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Abstract

We revisit classical problems about searching in totally monotone and Monge matrices, which
have many applications in computational geometry and other areas. We present a number of
new results, including the following:

• A randomized algorithm that finds the row minima in an n×n Monge staircase matrix in
O(n) expected time; this improves a longstanding O(nα(n)) bound by Klawe and Kleitman
(1990) for totally monotone staircase matrices.

• A randomized algorithm that reports the K smallest elements (in an arbitrary order) in
an n× n Monge (complete or staircase) matrix in O(n+K) expected time; this improves
and extends a previous O(n+K log n) algorithm by Kravets and Park [SODA’90].

• A randomized algorithm that reports the K smallest elements (in an arbitrary order) in
an n× n totally monotone (complete) matrix in O(n+K log∗ n) expected time.

• A randomized algorithm that reports the ki smallest elements in the i-th row, for every i,
in an n×n totally monotone (complete) matrix in O((n+K) log∗ n) expected time, where
K =

∑
i ki.

• A randomized algorithm that finds the row minima in an n × n totally monotone “v-
matrix” in O(nα(n) log∗ n log log n) expected time; this answers an open question by Klawe
[SODA’90]. The log∗ n factor can be removed in the Monge case.

1 Introduction

Totally monotone and Monge matrices. Totally monotone matrices and Monge matrices
arise in many subareas of algorithms, including computational geometry, dynamic programming
speedups, shortest paths in planar graphs, and combinatorial optimization. An m × n matrix1 A
is concave totally monotone iff for every i < i′ and j < j′,

A[i, j] ≥ A[i, j′] =⇒ A[i′, j] ≥ A[i′, j′].

The matrix A is concave Monge iff for every i < i′ and j < j′,

A[i, j] +A[i′, j′] ≤ A[i, j′] +A[i′, j].

∗Department of Computer Science, University of Illinois at Urbana-Champaign (tmc@illinois.edu). This research
has been supported in part by NSF Grant CCF-1814026.

1Note that some papers on this topic switch m and n for rectangular matrices.
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Clearly, the Monge property (also known as the “quadrangle inequality”) implies total monotonicity.
Although the converse is not necessarily true, in most applications, total monotonicity is actually
proved by establishing the Monge property.

Convex total monotonicity and the convex Monge property can be defined similarly but with
≥ and ≤ reversed. (Note that a convex totally monotone or Monge matrix can be turned into a
concave totally monotone or Monge matrix by reversing the order of the columns.)

By default, a matrix will refer to a complete matrix where all entries are filled. In the case
of a partial matrix where some entries may be unfilled, the definitions are similar: the conditions
should hold for all i < i′ and j < j′ whenever all four elements A[i, j], A[i′, j′], A[i, j′], A[i′, j] are
filled.

The seminal work on the topic is the SMAWK algorithm by Aggarwal, Klawe, Moran, Shor,
and Wilber [4] (named after the initials of the authors), which can compute the minima of all the
rows of an m×n totally monotone (complete) matrix A in linear O(m+n) time. In fact, the time
bound is O(n(1 + log

⌈
m
n

⌉
)) if a compact output representation is allowed; this bound is optimal.

The input A may be given implicitly—we only assume that any matrix entry can be evaluated
on demand in constant time. (Even more restrictively, the only primitive operation required is
comparing two elements in a common row.) The SMAWK algorithm has numerous applications,
which we will refrain from exhaustively listing (see various surveys, e.g., [9, 21]).

Row minima in partial matrices. An important line of work have followed subsequently, aim-
ing to develop row minima algorithms for more general types of totally monotone partial matrices.
Aggarwal and Klawe [3] began studying the case of staircase matrices: A falling staircase matrix
is a partial matrix such that the filled entries in each row form a suffix of the row, and the filled
entries in each column form a prefix of the column. For example, this include the case of an upper
triangular matrix, with entries A[i, j] filled for i ≤ j. Similarly, a rising staircase matrix is a partial
matrix such that the filled entries in each row form a prefix of the row, and the filled entries in each
column form a prefix of the column. (See Figure 1(a,b).) Row minima in concave totally monotone,
falling staircase matrices (or convex totally monotone, rising staircase matrices) can be found in
linear time directly by SMAWK, since the unfilled entries may be filled with large numbers while
preserving total monotonicity. However, computing row minima in concave totally monotone, ris-
ing staircase matrices (or convex totally monotone, falling staircase matrices) is more challenging,
and arises in a number of applications. Aggarwal and Klawe gave an O((m + n) log logm)-time
algorithm for this problem, which was later improved to an O(nα(m)+m)-time algorithm by Klawe
and Kleitman [27] in 1990. Their result is notable for being one of a few algorithms in the literature
that has an original recursion with inverse Ackermann complexity (not directly due to the use of
union-find data structures or the combinatorics of Davenport-Schinzel sequences).

In SODA’90, Klawe [26] introduced more general classes of partial matrices: A skyline matrix
is a partial matrix such that all the defined entries in each column form a suffix of the column.
A v-matrix is a partial matrix such that all the defined entries in each column occur contiguously
(but not necessarily as a prefix or suffix). Similarly, an h-matrix is a partial matrix such that
all undefined entries in each row occur contiguously. (See Figure 1.) Klawe proved an Ω(nα(n))
lower bound for the number of evaluations of matrix entries to compute row minima for totally
monotone v-matrices and h-matrices for m = Θ(n). She then described row minima algorithms
for totally monotone skyline matrices requiring O(nα(m) log logm + m) time and O(nα(m) + m)
comparisons, or alternatively O(n log logm+m) time and comparisons. In the introduction of her
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Figure 1: (a) Falling staircase matrix; (b) rising staircase matrix; (c) skyline matrix; (d) v-matrix;
(e) h-matrix.

paper, she raised the question of finding any o(n logm + m)-time algorithm more generally for
totally monotone v-matrices (or h-matrices).

In the intervening 30 years, no further improvements have been reported on these problems
since the papers by Klawe and Kleitman and by Klawe.

New results. In this paper, we give the first linear-time algorithm for computing row minima
in an m × n concave Monge, rising staircase matrix (or convex Monge, falling staircase matrix).
The algorithm is randomized, Las-Vegas style. This improves Klawe and Kleitman’s longstanding
O(nα(m) + m) bound. More precisely, the expected time bound of our algorithm (assuming a
compact output representation) is O(n(1+log

⌈
m
n

⌉
)), matching that of SMAWK. From the practical

perspective, the improvement of an α factor may seem slight, but from the theoretical perspective,
the result interestingly demonstrates that appearance of inverse Ackermann is unnecessary for this
and related problems, and cleans up some of the time bounds reported in the literature.

To be fair, we should reiterate that Klawe and Kleitman’s algorithm works more generally
for totally monotone staircase matrices, not just Monge staircase matrices. But as mentioned, in
most (if not all) known applications involving total monotonicity, the Monge property is satisfied.
Indeed, in Appendix A, we list a number of applications of our new algorithm in computational
geometry and dynamic programming speedups. A more limiting disadvantage of our algorithm is
that it does not generalize to the “online” setting, unlike Klawe and Kleitman’s (see their paper
for the definition), which is required in some applications to dynamic programming speedups.

We also answer Klawe’s open question [26] about v-matrices, by giving the first nontrivial
algorithm for finding the row minima in an m×n totally monotone v-matrix, with expected running
time O(nα(m) log∗m log logm+m) (or more precisely, O(nα(m) log∗m log logm+nα(m) log

⌈
m
n

⌉
)).

The log∗ factor can be removed in the Monge case.

(≤ K)-selection and other related problems. In addition to row minima, we also consider a
number of related, basic problems about searching in a totally monotone or Monge matrix:

• (≤ K)-selection: report the K smallest elements (in an arbitrary order).

• (≤ t)-reporting : report all elements that are at most t (in an arbitrary order).

• row (≤ k1, . . . , km)-selection: for each i = 1, . . . ,m, report the ki smallest elements (in an
arbitrary order) in the i-th row.

• row (≤ t1, . . . , tm)-reporting : for each i = 1, . . . ,m, report all elements that are at most ti (in
an arbitrary order).
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For the last three problems, we use K to denote the total output size (e.g., for the third problem,
K =

∑
i ki). For example, the standard row minima problem corresponds to row (≤ 1, . . . , 1)-

selection. Note that row (≤ t1, . . . , tm)-reporting is equivalent to (≤ t)-reporting, by translating the
values in each row (i.e., changing A[i, j] to A[i, j]− ti); this operation preserves total monotonicity
and the Monge property. The (≤ K)-selection and the (≤ t)-reporting problem have similar
complexity, since there is a straightforward reduction of the latter to the former, and a simple
randomized reduction of the former to the latter (see Section 5.1). In a companion paper [14], we
explore more related problems such as selection of the K-th smallest element.

In SODA’90, Kravets and Park [29] studied the row (≤ k, . . . , k)-selection problem for a totally
monotone (complete) matrix, and obtained an algorithm running in O((m+ n)k) time. Note that
although mk may be a trivial lower bound if we require an explicit output representation of size
Ω(mk), the nk term isn’t obviously a lower bound.

Kravets and Park further obtained an O(m + n + K log mn
K )-time algorithm for the (≤ K)-

selection problem for a totally monotone (complete) matrix whose transpose is also totally
monotone—in particular, a Monge matrix satisfies this extra condition. (One natural applica-
tion is in computing the K farthest pairs for a planar point set in convex position.) They left open
the question of whether a comparable result exists for arbitrary totally monotone matrices.

More new results. We give the first linear (O(m + n + K)) time algorithm for the (≤ t)-
reporting and the (≤ K)-selection problem for an m×n totally monotone (complete) matrix whose
transpose is also totally monotone (and thus for a Monge matrix). The algorithm is randomized.
This improves Kravets and Park’s result by a logarithmic factor. The same result holds for Monge
staircase matrices (for which no previous results were known).

We also obtain an almost linear-time randomized algorithm for (≤ t)-reporting and (≤ K)-
selection for an arbitrary m× n totally monotone (complete) matrix. The running time is O(m+
n + K log∗ n) (or alternatively, O(m + n log(c) n + K) for an arbitrarily large constant c). This
answers the above-mentioned open question by Kravets and Park.

We similarly obtain an almost linear-time randomized algorithm for the row (≤ k1, . . . , km)-
selection problem for an arbitrary m×n totally monotone (complete) matrix. The running time is
O((n+K) log∗ n) (or alternatively, O((m+n) log(c) n+K)). Notice that even in the special case of
row (≤ k, . . . , k)-selection, our time bound, approaching O(mk + n), improves Kravets and Park’s
previous O((m+ n)k) bound, ignoring iterated logarithmic factors.

Techniques, and connection with pseudo-lines. To obtain our solutions, instead of working
with matrices, we take a geometric perspective (ironically, the original SMAWK paper took the
opposite philosophy, of reducing geometric problems to matrix searching).

We view the columns of a totally monotone matrix as pseudo-lines in the plane: A set of n curves
in the plane forms a pseudo-line family if each curve is x-monotone (i.e., each vertical line intersects
the curve exactly once) and each pair of curves intersects at most once. From an m × n totally
monotone matrix A, for each j = 1, . . . , n, we can form a polygonal curve γj passing through
the points (−∞, j), (1, A[1, j]), (2, A[2, j]), . . . , (m,A[m, j]), (∞,−j). Concave total monotonicity
implies that these curves are indeed pseudo-lines (ignoring degeneracies), as shown in Figure 2(a).
Consequently:

• The row minima problem corresponds to evaluating the lower envelope of these n pseudo-lines
at the x-coordinates 1, . . . ,m (in other words, computing a “discretized” lower envelope). See
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Figure 2: (a) Columns in a totally monotone matrix map to pseudo-lines. (b) A lower envelope of
pseudo-lines.

Figure 2(b).

• The row (≤ t1, . . . , tm)-reporting problem corresponds to reporting all (i, j) index pairs such
that the point (i, ti) is above the pseudo-line γj . This is equivalent to answering n offline
“pseudo-halfplane range reporting queries” on a set of m points.

Certain types of partial matrices also have geometric interpretations: v-matrices correspond to
pseudo-line segments, and skyline matrices correspond to pseudo-rays (pseudo-line segments that
are unbounded in one direction).

The above viewpoint allows us to leverage the rich body of techniques from computational
geometry, concerning lower envelopes of lines or line segments, halfplane range searching, and
randomized geometric divide-and-conquer. (Even if some of the ideas could be translated back
in matrix terms, the geometric perspective is helpful to avoid “reinventing the wheel”.) Certain
techniques for lines or line segments may be adapted for pseudo-lines or pseudo-line segments
without much difficulty. However, not all existing techniques can be generalized. The following key
differences make the problems here more challenging:

• First, we are aiming for linear or almost linear time bounds. Traditional algorithms for
computing lower envelopes of line segments or halfspace range reporting require at least
n log n time. To beat n log n in a comparison model, we need to exploit the fact that the
input x-coordinates ({1, . . . ,m}) are pre-sorted (trivially), and the input pseudo-lines are
also pre-sorted (by y-values at x = −∞ or x =∞).

• Primitive operations are limited. Although we can evaluate the y-value of a pseudo-line at
a given x-coordinate in constant time, computing the intersection of two pseudo-lines now
requires binary search, taking O(logm) time.2

• Certain operations for points and lines do not easily generalize to points and pseudo-lines.
For example, although it is possible to determine the orientation of three input pseudo-lines
in O(logm) time, we cannot determine the orientation of three input points (in particular,

2 For example, this issue explains why the dualized Graham’s scan [23], which can computing the lower envelope
of n pre-sorted lines in linear time, cannot directly solve the row minima problem for totally monotone matrices;
Graham’s algorithm requires O(n) intersection operations and would now take O(n logm) time. (However, a known
randomized incremental algorithm for computing lower envelopes can be adapted—see Appendix B.)
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we cannot compute the convex hull efficiently), since assigning orientation to a point triple
require a global examination of the relationship of the points with all the pseudo-lines. And
we cannot use standard point-line duality and work in dual space.3

From the geometric perspective, one can see that Klawe’s Ω(nα(n)) lower bound for v-
matrices [26] is not really evidence to suggest optimality of Klawe and Kleitman’s result for stair-
case matrices, since v-matrices correspond to pseudo-line segments, whose lower envelopes have
Θ(nα(n)) worst-case combinatorial complexity [38], but staircase (and skyline) matrices correspond
to pseudo-rays, whose lower envelopes have linear combinatorial complexity.

The connection between totally monotone matrices and pseudo-lines is certainly not new. For
example, see a recent paper by Kaplan et al. [25] (who used this pseudo-line perspective to ob-
tain data structures for Monge matrices, though these were later improved [22]), or the paper
by Klawe [26] (whose lower bounds were obtained by relating row minima in v-matrices to lower
envelopes of line segments), or a work by Felzenszwalb and Huttenlocher [20] (who noted an appli-
cation of SMAWK to solve a discrete lower envelope problem). On the other hand, the connection
was overlooked by some researchers (for example, Millman et al. [32] studied the discrete lower enve-
lope problem for pseudo-lines and proposed a new randomized linear-time algorithm that rederived
the SMAWK result, without realizing it!).

As we have mentioned, point-line duality is no longer available, which limits the geometric
techniques that we can use. New geometric ideas are thus needed to obtain our O(m+n+K log∗ n)-
time (≤ t)-reporting algorithm for totally monotone matrices. In the Monge case, we observe
that something analogous to duality is possible, simply by transposing the matrix! (The Monge
property is preserved by transposition.) The (≤ t)-reporting problem is symmetric with respect
to transposition, but the row minima problem is not. To obtain our linear-time results for Monge
staircase matrices, it is essential that we solve both problems simultaneously, with the row minima
algorithm invoking the (≤ t)-reporting algorithm, and vice versa. Our algorithms will use recursion
in interesting, original ways.

2 (≤ t)-Reporting for Monge Matrices

We begin by studying the row (≤ t1, . . . , tm)-reporting problem for an m× n (complete) matrix A
in the case when both A and its transpose are totally monotone. In particular, a Monge matrix
satisfies this property. As noted in the introduction, it suffices to consider (≤ t)-reporting problem.
To enable recursive randomized algorithms, we allow the input to be random, in which case, we use
m and n to denote the expected number of rows and columns in A respectively. We let K denote
the expected number of output elements. Let T (m,n,K) be the expected time needed to solve the
problem. In case when we know that the number of columns is always upper-bounded by N , we
let TN (m,n,K) be the expected time under these parameters.

In geometric terms, the problem reduces to the following:

Given a set P of points of (expected) size m and a set L of pseudo-lines of (expected)
size n in the plane, report all pairs (p, `) ∈ P × L with p above `.

K is the (expected) number of output pairs. By a linear scan over the output pairs, we can easily
report all pseudo-lines of L below p for each point p ∈ P , or equivalently, report all points of P

3A duality transform for points and pseudo-lines actually exists, as shown by Agarwal and Sharir [2], but is too
expensive to compute for our purposes.

6



LE(R)

∆

Figure 3: A cell ∆ (after rounding) in the vertical decomposition of LE(R), and its conflict list L∆.

above ` for each pseudo-line ` ∈ L. This problem can thus be viewed as offline pseudo-halfplane
range reporting.

The points of P are pre-sorted by x-coordinates, and the pseudo-lines of L are pre-sorted by
pseudo-slope, where the pseudo-slope of a pseudo-line refers to its rank of its y-value at x = ∞
among all pseudo-lines of L. (In the (≤ t)-reporting problem, all points of P actually have the
same y-coordinate t.) The only allowed primitive operation is evaluating the y-coordinate of a
pseudo-line ` ∈ L at the x-coordinate of a point p ∈ P . For simplicity, we assume no degeneracies,
e.g., no two pseudo-lines have the same y-coordinate at an x-coordinate of P (this may be avoided
by perturbation).

Our algorithm builds on a randomized divide-and-conquer approach, which is well known in
computational geometry since the work of Clarkson and Shor [17, 34], and has been used before in
halfspace range reporting [11]. We incorporate some extra ideas, leading to a new recurrence with
linear complexity.

Clarkson–Shor-style divide-and-conquer. Let s and b be parameters to be set later. Take a
random sample R of L of size n

s . Consider the lower envelope LE(R), which has O(ns ) vertices, and
take its vertical decomposition VD(R), i.e., a division of the region below LE(R) into O(ns ) cells
formed by drawing downward rays from the vertices of LE(R). We use a discretized version of the
envelope, with x-coordinates of vertices “rounded” to the x-coordinates of P . (See Figure 3.) By
SMAWK,4 the discretized lower envelope can be found in O(m+ n

s ) time. We can compute P ∩∆
for all cells ∆ ∈ VD(R) by a linear scan over the x-pre-sorted point set P and LE(R); each subset
can be kept sorted by x.

For each cell ∆ ∈ VD(R), we compute its conflict list L∆, i.e., the list of all pseudo-lines of L
intersecting ∆. To this end, for each pseudo-line ` ∈ L, we first find its predecessor and successor
with respect to pseudo-slope, among the pseudo-lines appearing on LE(R); this can be done for all
` by one linear scan in O(n) time, since the pseudo-lines are pre-sorted by pseudo-slope. For each
` ∈ L, we can start at the vertex v of LE(R) that is defined by its predecessor and successor, and
then do a linear search in both directions from v, to find all cells ∆ ∈ VD(R) intersected by `. (Note
that in these steps, we do not need to compute intersections of pseudo-lines; we just need to test
whether a pseudo-line is above a point incident on another pseudo-line.) The total time of these
linear searches is proportional to the total number of conflicts O(

∑
∆∈VD(R) |L∆|). By a standard

analysis of Clarkson and Shor [17, 34],
∑

∆∈VD(R) |L∆| has expected value O((ns )s) = O(n). By a
linear scan over the pre-sorted set L, all the L∆’s can be kept sorted by pseudo-slope.

For each ∆ ∈ VD(R) with |L∆| ≤ bs, we recursively solve the subproblem for P ∩∆ and L∆.
Let P ′ be the set of all remaining points of P , i.e., those that are above LE(R) or lie in cells ∆
with |L∆| > bs. We solve the problem for P ′ and L by another recursive call.

4 It is possible to avoid SMAWK and get a more self-contained algorithm—in fact, we will do just that in Section 3.
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The number of points p ∈ P that are above more than b pseudo-lines is at most K
b . For each

point p ∈ P that are above at most b pseudo-lines, the probability that p is above LE(R) is at
most b

s . Furthermore, by Clarkson and Shor’s analysis [17, 34] (see also [11]), the expected value
of |L∆(p)| for the cell ∆(p) ∈ VD(R) containing p is O(s) for any fixed p. Thus, by Markov’s

inequality, the probability that |L∆(p)| > bs is O(1
b ) for any fixed p. Hence, the expected size of P ′

is at most O(Kb + mb
s + m

b ).
Choose s = b2. The expected size of P ′ is then O(m+K

b ). We then obtain the following
recurrence:

T (m,n,K) ≤
∑
i

TO(b3)(mi, ni,Ki) + T (O(m+K
b ), n,K ′) + O(m+ n), (1)

for some mi’s, Ki’s, and K ′ with
∑

i ni = O(n),
∑

imi ≤ m, and
∑

iKi +K ′ ≤ K.
The above recurrence by itself does not yield good results (mainly because n does not decrease

in the T (O(m+K
b ), n,K ′) term), but we will fix this by combining the recurrence with one extra

ingredient. . .

Symmetry. Notice that so far, we have only used the total monotonicity of the input matrix A.
Since both A and the transpose of A are assumed to be totally monotone, we can actually transpose
the input and obtain

T (m,n,K) = T (n,m,K),

as the (≤ t)-reporting problem is unchanged after transposition. This is the extra ingredient we
need.

Putting it all together. We will not use recursion for the subproblems associated with the cells
∆ ∈ VD(R), but instead use any naive algorithm with running time O((m+n) logO(1)N+K) (there
are many options, one of which is to use the O(m+n log(c)N+K)-time algorithm from Section 4.1,
e.g., with c = 1). This way, we can replace TO(b3)(mi, ni,Ki) with O((mi+ni) logO(1) b+Ki). From
(1), letting K ′′ = K −K ′, we get:

T (m,n,K) ≤ O((m+ n) logO(1) b+K ′′) + T (O(Kb ), n,K −K ′′). (2)

Note that we have replaced O(m+K
b ) with O(Kb ). This is because we can initially reduce m to

O(K) by running SMAWK in O(m+n) time, and removing points of P below LE(L) which do not
contribute to the output. (This extra step is not essential, but simplifies calculations.)

Using symmetry to rewrite T (O(Kb ), n,K − K ′′) as T (n,O(Kb ),K − K ′′) and applying (2) a
second time, we get:

T (m,n,K) ≤ O
(

(m+ n+ K
b ) logO(1) b+K ′′′

)
+ T (O(Kb ), O(Kb ),K −K ′′′)

for some K ′′′ ≤ K.
Now we expand the recurrence using an increasing sequence of parameters b1, b2, . . .:

T (m,n,K) ≤ O
(

(m+ n+ K
b1

) logO(1) b1 +K ′′′1 + (Kb1 + K
b2

) logO(1) b2 +K ′′′2

+ (Kb2 + K
b3

) logO(1) b3 +K ′′′3 + · · ·
)
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for some K ′′′j ’s with
∑

jK
′′′
j ≤ K.

Finally, choosing bj = 2j (and noting that
∑

j j
O(1)/2j = O(1)), we conclude that T (m,n,K) =

O(m+ n+K).

Theorem 2.1. Given an m×n totally monotone matrix whose transpose is also totally monotone,
we can report all K elements that are at most a given value t (in an arbitrary order) in O(m+n+K)
expected time.

Remarks. This result appears new even in the case of lines (rather than pseudo-lines), yielding
an O(m + n + K)-time randomized algorithm for 2D offline halfplane range reporting, assuming
that the input points are pre-sorted by x and the lines pre-sorted by slope. Here, symmetry
T (m,n,K) = T (n,m,K) follows from standard point-line duality. In contrast, standard algorithms
for 2D halfplane or 3D halfspace range reporting [11, 16] require O((m+n) log n+K) time and do
not exploit input pre-sortedness.

The ideas behind our algorithm (the usage of Clarkson–Shor divide-and-conquer combined
with symmetry or duality) has similarities with some known work on offline 3D dominance range
reporting; for example, see [1, proof of Theorem 3] (the algorithm there only considered one round
of bootstrapping with duality, since the target time bound was O(n log log n + K), whereas our
algorithm uses multiple rounds and is more interesting).

Derandomization appears very difficult (lower envelopes of random samples may be derandom-
ized using deterministic construction of shallow cuttings [15], but this requires at least Ω(n log n)
time).

3 Generalization to Monge Staircase Matrices

We now extend our linear-time algorithm for (≤ t)-reporting to Monge staircase matrices. At the
same time, we obtain a linear-time algorithm for row minima in Monge staircase matrices. (As
mentioned in the introduction, the difficult cases are concave Monge, rising staircase matrices and
convex Monge, falling staircase matrices.)

Let Tminima(m,n) be the expected time needed to solve the row minima problem for a Monge
staircase matrix where m and n are the expected number of rows and columns respectively.

In geometric terms, the generalization to staircase matrices corresponds to the setting where
the pseudo-lines are replaced with pseudo-line segments, all unbounded on one side, say, the left
side. Furthermore, the x-coordinates of the segments’ right endpoints are monotonically increasing
or decreasing with their pseudo-slopes: we refer to such curves as monotone pseudo-rays.

For a set P of points of (expected) size m and a set L of monotone pseudo-rays of (expected) size
n, the (≤ t)-reporting problem is to find all pairs (p, `) ∈ P×L with p above `. For a set X of values
of (expected) size m and a set L of monotone pseudo-rays of (expected) size n, the row minima
problem is to evaluate the lower envelope of L at the x-coordinates of X. It is assumed that the
x-coordinates of P or X are pre-sorted, and the pseudo-rays of L are pre-sorted by pseudo-slope.
(For the row minima problem, a compact representation of the output is allowed: if the answers for
multiple consecutive values in X are defined by the same pseudo-ray in L, they may be reported
once.)

For bootstrapping purposes, we will need an O((m + n) logO(1)N + K) algorithm for (≤ t)-
reporting. There are many options, one of which is to use binary divide-and-conquer to reduce to
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the pseudo-line case: We compute the median x-coordinate xm of the rays’ endpoints, let P1 (resp.
P2) be the points left (resp. right) of x = xm and L1 (resp. L2) be the pseudo-rays whose endpoints
are left (resp. right) of x = xm. We recursively solve the problem for P1 and L1, and for P2 and
L2, and finally solve the problem for P1 and L2 by viewing the pseudo-rays of L2 as pseudo-lines
and invoking, say, the O(m + n log(c)N + K) algorithm from Section 4.1, e.g., with c = 1. This
yields a total time bound of O((m+ n log(c)N) logN +K).

(≤ t)-reporting algorithm. We solve the (≤ t)-reporting problem for monotone pseudo-rays by
adapting the Clarkson–Shor-style divide-and-conquer algorithm from Section 2. We point out the
key differences:

The lower envelope of pseudo-rays (even without monotonicity) still has a linear number of
vertices (which include both intersections and segment endpoints that are visible from below),
since their lower envelope complexity is related to order-2 Davenport-Schinzel sequences [38]. Thus,
LE(R) still has expected size O(ns ). However, we can no longer use SMAWK to compute LE(R);
instead, the discrete lower envelope computation now requires Tminima(m, ns ) time. The total conflict
list size

∑
∆∈VD(R) |L∆| is again bounded by O(n) in expectation. To compute the conflict lists of

all cells in VD(R), it suffices to compute the conflict lists of all vertices of LE(R), where the conflict
list of a vertex v is defined as the list of all pseudo-rays of L below v. This is because a pseudo-ray
` intersects a cell ∆ iff ` is below at least one of the two vertices of ∆ or the right endpoint of ` is
in ∆. (We can easily identify the endpoints inside every cell by one left-to-right linear scan.) Now,
computing the conflict lists of the vertices of LE(R) corresponds to a row (≤ t1, . . . , tm)-reporting
problem. As noted in the introduction, row (≤ t1, . . . , tm)-reporting reduces to (≤ t)-reporting, by
translating the values in each row (namely, resetting A[i, j] to A[i, j]− ti)—this operation preserves
the Monge property. So, the conflict list computation can be done by an extra recursive call! The
recursion is for a subproblem with O(ns ) expected number of points and n pseudo-rays, with O(n)
expected output size. (Fortunately, this extra subproblem will not hurt the recurrence too much.)

With s = b2, recurrence (1) is changed to the following:

T (m,n,K) ≤ Tminima(m, n
b2

) + T (O( n
b2

), n,O(n)) +∑
i

TO(b3)(mi, ni,Ki) + T (O(m+K
b ), n,K ′) + O(m+ n), (3)

for some mi’s, Ki’s, and K ′ with
∑

i ni = O(n),
∑

imi ≤ m, and
∑

iKi +K ′ ≤ K.
In addition, we still have symmetry T (m,n,K) = T (n,m,K), because the transpose of a Monge

staircase matrix is still a Monge staircase matrix (after reversing the order of the rows and the order
of the columns).

Row minima algorithm. We solve the row minima problem, i.e., the discrete lower envelope
problem, similarly by Clarkson–Shor-style divide-and-conquer. Take a random sample R of L of
size n

s . Recursively compute the (discrete) lower envelope LE(R) and consider its vertical de-
composition VD(R). Compute the conflict lists of all cells ∆ ∈ VD(R). As before, this reduces
to a reporting problem for an expected O(ns ) number of points and n pseudo-rays, with O(n)
expected output size. For each cell ∆ ∈ VD(R), let m∆ be the number of x-values of X in
the x-projection of ∆; note that

∑
∆∈VD(R)m∆ is equal to m (in expectation). For each cell

∆ ∈ VD(R), compute the lower envelope of L∆. For example, we can adapt a naive O(|L∆|2)-
time algorithm for this purpose. However, in the discrete setting, the computation of the in-
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tersection of two pseudo-rays cannot be done in constant time, but requires O(logm∆) time by
binary search (we only need to know the position of the intersection relative to m∆ x-values).
So, the naive algorithm requires O(|L∆|2 logm∆) time. By a standard analysis of Clarkson and

Shor [17, 34], E
[∑

∆∈VD(R) |L∆|4
]

= O((ns )s4) = O(ns3). By concavity of the log2 function and

Jensen’s inequality,
∑

∆∈VD(R) log2m∆ ≤ O(|R|(1 + log2(
∑

∆m∆/|R|))). By Jensen’s inequality

again, E
[∑

∆∈VD(R) log2m∆

]
≤ O(ns (1 + log2

⌈
sm
n

⌉
)). Hence, by the Cauchy–Schwarz inequal-

ity, E
[∑

∆ |L∆|2 logm∆

]
≤
√

E [
∑

∆ |L∆|4] · E
[∑

∆ log2m∆

]
= O(

√
ns3 · ns (1 + log2

⌈
sm
n

⌉
)) =

O(sn(1 + log
⌈
sm
n

⌉
)).

Choose s to be a sufficiently large constant. We then obtain:

Tminima(m,n) ≤ Tminima(m, n2 ) + T (O(n), n,O(n)) + O(n(1 + log
⌈
m
n

⌉
)), (4)

Putting it all together. Expanding (4) and noting that
∑

j
n
2j

(1 + log
⌈

2jm
n

⌉
) = O(n(1 +

log
⌈
m
n

⌉
)), we get:

Tminima(m,n) ≤
∞∑
j=1

T (O( n
2j

), n
2j
, O( n

2j
)) + O(n(1 + log

⌈
m
n

⌉
)). (5)

In (3), we can replace TO(b3)(mi, ni,Ki) with O((mi+ni) logO(1) b+Ki) using an aforementioned
naive algorithm. Thus,

T (m,n,K) ≤ Tminima(m,O( n
b2

)) + T (O( n
b2

), n,O(n)) +

O((m+ n) logO(1) b+K −K ′) + T (O(m+K
b ), n,K ′). (6)

Using symmetry to rewrite T (O( n
b2

), n,O(n)) as T (n,O( n
b2

), O(n)) and T (O(m+K
b ), n,K ′) as

T (n,O(m+K
b ),K ′) and applying (6) to expand these two terms, and setting m = n, we get:

T (n, n,K) ≤ Tminima(n,O( n
b2

)) + O((n+ K
b ) logO(1) b+K ′′0 ) +

4∑
j=1

T (O(n+K
b ), O(n+K

b ),K ′′j )

for some K ′′0 , . . . ,K
′′
4 with K ′′0 + · · ·+K ′′4 ≤ K +O(n).

Rewriting Tminima(n,O( n
b2

)) using (5), we obtain:

T (n, n,K) ≤ O((n+ K
b ) logO(1) b+K ′′′0 ) +

∑
j

T (n′j , n
′
j ,K

′′′
j )

for some n′j ’s and K ′′′j ’s with
∑

j n
′
j = O(

∑
j
n/b2

2j
+ n+K

b ) = O(n+K
b ) and K ′′′0 +

∑
jK
′′′
j ≤ K +

O(
∑

j
n/b2

2j
+ n) = K +O(n).

Now we expand the recurrence using an increasing sequence of parameters b1, b2, . . . (and note
that the expression c0(· · · c0((c0(n + K)/b1 + K)/b2 + · · · + K)/bj is upper-bounded by O(n+K

bj
),

assuming bj ≥ c for some sufficiently large constant c depending on c0):

T (n, n,K) ≤ O
(

(n+ K
b1

) logO(1) b1 +K ′′′′1 + (n+K
b1

+ K
b2

) logO(1) b2 +K ′′′′2

+ (n+K
b2

+ K
b3

) logO(1) b3 +K ′′′′3 + · · ·
)
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for some K ′′′′j ’s with
∑

jK
′′′′
j ≤ K +O(n+ n+K

b1
+ n+K

b2
+ · · · ) = K +O(n).

Finally, choosing bj = cj (and noting that
∑

j j
O(1)/cj = O(1)), we conclude that T (n, n,K) =

O(n+K). This implies that T (m,n,K) = O(m+ n+K).
Substituting this back into (5), we can also conclude that Tminima(m,n) = O(n(1 + log

⌈
m
n

⌉
)).

Theorem 3.1. Given an m× n Monge staircase matrix, we can report all K elements that are at
most a given value t (in an arbitrary order) in O(m+ n+K) expected time.

Given an m×n Monge staircase matrix, we can report the row minima in O(n(1 + log
⌈
m
n

⌉
)) ≤

O(m+ n) expected time.

Remarks. Note that all the translation and transposition operations on the input matrix are to
be done implicitly (we just need to remember an offset value per row and per column).

The row minima or lower envelope part of the algorithm here is similar to (and is modelled after)
the randomized divide-and-conquer algorithm by Millman et al. [32] for discrete lower envelope of
pseudo-lines, which also runs in O(n(1 + log

⌈
m
n

⌉
)) expected time. (For pseudo-lines, the conflict

list computation is easier and does not require halfplane range reporting.)
Note how crucial it is that we solve both the (≤ t)-reporting and the lower envelope problem

simultaneously: the (≤ t)-reporting algorithm requires lower envelopes of samples, and the lower
envelope algorithm requires (≤ t)-reporting to compute conflict lists.

Certain applications require solving the row minima problem for double staircase matrices.
Aggarwal and Klawe [3] observed that such matrices can be decomposed into staircase matrices,
but alternatively, it is straightforward to adapt our row minima algorithm directly to handle double
staircase matrices (since such matrices are closed under transposition and the lower envelope of the
corresponding pseudo-segments still has linear complexity).

4 (≤ t)-Reporting for Totally Monotone Matrices

We now investigate the (≤ t)-reporting problem more generally for an arbitrary totally monotone
(complete) matrix A. We don’t have symmetry now, and so will propose a different recursive
approach.

In this section, we let n denote the maximum number of columns in A (instead of expected).
We still use m to denote the expected number of rows in A, and K denote the expected number
of output elements. Redefine T (m,n,K) be the expected time needed to solve the problem under
these parameters.

4.1 First almost linear algorithm

A (pseudo-)concave chain refers to the lower envelope of a subset of pseudo-lines in L. In the
few-concave-chains case of the problem, the points of P lie on g concave chains. For each point p,
we are given a label of the chain it is on, and its incident pseudo-line. (By a linear scan over P , we
can thus obtain a sorted list of points on each chain.) Let Tchains(m,n,K; g) denote the expected
time needed to solve this special case of the problem.

Our algorithm consists of two parts: a reduction of the general problem to the few-concave-
chains case, and a reduction of the few-concave-chains case back to smaller instances of the general
problem.
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LE(Ri)
p

p↑

LE(R1)

LE(R0)

Figure 4: Lower envelopes of random samples, and lifting of a point p. (In general, the envelopes
might intersect.)

Part I: reducing to the few-concave-chains case. For each i = 0, . . . , log n − 1, let Ri be a
random sample of L where each element is chosen independently with probability 1

2i
(these log n

samples are chosen independently).
For each p ∈ P , find the smallest i∗ such that p is below LE(Ri∗), and lift p upward to a point

p↑ on LE(Ri∗). (See Figure 4.) Let P↑ = {p↑ : p ∈ P}, which is a point set lying on log n concave
chains. We solve the problem for P↑ and L. Afterwards, we can find the pseudo-lines below each
p ∈ P by a linear search over the pseudo-lines below p↑. (If p↑ does not exist, we do linear search
over all n pseudo-lines.)

Expected output size. Fix a point p ∈ P having k pseudo-lines below it. The probability
that p is above LE(Ri) is 1 − (1 − 1

2i
)k. Thus, the probability that i∗ = i is (1 − 1

2i
)k · (1 − (1 −

1
2i−1 )k) · (1 − (1 − 1

2i−2 )k) · · · . Let i0 = blog kc. It follows that Pr[i∗ = i0] = Ω(1), and for i > i0,

Pr[i∗ = i] ≤ O( k
2i

)2 (as a loose upper bound).
Let z be the number of pseudo-lines above p and below p↑. Conditioned on i∗ = i, the expected

value of z is at most 2i. Thus, E[z] ≤ E[2i
∗
] ≤ 2i0 +

∑∞
i=i0+1 2i · Pr[i∗ = i] ≤ O(2i0 +∑∞

i=i0+1 2i( k
2i

)2) = O(k). It follows that the expected total output size for the problem for P↑ and
L is O(K).

As an aside, note that conditioned on i∗ = i0, the probability that z ≤ αk is at least 1 − (1 −
1

2i0
)αk = Ω(α). Since Pr[i∗ = i0] = Ω(1), we get Pr[z ≤ αk] = Ω(α) unconditionally, for any

α ≤ O(1). This fact will be useful later.

Running time. It remains to analyze the time needed to compute i∗ and p↑ for every p ∈ P . For
each i = 0 to log n−1, we run SMAWK [4] on P and Ri to evaluate LE(Ri) at the x-coordinates of
P ; for each point p ∈ P , if p is below LE(Ri), we set p↑ to the point on LE(Ri) at p’s x-coordinate
(found by SMAWK) and remove p from P , before proceeding to the next iteration.

SMAWK runs in time linear in |P | and |Ri|. The total expected size of Ri over all i is
∑

i
n
2i

=
O(n). Fix a point p ∈ P that has k pseudo-lines below it. Then p participates in O(i∗ + 1) calls to
SMAWK, and E[i∗] ≤ O(k), since we have earlier shown the stronger statement E[2i

∗
] = O(k). It

follows that the total expected running time of all the calls to SMAWK is at most O(m+ n+K).
Thus,

T (m,n,K) ≤ O(m+ n+K) + Tchains(m,n,O(K); log n). (7)
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Part II: reducing the few-concave-chains case to smaller instances. For each point p ∈ P ,
define slope(p) to be the pseudo-slope of the pseudo-line that p is incident on; define the range of
p to be the interval [slope(p−), slope(p+)), where p− and p+ are the predecessor and successor of p
among the points of P on p’s chain.

Divide [1, n] into n
b intervals of length b, for a parameter b to be set later. For each interval I,

let LI be the set of all pseudo-lines of L with pseudo-slopes in I, and let PI be the set of all points
of P whose ranges intersect I. By a linear scan over the pre-sorted set P , we can generate all PI ’s,
each sorted by x. For each I, we solve the problem for PI and LI recursively.

Afterwards, for each p ∈ PI found to be above a pseudo-line ` ∈ LI by the recursive calls, we
search for all points on p’s chain that are above ` (and have not been found before), by doing a
linear scan in both directions from p.

Correctness. Consider a pseudo-line ` ∈ LI for a given interval I. Suppose that some point of
P on a concave chain γ is above `. We claim that at least one point of PI is above ` (and so the
linear scans afterwards will find all points of P above `). Let v be the vertex of γ that is defined
by a pair of pseudo-lines (`′, `′′) with the pseudo-slope of ` between the pseudo-slopes of `′ and `′′.
Consider the predecessor point v− and successor point v+ of v among the points of P on γ. Then
slope(`) lies in the range of v− and the range of v+. So, v−, v+ ∈ PI . As one of v− and v+ must
be above `, the claim is proved.

Running time. Consider an interval I of size b and a concave chain γ. Consider the portion γI
of γ that is defined by pseudo-lines with pseudo-slopes in I. The only points of P on γ that have
ranges intersecting I are the points of P on γI , plus 2 extra points (the predecessor of the leftmost
point on γI and the successor of the rightmost point on γI). Summing over all g chains and all n

b

intervals, we can then bound
∑

I |PI | by m+ 2gn
b .

The linear scans after the recursive calls take O(K) additional time. Thus,

Tchains(m,n,K; g) ≤ O(m+ n+K) +

n/b∑
i=1

T (mi, b,Ki), (8)

for some mi’s and Ki’s with
∑

imi ≤ m+ 2gn
b and

∑
iKi ≤ K.

Putting it all together. Set g = log n and b = log2 n. Combining (7) and (8) gives the following
recurrence:

T (m,n,K) ≤ O(m+ n+K) +

n/ log2 n∑
i=1

T (mi, log2 n,Ki),

for some mi’s and Ki’s with
∑

imi ≤ m + O( n
logn) and

∑
iKi ≤ O(K). (For the base case, if n

drops below a constant, T (m,O(1),K) = O(m).)
Expanding the recurrence for O(log∗ n) levels of recursion (and noting that O( n

logn + n
log(log2 n)

+

· · · ) = O(n)), we see that T (m,n,K) = O((m+ n) log∗ n+K2O(log∗ n)).

Remarks. Slight improvement in the m term is possible: We can initially reduce m to O(K), as
mentioned before by running SMAWK in O(m+ n) time, and removing points of P below LE(L).
Thus, T (m,n,K) ≤ O(m+ n) + T (K,n,K) = O(m+ n log∗ n+K2O(log∗ n)).
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Alternatively, we can stop after c + 1 levels of recursion, and switching to the trivial bound
T (m,n,K) = O(mn) for the base case. This gives T (m,n,K) = O((m + n) log(c) n + K) for any
constant c.

Slight improvement in the m term is again possible: In Part I, the number of points actually
drops to O(n) in expectation, since on each edge of each chain, only two points (the leftmost and
rightmost) may have nonempty ranges, and the expected total size of the chains is O(

∑
i
n
2i

) = O(n).

Thus, T (m,n,K) ≤ O(m+ n+K) + T (O(n), n,K) = O(m+ n log(c) n+K).
We remark that the general idea of using logarithmically many random samples of different

sizes is inspired by previous work on halfspace range reporting [11], but the way we use samples
here (not requiring the standard Clarkson–Shor framework) appears original.

4.2 Refinements

The running time of the preceding algorithm is already very close to linear, but for those who care
about optimizing iterated logarithmic factors, we offer two modifications to improve the time bound
further: the first to improve the n term, the second to improve the K term. Both modifications
concerns Part I of the algorithm only.

First modification. We take a random sample Ri only for i = log s, . . . , log n− 1, where s is a
parameter to be set later. This way, the total size of the Ri’s is reduced to O(

∑
i≥log s

n
2i

) = O(ns ).
For the analysis of the expected output size, fix a point p ∈ P having k pseudo-lines below it. If

k ≥ 4s, our earlier proofs that E[z] ≤ E[2i
∗
] = O(k) and Pr[z ≤ αk] = Ω(α) go through unchanged.

If k < 4s, we instead have E[z] ≤ E[2i
∗
] ≤ O(s+

∑∞
i=log s+2 2i · ( k

2i
)2) = O(s). The expected output

size for the problem for P↑ and L is now bounded by O(K + sm).
Now, p participates in O(i∗−log s+1) calls to SMAWK, and E[i∗−log s] ≤ E[2i

∗
/s] = O(1+ k

s ).
Thus, the total expected cost for SMAWK is O(m+ K

s + n
s ). (Note the sublinearity of the n

s term;
nowhere did we spend O(n) time outside of the recursive calls.) We get

T (m,n,K) ≤ O(m+ n
s +K) + Tchains(m,n,O(K + sm); log n). (9)

Second modification. Next, to mitigate the constant-factor blow-up in the output size K, we
repeat the procedure d times (with an independent collection of samples), for another parameter d.

Let p
(j)
↑ be the lifted point p↑ from the j-th repetition. Redefine p↑ as the lowest of p

(j)
↑ over all j.

The number of concave chains now increases by a factor of d, to at most d log n, but the expected
output size decreases, as we now show.

Fix a point p ∈ P having k pseudo-lines below it. Let z(j) be the number of pseudo-lines above

p and below p
(j)
↑ . Let z be the number of pseudo-lines above p and below p↑, i.e., z = minj z

(j).

If k < 4s, we already have E[z] ≤ E[z(1)] = O(s). Assume k ≥ 4s. As we have analyzed earlier,
E[z(j)] ≤ ck for some constant c, and Pr[z(j) ≤ αk] = Ω(α) for any α ≤ O(1). Thus, Pr[z >
2ik
d ] ≤ (1− Ω(2i

d ))d = e−Ω(2i) for 2i ≤ O(d). On the other hand, Pr[z > 2ick] ≤ ( 1
2i

)d by Markov’s

inequality. So, E[z] ≤ O(kd +
∑

i≥1
2ik
d e
−Ω(2i) +

∑
i≥1( 1

2i
)d−1k) ≤ O(kd + k

2d
) = O(kd ).

It follows that the expected output size for the problem for P↑ and L is (1 +O(1
d))K +O(sm).

Thus,

T (m,n,K) ≤ O(d(m+ n
s + K

s ) +K) + Tchains(m,n, (1 +O(1
d))K +O(sm); d log n). (10)
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Putting it all together. Set g = d log n, b = log2 n, s = (log∗ n)4, and d = (log∗ n)2. Combining
(10) and (8) yields the following new recurrence (loosely upper-bounding d log n by log2 n):

T (m,n,K) ≤ O(m(log∗ n)2 + n
(log∗ n)2 +K) +

n/ log2 n∑
i=1

T (mi, log2 n,Ki),

for some mi’s and Ki’s with
∑

imi ≤ m + O(n(log∗ n)2

logn ) and
∑

iKi ≤ (1 + O( 1
(log∗ n)2 ))K +

O(m(log∗ n)4).
To solve the recurrence, define n1 = n and nj = log2 nj−1, and let h = O(log∗ n) be the smallest

index such that nh is below a constant. Note that
∏h
j=1(1+O( 1

(log∗ nj)2 )) ≤ eO(
∑
j′ (1/j

′)2) = O(1). At

the j-th level of the recursion, the sum of the localm values is bounded bym+O(
∑j

j′=1

n(log∗ nj′ )
2

lognj′
) =

m + O(
n(log∗ nj)2

lognj
) (as the series is super-geometric), and the sum of the local K values is O(K +∑j

j′=1(m+
n(log∗ nj′ )

2

lognj′
)(log∗ nj′)

4) = O(K+m(log∗ n)5+
n(log∗ nj)6

lognj
). The total cost at the j-th level is

O((m+
n(log∗ nj)2

lognj
)(log∗ nj)

2 + n
(log∗ nj)2 +(K+m(log∗ n)5 +

n(log∗ nj)6

lognj
)) = O(m(log∗ n)5 + n

(log∗ nj)2 +

K). Since
∑h

j=1
1

(log∗ nj)2 ≤ O(
∑

j′(1/j
′)2) = O(1), the total over all h levels is T (m,n,K) =

O(m(log∗ n)6 + n+K log∗ n).

Final improvement. Finally, we can improve the m term by using our earlier Clarkson–Shor-
style divide-and-conquer approach. A recurrence similar to (1) still holds, since it does not use
symmetry. Choose b = (log∗ n)6. Instead of recursion, use the above new algorithm, which allows
us to replace TO(b3)(mi, ni,Ki) with O(mi(log∗ b)6 + ni + Ki log∗ b), and T (O(m+K

b ), n,K ′) with

O(m+K
b (log∗ n)6 + n+K ′ log∗ n).

Then (1) gives T (m,n,K) = O(m(log∗ log∗ n)6 + n+K log∗ n).
As noted before, we can initially reduce m to O(K) after spending O(m+ n) time. We get our

final time bound T (m,n,K) = O(m+ n+K log∗ n).

Theorem 4.1. Given an m×n totally monotone matrix, we can report all K elements that are at
most a given value t in O(m+n+K log∗ n) expected time, or alternatively in O(m+n log(c) n+K)
expected time for any constant c.

Remarks. The only primitive operations needed by the algorithms in this section are comparisons
of the form A[i, j] ≤ A[i, j′] or A[i, j] ≤ t.

We leave open the question of whether the remaining log∗ factor can be further reduced. If there
were an O(m(log∗ n)O(1) +n+K) algorithm, then bootstrapping with (1) would give a time bound
with a doubly iterated logarithm. But we don’t even know of an O(m logO(1) n+K) algorithm, or
for that matter, an O(mO(1) + n+K) algorithm.

It is possible to design a randomized algorithm that has optimal but unknown time complexity
for the (≤ t)-reporting problem for totally monotone matrices, similar to results by Larmore [30] on
row minima for totally monotone staircase matrices, or Pettie and Ramachandran [35] on minimum
spanning trees. The algorithm in Section 4.1 reduces the problem to instances of size at most
log(c) n, after a constant number of rounds, and for such extremely small instances, we can build
an optimal decision tree by “brute force”.
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5 Consequences

In this section, we describe applications or variants of our (≤ t)-reporting algorithms to solve a
number of related problems.

5.1 (≤ K)-selection

There is a simple general randomized reduction of the (≤ K)-selection problem to (≤ t)-reporting
(this reduction does not require geometry, and has been observed before in other contexts, e.g.,
in [12]):

First, we may reduce m to be at most K, by running a row minima algorithm, selecting the
K-th smallest row minimum t0, and keeping only rows whose minima are at most t0.

Now, pick a random sample of n entries from the entire m×n matrix, and let t be the
⌈

2K
m

⌉
-th

smallest of the sample, which can be found in O(n) time. Now, run our (≤ t)-reporting algorithm,
with a time limit of T (m,n, 6K). If the output contains between K and 6K elements, we report
the first K smallest elements from the output in O(m+K) additional time.

The expected rank of t is
⌈

2K
m

⌉
m, which is between 2K and 3K (since m ≤ K). Straight-

forward calculations show that the rank of t is between K and 6K with probability Ω(1). Thus,
an O(1) expected number of trials suffices. The total expected running time is O(T (m,n, 4K)).
Consequently, by using Theorems 4.1 and 3.1, we obtain the following:

Theorem 5.1. Given an m × n totally monotone matrix and a number K, we can report the K
smallest elements (in an arbitrary order) in O(m+ n+K log∗ n) expected time.

Given an m × n Monge (complete or staircase) matrix and a number K, we can report the K
smallest elements (in an arbitrary order) in O(m+ n+K) expected time.

5.2 Row (≤ k1, . . . , km)-selection for totally monotone matrices

We now consider the row (≤ k1, . . . , km)-selection problem for a totally monotone matrix, which
is trickier than (≤ K)-selection. Let Tselect(m,n,K) be the expected time needed to solve this
problem where m is the (expected) number of rows, n is the (maximum) number of rows, and K
is the (expected) sum

∑
i ki.

In geometric terms, the problem reduces to the following:

Given a set X of values of (expected) size m, a set L of pseudo-lines of (maximum) size
n in the plane, and a number kx for each x ∈ X, report the first kx lowest pseudo-lines
of L at x-coordinate x for each x ∈ X. We let K be the (expected) sum

∑
x∈X kx.

First approach, via sampling. We first give a general randomized reduction from row (≤
k1, . . . , km)-selection to (≤ t1, . . . , tm)-reporting, which as mentioned reduces to (≤ t)-reporting
(this reduction does not require geometry):

Take a sample R of n
2 columns. Find the min

{
3
4ki + c log n, ki

}
-th smallest ti for the i-th row

among the columns in R, by recursion. Run our algorithm for row (≤ t1, . . . , tm)-reporting, in
O(T (m,n,K)) time. Search for the answers among the output entries.

Observe that in the i-th row, the ki-th smallest among all columns is at most the (3ki/4+c log n)-
th smallest among the columns in R with high probability (say 1− n−3) by a Chernoff bound, for
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a sufficiently large constant c. (If failure is detected, we can switch to a brute-force quadratic-time
algorithm.) Thus, we obtain:

Tselect(m,n,K) ≤ Tselect(m,
n
2 ,

3K
4 +O(m log n)) +O(T (m,n,K) +m+ n+K).

By using Theorem 4.1, the recurrence solves to Tselect(m,n,K) = O(m log n log∗ n+ n+K log∗ n).
The n and K terms are fine; however, the m term has an extra logarithmic factor.

Second approach, via Clarkson–Shor. We now improve the m term by modifying the
Clarkson–Shor-style divide-and-conquer algorithm from Section 2. (In contrast, the (≤ k)-reporting
algorithm from Section 4.1 does not seem adaptable.)

Take a random sample R of L of size n
s . Compute the lower envelope LE(R) and its vertical

decomposition VD(R), in O(m+ n
s ) time as before. For each cell ∆ ∈ VD(R), compute its conflict

list L∆; as before, this takes time O(
∑

∆∈VD(R) |L∆|), which has expected value O((ns )s) = O(n).

Let X ′ be the subset of all x ∈ X with kx > b. For each ∆ ∈ VD(R) with |L∆| ≤ bs, we
recursively solve the subproblem for L∆ and the x-values in X −X ′ that lie in the x-projection of
∆. Let X ′′ be the subset of all x-values in X −X ′ whose answers found lie above LE(R). Let X ′′′

be the subset of all x-values in X that lie in the x-projection of cells ∆ ∈ VD(R) with |L∆| > bs.
We recursively solve the subproblem for L and X ′ ∪X ′′ ∪X ′′′.

We have |X ′| ≤ K
b . For each x ∈ X−X ′, the probability that x ∈ X ′′, i.e., that the kx-th lowest

point on x is above LE(R), is at most b
s . Thus, the expected size of X ′′ is O((mb )s). Furthermore,

by Clarkson and Shor’s analysis, the expected value of |L∆| for the cell ∆ intersecting a fixed x is
O(s). Thus, the probability that |L∆| > bs is O(1

b ), and so the expected size of X ′′′ is O(mb ).
Choose s = b2. The expected size of X ′ ∪ X ′′ ∪ X ′′′ is then O(m+K

b ), which is O(Kb ) since
K ≥ m. Observe that only the x-values of X ′′ may participate in two recursive calls, and the
expected value of

∑
x∈X′′ kx is at most O(Kbs ) = O(Kb ). We thus obtain the following recurrence:

Tselect(m,n,K) ≤
∑
i

Tselect(mi, ni,Ki) + Tselect(O(Kb ), n,K ′) +O(m+ n),

for some mi’s, ni’s, and Ki’s with
∑

i ni = O(n), maxi ni = O(b3),
∑

imi ≤ m, and
∑

iKi +K ′ ≤
K +O(Kb ) and K ′ ≤ K.

By the first approach, we can replace Tselect(mi, ni,Ki) with O(mi logO(1) ni + ni +Ki log∗ ni).
Letting K ′′ = K −K ′, we get:

Tselect(m,n,K) ≤ O(m logO(1) b+ n+ (K ′′ + K
b ) log∗ b) + Tselect(O(Kb ), n,K −K ′′).

Now we expand the recurrence using an increasing sequence b1, b2, . . .:

Tselect(m,n,K) ≤ O
(

(m logO(1) b1 + n+K ′′1 log∗ b1) + (Kb1 logO(1) b2 + n+ (K ′′2 + K
b1

) log∗ b2) +

· · ·+ ( K
bh−1

logO(1) bh + n+ (K ′′h + K
bh−1

) log∗ bh−1) + K
bh
n
)

for some K ′′j ’s with
∑

jK
′′
j ≤ K.

Choose b1 = 2 and bj = 2b
δ
j−1 for a sufficiently small constant δ > 0, and let h = O(log∗ n) be

the smallest index such that bh ≥ n. We conclude that Tselect(m,n,K) = O(m+ (n+K) log∗ n) =
O((n+K) log∗ n) (since m ≤ K).
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Theorem 5.2. Given an m × n totally monotone matrix and numbers k1, . . . , km ≥ 1, we can
report the ki smallest elements (in an arbitrary order) in the i-th row, for all i = 1, . . . ,m, in
O((n+K) log∗ n) expected time.

Remarks. We leave as an open question whether the time bound could be improved to O(n +
K log∗ n), to match the complexity of (≤ t)-reporting.

Alternatively, if we use the O(m+n log(c) n+K) algorithm for (≤ k)-reporting as a start, then
the first approach gives Tselect(m,n,K) = O(m log n+ n log(c) n+K). In the second approach, by
beginning with b1 = log(c) n, we have h = O(1) and get Tselect(m,n,K) = O((m+ n) log(c) n+K).

5.3 Row minima for totally monotone v-matrices

As another application of our (≤ k)-reporting algorithm, we consider the row minima problem for
an m× n totally monotone v-matrix.

In geometric terms, the problem corresponds to computing a discrete lower envelope of n pseudo-
line segments (or pseudo-segments):

For a set X of m values and a set L of n pseudo-segments in the plane, evaluate the
lower envelope of L at the x-coordinates of X.

We assume that the x-coordinates of X and of the endpoints of L have been pre-sorted, and the
pseudo-segments of L has been pre-sorted by pseudo-slope. More precisely, each pseudo-segment
is given a distinct number called the pseudo-slope, with the property that if segments ` and `′

intersect and ` has larger pseudo-slope than `′, then ` is below `′ to the left of the intersection. (A
lemma from [13] states that such a numbering exists iff the pseudo-segments are extendible.) As is
known [24, 38], the lower envelope of n pseudo-segments has at most O(nα(n)) vertices.

We need two subroutines:

1. A naive lower envelope algorithm with O(n2(1 + log
⌈
m
n2

⌉
)) running time:

Draw vertical lines at the endpoints to divide the plane into O(n) slabs. In each slab formed
by two consecutive vertical lines, run SMAWK to compute lower envelope (since the pseudo-
segments may be treated as pseudo-lines within the slab). The total time for these n sub-

problems is O(
∑O(n)

i=1 n(1 + log
⌈
mi
n

⌉
)) for some mi’s with

∑O(n)
i=1 mi = m. The sum is at most

O(n2(1 + log
⌈
m
n2

⌉
)) by concavity of the logarithm.

2. An algorithm for solving the reporting problem for points and pseudo-segments in O(m3 +
n + K log∗ n) expected time—given a set P of m points and a set L of n pseudo-segments,
report all K pairs (p, `) ∈ P × L with p above `:

Draw vertical lines at the endpoints to divide the plane into O(n) slabs. For each pair
of slabs σ1 and σ2, run our reporting algorithm from Theorem 4.1 on the points between
σ1 and σ2 and the pseudo-segments with left endpoints in σ1 and right endpoints in σ2

(for such a subproblem, the pseudo-segments may be treated as pseudo-lines). There are
O(m2) subproblems; each point participates in O(m2) subproblems, but each pseudo-segment
participates in one. By Theorem 4.1, the total expected time is O(m3 + n+K log∗ n).

Choose a hierarchy of random samples R1 ⊂ R2 ⊂ · · · ⊂ R` = L, where each element of L is in

Ri with probability 1
ni

, and n1 = n, ni+1 = n
3/4
i , and n` = O(1) (with ` = O(log log n)). At the
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i-th iteration, we assume that we have already computed the lower envelope LE(Ri), its vertical
decomposition VD(Ri), and the conflict lists of the cells of VD(Ri). For each cell ∆ ∈ VD(Ri), we
compute the lower envelope LE(Ri+1∩L∆) inside ∆ by the above subroutine 1. By gluing all these
lower envelopes, we obtain LE(Ri+1).

The total time for these steps is O
([∑

i

∑
∆∈VD(Ri)

|Ri+1 ∩ L∆|2(1 + log
⌈

m∆
|Ri+1∩L∆|2

⌉
)
])

,

where
∑

∆∈VD(Ri)
m∆ = m for each i. By concavity of the logarithm, the sum is at most

O(S(1 + log
⌈
m log logn

S

⌉
)), where S =

∑
i Si and Si =

∑
∆∈VD(Ri)

|Ri+1 ∩ L∆|2. Now, E[Si] =

E
[∑

∆∈VD(Ri)
( |L∆|
ni+1

)2
]
. By a standard analysis of Clarkson and Shor [17, 34], this expec-

tation is O(( nniα( nni ))(
ni
ni+1

)2) = O(( nniα(n))
√
ni) = O(nα(n)/

√
ni). It follows that E[S] =

O(
∑

i nα(n)/
√
ni) = O(nα(n)). So, S = O(nα(n)) with probability Ω(1). We can repeat an O(1)

expected number of times to ensure success. The time bound is O(nα(n)(1 + log
⌈
m log logn
nα(n)

⌉
)) ≤

O(nα(n) log
⌈
m
n

⌉
+ nα(n) log log log n).

Before proceeding to the next iteration, we still need to compute the conflict lists of the cells
of VD(Ri+1). It suffices to compute the conflict list of every vertex v of LE(Ri+1), where the
conflict list of v is defined as the list of all pseudo-segments below v. This is because a pseudo-
line segment ` intersects a cell ∆ iff ` is below at least one of the two vertices of ∆ or at least
one of the endpoints of ` is inside ∆. For each cell ∆ ∈ VD(Ri), we want to find the pseudo-
segments of L∆ below each vertex of LE(Ri+1 ∩ L∆) inside ∆. By the above subroutine 2, this
takes O(|Ri+1 ∩ L∆|3 + |L∆| + K∆ log∗ n) expected time per cell ∆, where K∆ is the total size
of the conflict lists of the vertices of LE(Ri+1) inside ∆. The total expected cost over all cells is

proportional to E
[∑

∆∈VD(Ri)
(( |L∆|
ni+1

)3 + |L∆|) +
∑

∆′∈VD(Ri+1) |L∆′ | log∗ n
]
. By Clarkson–Shor,

this isO(( nniα( nni ))(
ni
ni+1

)3+ni)+( n
ni+1

α( n
ni+1

))ni+1 log∗ n) = O(( nniα(n))(n
3/4
i +ni)+nα(n) log∗ n) =

O(nα(n) log∗ n). The total over all ` = O(log log n) iterations is O(nα(n) log∗ n log log n).
The overall time bound is O(nα(n) log∗ n log logn + nα(n) log

⌈
m
n

⌉
). In the case of n > m,

we can divide into n
m subproblems of size m and obtain an O( nm(mα(m) log∗m log logm)) =

O(nα(m) log∗m log logm) time bound.

Theorem 5.3. Given an m × n totally monotone v-matrix, we can find all row minima in
O(nα(m) log∗m log logm+ nα(m) log

⌈
m
n

⌉
) ≤ O(nα(m) log∗m log logm+m) expected time.

Remarks. The log∗ factor may be removed in the Monge case, by using the reporting algorithm
from Theorem 2.1 in the implementation of subroutine 2.

The n log logm barrier seems harder to break. This appears to require implementing subrou-
tine 2 in, say, O(m logO(1) n+ n+K) time instead of O(mO(1) + n+K).

For large n, it is possible to achieve linear running time by a more naive approach: Namely,
divide the plane into b vertical slabs each containing m

b x-values. If a pseudo-segment spans multiple
slabs, divide it into a left, middle, and right piece where each left/right piece is contained in a slab,
and all the middle pieces have x-coordinates from b distinct values. We recursively solve the
problem inside each slab, ignoring the middle pieces. For the middle pieces, we put pieces with the
same x-projection in the same class, and then compute the discrete lower envelope of each class by
SMAWK (since within the same class, the pseudo-segments behave like pseudo-lines). The total
cost of these O(b2) calls to SMAWK is O(b2m + n) (since each middle piece belongs to just one
class). We can combine the envelopes in O(b2m) additional time. The total time over all O(logb n)
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levels of recursion is O((b2m + n) logb n). Setting b = nδ/2 yields O(n + m1+δ) for any constant
δ > 0. This upper bound may not be too exciting, but it disproves a conjecture of Klawe [26] that
her Ω(nα(n)) lower bound for m = Θ(n) could be strengthened to Ω(nα(m)) for n > m.

Acknowledgement. I thank Jeff Erickson for a conversation about SMAWK and staircase ma-
trices, which led to the start of this work.
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[9] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. Perspectives of Monge properties in optimiza-
tion. Discret. Appl. Math., 70(2):95–161, 1996. doi:10.1016/0166-218X(95)00103-X.

[10] Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Homology flows, cohomology cuts. SIAM J.
Comput., 41(6):1605–1634, 2012. doi:10.1137/090766863.

[11] Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-levels in
three dimensions. SIAM J. Comput., 30(2):561–575, 2000. doi:10.1137/S0097539798349188.

[12] Timothy M. Chan. On enumerating and selecting distances. Int. J. Comput. Geom. Appl., 11(3):291–
304, 2001. doi:10.1142/S0218195901000511.

[13] Timothy M. Chan. On levels in arrangements of curves. Discret. Comput. Geom., 29(3):375–393, 2003.
doi:10.1007/s00454-002-2840-2.

[14] Timothy M. Chan. Near-optimal randomized algorithms for selection in totally monotone matrices.
Manuscript, 2020.

21

http://dx.doi.org/10.1007/978-3-662-43948-7_7
http://dx.doi.org/10.1007/978-3-662-43948-7_7
http://dx.doi.org/10.1137/S0097539703433900
http://dx.doi.org/10.1016/0166-218X(90)90124-U
http://dx.doi.org/10.1007/BF01840359
http://dx.doi.org/10.1109/SFCS.1988.21966
http://dx.doi.org/10.1109/SFCS.1988.21966
http://dx.doi.org/10.1007/BF02574380
http://dx.doi.org/10.1145/41958.41988
http://dx.doi.org/10.1145/41958.41988
http://dx.doi.org/10.1145/1644015.1644032
http://dx.doi.org/10.1016/0166-218X(95)00103-X
http://dx.doi.org/10.1137/090766863
http://dx.doi.org/10.1137/S0097539798349188
http://dx.doi.org/10.1142/S0218195901000511
http://dx.doi.org/10.1007/s00454-002-2840-2


[15] Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and 3-d
shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016. doi:10.1007/s00454-016-9784-4.

[16] Bernard Chazelle, Leonidas J. Guibas, and D. T. Lee. The power of geometric duality. BIT, 25(1):76–90,
1985. doi:10.1007/BF01934990.

[17] Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational geometry,
II. Discret. Comput. Geom., 4:387–421, 1989. doi:10.1007/BF02187740.

[18] Karen L. Daniels, Victor J. Milenkovic, and Dan Roth. Finding the largest area axis-parallel rectangle
in a polygon. Comput. Geom., 7:125–148, 1997. doi:10.1016/0925-7721(95)00041-0.

[19] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse dynamic programming
II: convex and concave cost functions. J. ACM, 39(3):546–567, 1992. doi:10.1145/146637.146656.

[20] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance transforms of sampled functions. Theory
of Computing, 8(1):415–428, 2012. doi:10.4086/toc.2012.v008a019.

[21] Zvi Galil and Kunsoo Park. Dynamic programming with convexity, concavity, and sparsity. Theor.
Comput. Sci., 92(1):49–76, 1992. doi:10.1016/0304-3975(92)90135-3.

[22] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Submatrix maximum queries in Monge and
partial Monge matrices are equivalent to predecessor search. ACM Trans. Algorithms, 16(2):16:1–16:24,
2020. doi:10.1145/3381416.

[23] Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inf.
Process. Lett., 1(4):132–133, 1972. doi:10.1016/0020-0190(72)90045-2.

[24] Sergiu Hart and Micha Sharir. Nonlinearity of Davenport–Schinzel sequences and of generalized path
compression schemes. Combinatorica, 6(2):151–178, 1986. doi:10.1007/BF02579170.

[25] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries in Monge
matrices and partial Monge matrices, and their applications. ACM Trans. Algorithms, 13(2):26:1–26:42,
2017. doi:10.1145/3039873.

[26] Maria M. Klawe. Superlinear bounds for matrix searching problems. J. Algorithms, 13(1):55–78, 1992.
doi:10.1016/0196-6774(92)90005-W.

[27] Maria M. Klawe and Daniel J. Kleitman. An almost linear time algorithm for generalized matrix
searching. SIAM J. Discret. Math., 3(1):81–97, 1990. doi:10.1137/0403009.

[28] Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar graphs with
negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Algorithms, 6(2):30:1–30:18,
2010. doi:10.1145/1721837.1721846.

[29] Dina Kravets and James K. Park. Selection and sorting in totally monotone arrays. Math. Syst. Theory,
24(3):201–220, 1991. doi:10.1007/BF02090398.

[30] Lawrence L. Larmore. An optimal algorithm with unknown time complexity for convex matrix searching.
Inf. Process. Lett., 36(3):147–151, 1990. doi:10.1016/0020-0190(90)90084-B.

[31] Michael McKenna, Joseph O’Rouke, and Subhash Suri. Finding the largest rectangle in an orthogonal
polygon. In Proc. 23rd Allerton Conference on Communication, Control and Computing, 1985.

[32] David L. Millman, Steven Love, Timothy M. Chan, and Jack Snoeyink. Computing the nearest neigh-
bor transform exactly with only double precision. In Proc. 9th International Symposium on Voronoi
Diagrams in Science and Engineering (ISVD), pages 66–74, 2012. doi:10.1109/ISVD.2012.13.

[33] Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths in
O(n log2 n/ log log n) time. In Proc. 18th European Symposium on Algorithms (ESA), Part II, pages
206–217, 2010. doi:10.1007/978-3-642-15781-3\_18.

22

http://dx.doi.org/10.1007/s00454-016-9784-4
http://dx.doi.org/10.1007/BF01934990
http://dx.doi.org/10.1007/BF02187740
http://dx.doi.org/10.1016/0925-7721(95)00041-0
http://dx.doi.org/10.1145/146637.146656
http://dx.doi.org/10.4086/toc.2012.v008a019
http://dx.doi.org/10.1016/0304-3975(92)90135-3
http://dx.doi.org/10.1145/3381416
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.1007/BF02579170
http://dx.doi.org/10.1145/3039873
http://dx.doi.org/10.1016/0196-6774(92)90005-W
http://dx.doi.org/10.1137/0403009
http://dx.doi.org/10.1145/1721837.1721846
http://dx.doi.org/10.1007/BF02090398
http://dx.doi.org/10.1016/0020-0190(90)90084-B
http://dx.doi.org/10.1109/ISVD.2012.13
http://dx.doi.org/10.1007/978-3-642-15781-3_18


[34] Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, 1994.

[35] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algorithm. J. ACM,
49(1):16–34, 2002. doi:10.1145/505241.505243.

[36] Baruch Schieber. Computing a minimum weight k-link path in graphs with the concave Monge property.
J. Algorithms, 29(2):204–222, 1998. doi:10.1006/jagm.1998.0955.

[37] Raimund Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New
Trends in Discrete and Computational Geometry, pages 37–68. Springer, 1993.

[38] Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications.
Cambridge University Press, 1995.

[39] F. Frances Yao. Efficient dynamic programming using quadrangle inequalities. In Proc. 12th ACM
Symposium on Theory of Computing (STOC), pages 429–435, 1980. doi:10.1145/800141.804691.

A Applications

We mention a few applications of our row minima algorithm for Monge staircase matrices, to various
problems in computational geometry and dynamic programming:

• Given two disjoint convex n-gons P and Q in the plane, we want to find the nearest (or
farthest) invisible vertex of Q for each vertex of P . Aggarwal and Klawe [3] observed that
this problem can be reduced to row minima in Monge staircase matrices. We can now solve
the problem in O(n) expected time.

• Given an orthogonally convex n-gon P in the plane, we want to find the largest-area axis-
aligned rectangle contained in P . Daniels et al. [18] used Klawe and Kleitman’s algorithm to
solve this problem in O(nα(n)) time (the Monge property was observed earlier by McKenna
et al. [31]). We can now solve the problem in O(n) expected time.5

Daniels et al. [18] then showed that for an x-monotone polygon (where every vertical line
intersect the polygon at most twice), the same problem can be solved in O(nα(n) log n) time,
by divide-and-conquer. Our improvement yields an O(n log n) expected time bound.

• Given a complete DAG with n vertices whose edge weights satisfy the convex Monge prop-
erty, and given two vertices s and t and a number k, we want to find the shortest path
from s to t using exactly k links. Straightforward dynamic programming reduces the prob-
lem to k instances of the row minima problem in convex Monge, upper triangular matrices.
Our new algorithm implies an O(nk) expected time bound, improving a previous bound of
O(nkα(n)) [9]. (Note that the problem in the concave Monge case has received much more
attention [6, 36].)

• In a seminal work, F. Yao [39] studied the problem of evaluating a recurrence of the following
form: for any 1 ≤ i < j ≤ n,

c(i, j) = w(i, j) + min
i<k≤j

(c(i, k − 1) + c(k, j)),

5 On a related note, Aggarwal and Suri [7] studied the problem of finding the largest empty axis-aligned rectangle
for a set of n points in the plane, and gave an O(n log2 n)-time algorithm, using row minima in Monge staircase
matrices and other types of Monge partial matrices as subroutines. Our result does not seem to immediately improve
their overall time bound, but perhaps with more effort, some improvement might be possible. . .
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where the values c(i, i) are given. Naive dynamic programming requires O(n3) time. Yao
described an O(n2)-time algorithm to compute all c(i, j) values when w satisfies the concave
Monge property and, in addition, w(i, j) ≤ w(i′, j′) whenever [i, j] ⊂ [i′, j′]. Aggarwal and
Park [5] noted an O(n2α(n))-time algorithm for the less studied case when w satisfies the
convex Monge property and, in addition, w(i, j) ≥ w(i′, j′) whenever [i, j] ⊂ [i′, j′]. We can
now improve the time bound in this convex case to O(n2). This can be most easily seen by
following an approach of Bein et al. [8], who reduced the problem to O(n) instances of row
minima in a Monge, upper triangular matrix. Bein et al. described the reduction for the
concave case, but the same approach works in the convex case.

There were also a few algorithms in the literature on planar or surface-embedded graphs (e.g., [28,
10, 33]) that used Klawe and Kleitman’s row minima algorithm as an intermediate step, which now
may be replaced by our new algorithm; however, the final running time in these graph algorithms
appears to be dominated by other steps. There were also a number of important applications of
Klawe and Kleitman’s algorithm to speed up certain types of dynamic programming that arise from
computational biology [19], but these require matrix searching in an “online setting”, for which our
new algorithm does not seem applicable.

Our (≤ K)-selection algorithm has at least one interesting application in computational geom-
etry:

• Given a convex n-gon P in the plane, we want to report the K farthest pairs of vertices (in an
arbitrary order). For general planar point sets, the problem requires O(n log n+K) time [12].

Kravets and Park [29] used their (≤ K)-selection algorithm to obtain an O(n+K log n2

K )-time
algorithm for the problem for a convex polygon. Our result implies an optimal O(n+K)-time
randomized algorithm.

B A Simple Randomized Alternative to SMAWK

In this appendix, we briefly sketch a simple O(m+ n)-time randomized algorithm for the original
problem of computing row minima in a complete m×n totally monotone matrix, which may serve
as an alternative to SMAWK [4]. Now, SMAWK is already a simple (but tricky) algorithm. In
some sense, the new algorithm is conceptually more straightforward, and thus may have some
pedagogical value. (It is not easier to implement, however.) Millman et al. [32] have already
given an alternative randomized linear-time algorithm via sampling, but the following randomized
incremental algorithm is a little simpler.

Though the main idea has its roots from known randomized incremental algorithms for planar
lower envelopes of lines (i.e., convex hulls in the dual) [17, 34], we will desribe it in matrix terms.
Let A be the input m×n concave totally monotone matrix. By padding with extra rows or columns,
we may assume that m = n. For each i = 1, . . . , n, we want to compute the index ji that minimizes
A[i, ji]. Note that j1 ≤ j2 ≤ · · · ≤ jn, because of total monotonicity. Set j0 = 0 and jn+1 = n+ 1.
In addition, for each j = 1, . . . , n, we will also compute the index ij for which jij ≤ j < jij+1.

Algorithm. We will describe the randomized incremental algorithm “backwards”, to make the
analysis easier: Namely, the algorithm randomly picks a row i∗ and a column j∗, delete the row
and the column, solve the problem recursively for the resulting (n− 1)× (n− 1) matrix, then add
back the row and the column and update the answers. (See Figure 5.)
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Figure 5: How the answer staircase S changes when inserting a row i∗ (left) or when inserting a
column j∗ (right).

To add back row i∗: We just compute ji∗ by finding the minimum of A[i, j] over all j =
ji∗−1, . . . , ji∗+1 (by naive linear search), and update ij appropriately for all j = ji∗−1, . . . , ji∗+1.

To add back column j∗: We find the the smallest i′ ≤ ij∗−1 with A[i′, j] < A[i′, ji′ ] (by naive
linear search), and the largest i′′ > ij∗−1 with A[i′′, j] < A[i′′, ji′′ ] (by another naive linear search).
We then reset ji to j∗ for all i = i′, . . . , i′′, and update ij appropriately for all j = ji′ , . . . , ji′′ .

Analysis. We bound the expected running time by using a standard backwards analysis [34,
37]. Define the answer staircase S to be an orthogonal polygonal path through positions
(0, 0), (0, j1), (1, j1), (2, j1), (2, j2), . . . , (n, jn), (n, n), with respect to the final answers for the en-
tire n× n matrix A.

The cost of adding back row i∗ is proportional to the sum of the lengths of the horizontal edges
in S contained in rows i∗−1 and i∗. Since the sum of these lengths over all i∗ is O(n), the expected
cost for a random i∗ is O(1).

The cost of adding back column j∗ is proportional to the sum of the lengths of the vertical edge
in S contained in column j∗ and its two adjacent horizontal edges in S. (If column j∗ contains just
a single position of S and not a vertical edge, the cost is O(1).) Since the sum of these lengths over
all j∗ is O(n) (as each edge is counted O(1) times), the expected cost for a random j∗ is O(1).

Thus, the total expected cost for an n×n matrix satisfies the recurrence T (n) ≤ T (n−1)+O(1),
yielding T (n) = O(n). For an m× n input matrix, the expected running time is thus O(m+ n).

Remarks. In actual implementation, the active rows (resp. columns) need to be kept in a sorted,
doubly linked list, to avoid shifting indices when deleting rows (resp. columns); for example, i∗± 1
should actually be the successor/predecessor of i∗ in the linked list. Because of all the pointer
manipulations and bookkeeping of the extra indices ji’s, the above algorithm probably would not
compete as well with SMAWK in practice (which has very efficient existing implementations). Also,
the above algorithm does not seem to work in the online setting, unlike SMAWK.

The random-sampling-based algorithm by Millman et al. [32] (which achieves a better O(n(1 +
log
⌈
m
n

⌉
)) expected cost in the non-square case) similarly removes columns at random but does not

remove rows; however, it is less simple and requires extra binary searches.
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