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ABSTRACT
Let τK be the worst-case (supremum) ratio of the weight of
the minimum degree-K spanning tree to the weight of the
minimum spanning tree, over all finite point sets in the Eu-
clidean plane. It is known that τ2 = 2 and τ5 = 1. In
STOC’94, Khuller, Raghavachari, and Young established
the following inequalities: 1.103 < τ3 ≤ 1.5 and 1.035 <
τ4 ≤ 1.25. We present the first improved upper bounds:
τ3 < 1.402 and τ4 < 1.143. As a result, we obtain better
approximation algorithms for Euclidean minimum bounded-
degree spanning trees.

Let τ
(d)
K be the analogous ratio in d-dimensional space.

Khuller et al. showed that τ
(d)
3 < 1.667 for any d. We observe

that τ
(d)
3 < 1.633.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-

tions on discrete structures, geometrical problems and com-

putations; G.2.2 [Discrete Mathematics]: Graph The-
ory—graph algorithms, trees

General Terms
Algorithms, Theory

Keywords
Minimum spanning trees, discrete geometry, approximation

1. INTRODUCTION
The starting point of this work is the following well-

known observation [5, 19]: for finite point sets in any met-
ric space, we can construct a spanning path (or cycle) of
at most twice the weight of the minimum spanning tree
(MST), by doubling the MST edges, taking an Euler tour,
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and short-cutting repeated vertices. This strategy yields a
simple factor-2 approximation algorithm for the traveling
salesman path/tour problem. It was shown by Fekete et

al. [8] that even in the geometric case of the Euclidean met-
ric in the plane, the analysis cannot be improved upon (in
other words, short-cutting doesn’t help much in the worst
case), as there exists point sets whose traveling salesman
path weight is more than 2 − ε times the MST weight for
any ε > 0. However, by using other lower bounds besides
the MST weight, it is possible to obtain better approxi-
mation guarantees for the traveling salesman problem, as
was demonstrated by Christofides [4] (factor 3/2) for gen-
eral metrics, and Arora [1] and Mitchell [13] (factor 1 + ε)
for the Euclidean metric in fixed dimensions.
The focus of the present paper is on the following gen-

eralization of the traveling salesman path problem (which
corresponds to the K = 2 case): given K, find a spanning
tree, of minimum weight such that the maximum degree is
at most K. The degree constraint is natural to consider,
since high-degree nodes in networks are in many ways unde-
sirable. The K = 3 case is especially appealing, since once
rooted, a degree-3 tree becomes a binary tree.
For this bounded-degree spanning tree problem,

Christofides’ algorithm no longer gives a 3/2 approxi-
mation factor; the celebrated techniques of Arora and
Mitchell do not seem to work either [2]. We thus return to
the idea of constructing a solution by traversing the MST
and analyzing the weight of the solution as a factor of the
MST weight. The doubling strategy still applies; in fact,
it is possible, using the triangle inequality alone, to get an
approximation factor of 2− (K − 2)/(Kmax − 2) [8], where
Kmax is the maximum degree of an MST, thus showing
that “short-cutting” does help for K ≥ 3. The analysis is
tight for arbitrary metric spaces. For the Euclidean metric
in the plane, every point set already possesses an MST of
maximum degree 5 [14], so this yields factors 5/3 and 4/3
for K = 3 and K = 4 respectively.
In as early as 1984, Papadimitriou and Vazirani [15] asked

whether the geometry of the Euclidean case (besides the tri-
angle inequality) can be exploited to prove better approxi-
mation factors for bounded-degree spanning trees. Khuller,
Raghavachari, and Young [10] took an in-depth look into
this question and managed to achieve factors 3/2 and 5/4
for K = 3 and K = 4 respectively in the plane. Since then,
no improvements have been made, despite frequent refer-
ences to their work [2, 3, 7, 8, 11, 16, 17].
We report the first progress in 8 years: in the Euclidean

plane, there always exists degree-3 and degree-4 spanning



trees with weights within factors 1.402 and 1.143 respec-
tively of the MST weight. Such trees can be constructed in
polynomial time.
Immediately, we obtain a factor-1.402 and factor-1.143 ap-

proximation algorithm for the minimum Euclidean degree-
3 and degree-4 spanning tree problem in the plane. Note
that Papadimitriou and Vazirani [15] have shown the NP-
hardness of the minimum Euclidean degree-3 spanning tree
problem, but the status of the corresponding degree-4 prob-
lem remains open. However, regardless of algorithmic impli-
cations, our result is important in that it provides new infor-
mation on a universal constant (the largest ratio of the min-
imum degree-3/-4 spanning tree weight to the MST weight)
similar to the the Steiner ratio (the smallest ratio of the
minimum Steiner tree weight to the MST weight) [6] and
other constants studied in discrete geometry (such as [9]).
The new algorithms are not complicated and involve some

interesting, cleverer recursive tree constructions. Their anal-
yses, though, require more cases and demand techniques
more versatile than those of Khuller et al.’s; still, with
proper planning, we get proofs that are (hopefully) not too
difficult to verify. We briefly review Khuller et al.’s previous
algorithm in the next section and explain why 3/2 and (a
value close to) 5/4 are particularly difficult barriers to break.
In Sections 3 and 4 we present the new recursive algorithms
and analyses.
The study of these worst-case ratios in d-dimensional Eu-

clidean space is even more vital, because the maximum de-
gree of an MST can be much larger (a constant that depends
exponentially on d [18]). In their paper, Khuller et al. [10]
analyzed a simple algorithm and proved a remarkable 5/3
upper bound for degree-3 spanning trees in any number of
dimensions. In Section 5, we mention how the bound can be
reduced slightly to 2

3

√
6 < 1.633 using essentially the same

algorithm.

2. KHULLER, RAGHAVACHARI, AND
YOUNG’S APPROACH

To facilitate comparisons, we begin with a recursive inter-
pretation of Khuller et al.’s approach [10].

2.1 Degree-3 spanning trees
We are given an MST T of an n-point set in the plane,

which we may assume [14] has maximum degree at most 5.
Let w(T ) denote the sum of the edge weights in T . Root
T at a fixed non-degree-5 vertex (e.g., a leaf) so that each
vertex has at most 4 children.
Khuller et al.’s approach can be viewed as a recursive algo-

rithm that transforms the rooted tree T into a new degree-3
spanning tree, with the inductive hypothesis that the root v
of T should have degree 1 in the new tree. The algorithm is
simple:

First pick a permutation v1, . . . , vk of the chil-
dren of v in T ; recursively transform the sub-
trees T1, . . . , Tk rooted at v1, . . . , vk; finally, add
the edges vv1, v1v2, . . . , vk−1vk to the new tree,
as illustrated by the diagram below.

Showing that the new spanning tree has weight at most
1.5w(T ) amounts to showing at every step the existence of

vkv2

· · ·T1 T2 Tk

v1 =⇒

v

· · ·T1 T2

recurse recurse

v1
v2 vk

Tk

recurse

v

Figure 1: Khuller et al.’s degree-3 algorithm. (Pic-
tures drawn graph-theoretically, not geometrically.)

a “good” permutation v1, . . . , vk satisfying the inequality

|vv1|+ |v1v2|+ · · ·+ |vk−1vk| ≤ 1.5
k
∑

i=1

|vvi|,

or more loosely, that the ratio of the weight of some path
starting at v to the weight of a star is bounded by 1.5. The-
oretically, the proof can be carried out in O(1) time because
k ≤ 4 only (and the theory of the reals is decidable). Khuller
et al. used a combination of nontrivial ideas in order to ob-
tain a “presentable” proof.

2.2 Degree-4 spanning trees
Khuller et al.’s algorithm for producing a degree-4 span-

ning tree of weight at most 1.25w(T ) is similar, except for a
weakened inductive hypothesis: the root v of T now should

have degree at most 2 in the new tree. Instead of adding a
path that must start at v, we can now add any path visiting
v, v1, . . . , vk to the new tree, as in the diagram below.

v

T1

recurse

v1

· · ·

v

v2

· · ·T1 T2

v1 =⇒vk

Tk

vj

Tj

recurse

· · ·Tj+1

vj+1 vk

Tk

recurse recurse

Figure 2: Khuller et al.’s degree-4 algorithm.

In the analysis, it is shown that the ratio of some such
path to the weight of the star is bounded by 1.25, again via
a careful case study.

2.3 Limits to the approach
The 1.5 bound for degree-3 spanning trees is tight if we

insist that the designated root must have degree 1 in the
new tree. The example in Figure 3(a) indicates why. Even
if all vertices with 2 children were to magically disappear, we
still have the configurations of Figure 3(d) (which requires
a ratio of 1

3
(2
√
3 + 1) > 1.488) and Figure 3(b,c) (where

paths starting at v require a ratio arbitrarily close to 1.5) to
contend with.

(d)

v v

(a) (b)

vv

(c)

Figure 3: Bad examples.
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Figure 4: The new degree-4 algorithm in a nutshell.

Khuller et al. did not claim that their 1.25 bound is tight
for degree-4 spanning trees, but even if their analysis could
be refined, the improvement would be marginal, because the
example in Figure 3(d) requires a ratio of 1

3
(
√
3+2) > 1.244,

under the condition that the designated root has degree at
most 2 in the new tree.
So, in order to get better results, we need to relax the

inductive hypotheses. For instance, as Khuller et al. have
noticed, in the recursion to the subtree Tk (but not the other
subtrees) in Figure 1, we could transform its root to have
degree 2 instead of 1. Similarly, in the recursion to the
subtrees Tj and Tk (but not the others) in Figure 2, we
could transform their roots to have degree 3 instead of 2.
Unfortunately, such refinements do not necessarily translate
to improved approximation factors in the worst case. Al-
ternatively, we could try to exploit “upward” information
(the parent) instead of just “downward” information (the
children) at each vertex v; Khuller et al. even proposed re-
rooting T at different vertices. Again, it is unclear how to
get general worst-case improvements this way.

3. BETTER DEGREE-4 SPANNING TREES
IN THE PLANE

Let τ = 1.143 in this section.
We describe our result for degree-4 spanning trees first,

as it is simpler to explain. Our approach is indeed to adopt
a weaker inductive hypothesis that consistently permits the
root v to have degree at most 3 instead of 2 in the new tree.
To do so, we have to recurse not just on subtrees of the
original MST, but on subtrees “attached to” other subtrees.
The key technical idea is to strengthen the weakened hy-
pothesis by forcing special “attachment” edges to cost less,
with factor 1 (instead of τ) in the analysis.

3.1 The new approach
In the sequel, let T↖T ′ denote the (rooted) tree obtained

by making the root of T ′ a child of T . Given T↖T ′ where
T and T ′ are subtrees of the original MST, with roots v and
v′, we describe a recursive algorithm that transforms T↖T ′

to a new tree, such that the root v has degree at most 3 in

the new tree, and the new tree has weight at most |vv′| +
τ(w(T ) + w(T ′)).
The algorithm works basically as in Figure 4. Pick a per-

mutation v1, . . . , vk+1 of the k children of v in T together
with v′. Let T1, . . . , Tk+1 be their corresponding subtrees.

• Case k ≤ 2. Just transform T1, . . . , Tk+1 recursively and
leave the edges vv1, . . . , vvk+1 in.

• Case k = 3. We can transform T1↖T2, T3, and T4

recursively and put in the edges vv1, vv3, vv4. By hy-
pothesis, the weight of the resulting tree is bounded
by |vv1| + |v1v2| + |vv3| + |vv4| + τ

∑4
i=1 w(Ti). Call

|v1v2| − |vv2| the excess of the permutation v1, . . . , v4.

• Case k = 4. We can transform T1↖T2, T3↖T4, and T5

recursively and put in the edges vv1, vv3, vv5. By hy-
pothesis, the weight of the resulting tree is bounded by
|vv1|+ |v1v2|+ |vv3|+ |v3v4|+ |vv5|+ τ

∑5
i=1 w(Ti). Call

|v1v2|− |vv2|+ |v3v4|− |vv4| the excess of the permutation
v1, . . . , v5.

It suffices to choose a permutation with excess smaller
than (τ − 1)

∑

vi 6=v′ |vvi|. We will prove that such a permu-
tation always exists for both k = 3 and k = 4.
Clearly, the algorithm runs in linear time, given the MST

(which can be constructed in O(n log n) time [14]).

3.2 Preliminaries for the proof
Our analysis, though somewhat lengthy (due to our de-

sire to obtain the lowest constant), relies on very elementary
tools—just an angle-sensitive version of the triangle inequal-
ity, and a useful min trick:

Lemma 3.1. If a triangle has sides x, y, z with x ≤ y, and

the angle opposite z is θ, then

z ≤ f(θ)x+ y, where f(θ) := max{2 sin(θ/2)− 1, 0}.

Proof. When x = y, we have z = 2 sin(θ/2)x. As y in-
creases by δ while x is fixed, z can increase by at most δ.

Lemma 3.2. If a1, . . . , am ≥ 0, then

min{a1x1, . . . , amxm} ≤ 1
m

H.M.{a1, . . . , am} (x1+· · ·+xm),

where H.M. denotes the Harmonic mean.

Proof. Just take a convex combination:

min{a1x1, . . . , amxm} ≤ α1a1x1 + · · ·+ αmamxm,

with αi = (1/ai)/[1/a1 + · · ·+ 1/am].



3.3 The analysis

Case k = 3. Let va, vb, vc be the children of v in T sorted
by angle, with v′ between va and vc. Let x1 = |vva|, x2 =
|vvb|, x3 = |vvc|, x4 = |vv′|, θ1 = ∠vavvb, θ2 = ∠vbvvc,
θ3 = ∠vcvv

′, and θ4 = ∠v′vva, as in Figure 5(a).

θ2

v′

θ2

θ4
θ3

x4

v

(a) k = 3

x2

x3

x1 θ1

x4

v′

x1

x2

θ5

θ3
θ1

θ4

x5

v

(b) k = 4

x3

Figure 5: Notation for the degree-4 analysis.

We want to show that some permutation has excess less
than (τ − 1)(x1 + x2 + x3). By Lemma 3.1, we have permu-
tations with excesses bounded by these numbers:

f(θ1)min{x1, x2}, f(θ2)min{x2, x3},
f(θ3)min{x3, x4}, f(θ4)min{x4, x1}.

By Lemma 3.2, the minimum excess is at most

1
3
H.M.{min{f(θ4), f(θ1)},

min{f(θ1), f(θ2)},
min{f(θ2), f(θ3)} } (x1 + x2 + x3).

Since min{θ4, θ1}+min{θ1, θ2}+min{θ2, θ3} ≤ 270◦, it can
be verified (as the H.M. is no more than the arithmetic mean
and f is concave on the interval of interest) that the above
coefficient is bounded by 1

3
f(90◦) = (

√
2− 1)/3 < 0.139.

Case k = 4. Let va, vb, vc, vd be the children of v in T
sorted by angle, with v′ between va and vd. Let x1 = |vva|,
x2 = |vvb|, x3 = |vvc|, x4 = |vvd|, x5 = |vv′|, θ1 = ∠vavvb,
θ2 = ∠vbvvc, θ3 = ∠vcvvd, θ4 = ∠vdvv

′, and θ5 = ∠v′vva,
as in Figure 5(b). Because angles between two adjacent
MST edges must exceed 60◦ (e.g., see [14]), we know that
θ1, θ2, θ3, θ4 + θ5 ≥ 60◦. Furthermore, because one of the
MST edge at v (the parent) is not present in T , we also
know the following fact, which will be helpful later (though
not necessary to get a new result):

max{θ1, θ2, θ3, θ4 + θ5} ≥ 120◦. (1)

We want to show that some permutation has excess smaller
than (τ − 1)(x1 + x2 + x3 + x4). By Lemma 3.1, we have
permutations with excesses bounded by

f(θ1)min{x1, x2}+ f(θ3)min{x3, x4},
f(θ2)min{x2, x3}+ f(θ4)min{x4, x5},
f(θ3)min{x3, x4}+ f(θ5)min{x5, x1},
f(θ4)min{x4, x5}+ f(θ1)min{x1, x2},
f(θ5)min{x5, x1}+ f(θ2)min{x2, x3},

f(θ3 + θ4)min{x3, x5}+ f(θ4 + θ5)min{x4, x1},
f(θ4 + θ5)min{x4, x1}+ f(θ5 + θ1)min{x5, x2}.

Consider three subcases (the missing one is symmetric):

• Subcase θ4, θ5 ≤ 60◦. Then f(θ4) = f(θ5) = 0. By
Lemma 3.2, the minimum excess is at most

1
4
H.M.{f(θ1), min{f(θ1), f(θ2)},

min{f(θ2), f(θ3)}, f(θ3) } (x1 + x2 + x3 + x4).

Since θ1+min{θ1, θ2}+min{θ2, θ3}+θ3 ≤ 400◦, it can be
verified that the above coefficient is bounded by 1

4
f(100◦)

< 0.134.

• Subcase θ4 ≥ 60◦, θ5 ≤ 60◦. Here, f(θ5) = 0. By (1),
we have the following possibilities:

– Subsubcase θ1 ≥ 120◦ or θ4+θ5 ≥ 120◦. By Lemma 3.2,
the minimum excess is at most

1
3
H.M.{f(θ2), f(θ2), f(θ3)} (x2 + x3 + x4).

Since θ2 + θ3 ≤ 360◦ − 120◦ − 60◦ = 180◦, it can be
confirmed numerically that the above coefficient is max-
imized near θ2 ≈ 95◦, θ3 ≈ 85◦ and is below 0.142.

– Subsubcase θ2 ≥ 120◦. By Lemma 3.2, the minimum
excess is at most

1
3
H.M.{max{f(θ4 + θ5), f(θ5 + θ1)}, f(θ3), f(θ3)}

[(x1 + x2) + x3 + x4].

Since max{θ4 + θ5, θ5 + θ1}+ θ3 ≤ 360◦ − 120◦ − 60◦ =
180◦, the above coefficient is again bounded by 0.142.

– Subsubcase θ3 ≥ 120◦. By Lemma 3.2, the minimum
excess is at most

1
3
H.M.{max{f(θ4), f(θ1)}, f(θ2), f(θ2)}

[(x4 + x1) + x2 + x3].

Since max{θ4, θ1}+ θ2 ≤ 360◦ − 120◦ − 60◦ = 180◦, the
above coefficient is also bounded by 0.142.

• Subcase θ4, θ5 ≥ 60◦. Consider which of the angles θ1,
. . . , θ5 is the largest (the missing subsubcases are symmet-
ric):

– Subsubcase: θ1 is the largest. By Lemma 3.2, the mini-
mum excess is at most

1
2
H.M.{max{f(θ3), f(θ5)},max{f(θ2), f(θ4)}}

[(x3 + x1) + (x2 + x4)].

Since max{θ3, θ5}+max{θ2, θ4} ≤ min{2θ1, 360
◦−60◦−

60◦ − θ1} ≤ 160◦, it can be verified that the above coef-
ficient is bounded by 1

2
f(80◦) < 0.143.

– Subsubcase: θ5 is the largest. By Lemma 3.2, the mini-
mum excess is at most

1
2
H.M.{max{f(θ1), f(θ3)},max{f(θ2), f(θ4)}}

[(x1 + x3) + (x2 + x4)].

By a similar argument, the coefficient is again bounded
by 0.143.

– Subsubcase: θ2 is the largest. By Lemma 3.2, the mini-
mum excess is at most

1
2
H.M.{max{f(θ3), f(θ5)},max{f(θ4), f(θ1)}}

[(x3 + x1) + (x4 + x2)].

The coefficient is again bounded by 0.143.

A ratio of 1.143 has thus been established.

Remark : There might be room for improvement in the last
subcase, by a more detailed case analysis, or by not bound-
ing distances linearly with Lemma 3.1 (which is tight only
when x = y). The room would be small though, considering
that our analysis for the k = 3 case (with ratio > 1.138) is
tight under our inductive hypothesis.



4. BETTER DEGREE-3 SPANNING TREES
IN THE PLANE

Let τ = 1.402 in this section.
Logically, our approach for degree-3 spanning trees should

adopt a similar relaxed condition where the root v is per-
mitted to have degree 2 in the new tree, instead of 1 as
in Khuller et al.’s algorithm. Unfortunately, we now face
many new obstacles, and it took some time before we find
an inductive hypothesis we feel comfortable analyzing. The
idea is to force not just one attachment edge, but a path
of attachment edges, to cost less, with factor 1 (instead of
τ) in the analysis. Additionally, a technical complication
arises because of the need to recurse on general trees, not
necessarily subtrees of the MST.

4.1 The new approach
Interpret ↖ as a right-to-left associative operator. Given

a (finite) sequence of trees T, T ′, T ′′, . . ., with roots
v, v′, v′′, . . ., we describe an algorithm that transforms
T↖T ′

↖T ′′
↖ · · · to a new tree, such that the root v has de-

gree at most 2 in the new tree, and the new tree has weight

at most |vv′|+ |v′v′′|+ · · ·+ τ(w(T )+w(T ′)+w(T ′′)+ · · · ).
The algorithm works according to one of several schemes

depicted in Figure 6. Pick a permutation v1, . . . , vk of the
k children of v in T . Let T1, . . . , Tk be their corresponding
subtrees.

• If |vk−1vk| ≤ |vvk|, then we apply Scheme A: remove edge
vvk and insert vk−1vk to lower the root’s degree, and re-
peat.

• If min{|vvk| + |vkv
′|, |vv′| + τ |vkv

′|} ≤ τ |vvk| + |vv′|,
then we apply Scheme B: pull out Tk from T to get a
tree T̂ with lower root degree, and depending on which
of |vvk| + |vkv

′| and |vv′| + τ |vkv
′| is smaller, take ei-

ther T̂↖Tk↖T ′
↖T ′′

↖ · · · or T̂↖(T ′
↖Tk)↖T ′′

↖ · · · and
repeat.

• If the above schemes are not applicable for any permuta-
tion, we can consider two recursive schemes. In Scheme
C, we recursively transform T1↖ · · ·↖Tk and T ′

↖T ′′
↖ · · ·

and put in the edges vv1 and vv′. By hypothesis, the
weight of the resulting tree is bounded by cost + |vv′| +
|v′v′′| + · · · + τ

(

∑k

i=1 w(Ti) + w(T ′) + w(T ′′) + · · ·
)

,

where we define

cost := |vv1|+ |v1v2|+ · · ·+ |vk−1vk|.

• In Scheme D, we recursively transform T1↖ · · ·↖Tk−1,
and depending on which of |vvk| + |vkv

′| and |vv′| +
τ |vkv

′| is smaller, we either recursively transform
Tk↖T ′

↖T ′′
↖ · · · and put in vvk, or recursively transform

(T ′
↖Tk)↖T ′′

↖ · · · and put in vv′. (This is best under-
stood pictorially, with the aid of Figure 6.) By hypothesis,
the weight of the resulting tree is bounded by cost+|vv′|+
|v′v′′| + · · · + τ

(

∑k

i=1 w(Ti) + w(T ′) + w(T ′′) + · · ·
)

,

where we define

cost := |vv1|+ |v1v2|+ · · ·+ |vk−2vk−1|+
min{|vvk|+ |vkv

′|, |vv′|+ τ |vkv
′|} − |vv′|.

It suffices to choose a permutation and a scheme such that
the cost is at most τ

∑k

i=1 |vvi|. We will prove that such a
choice exists whenever Schemes A and B are not applicable.

Note that if Schemes A and B are not applicable, then
k ≤ 4 (see Section 4.3). Testing/handling Schemes A and B
requires time proportional to the degree k, which is at most
n, and so the algorithm can be implemented in quadratic
time. By being careful in how to apply Scheme A (details
in full paper), it is possible to always keep the degree k
below a constant, and thus the algorithm can actually be
implemented in linear time given the MST.

4.2 Preliminaries for the proof
The degree-3 analysis requires a different set of tools.

At some point we make use of an alternative triangle
inequality—Lemma 4.1 below—which refines Lemma 3.1
when θ < 90◦, provided that z is the largest side. Lemma 4.2
deals with an expression on triangle sides that occurs already
in our definition of cost. Finally, Lemma 4.3 comes in handy
in bounding linear expressions.

Lemma 4.1. If a triangle has sides x, y, z with x ≤ y ≤ z,
and the angle opposite z is θ, then

z ≤ G(θ)x+ (F (θ)−G(θ))y,

where F (θ) := 2 sin(θ/2) and G(θ) := 1/(F (θ) + 1).

Proof. z ≥ y implies that x ≥ 2y cos θ. The above
is an equality when x = 2y cos θ, because of the identity
2G(θ) cos θ + F (θ)−G(θ) = 1. We also have equality when
x = y. Since z is a convex function of x for a fixed y, the
inequality holds for all x between 2y cos θ and y.

Lemma 4.2. If a triangle has sides x, y, z, and the angle

opposite z is θ, then

min{x+ z, y + τz} ≤ H(θ)x+ y,

where

H(θ) :=
τ

τ − 1

[

1− J(θ) +
√

J(θ)2 − 1
]

,

J(θ) :=
1− (τ − 1)2 cos θ

1− (τ − 1)2
.

Proof. W.l.o.g., say x = 1. The maximum of

min
{

1 +
√

y2 + 1− 2y cos θ, y + τ
√

y2 + 1− 2y cos θ
}

− y

occurs when the two min terms coincide; its value can be
found by solving a quadratic equation.

Lemma 4.3. If 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm, then

a1x1 + · · ·+ amxm

≤ max
{

am, 1
2
(am−1 + am), . . . , 1

m
(a1 + · · ·+ am)

}

(x1 + · · ·+ xm).

Proof. Trivially it is true when x1 = x2 = · · · = xm. It
remains true when x2, . . . , xm increase simultaneously by a
common amount. Etc.

4.3 The analysis
Suppose that Scheme A is not applicable. Then |vivj | >

|vvi|, |vvj | for all i, j. In particular, this implies that all an-
gles ∠vivvj among children of v in T exceed 60◦. In addition,
it validates the subsequent applications of Lemma 4.1.
Suppose further that Scheme B is not applicable. This

implies that the angle ∠vivv
′ between any child of v in T and
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Figure 6: The new degree-3 algorithm in picture form.



v′ must exceed 72◦, because of Lemma 4.2, since H(72◦) <
1.395.
Thus, k ≤ 4. The k = 1 case is trivial. We consider the

k = 2, k = 3, and k = 4 cases separately. Before plunging
into the details, some words of caution: The present proof is
less elegant than the previous proof, because the algorithm
is now more involved and there is less symmetry. On the
other hand, when required, we only take the simplest con-
vex combinations, i.e., averages, in contrast to the fancier
ones used in Lemma 3.2. The k = 2 case turns out to be the
“critical” case, and so we can afford to be looser in our esti-
mates for k = 3 and k = 4—otherwise, a complete analysis,
especially for the k = 4 case, would be even more daunting.
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Figure 7: Notation for the degree-3 analysis.

Case k = 2. Let va, vb be the children of v in T . Let x1 =
|vva|, x2 = |vvb|, θ1 = ∠vavvb, θ2 = vbvv

′, and θ3 = v′vva,
as in Figure 7(a). W.l.o.g., say x1 ≤ x2.
We want to show that Scheme C or D under some permu-

tation has cost at most τ(x1 + x2).

• Subcase θ1 ≤ 128.6◦. By Lemma 3.1, Scheme C yields
cost bounded by

F (θ1)x1 + x2 ≤ max
{

1, 1
2
(F (θ1) + 1)

}

(x1 + x2),

using Lemma 4.3. The above coefficient is at most
1
2
(F (128.6◦) + 1) < 1.402.

• Subcase θ3 ≤ 115.7◦. By Lemma 4.2, Scheme D yields
cost bounded by

x2 +H(θ3)x1 ≤ max
{

1, 1
2
(H(θ3) + 1)

}

(x1 + x2),

using Lemma 4.3. The above coefficient is at most
1
2
(H(115.7◦) + 1) < 1.402.

• Subcase θ1 ≥ 128.6◦, θ3 ≥ 115.7◦. By Lemma 4.2,
Scheme D yields costs at most

x2 +H(θ3)x1, x1 +H(θ2)x2.

Taking the average and applying Lemma 4.3 bounds the
minimum cost by

max
{

1
2
(H(θ2) + 1), 1

4
(H(θ2) +H(θ3) + 2)

}

(x1 + x2).

Because θ2 ≤ 115.7◦ and θ2+θ3 ≤ 231.4◦, both max terms
are again at most 1

2
(H(115.7◦) + 1) < 1.402.

Case k = 3. This case is the lengthiest.
Let va, vb, vc be the children of v in T , with v′ between

va and vc in angle around v. Let x1 = |vva|, x2 = |vvb|,
x3 = |vvc|, θ1 = ∠vavvc, θ2 = ∠vbvvc, θ3 = ∠vcvv

′, and
θ4 = ∠v′vva, as in Figure 7(b). W.l.o.g., say x1 ≤ x3.
We want to show that Scheme C or D under some permu-

tation has cost at most τ(x1 + x2 + x3).

• Subcase x1 ≤ x3 ≤ x2. By Lemmas 3.1 and 4.2,
Scheme D yields costs at most

F (θ1)x1 + x2 +H(θ3)x3, F (θ2)x3 + x2 +H(θ4)x1.

Taking the average and applying Lemma 4.3 bounds the
minimum cost by

max
{

1, 1
4
(F (θ2) +H(θ3) + 2),

1
6
(F (θ1)+F (θ2)+H(θ3)+H(θ4)+2)

}

(x1+x3+x2).

Since θ2 + θ3 ≤ 360◦ − 60◦ − 72◦ = 228◦, it can be con-
firmed numerically that the second max term is maxi-
mized near θ2 ≈ 125◦, θ3 ≈ 103◦ and has value below
1.372. Since θ1 + θ2 + θ3 + θ4 = 360◦, it can confirmed
numerically that the third max term is maximized near
θ1, θ2 ≈ 100◦, θ3, θ4 ≈ 80◦ and has value below 1.341.

• Subcase x1 ≤ x2 ≤ x3.

– Subsubcase θ3 ≤ 115◦. By Lemmas 3.1 and 4.2,
Scheme D yields costs at most

F (θ1)x1 + x2 +H(θ3)x3, F (θ2)x2 + x3 +H(θ4)x1.

Taking the average and applying Lemma 4.3 bounds the
minimum cost by

max
{

1
2
(H(θ3) + 1), 1

4
(F (θ2) +H(θ3) + 2),

1
6
(F (θ1)+F (θ2)+H(θ3)+H(θ4)+2)

}

(x1+x2+x3).

The first max term is at most 1
2
(H(115◦) + 1) < 1.399.

As in the previous subcase, the second and third max
term are bounded by 1.372 and 1.341.

– Subsubcase θ3 ≥ 115◦. By Lemma 3.1, Scheme C yields
cost at most

F (θ1)x1 + F (θ2)x2 + x3

≤ max
{

1, 1
2
(F (θ2) + 1), 1

3
(F (θ1) + F (θ2) + 1)

}

(x1 + x2 + x3),

using Lemma 4.3. Since θ2 ≤ 360◦− 115◦− 72◦− 60◦ =
113◦, the second max term is at most 1

2
(F (113◦) + 1) <

1.334. Since θ1 + θ2 ≤ 360◦ − 115◦ − 72◦ = 173◦, the
third max term is at most 1

3
(2F (86.5◦) + 1) < 1.247.

• Subcase x2 ≤ x1 ≤ x3.

– Subsubcase θ3 ≤ 115◦, θ3 + θ4 ≤ 195◦. By Lemmas 3.1
and 4.2, Scheme D yields costs at most

F (θ1)x2 + x1 +H(θ3)x3, F (θ2)x2 + x3 +H(θ4)x1.

Taking the average and applying Lemma 4.3 bounds the
minimum cost by

max
{

1
2
(H(θ3) + 1), 1

4
(H(θ3) +H(θ4) + 2),

1
6
(F (θ1)+F (θ2)+H(θ3)+H(θ4)+2)

}

(x2+x1+x3).

The first max term is at most 1
2
(H(115◦) + 1) < 1.399.

Since θ3 + θ4 ≤ 195◦, it can be verified that the sec-
ond max term is bounded by 1.333. As in the earlier
subcases, the third max term is bounded by 1.341.

– Subsubcase θ3 ≥ 115◦, θ3 + θ4 ≤ 195◦. Here, just take
the upper bound

F (θ2)x2 + x3 +H(θ4)x1

≤ max
{

1, 1
2
(H(θ4) + 1), 1

3
(F (θ2) +H(θ4) + 1)

}

(x2 + x1 + x3),



using Lemma 4.3. Since θ4 ≤ 80◦, the second max term
is at most 1

2
(H(80◦) + 1) < 1.245. Since θ2 ≤ 360◦ −

115◦ − 72◦ − 60◦ = 113◦, the third max term is at most
1
3
(F (113◦) +H(80◦) + 1) < 1.386.

– Subsubcase θ3 + θ4 ≥ 195◦. By Lemma 4.1, Scheme C
yields cost at most

x1 + [G(θ1)x2 + (F (θ1)−G(θ1))x1]
+ [G(θ2)x2 + (F (θ2)−G(θ2))x3]

≤ max { F (θ2)−G(θ2),
1
2
(F (θ1)−G(θ1) + F (θ2)−G(θ2) + 1),

1
3
(F (θ1) + F (θ2) + 1) } (x2 + x1 + x3),

using Lemma 4.3. Since θ2 ≤ 360◦ − 195◦ − 60◦ = 105◦,
the first max term is at most F (105◦)−G(105◦) < 1.201.
Since θ1 + θ2 ≤ 360◦ − 195◦ = 165◦, it can be veri-
fied that the second max term is at most F (82.5◦) −
G(82.5◦)+ 1

2
< 1.388 and the third max term is at most

1
3
(2F (82.5◦) + 1) < 1.213.

Case k = 4. Having experienced the k = 3 case, we are
happy to report, counter to intuition, that k = 4 case can
be disposed of more quickly. As it turns out, Scheme C alone
is enough to provide the desired bound here.
Let va, vb, vc, vd be the children of v in T sorted by angle.

Let x1 = |vva|, x2 = |vvb|, x3 = |vvc|, x4 = |vvd|, θ1 =
∠vavvb, θ2 = ∠vbvvc, θ3 = ∠vcvvd, and θ4 = ∠vdvva, as in
Figure 7(c). W.l.o.g., say x4 ≥ x1, x2, x3.
We know that one of these four angles, depending on the

placement of v′ around v, exceeds 2(72◦) = 144◦. W.l.o.g.,
say max{θ2, θ4} ≥ 144◦. Note that θ1, θ3 ≤ 360◦ − 144◦ −
60◦ − 60◦ = 96◦, and so G(θ1), G(θ3) > 0.402.
We want to show that Scheme C under some permutation

has cost at most τ(x1 + x2 + x3 + x4).

• Subcase x1 ≤ x2. By Lemmas 3.1 and 4.1, we get cost
bounded by

x1 + [0.4x1 + (F (θ1)− 0.4)x2] + [x2 + x3]
+ [0.4x3 + (F (θ3)− 0.4)x4]

≤ 1.4(x1 + x3) +
max

{

F (θ3)−0.4, 1
2
(F (θ1)+F (θ3)+0.2)

}

(x2 + x4),

using Lemma 4.3. The first max term is at most F (96◦)−
0.4 < 1.087. Since θ1 + θ3 ≤ 360◦ − 144◦ − 60◦ = 156◦,
the second max term is at most F (78◦) + 0.1 < 1.359.

• Subcase x2 ≤ x1. By Lemmas 3.1 and 4.1, we get cost
bounded by

x1 + [0.4x2 + (F (θ1)− 0.4)x1] + [x2 + x3]
+ [0.4x3 + (F (θ3)− 0.4)x4]

≤ 1.4(x2 + x3) +
max

{

F (θ3)−0.4, 1
2
(F (θ1)+F (θ3)+0.2)

}

(x1 + x4),

using Lemma 4.3. Again, the max terms are bounded by
1.087 and 1.359.

A ratio of 1.402 has thus been established.

Remark : The constant is tight in following sense: if τ =
1.401 instead, there exists placements of vertices v, v1, v2, v

′

for k = 2, such that neither Schemes C nor D can yield
cost less than τ(|vv1| + |vv2|), under the present definition
of cost.

5. BETTER DEGREE-3 SPANNING TREES
IN ARBITRARY DIMENSIONS

We close with a preliminary discussion on higher-
dimensional spanning trees. Khuller et al. [10] showed that
a nontrivial result can be obtained already for the degree-
3 case: the same algorithm described in Section 2 always
produces a spanning tree of weight (5/3)w(T ). This is a
consequence of the following fact: given arbitrary points
v, v1, . . . , vk ∈ IRd, there exists a path that starts at v
and visits v1, . . . , vk in some order, with weight at most
5
3

∑k

i=1 |vvi|. We observe that by a slightly more careful

analysis, the constant 5/3 can be reduced to 2
3

√
6 < 1.633.

The proof is similar to Khuller et al.’s but uses a different
geometric inequality:

Lemma 5.1. Given points v, v0, v1, v2, v3, v4 ∈ IRd such

that |vv0| ≤ |vv1| ≤ · · · ≤ |vv4|,
min{ |v0v1|+ |v1v2|+ |v2v3|+ |v3v4|,

|v0v2|+ |v2v3|+ |v3v1|+ |v1v4|,
|v0v3|+ |v3v1|+ |v1v2|+ |v2v4| }

≤ 2
3

√
6 (|vv1|+ |vv2|+ |vv3|+ |vv4|).

Proof. By bounding the minimum with the average, it
suffices to prove that

|v0v1|+ |v0v2|+ |v0v3|+ |v4v1|+ |v4v2|+ |v4v3|
+ 2|v1v2|+ 2|v2v3|+ 2|v3v1|

≤ 2
√
6 (|vv1|+ |vv2|+ |vv3|+ |vv4|). (2)

First consider the case where |vv1| = |vv2| = |vv3| = |vv4| =
r. The expression

|v0v1|+ |v0v2|+ |v0v3|+ |v1v2|+ |v2v3|+ |v3v1|
is bounded by 4

√
6r (in geometric terms, the total side

length of a tetrahedron inside a sphere is maximized when
the tetrahedron is regular); Khuller et al. cited Lilling-
ton [12], although it is not hard to establish this fact al-
gebraically, by the Cauchy-Schwarz inequality. Similarly,
|v4v1| + |v4v2| + |v4v3| + |v1v2| + |v2v3| + |v3v1| ≤ 4

√
6r.

Therefore, (2) is true, since the L.H.S. is at most 8
√
6r and

the R.H.S. is exactly 8
√
6r.

Now, suppose v2, v3, v4 are moved radially outward so that
|vv2|, |vv3|, |vv4| all increase by αr. Then the L.H.S. of (2)
increases by at most 7αr+α|v4v2|+α|v4v3|+2α|v2v3|; here,
the |vivj |’s refer to the old distances. The expression

|v2v3|+ |v3v4|+ |v4v2|
is bounded by 3

√
3r (in geometric terms, the perimeter of

a triangle inside a circle is maximized when the triangle is
equilateral). Therefore, the amount of change to the L.H.S.
is bounded by (9 + 3

√
3)αr ≤ 14.2αr, but the amount of

change to the R.H.S. is 6
√
6αr > 14.6αr. So, (2) still holds.

Now, suppose |vv3|, |vv4| increase further by δ. Then the
L.H.S. of (2) increases by at most 9δ, while the R.H.S. in-
creases by 4

√
6δ > 9.7δ. So, (2) is still true.

Finally, suppose |vv4| increases further yet by ε. Then
the L.H.S. of (2) increases by at most 3ε, while the R.H.S.
increases by 2

√
6ε > 4.8ε. We conclude that (2) holds for

all values of |vv1| ≤ |vv2| ≤ |vv3| ≤ |vv4|.

Sort v1, . . . , vk by distances, so that |vv1| ≤ · · · ≤ |vvk|.
The main idea is to divide the sequence v1, . . . , vk into blocks



of 4 and rearrange each block separately (Khuller et al.

in contrast divides into blocks of 3). Lemma 5.1 implies
that there is a path from vk−4j−4 to vk−4j via vk−4j−3, . . .,

vk−4j−1, of weight at most 2
3

√
6
∑k−4j

i=k−4j−3 |vvi|, for all

j = 0, . . . , b(k − 5)/4c. Special cases of Lemma 5.1 imply
that for ` ∈ {1, . . . , 4}, there is a path from v to v` via

v1, . . . , v`−1, of weight at most 2
3

√
6
∑`

i=1 |vvi|. Our result
follows immediately by concatenating these paths.
As Khuller et al. have observed, this algorithm can be

implemented in linear time for any dimension d (possibly
nonconstant) if the MST is given.

6. CONCLUSIONS
The obvious open problem is to improve the upper bounds

further by designing better algorithms. Currently, the only
published lower bounds [10] are 1

4
(
√
2 + 3) > 1.103 and

1
5
(F (72◦) + 4) > 1.035 respectively for the worst-case ratio

of the minimum degree-3 and degree-4 spanning tree to the
MST in the plane (achieved by the center plus vertices of a
square and a regular pentagon respectively); Fekete et al. [8]
boldly conjectured that these lower bounds are tight. If we
insist that a designated root has degree at most 2 and 3
respectively, then the lower bounds increase to 1

3
(
√
3+2) >

1.244 and 1
4
(
√
2 + 3) > 1.103 (this time, by the center plus

vertices of an equilateral triangle and a square).
We hope that our work would inspire more progress on

the determination of these fascinating constants.
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