
Quake Heaps:

A Simple Alternative to Fibonacci Heaps

Timothy M. Chan

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada, tmchan@uwaterloo.ca

Abstract. This note describes a data structure that has the same the-
oretical performance as Fibonacci heaps, supporting decrease-key op-
erations in O(1) amortized time and delete-min operations in O(log n)
amortized time. The data structure is simple to explain and analyze, and
may be of pedagogical value.

1 Introduction

In their seminal paper [5], Fredman and Tarjan investigated the problem of
maintaining a set S of n elements under the operations

– insert(x): insert an element x to S;
– delete-min(): remove the minimum element x from S, returning x;
– decrease-key(x, k): change the value of an element x to a smaller value k.

They presented the first data structure, called Fibonacci heaps, that can support
insert() and decrease-key() in O(1) amortized time, and delete-min() in O(log n)
amortized time.

Since Fredman and Tarjan’s paper, a number of alternatives have been pro-
posed in the literature, including Driscoll et al.’s relaxed heaps and run-relaxed
heaps [1], Peterson’s Vheaps [9], which is based on AVL trees (and is an instance
of Høyer’s family of ranked priority queues [7]), Takaoka’s 2-3 heaps [11], Kaplan
and Tarjan’s thin heaps and fat heaps [8], Elmasry’s violation heaps [2], and most
recently, Haeupler, Sen, and Tarjan’s rank-pairing heaps [6]. The classical pair-
ing heaps [4, 10, 3] are another popular variant that performs well in practice,
although they do not guarantee O(1) decrease-key cost.

Among all the data structures that guarantee constant decrease-key and log-
arithmic delete-min cost, Fibonacci heaps have remained the most popular to
teach. The decrease-key operation uses a simple “cascading cut” strategy, which
requires an extra bit per node for marking. For the analysis, the potential func-
tion itself is not complicated, but one needs to first establish bounds on the
maximum degree of the trees (Fibonacci numbers come into play here), and this
requires understanding some subtle structural properties of the trees formed (a
node may lose at most one child when it is not a root, but may lose multiple chil-
dren when it is a root). In contrast, Vheaps are more straightforward to analyze,
for those already acquainted with AVL trees, but the decrease-key() algorithm

requires division into multiple cases, like the update algorithms of most balanced
search trees. The recent rank-pairing heaps interestingly avoid cascading cuts by
performing cascading rank changes, which may lead to a simpler implementation,
but from the teaching perspective, the analysis appears even more complicated
than for Fibonacci heaps (and there are also divisions into multiple cases).

In this note, we describe a data structure that is arguably the easiest to
understand among all the existing methods. There is no case analysis involved,
and no “cascading” during decrease-key(). We use a very simple, and rather
standard, idea to ensure balance: be lazy during updates, and just rebuild when
the structure gets “bad”. Previous methods differ based on what local structural
invariants are imposed. Our method is perhaps the most relaxed, completely
forgoing local constraints, only requiring the tracking of some global counters.
(Violation heaps [2] are of a similar vein but require multiple local counters; our
method is simpler.)

In Section 2, we give a self-contained presentation of our method,1 which
should be helpful for classroom use; it only assumes basic knowledge of amortized
analysis. We find a description based on tournament trees the most intuitive,
although the data structure can also be expressed more traditionally in terms of
heap-ordered trees or half-ordered trees, as noted in Section 3.

2 Quake Heaps

The approach. We will work with a collection of tournament trees, where each
element in S is stored in exactly one leaf, and the element of each internal node is
defined as the minimum of the elements at the children. We require that at each
node x, all paths from x to a leaf have the same length; this length is referred
to as the height of x. We also require that each internal node has degree 2 or 1.
See Figure 1.

8513101415163209112 13

4

21

1

5

31

314

51014320112

64

Fig. 1. An example.

Two basic operations are easy to do in constant time under these require-
ments: First, given two trees of the same height, we can link them into one,

1 Tradition demands a name to be given. The one in the title will hopefully make some
sense after reading Section 2.

simply by creating a new root pointing to the two roots, storing the smaller ele-
ment among the two roots. Secondly, given a node x whose element is different
from x’s parent’s, we can cut out the subtree rooted at x. Note that x’s former
parent’s degree is reduced to 1, but our setup explicitly allows for degree-1 nodes.

Inserting an element can be trivially done by creating a new tree of size 1.
The number of trees in the collection increases by 1, but can be reduced by
linking at a convenient time later.

For a delete-min operation, we can just remove the path of nodes that store
the minimum element. The number of trees in the collection grows, and this
is the time to do repeated linking operations to reduce the number of trees.
Namely, whenever there are two trees of the same height, we link them.

For a decrease-key operation on an element, let x be the highest node that
stores the element. It would be too costly to update the elements at all the
ancestors of x. Instead we can perform a cut at x. Then we can decrease the
value of x at will in the separate new tree.

We need to address one key issue: after many decrease-key operations, the
trees may become too off-balanced. Let ni denote the number of nodes at height
i. (In particular, n0 = n = |S|.) Our approach is simple—we maintain the
following invariant for some fixed constant α ∈ (1/2, 1):

ni+1 ≤ αni.

(To be concrete, we can set α = 3/4, for example.) The invariant clearly implies
that the maximum height is at most log1/α n. When the invariant is violated for
some i, a “seismic” event occurs and we remove everything from height i+1 and
up, to allow rebuilding later. Since ni+1 = ni+2 = · · · = 0 now, the invariant is
restored. Intuitively, events of large “magnitude” (i.e., events at low heights i)
should occur infrequently.

Pseudocode. We give pseudocode for all three operations below:

insert(x):
1. create a new tree containing {x}
decrease-key(x, k):
1. cut the subtree rooted at the highest node storing x [yields 1 new tree]
2. change x’s value to k

delete-min():
1. x← minimum of all the roots
2. remove the path of nodes storing x [yields multiple new trees]
3. while there are 2 trees of the same height:
4. link the 2 trees [reduces the number of trees by 1]
5. if ni+1 > αni for some i then:
6. let i be the smallest such index
7. remove all nodes at heights > i [increases the number of trees]
8. return x

We can explicitly maintain a pointer to the highest node storing x for each
element x; it is easy to update these pointers as linkings are performed. It is
also easy to update the ni’s as nodes are created and removed. Lines 3–4 in
delete-min() can be done in time proportional to the current number of trees,
by using an auxiliary array of pointers to trees indexed by their heights.

Analysis. In the current data structure, let N be the number of nodes, T be
the number of trees, and B be the number of degree-1 nodes (the “bad” nodes).
Define the potential to be N + T + 1

2α−1B. The amortized cost of an operation
is the actual cost plus the change in potential.

For insert(), the actual cost is O(1), and N and T increase by 1. So, the
amortized cost is O(1).

For decrease-key(), the actual cost is O(1), and T and B increase by 1. So,
the amortized cost is O(1).

For delete-min(), we analyze lines 1–4 first. Let T (0) be the value of T just
before the operation. Recall that the maximum height, and thus the length of
the path in line 2, is O(log n). We can bound the actual cost by T (0)+O(log n).
Since after lines 3–4 there can remain at most one tree per height, T is decreased
to O(log n). So, the change in T is O(log n)−T (0). Since linking does not create
degree-1 nodes, the change in B is nonpositive. Thus, the amortized cost is
O(log n).

For lines 5–7 of delete-min(), let n
(0)
j be the value of nj just before these

lines. We can bound the actual cost of lines 5–7 by
∑

j>i n
(0)
j . The change in

N is at most −∑
j>i n

(0)
j . The change in T is at most +n

(0)
i . Let b

(0)
i be the

number of degree-1 nodes at height i just before lines 5–7. Observe that n
(0)
i ≥

2n
(0)
i+1 − b

(0)
i . Thus, b

(0)
i ≥ 2n

(0)
i+1 − n

(0)
i ≥ (2α − 1)n

(0)
i . Hence, the change in B

is at most −(2α − 1)n
(0)
i . Thus, the net change in T + 1

2α−1B is nonpositive.
We conclude that the amortized cost of lines 5–7 is nonpositive. Therefore, the
overall amortized cost for delete-min() is O(log n).

3 Comments

Like Fibonacci heaps, our method can easily support the meld (i.e., merge)
operation in O(1) amortized time, by just concatenating the lists of trees.

Many variations of the method are possible. Linking of equal-height trees
can be done at other places, for example, immediately after an insertion or after
lines 5–7 of delete-min(), without affecting the amortized cost. Alternatively, we
can perform less linking in lines 3–4 of delete-min(), as long as the number of
trees is reduced by a fraction if it exceeds Θ(log n).

We can further relax the invariant to ni+c ≤ αni for any integer constant
c. In the analysis, the potential can be readjusted to N + T + 1

c(2α−1)B. It is

straightforward to check that the amortized number of comparisons per decrease-
key() is at most 1 + 1

c(2α−1) , which can be made arbitrarily close to 1 at the

expense of increasing the constant factor in delete-min(). (A similar tradeoff of
constant factors is possible with Fibonacci heaps as well, by relaxing the “lose
at most one child per node” property to “at most c children” [5].)

In the tournament trees, it is convenient to assume that the smaller child of
each node is always the left child (and if the node has degree 1, its only child is
the left child).

3 16

1

3

20

1

91 14 15

4

124

131264

1

20

1

3

143

16

15

14

13

12

1

6

4209 3

1

13 1516

14

6

12

4

20

9

3

Fig. 2. Transforming a tournament tree into a heap-ordered tree or a half-ordered tree.

The tournament trees require a linear number of extra nodes, but more space-
efficient representations are possible where each element is stored in only one
node. One option is to transform each tournament tree T into a heap-ordered,
O(log n)-degree tree T ′: the children of x in T ′ are the right children of all the
nodes storing x in T . See Figure 2 (middle). Binomial heaps and Fibonacci heaps
are usually described for trees of this form.

Another option is to transform T into a binary tree T ′′ as follows: after
shortcutting degree-1 nodes in T , the right child of x in T ′′ is the right child of
the highest node storing x in T ; the left child of x in T ′′ is the right child of the
sibling of the highest node storing x in T . See Figure 2 (right). The resulting
tree T ′′ is a half-ordered binary tree: the value of every node x is smaller than
the value of any node in the right subtree of x. Høyer [7] advocated the use of
such trees in implementation. It is straightforward to redescribe our method in
terms of half-ordered binary trees. For example, see [7] on the analogous linking
and cutting operations.

While our method is simple to understand conceptually, we do not claim that
it would lead to the shortest code, nor the fastest implementation in practice,
compared to existing methods.

Philosophically, Peterson’s and Høyer’s work demonstrated that a heap data
structure supporting decrease-key() in constant amortized time can be obtained
from techniques for balanced search trees supporting deletions in constant amor-
tized time. The moral of this note is that the heap problem is in fact simpler
than balanced search trees—a very simple lazy update algorithm suffices to en-
sure balance for heaps.

References

1. J. Driscoll, H. Gabow, R. Shrairman, and R. Tarjan. Relaxed heaps: an alternative
to Fibonacci heaps with applications to parallel computation. Commun. ACM,

31:1343–1354, 1988.
2. A. Elmasry. The violation heap: a relaxed Fibonacci-like heap. Discrete Math.,

Alg. and Appl., 2:493–504, 2010.
3. A. Elmasry. Pairing heaps with O(log log n) decrease cost. In Proc. 20th ACM–

SIAM Sympos. Discrete Algorithms, pages 471–476, 2009.
4. M. Fredman, R. Sedgewick, D. Sleator, and R. Tarjan. The pairing heap: a new

form of self-adjusting heap. Algorithmica, 1:111–129, 1986.
5. M. Fredman and R. Tarjan. Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM, 34:596–615, 1987.
6. B. Haeupler, S. Sen, and R. E. Tarjan. Rank-pairing heaps. SIAM J. Comput.,

40:1463–1485, 2011.
7. P. Høyer. A general technique for implementation of efficient priority queues. In

Proc. 3rd Israel Sympos. Theory of Comput. Sys., pages 57–66, 1995.
8. H. Kaplan and R. Tarjan. Thin heaps, thick heaps. ACM Trans. Algorithms,

4(1):3, 2008.
9. G. Peterson. A balanced tree scheme for meldable heaps with updates. Tech.

Report GIT-ICS-87-23, Georgia Institute of Technology, 1987.
10. S. Pettie. Towards a final analysis of pairing heaps. In Proc. 46th IEEE Sympos.

Found. Comput. Sci., pages 174–183, 2005.
11. T. Takaoka. Theory of 2-3 heaps. Discrete Applied Math., 126:115–128, 2003.

