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Abstract
We study a longstanding problem in computational geometry: dynamic 2-d orthogonal point
location, i.e., vertical ray shooting among n horizontal line segments. We present a data structure
achieving O

(
logn

log logn

)
optimal expected query time and O

(
log1/2+ε n

)
update time (amortized)

in the word-RAM model for any constant ε > 0, under the assumption that the x-coordinates
are integers bounded polynomially in n. This substantially improves previous results of Giyora
and Kaplan [SODA 2007] and Blelloch [SODA 2008] with O (logn) query and update time,
and of Nekrich (2010) with O

(
logn

log logn

)
query time and O

(
log1+ε n

)
update time. Our result

matches the best known upper bound for simpler problems such as dynamic 2-d dominance range
searching.

We also obtain similar bounds for orthogonal line segment intersection reporting queries,
vertical ray stabbing, and vertical stabbing-max, improving previous bounds, respectively, of
Blelloch [SODA 2008] and Mortensen [SODA 2003], of Tao (2014), and of Agarwal, Arge, and
Yi [SODA 2005] and Nekrich [ISAAC 2011].
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1 Introduction

Point location is one of the most well-studied and fundamental data structure problems in
computational geometry. The static version of the problem dates back to the early years
of the field. The dynamic version, which supports updates, has also received considerable
attention, though obtaining O(logn) query and update time in 2-d remains open to this day;
see [9] for the most recent breakthrough (and the extensive history).

There are two common formulations of 2-d point location. In the first, we want to store a
connected planar subdivision with n edges so that we can quickly determine (the label of the)
region containing any given query point q; updates correspond to insertions and deletions
of edges. In the second formulation, also known as vertical ray shooting, we want to store
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25:2 Dynamic Planar Orthogonal Point Location in Sublogarithmic Time

a set of n disjoint line segments so that we can quickly report the lowest segment above
any given query point q; updates correspond to insertions and deletions of segments. Since
knowing the segment immediately above q allows us to infer the region containing q, the first
formulation reduces to the second, at least in the static case.2 As in many other papers in
this area, we focus only on the second formulation, which in some sense is more general since
the segments do not need to be connected.

In this paper, we are interested in the orthogonal setting of the problem: in the vertical
ray shooting formulation, the requirement is that all input line segments are horizontal. This
case is among the most basic and important since many applications require handling only
orthogonal input. The case when segments have a constant number of different slopes can
also be reduced to the orthogonal case, due to the decomposability of vertical ray shooting
(we can treat each slope class separately and apply a shear transform to each class).

Classical segment trees can solve the dynamic orthogonal problem with O(log2 n) query
and update time. In the late 1980s, Mehlhorn and Näher [18] improved the query and update
bounds to O(logn log logn) by dynamic fractional cascading. At SODA’07 and SODA’08
respectively, Giyora and Kaplan [16] and Blelloch [6] both obtained O(logn) query and
update time. Earlier at SODA’03, Mortensen [19] obtained O(logn) query and update
time for the decision version of vertical ray shooting, namely, vertical segment intersection
emptiness—deciding whether a vertical query segment intersects any of the horizontal input
segments. These results are in the standard (logn)-bit RAM model.

Sublogarithmic time? However, logarithmic time bounds are not the end of the story in
the RAM model. For example, for the static orthogonal problem, Chan [8] at SODA’11
presented a linear-space data structure with O(log logN) time if both x- and y-coordinates
are integers bounded by N .

For the dynamic orthogonal problem, Alstrup et al. [2] applied Fredman and Saks’
lower-bound technique [15] to show that any data structure with tu update time requires
Ω
(

logn
log(tu logn)

)
query time in the cell-probe model (with (logn)-bit cells). In particular,

any data structure with polylogarithmic update time requires Ω
(

logn
log logn

)
query time.

Nekrich [23] has shown that O
(

logn
log logn

)
query time is possible with a data structure for

dynamic 2-d orthogonal point location supporting O
(
log1+ε n

)
update time. But could we

obtain O
(

logn
log logn

)
optimal query time and O

(
logn

log logn

)
update time? Or more ambitiously,

could we obtain the same optimal query time with substantially sublogarithmic update time?
Alstrup et al.’s lower bound does not rule out this possibility.

Indeed, a phenomenon of “fractional-power-of-log” update times has been observed for
several problems with Fredman–Saks-style lower bounds. For example, for dynamic 1-d rank
queries (or equivalently, 1-d range counting) and selection queries, Chan and Pǎtraşcu [10]
obtained a data structure with O

(
logn

log logn

)
optimal query time and O

(
log1/2+ε n

)
amortized

update time, where ε > 0 denotes an arbitrarily small constant. For dynamic 2-d orthogonal
range searching, Mortensen in 2006 [21] gave a data structure with O

(
logn

log logn

)
optimal

query time and O
(

log5/6+ε n
)
amortized update time in the special case of 3-sided queries,

2 The reduction also holds in the dynamic case, by storing the edges around each region in an “ordered
union-split-find” structure [17]. Unfortunately, such a structure requires logarithmic overhead and is
inadequate for us, as we aim for sublogarithmic bounds.
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or O
(

log7/8+ε n
)

amortized update time in general. Wilkinson in 2014 [29] improved

Mortensen’s update time in the 3-sided case to O
(

log2/3+ε n
)
, and obtained O

(
log1/2+ε n

)
update time in the 2-sided case. Our SoCG paper last year [12] improved these update
times further, to O

(
log1/2+ε n

)
in the 3-sided case, and O

(
log2/3+o(1) n

)
in general, while

retaining O
(

logn
log logn

)
optimal query time.

Orthogonal range searching and vertical ray shooting are related: 3-sided orthogonal
range searching is equivalent to the 1-sided special case of vertical ray shooting where all input
segments are horizontal rays. Mortensen’s Ph.D. thesis [20] combined both his papers on
range searching [21] and segment intersection emptiness/reporting [19], and it is interesting
to note that he was able to obtain fractional-power-of-log update times for the former but
not for the latter in general, suggesting that dynamic 2-d orthogonal point location might be
a tougher problem than dynamic 2-d orthogonal range searching.

New result. We succeed in simultanesouly obtaining sublogarithmic query time and sub-
stantially sublogarithmic update time for dynamic 2-d orthogonal point location (in the
vertical ray shooting formulation), under the assumption that x-coordinates are integers
bounded polynomially in n. Our data structure achieves O

(
logn

log logn

)
optimal query time and

O
(

log1/2+ε n
)
update time, greatly improving the previous results of Giyora and Kaplan

[16], Blelloch [6], Mortensen [19], and Nekrich [23]. Our results are in the word-RAM model,
under the standard assumption that the word size w is at least logn bits (in fact, except
for an initial predecessor search during each query/update, we only need operations on
(logn)-bit words). Both our query and update bounds are amortized. Our query time bound
is expected: randomization is used, but only in the query algorithm, not in the update
algorithm. For the decision problem, vertical segment intersection emptiness, our algorithm
is completely deterministic. Our algorithm can be extended to solve vertical segment in-
tersection reporting—reporting all horizontal input segments intersecting a vertical query
segment—in O

(
logn

log logn + k
)
deterministic time where k is the number of output segments.

Interestingly, our update time bound is even better than our earlier O
(

log2/3+o(1) n
)

result [12] for general 2-d orthogonal range searching. There are reasons to believe that
log1/2+ε n could be the best possible, under current knowledge: The current best result for the
simpler problem of 2-d orthogonal 2-sided (i.e., dominance) range searching by Wilkinson [29]
already has O

(
log1/2+ε n

)
update time; this simpler problem corresponds to the special

case of 2-d orthogonal point location where all input line segments and query line segments
are rays. Any improvement of our update time would require improvement in this special
case first. Besides, sub-

√
logn update upper bounds have never been obtained before for any

problem with Fredman–Saks-style lower bounds.
The assumption of a polynomially bounded x-universe is reasonable and holds in most

applications. For example, in offline settings where we know the coordinates of all the input
segments in advance, we can simply replace coordinates by their ranks. The known lower
bounds still hold in the bounded universe setting. The assumption arises from a technical
issue in ensuring balance in our underlying tree structure. It is plausible that it could be
eliminated with more technical effort, but we would rather prefer keeping the solution simpler.

Overview of techniques. Following our earlier approach [12] for dynamic orthogonal range
searching (which in turn was a simplification of the approach of Mortensen [21]), our general

SoCG 2018
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strategy consists of three parts:

1. We first design efficient micro-structures for solving the problem for small input of size
s, with the goal of achieving near-constant amortized update time. Following [12, 29],
this part is obtained by taking an external-memory version of the segment tree, and
re-implementing it in internal memory using bit-packing tricks. We use ideas from buffer
trees [4] to aim for an amortized update cost of the form O((log s)/B), where B is the
block size. Since we can pack B ≈ (log s)/w segments in one word in internal memory,
this would yield update time O((log2 s)/w), which is indeed small when s ≈ 2

√
logn.

2. Next we devise a black-box transformation to convert micro-structures into data structures
for the intermediate case when input coordinates lie in a narrow s× n grid. Following
Mortensen [21, 19], this part can be obtained from a

√
n-way divide-and-conquer similar

to van Emde Boas trees [27]. (This part does not require bit packing.) The query
and update time increase only by a log logn factor as a result of this “van Emde Boas
transformation”.

3. Finally we give another black-box transformation to convert a narrow-grid data structure
into a macro-structure for the general problem for large input. This part is obtained by
using a global segment tree with fan-out near s. (This part does not require bit packing
either.) The update time increases by a factor of logs n (the height of the tree), which
becomes near

√
logn.

While this high-level plan may appear similar to our previous paper [12], at least two
major difficulties arise, if we want the best update and query time: First, in part 1, buffered
segment trees for 2-d orthogonal point location actually require O((log2 s)/B) = O((log3 s)/w)
update time, which forces us to set s ≈ 2log1/3 n and leads to a worse final update time near
logs n ≈ log2/3 n. Second, the van Emde Boas transformation in part 2 causes at least one
extra log logn factor and leads to suboptimal query time in the end. A number of new ideas
are thus needed to deal with these difficulties.

To overcome the first obstacle, our idea is to use micro-structures only for the simpler
1-sided case where input segments are horizontal rays, for which O((log s)/B) update cost is
indeed possible. But how can we avoid using micro-structures for general 2-sided segments
in part 3? We observe that an input segment appears more often as 1-sided than 2-sided
at the nodes of segment tree, so we can afford to handle 2-sided updates by switching to a
slower algorithm, with bootstrapping.

To overcome the second obstacle, we suggest a new van Emde Boas transformation to
trade off the log logn increase in the query time with a logε n increase in the update time.
We can obtain such a trade-off only for the decision version of the problem, but luckily there
are known randomized techniques [7] to reduce the original problem to the decision problem
without hurting the expected query time.

As a by-product of our new van Emde Boas transformation, we can immediately obtain a
data structure for dynamic 1-d range emptiness with O(1) query time and O (logεN) update
time for an integer universe bounded by N . This bound was known before: Mortensen, Pagh
and Pǎtraşcu [22] in fact provided optimal results for a complete query/update time trade-off,
but our solution in the constant query-time case is simpler, and may be of independent
interest (if it has not been observed before).

Applications. Our result improves previous results even in various special cases:

Dynamic vertical ray stabbing refers to the special case of vertical segment intersection
reporting where the query segments are vertical rays. The problem has applications in
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databases, GIS, and networking. Previously, only logarithmic query and update time
were known [26].
Dynamic vertical stabbing-min refers to special case of vertical ray shooting where the
query point has y-coordinate at −∞ (stabbing-max is symmetric). Previously, Agarwal,
Arge, and Yi at SODA’05 [1] obtained logarithmic query and update time. More recently,
Nekrich [24] obtained O

(
logn

log logn

)
query and O (logn) update time; our O

(
log1/2+ε n

)
update time is a significant improvement.

To further illustrate how fundamental our results are, we mention two offline applications
(where as mentioned, the polynomially bounded universe assumption can automatically be
ensured by sorting and replacing coordinates with ranks). Both applications are interesting
in their own right.

An O
(
n log1/2+ε n

)
-space data structure with O (logn) expected query time for static

3-d vertical ray shooting: store a set of n axis-aligned rectangles in 3-d parallel to the
xy-plane, so that we can find the lowest rectangle above a query point. This problem can
be viewed as a variant of 3-d orthogonal point location. Our space bound is unusual and
intriguing. The result can be immediately obtained by using the standard sweep-plane
algorithm, together with a (partially) persistent version of our dynamic data structures for
2-d vertical ray shooting. The space usage is proportional to the total time to process n
insertions and n deletions, which is O

(
n log1/2+ε n

)
; using Dietz’s persistent arrays [14],

the query time increases by a log logn factor, to O
(

logn
log logn log logn

)
= O (logn). This

improves a previous O
(
n log1+ε n

)
-space data structure with O (logn) query time [8,

Corollary 4.2(e)].
A deterministic O

(
n logn

log logn

)
-time algorithm for single-source shortest paths in an un-

weighted intersection graph of n axis-aligned line segments in 2-d, e.g., finding a path
between two points with the minimum number of turns in an arrangement of vertical
and horizontal line segments (“roads”). Recently, Chan and Skrepetos [11] described
an O (n logn)-time algorithm by simulating breadth-first search using a dynamic data
structure for orthogonal segment intersection emptiness, performing at most n queries
and n deletions. Our new data structure immediately improves the total running time to
O
(
n log1/2+ε n+ n logn

log logn

)
= O

(
n logn

log logn

)
.

2 Preliminaries

In all our algorithms, we assume that during each query or update, we are given a pointer to
the predecessor/successor of the x- and y- values of the given point or segment. At the end,
we can add the cost of predecessor search to the query and update time (which is no bigger
than O

(√
logn

)
) [3] in the word RAM model, or O (log logn) in the polynomial universe

case [27]).
We assume a word RAM model that allows for a constant number of non-standard

operations on w-bit words. By setting w := δ logn for a sufficiently small constant δ, these
operations can be simulated in constant time by table lookup, after preprocessing the tables
in 2O(w) = nO(δ) time.

For most of the paper, we focus on solving the decision problem, i.e., vertical segment
intersection emptiness. Vertical ray shooting will be addressed in Section 7 afterwards.
Adapting our algorithm for segment intersection reporting will be straightforward.

Let [n] denote {0, 1, . . . , n− 1}.

SoCG 2018
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We now quickly review a few useful tools (also used in our previous paper [12]).

Weight-balancing. Weight-balanced B-trees [5] are B-tree implementations with a rebal-
ancing scheme that is based on the nodes’ weights, i.e., subtree sizes, in order to support
updates of secondary structures efficiently.

I Lemma 1 ([5, Lemma 4]). In a weight-balanced B-tree of degree r, nodes at height i have
weight Θ

(
ri
)
, and any sequence of n insertions requires at most O

(
n/ri

)
splits of nodes at

height i.

(We do not need to address balancing after deletions, since we can handle deletions
lazily, and rebuild periodically when the size of the tree decreases or increases by a constant
factor [5, 25].)

Colored predecessors. Colored predecessor searching is the problem of maintaining a dy-
namic set of multi-colored, totally ordered elements and searching for the predecessors with
a given color.

I Lemma 2 ([21, Theorem 14]). Colored predecessor searches and updates on n colored,
totally ordered elements can be supported in O

(
log2 logn

)
time deterministically.

Initial structure. For bootstrapping purposes, we need an initial data structure for vertical
segment intersection emptiness with optimal O (logw n) query time, allowing possibly large
but polylogarithmic update time. Nekrich [23] has already given such a structure with
O
(
log1+ε n

)
update time. We state a weaker bound, which is sufficient for our purposes

(and is simpler to obtain):

I Lemma 3. For n horizontal segments in the plane, there exists a dynamic data structure
for vertical segment intersection emptiness that support updates in O

(
log2+ε n

)
amortized

time and queries in O (logw n) time.

3 Micro-structures

In this section, we consider micro-structures for vertical segment intersection emptiness when
the number of input segments s is small. This part relies on bit packing techniques. We
focus on the 1-sided special case, when all the input segments are horizontal rays. Without
loss of generality, we may assume that all rays are rightward (since we can treat leftward rays
separately). Vertical segment intersection emptiness in the 1-sided case is equivalent to 2-d
3-sided orthogonal range emptiness: store a set of input points so that we can quickly decide
whether a query 3-sided rectangle contains any input point. To see the equivalence, just
replace the input rays with their endpoints, and each vertical query segment {x} × [y1, y2]
with the 3-sided rectangle (−∞, x]× [y1, y2].

We can adapt our previous micro-structures for 3-sided orthogonal range searching [12]
to obtain:

I Lemma 4. Let b ≥ 2 be an integer. Given s horizontal (1-sided) rays with endpoints from
[s] × R, there exists a dynamic data structure for vertical segment intersection emptiness
with the following amortized update and query time:

U1(s) = O

(
b log2 s

w
+ b log2 log s

)
Q1(s) = O (logb s) .
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Proof. The case b = 2 has already been proved in [12, Lemmata 5(i) and 6]. We only briefly
review the proof outline, to note the easy generalization to arbitrary b.

First consider the case when the endpoints all come from a static universe [s] × [s].
The idea is to mimick an existing external-memory data structure with a block size of
B := d δwlog se, observing that B points can be packed in a single word, assuming a sufficiently
small constant δ. For such a external-memory structure, Chan and Tsakalidis [12] chose
a buffered version [4] of a binary priority search tree ordered by y, citing Wilkinson [29].
Here, we use a buffered b-ary priority search tree instead, which according to Wilkinson [29,
Lemma 1] has O

(
b · 1

B · log s+ 1
)

= O
(
b log2 s
w + 1

)
amortized update time and O (logb s)

amortized query time.
To make this data structure support a dynamic y-universe, Chan and Tsakalidis [12]

applied monotone list labeling techniques; the extra update cost is O(log2 log s). It is
straightforward to check that the same approach works in the b-ary variant, with an extra
overhead factor of O(b). J

Note that the first term in the above update time is constant when the number of segments
s is bounded by 2

√
w.

We could also consider micro-structures for vertical segment intersection emptiness in the
general (2-sided) case, but they seem to require more than two log s factors in the update
time (not to mention possibly worse query time), which would result in a final update time
worse than

√
logn. Luckily, our macro-structures later need micro-structures only for the

1-sided case.

4 Van Emde Boas transformation

Next, we consider macro-structures for vertical segment intersection emptiness when the
number of input segments n is large. As an intermediate step, we first adapt a technique
of Mortensen [19, 21] that transforms any micro-structure for vertical segment intersection
emptiness on s horizontal segments to one for n segments with endpoints from a narrow grid
[s]× R.

The transformation uses a recursion similar to van Emde Boas trees [28], and increases
both update and query time by a log logn factor. Although the extra factor is small, we
cannot afford to lose it if we want sublogarithmic query time at the end. We present a new
variant of van Emde Boas recursion, with a parameter b, that allows us to trade off the
query-time increase with an update-time increase:

I Lemma 5. Let b ≥ 2 be an integer. Given a dynamic data structure for vertical segment
intersection emptiness on s horizontal segments with endpoints from [s]×R achieving update
time U(s) and query time Q(s), there exists a dynamic data structure for vertical segment
intersection emptiness on n horizontal segments with endpoints from [s]× R achieving the
following update and query time:

U(s, n) = O
(
bU(s5) log2 logn+ b log3 logn

)
Q(s, n) = O

(
Q(s5) logb logn

)
.

An analogous transformation holds for the 1-sided special case of vertical segment inter-
section emptiness.

Proof. We present our variant of van Emde Boas recursion a little differently than usual, as
a near-n1/b-degree tree, with recursively defined secondary structures.

SoCG 2018
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The data structure. We store a degree-r tree ordered by y, implemented as a weighted-
balanced B-tree, for some parameter r to be chosen later. Each node corresponds to a
horizontal slab; its slab is divided into its children’s slabs by at most r dividing horizontal
lines. We say that two input segments are in the same class if they have the same pair of
left and right x-coordinates; there are at most s2 classes. At each node v, we store the input
segments in v’s slab in one y-sorted list per class, in a colored predecessor search structure,
and define the following lists:
1. LetM(v) contain the bottommost and topmost segments (the “min” and the “max”) in v’s

slab for each class. Since |M(v)| ≤ s2, we can maintain M(v) in the given micro-structure
supporting updates in U(s2) time and queries in Q(s2) time.

2. Let R0(v) contain the segments in v’s slab after “rounding” down the y-coordinate to
align with one of the r lines dividing the slab. Duplicates are removed from R0(v).
Let R(v) be equal to R0(v) but excluding the bottommost and topmost rounded segment
per class. Since R(v) has at most r distinct y-coordinates and at most s2r segments,
we can maintain R(v) in a data structure supporting updates in U(s, s2r) time and
queries in Q(s, s2r) time by recursion. (Note that we maintain R(v), but not R0(v).) We
further assume that this structure has Uprep(s, s2r) amortized preprocessing time, i.e.,
preprocessing time divided by the number of input segments.

The update algorithm. To insert or delete a horizontal segment p, we proceed as follows:

1. Identify the path π of O (logr n) nodes whose slabs contain p. Update the sorted lists for
p’s class at these nodes.

2. For each node v ∈ π for which M(v) changes, update the data structure for M(v).
3. For each node v ∈ π for which R(v) changes, update the data structure for R(v).

In step 1, the O (logr n) sorted lists can be updated in O
(
logr n log2 logn

)
time by colored

predecessor search (Lemma 2).
Step 2 takes at most O (logr n) updates to the micro-structures and thus costs

O (logr n)U(s2) time.
For step 3, we claim that R(v) changes only at one node v ∈ π: specifically, the lowest

node on π that contains at least one other segment of p’s class. To see why, for any node
v′ ∈ π strictly above v, there is no change to R0(v′) (and thus R(v′)) since there is another
segment that gives the same rounded segment as p at v′; on the other hand, for any node
v′ ∈ π strictly below v, there is no change to R(v′) because p is the only segment in its class
at v′ and would be excluded from R(v′).

Note that if R(v) changes, it changes by at most a single insertion or deletion (for example,
if the segment we are inserting becomes the new bottommost segment in a class, we insert
the old bottommost segment to R(v)). Thus, step 3 takes U(s, s2r) time.

To keep the tree balanced, we need to handle node splits. For nodes
at height i, there are O

(
n/ri

)
splits by Lemma 1. A split at a non-leaf

node v at height i requires rebuilding M(v) and R(v), which takes at most
O
(
riU(s2) + riUprep(s, s2r)

)
time. It also requires updating the y-coordinates of O(s2)

segments in R(v′) at the parent v′ of v, which takes O
(
s2 U(s, s2r)

)
time. The to-

tal extra cost is at most O
(∑logr n

i=1 (n/ri) ·
[
riU(s2) + riUprep(s, s2r) + s2 U(s, s2r)

])
=

O
(
n ·
[
U(s2) logr n+ Uprep(s, s2r) logr n+ s2

r U(s, s2r)
])

.
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To summarize, we obtain the following recurrence for the amortized update time:

U (s, n) ≤ U
(
s, s2r

)
+O (logr n)U

(
s2)+

O

(
Uprep(s, s2r) logr n+ s2

r
U(s, s2r) + logr n log2 logn

)
.

The amortized preprocessing time is given by the following simpler recurrence, since
balance is easily ensured at preprocessing:

Uprep (s, n) ≤ Uprep
(
s, s2r

)
+O (logr n)U

(
s2)+O

(
logr n log2 logn

)
.

The query algorithm. To answer a query for a vertical segment q with bottom endpoint q1
and top endpoint q2, we proceed as follows:

1. Find the lowest node v whose slab contains both q1 and q2 by performing an LCA query
for the two leaves containing them.

2. Let v1 and v2 be the two children of v whose slabs contain q1 and q2.
3. Answer the query in M(v1), M(v2), and M(v). Also, round q1 upward and q2 downward,

then answer the query in R(v). Return true iff one of these queries returns true.

To prove correctness, suppose that q intersects the horizontal input segment p. If p is in
v1’s slab, then q intersects also the topmost segment in v1 of p’s class and so the query in
M(v1) would return yes. If p is in v2’s slab, then similarly the query in M(v2) would return
yes. If p is in neither slab, then q intersects the segment p after rounding and so the query
in R(v) would return yes, unless p after rounding is the topmost or bottommost rounded
segment in v of its class. In this exceptional case, p would be excluded from R(v), but then
the query in M(v) would return yes.

Since LCA queries take O(1) time (with O(1) update time) [13], we obtain the following
recurrence for the query time:

Q (s, n) ≤ Q
(
s, s2r

)
+O

(
Q
(
s2)) .

Conclusion. We set r := s2n1/b to obtain

Uprep (s, n) ≤ Uprep

(
s, s4n1/b

)
+O

(
bU
(
s2)+ b log2 logn

)
U (s, n) ≤

(
1 + 1

n1/b

)
U
(
s, s4n1/b

)
+O

(
bU
(
s2)+ bUprep (s, n) + b log2 logn

)
Q (s, n) ≤ Q

(
s, s4n1/b

)
+O

(
Q
(
s2)) .

For the base case, we can use Uprep(s, s5), U(s, s5) = O(U(s5)) and Q(s, s5) = O(Q(s5)).
The recurrences solve to Uprep(s, n) = O

(
bU(s5) log logn+ b log2 logn

)
, U(s, n) =

O
(
b2U(s5) log2 logn+ b2 log3 logn

)
, and Q(s, n) = O(Q(s5) logb logn). Resetting b← d

√
be

yields the lemma. J

Remark. The above approach gives a data structure for dynamic 1-d range emptiness (which
corresponds to the special case of s = 1) with O(b log logN) update time and O(logb logN)
query time in an integer universe [N ]. (We do divide-and-conquer to reduce the universe size
N rather than the number of points n; balancing is no longer an issue, so the extra log log
factor in the update bound goes away.) In particular, setting b = logεN gives O(1) query
time and O(logO(ε)N) update time. This result was known before by Mortensen, Pagh, and
Pǎtraşcu [22], who gave a more complicated method achieving a better (optimal) trade-off,
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with O(b log logN) update time and O(log logb logN) query time, and also with O(n) space.
However, it is interesting to note that the above variant of van Emde Boas tree is sufficient
for the constant-query-time case.

5 Segment tree transformation

We next describe macro-structures to transform data structures for vertical segment intersec-
tion emptiness for n segments in the narrow grid case, to the general case. The transformation
is based on a multi-degree segment tree (the idea is standard and, for example, was used in
Giyora and Kaplan’s paper [16]).

I Lemma 6. Given a dynamic data structure for vertical segment intersection emptiness on
n horizontal segments with endpoints from [s]× R achieving update time U(s, n) and query
time Q(s, n), and a dynamic data structure for vertical segment intersection emptiness on
n horizontal (1-sided) rays with endpoints from [s]× R achieving update time U1(s, n) and
query time Q1(s, n), there exists a data structure for dynamic vertical segment intersection
emptiness on n horizontal segments with endpoints from [N ] × R achieving the following
amortized update and query time:

U(N,n) = O
(
U1(s, n) logsN + U(s, n) + logsN log2 logn

)
Q(N,n) = O ((Q1(s, n) +Q(s, n)) logsN) .

Proof. We store a degree-s segment tree ordered by x, with N leaves and height O(logsN);
each node corresponds to a vertical slab.

We describe how each input segment p is stored. Let v be the lowest node that contains
both endpoints of p, i.e., the LCA of the two leaves containing the endpoints. Let v` and
vr be the two children of v whose slabs contain the two endpoints. We divide p into three
subsegments: the left and right subsegments, i.e., the parts of p within the slabs of v` and
vr respectively, and the remaining middle subsegment, i.e., the part within the union of the
slabs of the children of v strictly between v` to vr.

We store the middle subsegment of p in a data structure on the narrow grid Xv × R,
where Xv is the set of x-coordinates of the O (s) dividing vertical lines at node v.

We store the left subsegment of p along a path of O (logsN) nodes. We first find the
child v′` of v` whose slab contains the left endpoint of p. We divide the left subsegment into:
the left left subsegment, i.e., the part within the slab of v′`, and the remaining left middle
subsegment. We store the left middle subsegment in a 1-sided data structure on the narrow
grid Xv′

`
× R; note that this subsegment appears as a rightward ray in the narrow grid and

so is indeed 1-sided. We then repeat for the left left subsegment in the slab at v′`.
We store the right subsegment of p symmetrically.
In addition, we store the y-coordinates of the segments/rays stored at each node v in a

colored predecessor searching structure of Lemma 2, where segments/rays with endpoints in
the same child’s slab are assigned the same color. We also store the x-coordinates in another
colored predecessor searching structure, where Xv is colored black and the rest is white.

To insert or delete a segment p, we insert or delete the middle subsegment in O (U(s, n))
time and the O (logsN) pieces of the left/right subsegment in O (U1(s, n) logsN) time.
Note that given the y-predecessor of the segment at a node v, we can obtain the y-
predecessor/successor at the child by using the colored predecessor searching structure.
We can also determine the x-predecessor/successor of its endpoints in Xv by another colored
predecessor search. This takes total extra time O

(
logsN log2 logn

)
.
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To answer an intersection emptiness query for a vertical segment q, we proceed down the
path π of nodes whose slabs contain q, and perform queries in the narrow-grid structures
(both general and 1-sided) at nodes in π. This takes O ((Q(s, n) +Q1(s, n)) logsN) time. J

6 Putting everything together

We can finally obtain our main result by combining with our preceding micro-structures and
by bootstrapping.

I Theorem 7. Given n horizontal segments with coordinates from [N ]× R, there exists a
dynamic data structure for vertical segment intersection emptiness that supports updates in
amortized O

(
logN

log1/2−ε n
+ log1/3 n

)
time and queries in O

(
logN

log logn

)
time if N ≥ n.

Proof. To make calculations more readable, we introduce the notation O∗ to hide factors of
the form logO(ε) n and wO(ε).

Combining our van Emde Boas transformation in Lemma 5 with b = logε n and segment
tree transformation in Lemma 6 gives

U(N,n) = O∗ (U1(s) logsN + U(s)) (1)
Q(N,n) = O ((Q1(s) +Q(s)) logsN) .

The 1-sided micro-structure in Lemma 4 with b = wε gives U1(s5) = O∗
(

log2 s
w + 1

)
and Q1(s5) = O (logw s). The initial structure in Lemma 3 gives U(s5) = O

(
log2+ε s

)
and

Q(s5) = O (logw s). Thus,

U(N,n) = O∗
((

log2 s

w
+ 1
)

logsN + log2+ε s

)
Q(N,n) = O (logw s logsN) = O (logwN) .

Setting s = 2log1/3 N then yields U(N,n) = O∗
(

log(2+ε)/3N + log4/3 N
w

)
and Q(N,n) =

O (logwN).
To improve the update time further, we bootstrap with our new bounds U(s5) =

O∗
(

log(2+ε)/3 s+ log4/3 s
w

)
and Q(s5) = O (logw s). Then

U(N,n) = O∗

((
log2 s

w
+ 1
)

logsN + log(2+ε)/3 s+ log4/3 s

w

)
(2)

Q(N,n) = O (logw s logsN) = O (logwN) .

Setting s = 2w1/2−ε yields U(N,n) = O∗
(

logN
w1/2−ε + w1/3

)
and Q(N,n) = O (logwN). Setting

the word size w = δ logn gives the theorem. (The log1/3 n term could probably be lowered by
further rounds of bootstrapping, but that term does not matter in the main case of interest,
when N = nO(1).) J

7 Vertical ray shooting

We now extend our query algorithm for vertical segment intersection emptiness to vertical
ray shooting.

SoCG 2018



25:12 Dynamic Planar Orthogonal Point Location in Sublogarithmic Time

Extended van Emde Boas transformation. First, we note a naive extension of the van
Emde Boas transformation to support vertical ray shooting (the query time isn’t optimized):

I Lemma 8. The same data structure in Lemma 5 can answer vertical ray shooting queries
in time ~Q (s, n) = O

(
b ~Q
(
s5) log logn

)
. An analogous result holds for the 1-sided case.

Proof. To answer a vertical ray shooting query for a point q, we proceed as follows:

1. Identify the path π of O (logr n) nodes whose slabs contain q.
2. Find the lowest node v ∈ π for which the answer of the query in M(v) is nonempty.
3. Answer the query in R(v) and in M(v), and suppose that the two answers are in the slab

of the children v1 and v2 of v respectively. Return the answer to the query in M(v1) or
M(v2), whichever is lower.

To show correctness, let p be the lowest segment above q. After step 2, we know that
p must be in the slab of v but not v’s child in π. After step 3, we know that p must be in
the slab of v1 and in M(v1), unless p after rounding is the topmost or bottommost rounded
segment in v of its class. In this exceptional case, p would be excluded from R(v), but then
p would be in the slab of v2 and in M(v2).

We get the following recurrence for the query time:

~Q(s, n) ≤ ~Q(s, s2r) +O (logs n) ~Q(s2).

For r = s2n1/b, this gives ~Q(s, n) ≤ ~Q(s, s4n1/b) + O
(
b ~Q(s2)

)
, and the recurrence can be

solved as before. J

Extended segment tree transformation. Next we extend the segment tree transformation.
For this part, we will optimize the query time, using a randomized search technique from [7].

I Lemma 9. In Lemma 6, if the given general and 1-sided data structures can answer
vertical ray shooting queries in ~Q(s, n) and ~Q1(s, n) time respectively, then the new data
structure can answer vertical ray shooting queries in expected query time

~Q(N,n) = O
(

(Q1(s, n) +Q(s, n)) logsN +
(
~Q1(s, n) + ~Q(s, n)

)
log logsN

)
.

Proof. The technique [7] is based on the following simple well-known observation: the
minimum of m unknown elements y1, . . . , ym can be found with m comparisons of the form
“is yi < y?” for a given value y, and O(logm) expected number of evaluations of the yi’s.
(The observation follows by running the standard algorithm for the minimum, after randomly
permuting the elements.)

To answer a vertical ray shooting query for a point q, we proceed down the path π of
nodes whose slabs contain q, and apply the above observation with m = O(logsN) and yi
representing the y-value of the lowest segment above q in the narrow-grid structures at the
i-th node of π. Deciding “yi < y?” is equivalent to performing a vertical segment emptiness
query. The theorem follows. J

I Theorem 10. The same data structure in Theorem 7 can answer vertical ray shooting
queries in O

(
logN

log logn

)
time.
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Proof. By the above extensions, the combined van Emde Boas transformation (with b =
logε n) and segment tree transformation that yielded (1) has

~Q(N,n) = O
(

(Q1(s) +Q(s)) logsN +
(
~Q1(s) + ~Q(s)

)
logε n log logn log logsN

)
= O ((Q1(s) +Q(s)) logsN + (Q1(s) +Q(s)) log s logε n log logn log logN) ,

since a naive binary search gives ~Q1(s) = O (Q1(s) log s) and ~Q(s) = O (Q(s) log s). Then
the structure in the final bootstrapping step that yielded (2) has

~Q(N,n) = O (logw s logsN + logw s log s logε n log logn log logN) .

As s = 2w1/2−ε , we obtain ~Q(N,n) = O
(
logwN + w1−Ω(ε) log logN

)
. As w = δ logn, we

obtain the theorem. J

8 Future work

A number of interesting directions remain to be explored:

1. It would be nice to eliminate the assumption of polynomially bounded x-universe (i.e.,
the dependency in N). Our earlier paper [12] have already provided a mechanism to deal
with a dynamic x-universe for the micro-structures in Lemma 4, but currently we have
difficulty maintaining balance in the segment tree in Lemma 6 (standard weight-balanced
B-trees seems to give an extra logs n in the U(s, n) term of the update time bound).

2. It would be nice to avoid randomization in our vertical ray shooting algorithm.
3. We have ignored space complexity throughout the paper. Many of the previous point

location data structures achieves linear space. A naive upper bound on space for our
data structure is n times the update time, i.e., O

(
n log1/2+ε n

)
. We believe that the

bound can be lower by using more bit packing techniques, although it is unclear how to
obtain linear space with our approach.

4. Insertion-only and deletion-only special cases are worth exploring. Here, O
(

logn
log logn

)
query time is not necessarily optimal; for example, see Wilkinson’s insertion-only results
on 2-d 3-sided orthogonal range searching [29]. As mentioned in the introduction, the
deletion-only case has applications to geometric shortest paths [11].
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