
Optimal Deterministic Algorithms for 2-d and 3-d
Shallow Cuttings
Timothy M. Chan∗1 and Konstantinos Tsakalidis2

1 Cheriton School of Computer Science, University of Waterloo
tmchan@uwaterloo.ca

2 Department of Computer Science and Engineering, Hong Kong University of
Science and Technology
tsakalid@cse.ust.hk

Abstract
We present optimal deterministic algorithms for constructing shallow cuttings in an arrangement
of lines in two dimensions or planes in three dimensions. Our results improve the deterministic
polynomial-time algorithm of Matoušek (1992) and the optimal but randomized algorithm of
Ramos (1999). This leads to efficient derandomization of previous algorithms for numerous well-
studied problems in computational geometry, including halfspace range reporting in 2-d and 3-d,
k nearest neighbors search in 2-d, (≤ k)-levels in 3-d, order-k Voronoi diagrams in 2-d, linear
programming with k violations in 2-d, dynamic convex hulls in 3-d, dynamic nearest neighbor
search in 2-d, convex layers (onion peeling) in 3-d, ε-nets for halfspace ranges in 3-d, and more.
As a side product we also describe an optimal deterministic algorithm for constructing standard
(non-shallow) cuttings in two dimensions, which is arguably simpler than the known optimal
algorithms by Matoušek (1991) and Chazelle (1993).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases shallow cuttings, derandomization, halfspace range reporting, geometric
data structures

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Shallow cuttings were introduced by Matoušek [25] as a tool for range searching, specifically,
halfspace range reporting. They have since found applications to numerous other central
problems in computational geometry, including (≤ k)-levels in arrangements of hyperplanes,
order-k Voronoi diagrams, linear programming with k violations, dynamic convex hulls,
and dynamic nearest neighbor search (see Section 1.4 for more information). At SoCG’99,
Ramos [29] presented an optimal randomized algorithm for constructing shallow cuttings in
two and three dimensions. A nagging question that has remained open is whether there is an
equally efficient deterministic algorithm. The main result of this paper is a positive resolution
to this question. Although the question is mainly about theoretical understanding, and
derandomization isn’t the most “fashionable” topic in computational geometry, we believe
that in this case the fundamental nature of the problem and its wide-ranging consequences
make the problem important to study.

∗ Part of this work was done during the author’s visit to the Hong Kong University of Science and
Technology.

© Timothy M. Chan and Konstantinos Tsakalidis;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

1.1 Standard Cuttings
I Definition 1. Let H be a set of n hyperplanes in Rd. Given a parameter r ∈ [1, n] and a
region L ⊆ Rd, a 1

r -cutting for H covering L is a set of interior-disjoint simplices (cells) such
that

(i) the interior of every cell intersects at most n
r hyperplanes of H, and

(ii) the union of the cells covers L.

The conflict list H∆ of a cell ∆ is the set of (at most n
r) hyperplanes of H that intersect ∆.

The size of the cutting is the number of its cells.

Cuttings are a fundamental tool in geometric divide-and-conquer. In the default “standard”
setting, a cutting covers all of Rd, i.e., L = Rd.

Random sampling techniques by Clarkson [16] and Haussler and Welzl [21] imply the
existence of (standard) 1

r -cuttings of size O((r log r)d). Chazelle and Friedman [15] refined
the bound to O(rd), which is optimal. (In the 2-d case, there is a simple alternative proof
based on levels by Matoušek [23].)

Considerable effort was spent in finding efficient deterministic algorithms to construct
such an optimal-size cutting. Even the 2-d case turned out to be a challenge. At SoCG’89,
Matoušek [23] presented an O(nr2 log r)-time algorithm for d = 2. At the same conference,
Agarwal [4] (see also his PhD thesis [5]) presented an O(nr logn log3.33 r)-time algorithm for
d = 2. In a subsequent paper, Matoušek [24] improved the deterministic time bound to O(nr)
for d = 2, which is optimal if the algorithm is required to output the conflict lists of all the
cells (since the worst-case total size of the conflict lists is Θ(r2 · nr) = Θ(nr)). Matoušek’s later
paper also described a deterministic O(nrd−1)-time algorithm for any constant dimension d,
which is again optimal if we need to output all conflict lists, but this result holds under the
restriction that r is not too big, i.e., r < n1−δ for some constant δ > 0. Finally, Chazelle [14]
obtained a deterministic O(nrd−1)-time algorithm without any restriction on r for all constant
dimensions d. All of these deterministic algorithms are complicated and/or make use of
advanced derandomization techniques such as ε-approximations [21].

1.2 Shallow Cuttings
Given a point p, the level of p in H is the number of hyperplanes of H that are below p. We
define L≤k(H) to be the (≤ k)-level, i.e., the region of all points with level in H at most k.
A shallow cutting is a variant of the standard cutting that is required to cover only points
that are “shallow”, i.e., have small levels.

I Definition 2. Given parameters k, r ∈ [1, n], a k-shallow 1
r -cutting is a 1

r -cutting for
L≤k(H).

We concentrate on the most important case of k = Θ(nr), which is sufficient for all of the
applications encountered; in fact, shallow cuttings for any value of k can be reduced to this
case—see the remarks in Section 5. Matoušek [25] proved the existence of a Θ(nr)-shallow
1
r -cutting of size O(rbd/2c), which is smaller than the O(rd) bound for standard 1

r -cuttings
and is optimal in the worst case. In particular, for d ∈ {2, 3}, the size is O(r).

In the same paper, Matoušek presented a deterministic algorithm that can construct
such a shallow cutting in polynomial time; the running time improves to O(n log r) but only
when r is small, i.e., r < nδ for a sufficiently small constant δ. Later, Ramos [29] presented
a complicated randomized algorithm for d = 3 (and hence d = 2 as well) with O(n logn)
expected running time to construct not just a single shallow cutting, but a hierarchy of

T. M. Chan and K. Tsakalidis 3

O(logn) such shallow cuttings for all r’s forming a geometric sequence from 1 to n. (Such a
hierarchy is useful in certain applications.) Recently, at SODA’14, Afshani and Tsakalidis [3]
managed to achieve the same bound deterministically, albeit only for an orthogonal variant of
the problem where the input objects are orthants in R3 (which nonetheless has applications
to dominance range reporting); subsequently, Afshani et al. [2] improved the time bound for a
single shallow cutting to O(n log logn) in the word RAM model. The case of orthants is indeed
a special case, as orthants can be mapped to halfspaces via a certain transformation [12].

1.3 Our Contributions

We present deterministic algorithms to construct a Θ(nr)-shallow 1
r -cutting of size O(r) for

d ∈ {2, 3} in O(n log r) time, which is optimal in a comparison-based model (the default
model in this paper). Like Ramos’ randomized algorithm [29], our algorithms can in fact
construct a hierarchy of such shallow cuttings for all r’s in a geometric sequence, along with
the conflict lists of all cells, in O(n logn) total time. (Note that for our 3-d algorithm, we do
not insist the cutting in one layer of the hierarchy be nested inside the cutting in the next
layer.)

Considering how involved known deterministic algorithms for standard cuttings are, we
are happy to report that the new results are not complicated to derive. All the needed
background is provided in Section 2; no advanced derandomization techniques are used. The
main algorithms are describable in a few lines, as seen in Sections 3 and 4, although their
analyses are not trivial.

Like in Chazelle’s cutting algorithm [14], we will construct the hierarchy layer by layer,
refining the shallow cutting in the previous layer to obtain the shallow cutting in the next
layer. A naive implementation would cause an amplification of the constant factor in the
cutting size bound, which may “blow up” after logarithmically many iterations. Chazelle
used ε-approximations and sparse ε-nets to refine the cutting in each cell, and controlled the
blow-up by charging cost to some easily summable quantity (namely, the number of vertices
inside the cell). We replace ε-approximations and sparse ε-nets with the more elementary
techniques by Megiddo and Dyer [28, 17]. We use a brute-force search to find the best way
to refine the cutting in each cell, and control the blow-up by bounding cost in terms of the
cost of an optimal cutting—this strategy is reminiscent of the analysis of approximation
algorithms or PTASes (although we do not explicitly design an approximation algorithm to
find the minimum-size cutting).

The strategy works beautifully in 2-d, but the constant-factor blow-up becomes tougher
to deal with in 3-d, because cost of substructures along the cell boundaries becomes non-
negligible. To tackle this issue, we borrow an idea from a different paper by Ramos [30],
of using planar graph separators to group cells into regions, which we call “supercells”, so
that the total size of the boundaries of the supercells is reduced. (Ramos originally applied
this idea to obtain an optimal deterministic algorithm for the 3-d diameter problem and for
computing lower envelopes of certain bivariate surfaces in 3-d, but did not consider shallow
cuttings in that paper. Also, the details of his algorithms appear more complicated, using
ε-nets and supercells of size nδ, whereas we use only supercells of constant size.)

In the appendix, we show that our ideas can also lead to a new presentation of a
deterministic O(nr)-time algorithm for constructing standard 1

r -cuttings in 2-d. This may
be of independent pedagogical interest, considering the long line of previous complicated
algorithms.

4 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

1.4 Applications
As mentioned, shallow cuttings are important because of their numerous applications. Below
we list some of the specific implications of our new 2-d and 3-d deterministic algorithms.

1. The first optimal deterministic O(n logn)-time algorithm to preprocess a set of n points
in R3 into an O(n)-space data structure, so that we can answer a halfspace range reporting
query (i.e., report all k points that lie within any given halfspace) in O(logn+ k) time.
This result follows from the work of Afshani and Chan [1], which was almost deterministic
except for the invocation of Ramos’ algorithm to construct a shallow cutting during
preprocessing.
By a standard lifting transformation, the same result holds for circular range reporting in
R2 (reporting all k points that lie inside any given circle) and k nearest neighbors search
in R2 (reporting all k nearest neighbors to a given point, in arbitrary order, under the
Euclidean metric).

2. The first optimal deterministic O(n logn+ nk2)-time algorithm to construct the (≤ k)-
level of an arrangement of n planes in R3. This result follows from the work of Chan [9],
which previously required randomization.

3. The currently fastest deterministic O(n logn+nk·t(k))-time algorithm for constructing the
k-th order Voronoi diagram of n points in R2. Here, t(·) denotes the (amortized) update
and query time complexity for the 2-d dynamic convex hull problem (under gift-wrapping
queries). We have t(k) = O(log k log log k) [7], or better still, t(k) = O(log k) [8] if one has
confidence in the over-100-page proof in the latter paper. This result again follows from the
work of Chan [9]. Compare the result with Ramos’ randomized O(n logn+ nk2O(log∗ k))-
time algorithm [29].

4. A deterministic O((n+ k2) log k)-time algorithm for 2-d linear programming with at most
k violations (i.e., given a set of n halfspaces, find the point that lies inside all but k of
the halfspaces and is extreme along a given direction). This result follows from another
work of Chan [10], which was almost deterministic except for the construction of a 2-d
shallow cutting in one step.

5. The first deterministic data structure for dynamic 3-d convex hull with polylogarithmic
amortized update and query time, namely, O(log3 n) amortized insertion time, O(log6 n)
amortized deletion time, and O(log2 n) time for a gift-wrapping query. This result
follows from another work of Chan [11], which was almost deterministic except for the
construction of a hierarchy of 3-d shallow cuttings during certain update operations.
This result itself spawns countless additional consequences, for example, to dynamic 2-d
smallest enclosing circle, dynamic 2-d bichromatic closest pair, dynamic 2-d diameter,
dynamic 2-d Euclidean minimum spanning tree, 3-d convex layers (onion peeling), output-
sensitive construction of 3-d k-levels, and so on.

6. A deterministic data structure for dynamic 2-d halfspace range reporting with O(log6+ε n)
amortized update time and O(logn+ k) query time for any fixed ε > 0. In 3-d, the query
time increases to O(log2 n/ log logn+ k). This result follows from yet another work of
Chan [11], which was almost deterministic except for the construction of a hierarchy of
shallow cuttings during certain update operations.

7. A deterministic O(n log r)-time algorithm to construct a 1
r -net of size O(r) for n points

in R3 with respect to halfspace ranges. This application actually appeared in Matoušek’s
original paper on shallow cuttings [25]. There, he was interested in proving existence
of O(r)-size nets, but with our shallow cutting algorithm, the deterministic time bound
follows. (Roughly speaking, in the dual, we construct a n

r -shallow O(1
r)-cutting, construct

T. M. Chan and K. Tsakalidis 5

an ε-cutting within each cell for a sufficiently small constant ε, and output an arbitrary
plane passing below each subcell.) Of course, ε-nets are well known and central to
combinatorial and computational geometry. Previously, there were deterministic nrO(1)-
time algorithms (e.g., see a recent note [20]), and an O(n log r)-time algorithm but only
when r is small, i.e., r < nδ for some constant δ [25].
By a standard lifting transformation, the same result holds for ε-nets for points in R2

with respect to circular disk ranges.

2 Preliminaries

It will be more convenient to work with the parameter K := n
r instead of r. For brevity, a

k-shallow K
n -cutting will be referred to as a (k,K)-shallow cutting. It satisfies the properties

that (i) each cell intersects at most K hyperplanes, and (ii) the cells cover L≤k(H). Our
goal is to compute a (k,Θ(k))-shallow cutting of size O(nk).

For a set V of points in Rd, we denote by UH(V) the region underneath the upper hull
of V . We define the vertical decomposition VD(V) to be the set of interior-disjoint cells
covering UH(V), such that each cell is bounded from above by a different face of UH(V), is
bounded from the sides by vertical walls, and is unbounded from below. For example, in
2-d, the boundary of UH(V) is a concave chain; a cell in VD(V) is bounded by an edge of
UH(V) and two walls (downward vertical rays). In 3-d, the boundary of UH(V) is a concave
polygonal surface with triangular faces; a cell in VD(V) is bounded by a triangle and three
walls (trapezoids that are unbounded from below).

In the studied dimensions d ∈ {2, 3}, we find it simpler to work with the following
equivalent form of shallow cuttings:

I Definition 3. Given parameters k,K ∈ [1, n], a (k,K)-shallow cutting for H in vertex
form is a set V of points such that

(i) every point in V has level at most K, and
(ii) UH(V) covers L≤k(H).

The conflict list of a point v ∈ V is the set of (at most K) hyperplanes in H that are below v.

A (k,K)-shallow cutting under the original definition can be transformed into a (k, k+K)-
shallow cutting in vertex form simply by letting V be the set of vertices of the cells (after
pruning cells that do not intersect L≤k(H)). In the reverse direction, a (k,K)-shallow cutting
V in vertex form can be transformed to a (k, dK)-shallow cutting under the original definition
simply by taking VD(V), since the conflict list H∆ of a cell ∆ is contained in the union of
the conflict lists of the d vertices of ∆, and thus |H∆| ≤ dK. In 2-d and 3-d, the size of
VD(V) is O(|V |), and computing VD(V) takes O(|V | log |V |) time by an optimal convex hull
algorithm.

From now on, all shallow cuttings will be in vertex form by default.
Our algorithms do not require any advanced derandomization techniques at all. Only

three facts are needed (the third is used only for the 3-d case):

I Fact 4. (Constant-Size Cuttings) Given a set of n lines in R2 or planes in R3 and any
constant ε > 0, a (standard) ε-cutting of constant size can be computed in O(n) worst-case
time.

I Fact 5. (Existence of O(nk)-Size Shallow Cuttings) Given a set of n lines in R2 or planes
in R3 and a parameter k ∈ [1, n], there exists a (k, c0k)-shallow cutting (in vertex form) of
maximum size c′0 nk , for some universal constants c0, c′0.

6 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

I Fact 6. (Planar Graph Separators) Given a triangulated planar graph with n vertices and
a parameter t ∈ [1, n], we can group the triangles into at most a0

n
t connected regions where

each region contains at most t triangles, and the total number of edges along the boundaries
of the regions is at most a′0 n√

t
for some universal constants a0, a

′
0. Such regions can be

computed in O(n logn) time.

Fact 4 was known in the 1980s even before the term “cutting” was coined. In deriving
their linear-time algorithm for 3-d linear programming, Megiddo [27] and Dyer [17] implicitly
gave a linear-time construction of a 7

8 -cutting of size 4 in 2-d. Megiddo [28] subsequently
generalized the construction to d dimensions, yielding a (1− 1/22d−1)-cutting of size 22d−1

in linear time. (The cells may not be simplices, but we can triangulate them and the size
remains bounded by a constant.) Although these constructions give ε-cuttings for one specific
constant ε > 0, iterating a constant number of times automatically yields ε-cuttings for any
given constant ε > 0 in linear time. The size of such a cutting may be suboptimal, but for
our purposes, any constant size bound will be sufficient. More powerful techniques based on
ε-approximations and ε-nets [21, 15] can yield better bounds, but a virtue of Megiddo and
Dyer’s constructions is that they are completely elementary, relying on linear-time median
finding as the only subroutine.

Fact 5 was proved by Matoušek [25] by using Chazelle and Friedman’s random sampling
techniques [15]. (In the 2-d case, there is a simpler alternative proof using levels, similar
to [23] and implicit in one of the proofs in [6].) For our purposes, we do not actually need
to know how Fact 5 is proved and do not care about the construction time—we just need
the existence of O(nk)-size shallow cuttings, not for our algorithms themselves but for their
analyses.

Fact 6 is a multiple-regions version [18] of the well-known planar graph separator theo-
rem [22], as applied to the dual of the given graph. The multiple-regions version follows from
the standard version by recursion. The running time O(n logn) can actually be reduced to
O(n) [19], although we do not need this improvement. A version by Frederickson [18] can
further guarantee that each region has O(

√
r) boundary edges (Fact 6 guarantees the same

bound but on average only); again, we do not need such an improvement.

3 A 2-d Shallow Cutting Algorithm

We begin in 2-d and prove the following theorem, from which our main result will follow as a
corollary:

I Theorem 7. For a set H of n lines in R2, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, given a (Bk,CBk)-shallow cutting Vin (in vertex form) for H of size
at most C ′ nBk along with its conflict lists, we can compute a (k,Ck)-shallow cutting Vout
(in vertex form) for H of size at most C ′ nk along with its conflict lists in O(n + n

k log n
k)

deterministic time.

Proof.

Algorithm. Let ε be a constant to be set later. Our algorithm is conceptually simple:

1. For each cell ∆ ∈ VD(Vin):
1.1. Compute by Fact 4 an ε-cutting Γ∆ for H∆ of O(1) size, where the cells are

clipped (and re-triangulated) to lie within ∆. Let Λ∆ be the set of vertices that
define the cells of Γ∆.

T. M. Chan and K. Tsakalidis 7

1.2. Compute by brute force the smallest subset V∆ ⊆ Λ∆ such that
(i) every vertex in V∆ has level in H∆ at most Ck, and
(ii) UH(V∆) covers all vertices in Λ∆ that are in L≤2k(H∆).

2. Return Vout :=
⋃

∆∈VD(Vin)
V∆ and all its conflict lists.

Complexity. In Line 1, computing VD(Vin) takes O(nk log n
k) time by an optimal convex

hull algorithm, since |Vin| ≤ C ′ nBk = O(nk). Line 1.1 takes time linear in |H∆| by Fact 4,
for a total of

∑
∆∈VD(Vin)O(|H∆|) = O(C ′ nBk · 2CBk) = O(n) time. For Line 1.2, first we

determine the level in H∆ of every vertex in Λ∆ by a linear scan over H∆, and then we probe
all possible subsets of Λ∆. Since Γ∆ and Λ∆ have O(1) size, there are “only” O(1) subsets
to test (although the constant is exponentially bigger) and each subset can be tested for the
two stated conditions in O(1) time. Thus, the whole step takes time linear in |H∆|, which
again totals to O(n). In Line 2, computing Vout takes time linear in the output size. The
conflict list of every output vertex in V∆ can be computed by a linear scan over H∆, again
in O(n) total time.

Correctness. To show that Vout is a correct (k,Ck)-shallow cutting for H, we just check
that UH(Vout) covers L≤k(H). This follows since for any point inside a cell of Γ∆ with level at
most k, the three vertices of the cell in Γ∆ have levels at most k+ε|H∆| ≤ k+ε(2CBk) = 2k
by setting the constant ε := 1

2CB , and are thus covered by UH(V∆).
To bound the size of Vout, we compare it against a (2k, 2c0k)-shallow cutting V ∗ of size

c′0
n
2k provided by Fact 5. Note that V ∗ is covered by VD(Vin) by picking a constant B ≥ 2c0,

since every vertex in V ∗ has level at most 2c0k, and VD(Vin) covers L≤Bk(H).
We render V ∗ comparable to Vout by modifying V ∗ in two steps (we emphasize that

these steps are not part of the algorithm but are for the correctness proof only):

First, we chop UH(V ∗) at the walls of the cells of VD(Vin). A new vertex is formed at
each wall; we create two copies of each such vertex (one assigned to each of the two
incident cells of VD(Vin)) and add them to V ∗. (See Figure 1.) For each cell ∆ ∈ VD(Vin),
let V ∗∆ := V ∗ ∩∆. Then (i) every vertex in V ∗∆ (including the extra vertices added) has
level at most 4c0k, and (ii) UH(V ∗∆) is exactly UH(V ∗)∩∆ and thus covers L≤2k(H)∩∆.
The number of extra vertices added is at most 2C ′ nBk , so the size of V ∗ is now at most
(c
′
0
2 + 2C

′

B)nk .
Next, for every cell ∆ ∈ VD(Vin), we snap the vertices in V ∗∆ to the vertices of Γ∆, i.e.,
we replace every vertex v ∈ V ∗∆ with the three vertices of the cell in Γ∆ containing v.
(See Figure 1.) This makes V ∗∆ ⊆ Λ∆. Then (i) every vertex in V ∗∆ now has level at most
4c0k + ε|H∆| ≤ 4c0k + ε(2CBk) = (4c0 + 1)k, and (ii) UH(V ∗∆) can only increase in its
coverage. The size of V ∗ triples to at most (3

2c
′
0 + 6C

′

B)nk .

Then Line 1.2 guarantees that |V∆| ≤ |V ∗∆| by setting the constant C := 4c0 + 1, since
the subset V ∗∆ ⊆ Λ∆ satisfies the two stated conditions and V∆ is the smallest such subset.
Therefore, totalling over all cells in VD(Vin), we have |Vout| ≤ |V ∗| ≤ (3

2c
′
0 + 6C

′

B)nk ≤ C
′ n
k

as desired, by setting the constant C ′ :=
3
2 c
′
0

1− 6
B

and picking a constant B > 6. J

I Corollary 8. For a set H of n lines in R2, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, we can compute a (Bik,CBik)-shallow cutting of size at most C ′ nBik ,
along with its conflict lists, for all i = 0, 1, . . . , logB n

k in O(n log n
k) total deterministic time.

In particular, we can compute a (k,Ck)-shallow cutting of size O(nk) in the stated time.

8 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

V D(VIN)

UH(V ∗)

∆

Figure 1 Modifying V ∗ by chopping (adding points marked by black squares) and snapping
(replacing a point with three points indicated by white arrows). The cutting Γ∆ is shown in dashed
lines, and its vertices Λ∆ are marked by crosses.

Proof. By Theorem 7, the running time T (n, k) satisfies the recurrence

T (n, k) = T (n,Bk) +O
(
n+ n

k
log n

k

)
,

with the trivial base case T (n, n) = O(n). The recurrence solves to T (n, k) = O(n logB n
k) +

O
(
n
k log n

k

)∑logB
n
k

i=0
1
Bi = O(n log n

k). J

4 A 3-d Shallow Cutting Algorithm

We now extend the approach from the previous section to 3-d. We need to incorporate planar
separators in the algorithm and further new ideas in the analysis.

I Theorem 9. For a set H of n planes in R3, a parameter k ∈ [1, n] and some suitable
constants B,C,C ′, given a (Bk,CBk)-shallow cutting Vin for H of size at most C ′ nBk along
with its conflict lists, we can compute a (k,Ck)-shallow cutting Vout for H of size at most
C ′ nk along with its conflict lists in O(n+ n

k log n
k) deterministic time.

Proof.

Algorithm. Let ε and t be constants to be set later.

0. Group the faces of UH(Vin) into regions by applying Fact 6 with parameter t. The union
of the cells of VD(Vin) defined by the triangles in a region will be called a supercell of
VD(Vin).

1. For each supercell ∆ of VD(Vin):

1.1. Do as in Line 1.1 of the algorithm in Section 3.
1.2. Do as in Line 1.2 of the algorithm in Section 3.

2. Do as in Line 2 of the algorithm in Section 3.

Complexity. Line 0 takes O(nk log n
k) time by Fact 6, since |Vin| ≤ C ′ nBk = O(nk). Lines 1.1,

1.2, and 2 take O(n+ n
k log n

k) time by an analysis similar to Section 3, since each supercell
still has O(1) complexity for t constant.

T. M. Chan and K. Tsakalidis 9

w

σw

V D(VIN)

UH(S ′
w)

UH(Sw)

Figure 2 Replacing the concave chain UH(Sw) with a sparse concave chain UH(S′w) at a wall w

of a supercell of VD(Vin). The set S′w is a planar shallow cutting.

Correctness. By the same argument as in Section 3, we see that Vout is a correct (k,Ck)-
shallow cutting for H, this time by setting the constant ε := 1

3tCB , since |H∆| ≤ 3tCBk for
each supercell ∆ of VD(Vin).

As in Section 3, we bound the size of Vout by comparing it against a (2k, 2c0k)-shallow
cutting V ∗ of size c′0 n

2k provided by Fact 5. As before, V ∗ is covered by VD(Vin), this time
by picking a constant B ≥ 6c0.

We render V ∗ comparable to Vout by modifying V ∗ in three steps, the second of which is
new (again these steps are not part of the algorithm but are for the correctness proof only):

First, we chop UH(V ∗) at the walls of the supercells of VD(Vin). A new planar concave
chain of vertices is formed at each wall; we create two copies of the chain (one assigned to
each of the two incident cells of VD(Vin)) and add their vertices to V ∗. For each supercell
∆ of VD(Vin), let V ∗∆ := V ∗ ∩∆. Then (i) every vertex in V ∗∆ has level at most 6c0k, and
(ii) UH(V ∗∆) ∩∆ is exactly UH(V ∗) ∩∆ and thus covers L≤2k(H) ∩∆. Unfortunately we
do not have good enough bounds on the number of extra vertices added to V ∗.
To reduce the size of V ∗, we replace the chain Sw of vertices at every wall w of a supercell
with a sparser set S′w of vertices defined as follows. (See Figure 2.) Let Hw be the set of
planes in H intersecting w, and let S′w be a planar (6c0k, 6c20k)-shallow cutting provided
by Fact 5 for the intersection of Hw with the vertical plane through w (a set of lines).
Let σw be the slab delimited by the two vertical lines through the two subwalls of w. We
clip UH(S′w) to σw, add the two new vertices to S′w, and remove any vertices outside σw.
Observe that S′w is covered by w (and thus by VD(Vin)) by picking a constant B ≥ 12c20,
because every vertex in S′w (including the two extra vertices added) has level in Hw at
most 12c20k, and w covers L≤Bk(H) ∩ σw = L≤Bk(Hw) ∩ σw.
Then (i) every vertex in V ∗∆ now has level (in H) at most 12c20k, and (ii) UH(V ∗∆) can
only increase in its coverage, because each old set Sw is contained in L≤6c0k(H)∩ σw and
the new concave chain UH(S′w) covers L≤6c0k(H) ∩ σw.
For each wall w, the size of S′w is at most c′0

|Hw|
6c0k

≤ c′0 2CBk
6c0k

= c′0CB
3c0

. The number of walls
of the supercells is at most a′0

|Vin|√
t
≤ a′0C

′

B
√
t
n
k . Thus, the total number of extra vertices

added to V ∗ (two copies included) is at most 2a′0c
′
0CC

′

3c0
√
t

n
k , and the size of V ∗ is now at

most (c
′
0
2 + 2a′0c

′
0CC

′

3c0
√
t

)nk .
For every supercell ∆ of VD(Vin), we snap the vertices in V ∗∆ to vertices of Γ∆ i.e., we
replace every vertex v ∈ V ∗∆ with the four vertices of the cell in Γ∆ containing v. This
makes V ∗∆ ⊆ Λ∆. Then (i) every vertex in V ∗∆ now has level at most 12c20k + ε|H∆| ≤
12c20k + ε(3tCBk) = (12c20 + 1)k, and (ii) UH(V ∗∆) can only increase in its coverage. The

10 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

size of V ∗ quadruples to at most (2c′0 + 8a′0c
′
0CC

′

3c0
√
t

)nk .

Then Line 1.2 guarantees that |V∆| ≤ |V ∗∆| by setting the constant C := 12c20+1. Therefore,
totalling over all cells in VD(Vin), we have |Vout| ≤ |V ∗| ≤ (2c′0 + 8a′0c

′
0CC

′

3c0
√
t

)nk ≤ C ′ nk as

desired, by setting the constant C ′ := 2c′0
1−

8a′0c′0C

3c0
√

t

and picking any constant t > (8a′0c
′
0C

3c0
)2. J

As in Section 3, it follows that:

I Corollary 10. For a set H of n planes in R3, a parameter k ∈ [1, n], and some suitable
constants B,C,C ′, we can compute a (Bik,CBik)-shallow cutting of size at most C ′ nBik ,
along with its conflict lists, for all i = 0, 1, . . . , logB n

k in O(n log n
k) total deterministic time.

In particular, we can compute a (k,Ck)-shallow cutting of size O(nk) in the stated time.

5 Final Remarks

We remark that concentrating on the k = Θ(nr) case is indeed without loss of generality—
our algorithms can be easily applied to construct k-shallow 1

r -cuttings for any k and r.
Matoušek [25] proved the existence of such cuttings of size O(rbd/2c(krn + 1)dd/2e). We
can construct cuttings of this size with the following time bounds for d ∈ {2, 3}, which
are optimal if we are required to output all conflict lists (since the worst-case total size is
Θ(rbd/2c(krn + 1)dd/2e nr)):

I Corollary 11. For a set H of n lines in R2 and parameters k, r ∈ [1, n], we can compute a
k-shallow 1

r -shallow cutting of size O(r(krn + 1)), along with its conflict lists, in O(n log r +
r(krn + 1)nr) deterministic time.

For a set H of n planes in R3 and parameters k, r ∈ [1, n], we can compute a k-shallow
1
r -shallow cutting of size O(r(krn +1)2), along with its conflict lists, in O(n log r+r(krn +1)2 n

r)
deterministic time.

Proof. If k ≤ n
cr for a suitable constant c, then we can just apply our algorithm to compute

a n
cr -shallow

1
r -cutting of size O(r) in O(n log r) deterministic time.

So assume k > n
cr . We first apply our algorithm to compute a k-shallow ck

n -cutting of
size O(nk) in O(n log n

k) = O(n log r) deterministic time. Inside each cell ∆ of this cutting,
the conflict list H∆ has size at most ck and we compute a standard n/r

ck -cutting of H∆
of size O((k

n/r)d) in deterministic time O(k(k
n/r)d−1) by known results (e.g., Chazelle’s

algorithm [14], or in the d = 2 case, our algorithm from the appendix). This yields a
k-shallow 1

r -cutting of H of total size O(nk · (
k
n/r)d) in total time O(n log r + n

k · k(k
n/r)d−1).

The size and time bounds are exactly as stated. J

We should mention that despite their conceptual simplicity, our algorithms are not likely
to be practical in their present form, because of the huge hidden constant factors.

Our approach of incorporating brute-force search and comparing the cost of our solution
to that of an optimal solution was inspired by approximation algorithms. An interesting
problem is to actually find PTASes to compute the minimum-size (shallow or standard)
cutting, or compute cuttings with constant factors approaching the worst-case optimum [26],
with comparable running time.

The optimality of the O(n log r) time bound assumes a comparison-based model, but it
remains to be seen if there are faster algorithms to compute a single shallow cutting in the
word RAM model for integer input [13].

T. M. Chan and K. Tsakalidis 11

Generalization of our shallow cutting algorithms to higher dimensions is also open; odd
dimensions appear particularly challenging.

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-

mensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, pages 180–186. SIAM, 2009.

2 Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle
enclosure and offline dominance reporting on the RAM. In Proceedings of the Forty-First
International Colloquium on Automata, Languages, and Programming, Part I, ICALP ’14,
pages 77–88, 2014.

3 Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings for
3d dominance ranges. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’14, pages 1389–1398. SIAM, 2014.

4 Pankaj K. Agarwal. Partitioning arrangements of lines I: An efficient deterministic algo-
rithm. Discrete & Computational Geometry, 5(1):449–483, 1990.

5 Pankaj K. Agarwal. Intersection and Decomposition Algorithms for Planar Arrangements.
Cambridge University Press, New York, NY, USA, 1991.

6 Pankaj K. Agarwal, Boris Aronov, Timothy M. Chan, and Micha Sharir. On levels in
arrangements of lines, segments, planes, and triangles. Discrete & Computational Geometry,
19(3):315–331, 1998.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query
time. In Proceedings of the Seventh Scandinavian Workshop on Algorithm Theory, SWAT
’00, pages 57–70, 2000.

8 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In
Proceedings of the Forty-Third Symposium on Foundations of Computer Science,
FOCS ’02, pages 617–626. IEEE, 2002. Current draft of full paper at
https://pwgrp1.inf.ethz.ch/Current/DPCH/Journal/topdown.pdf.

9 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-
levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.

10 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM Journal
on Computing, 34(4):879–893, April 2005.

11 Timothy M. Chan. Three problems about dynamic convex hulls. International Journal of
Computational Geometry & Applications, 22(04):341–364, 2012.

12 Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range searching
on the RAM, revisited. In Proceedings of the Twenty-Seventh Symposium on Computational
Geometry, SOCG ’11, pages 1–10. ACM, 2011.

13 Timothy M. Chan and Mihai Pǎtraşcu. Transdichotomous results in computational geom-
etry, I: point location in sublogarithmic time. SIAM J. Comput., 39(2):703–729, 2009.

14 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete & Computational
Geometry, 9(1):145–158, 1993.

15 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use
in geometry. Combinatorica, 10(3):229–249, 1990.

16 Kenneth L. Clarkson. New applications of random sampling in computational geometry.
Discrete & Computational Geometry, 2:195–222, 1987.

12 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

17 Martin E. Dyer. Linear time algorithms for two- and three-variable linear programs. SIAM
Journal on Computing, 13(1):31–45, 1984.

18 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987.

19 Michael T. Goodrich. Planar separators and parallel polygon triangulation. Journal of
Computer and System Sciences, 51(3):374–389, 1995.

20 Sariel Har-Peled, Haim Kaplan, Micha Sharir, and Shakhar Smorodinsky. Epsilon-nets for
halfspaces revisited. CoRR, abs/1410.3154, 2014.

21 David Haussler and EmoWelzl. ε-nets and simplex range queries. Discrete & Computational
Geometry, 2(1):127–151, 1987.

22 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

23 Jiří Matoušek. Construction of ε-nets. Discrete & Computational Geometry, 5(1):427–448,
1990.

24 Jiří Matoušek. Cutting hyperplane arrangements. Discrete & Computational Geometry,
6(1):385–406, 1991.

25 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186,
1992.

26 Jiří Matoušek. On constants for cuttings in the plane. Discrete & Computational Geometry,
20(4):427–448, 1998.

27 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Computing, 12(4):759–776, 1983.

28 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. Journal
of the ACM, 31(1):114–127, 1984.

29 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings
of the Fifteenth Annual Symposium on Computational Geometry, SoCG ’99, pages 390–399.
ACM, 1999.

30 Edgar A. Ramos. Deterministic algorithms for 3-d diameter and some 2-d lower envelopes.
In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, SoCG ’00,
pages 290–299. ACM, 2000.

A Appendix: A 2-d Standard Cutting Algorithm

In this appendix, we describe how our ideas can be used to rederive known results by
Matoušek [24] and Chazelle [14] for standard cuttings in 2-d.

As before, it will be more convenient to work with the parameter K := n
r instead of r. The

target O(nr) time bound becomes O(n
2

K). Our cuttings will be the vertical decompositions
of noncrossing line segments. Given a set S of noncrossing line segments inside a cell ∆, we
define the vertical decomposition VD(S) to be the subdivision into trapezoids, obtained by
drawing a vertical upward/downward ray at each vertex till the ray hits another segment.
We define VD∆(S) to be VD(S) clipped inside a given cell ∆.

I Theorem 12. For a set H of n lines in R2, a parameter K ∈ [1, n] and suitable constants
B,C, given a BK

n -cutting Tin for H of size at most C(n
BK)2 along with its conflict lists, we

can compute a K
n -cutting Tout for H of size at most C(nK)2 along with its conflict lists in

O(n
2

K) deterministic time.

Proof.

T. M. Chan and K. Tsakalidis 13

Figure 3 Simplifying a level.

Algorithm. Let ε be a constant to be set later.

1. For each cell ∆ ∈ Tin:
1.1. Compute by Fact 4 an ε-cutting Γ∆ for H∆ of O(1) size, where the cells are

clipped (and re-triangulated) to lie within ∆. Further refine the cells of Γ∆ by
drawing a vertical line at every vertex of Γ∆. Let Λ∆ be the set of vertices that
define the cells of (the refined) Γ∆.

1.2. Compute by brute force the smallest set of noncrossing line segments S∆, whose
endpoints are from Λ∆, such that each trapezoid in VD∆(S∆) intersects at most
K lines of H∆.

2. Return Tout :=
⋃

∆∈Tin
VD∆(S∆) and all its conflict lists.

Complexity. Line 1.1 takes time linear in |H∆| by Fact 4, for a total of
∑

∆∈Tin
O(|H∆|) =

O(C(n
BK)2 ·BK) = O(n

2

K) time. For Line 1.2, we probe all possible sets S∆ of line segments
with endpoints from Λ∆. Since Γ∆ and Λ∆ have O(1) size, there are “only” O(1) sets to test
and each set can be tested in O(|H∆|) time. Thus, the whole step takes time linear in |H∆|,
which again totals to O(n

2

K).

Correctness. Clearly Tout is a K
n -cutting for H. To bound the size of Tout, we compare it

against some optimal Kn -cutting for H of size O((nK)2), specifically, the cutting produced by
Matoušek’s construction [23] using levels. (We would have preferred a cleaner proof that
compares Tout against an arbitrary optimal-size cutting, like in our earlier proofs, but were
unable to make the details work.) We adapt his construction to incorporate our earlier ideas
of chopping and snapping.

We first pick a random index j0 ∈ [1, 0.5K]. For each j ≡ j0 (mod 0.5K), consider the
j-level (the set of points on the arrangement with level j), which is an x-monotone chain.
Since the arrangement has O(n2) vertices in total, the expected total number of vertices
in these chains is O(n

2

K).
We chop these chains into subchains at the boundaries of the cells of Tin. Since the total
number of vertices along cell boundaries is O(C(n

BK)2 · BK) = O(CB)n
2

K , the expected
total number of subchains created is at most O(CB) n

2

K2 .
We simplify each subchain by selecting every 0.1k-th vertex from the subchain and
forming a shorter x-monotone chain through these vertices, while keeping the start and
end vertex. (See Figure 3.) Note that the levels of points on a simplified subchain can
deviate from the original level by at most ±0.1K. Let S∗ be the set of the edges of the

14 Optimal Deterministic Algorithms for 2-d and 3-d Shallow Cuttings

simplified subchains. Since the size of a simplified subchain is at most one plus 1
0.1K -th

the original size of the subchain, the expected size of S∗ is at most O(1 + C
B)(nK)2. We

pick a j0 so that the size of S∗ is at most its expectation.
For each boundary edge of the cells of Tin, we subdivide it by selecting every 0.1K-th
vertex of the arrangement lying on the edge. We add two copies of the resulting edges
to S∗ (one assigned to each of the two incident cells). Since the number of extra edges
added is O(C(n

BK)2 · BK0.1K) = O(CB (nK)2), the size of S∗ remains at most O(1 + C
B)(nK)2.

Let S∗∆ := S∗∩∆. We claim that each trapezoid in VD∆(S∗∆) intersects at most 0.9K lines.
This follows because the left side of the trapezoid intersects at most 0.5K + 0.1K + 0.1K
lines, and the top or bottom side intersects at most 0.1K lines.
For every cell ∆ ∈ Tin, we snap the endpoints of the segments in S∗∆ to the vertices
of Γ∆, i.e., we replace each such endpoint v with the rightmost vertex of the cell in Γ∆
containing v. For each endpoint v that lie on a boundary edge of ∆, we snap it to a
vertex of Γ∆ on that edge.
Note that the x-order of the vertices in S∗∆ is preserved after snapping, because we have
refined Γ∆ with extra vertical lines. Thus, the simplified subchains inside ∆ of a common
chain remain x-monotone and noncrossing. Furthermore, two simplified subchains of two
different chains remain noncrossing for a sufficiently small ε, since the two chains have
levels at least 0.5K apart, simplification changes levels by at most 0.1K, and snapping
changes levels by at most O(εBK). Thus, S∗∆ remains noncrossing.
By modifying the previous argument, we see that each trapezoid in VD∆(S∗∆) intersects
at most 0.9K+O(εBK) lines; the number can be made at most K for a sufficiently small
constant ε.

Then Line 1.2 guarantees that |S∆| ≤ |S∗∆|. Therefore, |Tout| ≤ O(|S∗|) ≤ O(1 + C
B)(nK)2,

which can be made at most C(nK)2 as desired, by choosing a sufficiently large constant B.
(Note that in the entire correctness proof, constants hidden in the O notation are universal
constants.) J

I Corollary 13. For a set H of n lines in R2, a parameter K ∈ [1, n], and some suit-
able constants B,C, we can compute a BiK

n -cutting of size at most C(n
BiK)2 for all i =

0, 1, . . . , logB n
K , along with its conflict lists, in O(n

2

K) total deterministic time. In particular,
we can compute a 1

r -cutting of size O(r2) in O(nr) deterministic time.

Proof. The recurrence T (n,K) = T (n,BK) +O((nK)2), with the trivial base case T (n, n) =
O(n), solves to T (n,K) = O(

∑logB
n
K

i=0 (n
BiK)2) = O((nK)2). J

Our above algorithm can be viewed as a reinterpretation of Chazelle’s algorithm [14],
where ε-approximations and sparse ε-nets are replaced by a brute-force component that is
more self-contained to describe. Our analysis only works in 2-d, however; Chazelle’s approach
is still more powerful.

	Introduction
	Standard Cuttings
	Shallow Cuttings
	Our Contributions
	Applications

	Preliminaries
	A 2-d Shallow Cutting Algorithm
	A 3-d Shallow Cutting Algorithm
	Final Remarks
	Appendix: A 2-d Standard Cutting Algorithm

