-
imate width in the sliding window model. Our goal is to support Theorem 4 by
showing that the dependence of the space lower bound on R′ is necessary.
We use a proof technique similar to Feigenbaum et al.’s [10].

Theorem 5. Let A be an algorithm that maintains a c-approximation of the

width in the sliding window model. Given R′ ≤ 2O(N1−δ) for some fixed δ > 0,
there are input streams for which the spread is bounded by a polynomial in N ,
the ratio of the diameter to the minimum width over all consecutive triples of
points is bounded by O(R′), but A requires at least Ω(logR′ logN) bits of space.

Proof: Pick a non-increasing sequence a1 ≥ a2 ≥ · · · ≥ aN from the set
{c−3, c−6, . . . , c−3m} with m = 1

3 logc R
′. Set aN+1 = aN+2 = · · · = 1/R′.

Consider the input stream of points (−5 − i/N, 0), (i/N, ai), (5 + i/N, 0) for
i = 1, 2, . . . , 2N . Since the diameter is O(1) and the closest-pair distance is
Ω(1/N), the spread is O(N). The width of any consecutive triple is at least
1/R′. If at any time we have a c-approximation to the width, we can reconstruct
a1, . . . , aN after the point (1, aN) is read. LetM be the number of non-increasing
sequences of size N chosen from a set of size m. The number of bits stored by
the algorithm must therefore be at least

logM = log

(

N +m− 1
m− 1

)

= Ω

(

m log
N

m

)

= Ω (logR′ logN) .

¤

Remark. In contrast, if points have integer coordinates in the range {1, . . . , R},
it is possible to replace the parameter R′ with R in Theorem 4, because the
width of any non-collinear triple of points is lower-bounded by Ω(1/R).

References

1. P. K. Agarwal, S. Har-Peled, and R. Varadarajan. Approximating extent measures
of points. Journal of the ACM, to appear.

2. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning
trees and related problems in higher dimensions. Computational Geometry: Theory
and Applications, 1:189–201, 1991.

3. P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric
optimization problems. Discrete & Computational Geometry, 16:317–337, 1996.

4. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38:91–
109, 2001.

5. J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-
dynamic transformations. Journal of Algorithms, 1(4):301–358, 1980.

6. T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. International Journal on Computational Geometry and
Applications, 12:67–85, 2002.

7. T. M. Chan. Faster core-set constructions and data stream algorithms in fixed
dimensions. In Proceedings of the 20th Annual Symposium on Computational Ge-
ometry, pages 152–159, 2004.

8. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4(1):387–421, 1989.

9. C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and
optimization algorithms for computational metrology. In Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 121–130, 1997.

10. J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming
and sliding-window models. Algorithmica, to appear; or as Tech. Report DCS/TR-
1245, Yale University, http://cs-www.cs.yale.edu/homes/jf/FKZ.ps, 2002.

11. A. Goel, P. Indyk, and K. Varadarajan. Reductions among high dimensional prox-
imity problems. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 769–778, 2001.

12. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
Technical Report SRC-TN-1998-011, Hewlett Packard Laboratories, 1998.

13. J. Hershberger and S. Suri. Convex hulls and related problems in data streams. In
ACM SIGMOD/PODS Workshop on Management and Processing of Data Streams,
pages 148–168, 2003.

14. P. Indyk. Better algorithms for high-dimensional proximity problems via asymmet-
ric embeddings. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 539–545, 2003.

15. S. M. Muthukrishnan. Data streams: Algorithms and applications. Rutgers Univer-
sity Technical Report, http://athos.rutgers.edu/~muthu/stream-1-1.ps, 2003.

16. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

17. E. A. Ramos. An optimal deterministic algorithm for computing the diameter of
a three-dimensional point set. Discrete & Computational Geometry, 26:233–244,
2001.

