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Abstract. We address the All-Pairs Shortest Paths (APSP) problem
for a number of unweighted, undirected geometric intersection graphs.
We present a general reduction of the problem to static, offline in-
tersection searching (specifically detection). As a consequence, we can
solve APSP for intersection graphs of n arbitrary disks in O

(
n2 logn

)
time, axis-aligned line segments in O

(
n2 log log n

)
time, arbitrary line

segments in O
(
n7/3 log1/3 n

)
time, d-dimensional axis-aligned boxes in

O
(
n2 logd−1.5 n

)
time for d ≥ 2, and d-dimensional axis-aligned unit hy-

percubes in O
(
n2 log logn

)
time for d = 3 and O

(
n2 logd−3 n

)
time for

d ≥ 4.
In addition, we show how to solve the Single-Source Shortest Paths
(SSSP) problem in unweighted intersection graphs of axis-aligned line
segments in O (n logn) time, by a reduction to dynamic orthogonal point
location.

Keywords: shortest paths, geometric intersection graphs, intersection
searching data structures, disk graphs

1 Introduction

As a motivating example, consider the following toy problem: given a set S of
n axis-aligned line segments in the plane representing a road network, and two
points p1 and p2 lying on two segments of S, compute a path from p1 to p2 that
stays on S while minimizing the number of turns. (See Figure 1.)

To solve the problem, we can create a vertex for each segment of S and an
(unweighted, undirected) edge between two vertices if their corresponding seg-
ments intersect. This defines the intersection graph G(S). Then given two points
p1 and p2, lying on the segments s and t of S, a minimum-turn path from p1 to p2
corresponds precisely to an unweighted shortest path from s to t in G(S). Naively
constructing G(S) and running breadth-first search (BFS) would require O(n2)
worst-case time. In Section 4, however, we observe an O(n log n)-time algorithm,
which is new to the best of the authors’s knowledge. In fact, the algorithm solves
the more general, Single-Source Shortest Paths (SSSP) problem in G(S), by an
application of data structures for dynamic orthogonal point location [23,7].
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Fig. 1. A set S of axis-aligned line segments is shown. The path from p1, lying on
segment s, to p2, lying on segment t, staying on S and using the minimum number of
turns is marked in bold.

Our main focus in this paper will be a similar problem, namely the All-Pairs
Shortest Path (APSP) problem in geometric intersection graphs. More generally,
given a set S of n geometric objects, its intersection graph G(S) is defined
by creating one vertex for every object of S and an (undirected, unweighted)
edge between two vertices if their corresponding objects intersect. We want to
compute a representation of an unweighted shortest path between s and t for
every pair of objects s, t ∈ S. For general unweighted, undirected graphs the
problem can be solved in O (nω) time (e.g., see [5,28]), where ω < 2.373 is the
matrix multiplication exponent [30], but better results are possible for geometric
intersection graphs.

Our main results are as follows:

– For arbitrary disks, we solve APSP in O
(
n2 log n

)
time. The disk case is

naturally motivated by applications in ad hoc communication networks. Fol-
lowing work by Cabello and Jejčič [9] on SSSP for unit-disk graphs, a pre-
vious paper by the authors [16] studied APSP for unit-disk graphs and gave
an O

(
n2
√

log logn
logn

)
-time algorithm, but the approach cannot be extended

to arbitrary disks. A paper by Kaplan et al. [25] contains an algorithm for
SSSP for disks (which can be used for APSP), but this is for a directed vari-
ant of intersection graphs (called “transmission graphs”), and the running
time has multiple logarithmic factors unless we assume that the maximum-
to-minimum radius ratio is bounded.

– For axis-aligned line segments, we solve APSP in O
(
n2 log log n

)
time, which

is better than running n times the O(n log n)-time algorithm for SSSP that
we have mentioned for the toy problem at the beginning. No previous results
have been reported, to the best of the authors’s knowledge.

– When the line segments are not axis-aligned but have arbitrary orientations
instead, we solve APSP in O

(
n7/3 log1/3 n

)
time, which is a little better

than the general O(nω) result, at least with the current upper bound on ω.
(Regardless, our algorithm has the advantage of being combinatorial.)

– See Table 1 for further results on axis-aligned boxes, unit hypercubes, and
fat triangles of roughly equal size.

All these results stem from one single, general technique, which reduces APSP
to the design of data structures for static, offline intersection detection, i.e., given
a query object, decide whether there is an input object intersecting it (and report
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Geometric Objects Running Time

arbitrary disks O(n2 logn)

axis-aligned line segments O
(
n2 log log n

)
arbitrary line segments O

(
n7/3 log1/3 n

)
d-dimensional axis-aligned boxes O

(
n2 logd−1.5 n

)
for d ≥ 2

d-dimensional axis-aligned unit
hypercubes

O
(
n2 log log n

)
for d = 3 and

O
(
n2 logd−3 n

)
for d ≥ 4

fat triangles of roughly equal size O
(
n2 log4 n

)
Table 1. The results for APSP

one if the answer is yes). Our technique, described in Section 2, works by visiting
vertices in an order prescribed by a spanning tree; given the BFS tree from a
source vertex s as a guide, we can generate the BFS tree from an adjacent source
vertex s′ quickly, by exploiting the fact that distances to s′ are approximately
known up to ±1, and by using the right geometric data structures. Some form of
this simple idea has appeared before for general graphs (e.g., see [4,11]), but it is
somehow overlooked by previous researchers in the context of geometric APSP.

To appreciate the advantages of the new technique, we should compare it
with other known general approaches:

– First, a naive approach is to solve SSSP n times from every source indepen-
dently, i.e., generate the BFS trees from each source from scratch. Geometric
SSSP problems can often be reduced to dynamic data structuring problems,
for example, as observed in Chan and Efrat’s paper [13] (the reduction is
much simplified in the unweighted, undirected setting). In fact, our solution
to the toy problem at the beginning is done via this approach. However, dy-
namic data structures for geometric intersection or range searching usually
are more complicated and have slower query times than their static counter-
parts, sometimes by multiple logarithmic factors. For example, the arbitrary
disk case requires dynamic data structures for additively weighted nearest
neighbor search, and a BFS therein takes nearly O

(
n log10 n

)
time [26]. Our

reduction to static data structuring problems yields better results.
– Another general approach is to employ biclique covers [21,2] to sparsify

the intersection graph first and then solve the problem on the sparsified
graph. Biclique covers are related to static, offline intersection searching
data structures (e.g., as noted in [10]). However, the complexity of biclique
covers also tends to generate extra logarithmic factors. For example, for d-
dimensional boxes, the sparsified graph has O

(
n logd n

)
edges, leading to

an O
(
n2 logd n

)
-time algorithm, but our solution requires O

(
n2 logd−1.5 n

)
time. For arbitrary disks, the complexity of the biclique covers is even worse
(O
(
n3/2+ε

)
[3]), leading to an O

(
n5/2+ε

)
-time algorithm, which is much
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slower than our O
(
n2 log n

)
result. The underlying issue is that intersection

searching (as implicitly needed in biclique covers) may in general be harder
than intersection detection.

In deriving our result for axis-aligned boxes, we also obtain a new
O
(
n
√
log n

)
-time algorithm for offline rectangle stabbing in two dimensions (pre-

process n axis-aligned rectangles so that we can find a rectangle stabbing each
query point). This result (see the full paperAppendix A) may be of independent
interest.

For the rest of the paper, for s, t ∈ S, where S is a set of geometric objects, let
dist [s, t] denote the distance of the shortest path from s to t in the intersection
graph of S and pred [s, t] denote the predecessor of t in that path. In SSSP we
want to compute dist [s, t] and pred [s, t] for a given s ∈ S and ∀ t ∈ S, while
in APSP we want to compute dist [s, t] and pred [s, t] ∀ s, t ∈ S. All algorithms
assume the standard unit-cost RAM model of computation where the word size
is at least log n in bits.

2 Reducing APSP to static, offline intersection detection

In this section, we reduce the problem of solving APSP in unweighted, undirected
geometric intersection graphs of objects of constant-description complexity to
static, offline intersection detection. We assume that the graph is connected; if
not, then we can simply work with every connected component independently.
We first compute an arbitrary spanning tree T0 of G(S), root it at an arbitrary
object s0 ∈ S, and then compute the shortest path tree of s0. Then, we visit
each object s of T0 in a pre-order manner, and compute the shortest path tree
of s by using the shortest path tree of s′ as a guide, where s′ is the parent of s
in T0. The pseudocode of the algorithm is given in Algorithm 1. The initial call
is APSP(S, s0).

Algorithm 1: APSP(S, s0)
1 build G(S)
2 compute any spanning tree T0 of G(s) and root it at any s0 ∈ S
3 compute the shortest path tree of s0
4 for each s ∈ S − {s0} following a pre-order traversal of T0 do
5 compute the shortest path tree T (s) of s, using the shortest path tree

T (s′) of its parent s′ in T0, by calling SSSP (S, s, T (s′))

It remains to describe how to compute the shortest path tree of a vertex
s ∈ S, given the shortest path tree of a vertex t at unit distance from it, i.e.,
how to implement Line 5 in Algorithm 1. From the triangle inequality and from
dist [s, s′] = 1, we know that if dist [s′, z] = ` for an object z ∈ S, then ` −
1 ≤dist [s, z] ≤ ` + 1. Thus we already have an 1-additive approximation of the
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distances dist [s′, z] for any z ∈ S. To compute the exact distances from s to any
object z ∈ S, we follow the procedure of the next paragraph.

As in classical BFS, we proceed in n − 1 steps, where in step ` we assume
that we have found all the objects at distance at most `− 1 from s and want to
produce the objects at distance exactly `. The objects at distance exactly `− 1
from s are called the frontier objects, while the ones whose distance has not yet
been found are called the undiscovered objects. Then we need to procure quickly
all the undiscovered objects that intersect the frontier objects. Because of the
1-additive approximation, an object z can be at distance ` from s only if it is at
distance `− 1, `, or `+1 from s′. These points are called the candidate objects.
Hence we need to determine, for each candidate object, whether it intersects any
frontier object. This is an instance of intersection searching, or more specifically,
intersection detection:

Preprocess a set of input objects into a data structure so that we can
quickly decide if a given query object intersects any input object, and
report one such input object if it exists.

In our application, the input objects are static, and the query objects are
offline, i.e., are all given in advance.

To summarize, the pseudocode is presented in Algorithm 2. Thus we obtain
the following theorems:

Algorithm 2: SSSP(S, s, T (s′))
1 dist [s, s] = 0
2 dist [s, z] =∞ ∀ z ∈ S − {s}
3 pred [s, z] = NULL ∀ z ∈ S
4 for ` = 0 to n− 1 do
5 A` = {z | dist[s′, z] = `} // objects at distance ` from s′

6 for ` = 1 to n− 1 do
7 F = {z ∈ S | dist [s, z] = `− 1} // frontier objects
8 C = A`−1 ∪A` ∪A`+1 // candidate objects
9 build a static, offline intersection detection data structure for F and C

10 for z ∈ C do
11 if dist[s, z] =∞ then
12 query the data structure for z
13 let w be the answer
14 if w not NULL then
15 dist [s, z] = `
16 pred [s, z] = w

Theorem 1. Given a set S of n objects of constant-description complexity and
the shortest path tree of an object s′ ∈ S in the unweighted, undirected intersec-
tion graph of S, we can compute the shortest path tree of an object s ∈ S, where
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dist[s, s′] = 1, in the same graph in O(SI (n, n)) time, where SI (n,m) is the time
to construct a static, offline intersection detection data structure for n objects
and query it m times, assuming the property that SI (n1,m1) + SI (n2,m2) ≤
SI (n1 + n2,m1 +m2).

Proof. Let n` (resp. m`) be the number of frontier (resp. candidate) objects
in step ` of the BFS. During the algorithm, an object is in the frontier ex-
actly once and in the candidate at most thrice; in other words,

∑n−1
`=1 n` ≤ n

and
∑n−1

`=1 m` ≤ 3n. Then the time to compute the shortest path tree of s is
O
(∑n−1

`=1 SI (n`,m`)
)
= O(SI(n, n)). ut

Theorem 2. We can solve APSP in an unweighted geometric intersection graph
of n objects of constant-description complexity in O

(
n2 + nSI (n, n)

)
time, where

SI (·, ·) is defined as in Theorem 1.

Proof. In Lines 1–3 of Algorithm 1, we can build G(S) in O
(
n2
)
time, find

a spanning tree T0, and compute the shortest-path tree of s0, in O
(
n2
)
time

naively. In each of the n− 1 iterations, Line 3 of Algorithm 1 takes O (SI (n, n))
time by Theorem 1. ut

3 Applications

In this section we apply Theorem 2 and known data structures for static, offline
intersection detection to obtain efficient APSP algorithms in specific families of
geometric intersection graphs. Some of the data structures we employ are in fact
online.

Arbitrary disks in the plane. We first consider intersection graphs of disks of
arbitrary radii, also known as disk graphs. The static intersection detection data
structure for disks will be based on an additively weighted Voronoi diagram,
where the distance between a site w corresponding to a disk of radius rw and a
point x is defined as d(w, x) = ||w−x|| − rw. This Voronoi diagram allows us to
determine the disk whose boundary is closest to a query point. We construct the
Voronoi diagram for the centers of the frontier disks and a point location data
structure for the diagram’s cells. Then we query the Voronoi diagram with the
center of each query disk. We can check if the query disk and the disk returned
by the query intersect in constant time.

The time for building the additively weighted Voronoi diagram of n disks is
O(n log n) [22]. We build a point location data structure in O(n log n) time, so
that (online) queries take O(log n) time [29]. Therefore, SI (n, n) = O(n log n).

Theorem 3. We can solve APSP in an unweighted intersection graph of n disks
in O

(
n2 log n

)
time.
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Fig. 2. This figure depicts a set of horizontal input segments, its vertical decomposition
(shown by the dashed lines), and a set of vertical query segments.

Axis-aligned line segments in the plane. We now turn our attention to inter-
section graphs of axis-aligned line segments. We describe a static intersection
detection data structure for horizontal input segments and vertical query seg-
ments. (Vertical input segments and horizontal query segments can be handled
by a symmetric structure.) The data structure is composed of the vertical de-
composition of the horizontal input segments, stored in a point location data
structure. Given a vertical query segment, we perform a point location query
for its bottom endpoint. If the top endpoint lies in the same cell, there is no
intersection; otherwise, we can report the segment bounding the top side of the
cell. (See Figure 2 for an example.)

We can apply the static orthogonal point location data structure of Chan [12]
(Theorem 2.1), with O(n log logU) preprocessing time and O(log logU) query
time, under the assumption that all coordinates are integers bounded by U .
Thus, SI (n, n) = O(n log logU). This implies an APSP algorithm running
in O

(
n2 log logU

)
time. At the beginning, we can presort all coordinates in

O(n log n) time and replace each coordinate value with its rank; this ensures
that U = n. Thus, we obtain:

Theorem 4. We can solve APSP in an unweighted intersection graph of n axis-
aligned line segments in O

(
n2 log log n

)
time.

The result can be easily be extended to any set of line segments with a
constant number of different orientations.

Arbitrary line segments. Next we consider the case of arbitrary line segments.
Chazelle [17] (Theorem 4.4) has given an O

(
n4/3 log1/3 n

)
-time algorithm to

count the number of intersections among n line segments. The algorithm can
be modified to count the number of intersections between n red (input) line
segments and n blue (offline query) line segments. In fact, it is straightforward
to adapt the algorithm to decide, for each blue segment, whether it intersects
any red segment and, if yes, report one such red segment. Thus, SI (n, n) =

O
(
n4/3 log1/3 n

)
.
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Theorem 5. We can solve APSP in an unweighted intersection graph of n ar-
bitrary line segments in O

(
n7/3 log1/3 n

)
time.

Axis-aligned boxes in d dimensions. For the case of axis-aligned rectangles in d =
2 dimensions, offline rectangle intersection counting is known to be reducible [19]
to offline orthogonal range counting, for which Chan and Pătraşcu [15] have
given an O

(
n
√
log n

)
-time algorithm, under the assumption that all coordinates

have been presorted. Consequently, we can decide for each query box whether
it intersects any input box. With more effort, we can adapt their technique to
report a witness input box for each query box with a yes answer, and thus solve
offline intersection detection in SI (n, n) = O

(
n
√
log n

)
time; see Appendix A

for details. At the beginning, we can presort all coordinates in O(n log n) time.
For axis-aligned boxes in d ≥ 3 dimensions, we can use standard range

trees [18] with the above d = 2 base case to obtain SI (n, n) = O
(
n logd−1.5 n

)
.

Theorem 6. We can solve APSP in an unweighted intersection graph of n d-
dimensional axis-aligned boxes in O

(
n2 logd−1.5 n

)
time for d ≥ 3.

Axis-aligned unit hypercubes in d dimensions. When the axis-aligned boxes are
unit hypercubes, the time bound for offline intersection detection can be im-
proved. We build a uniform grid with unit side length and solve the problem
inside each grid cell separately. Each input or query unit hypercube participates
in at most a constant (2d) number of grid cells. Inside a grid cell, each unit
hypercube is effectively unbounded along d sides. Without loss of generality, we
may assume that each input box is of the form (−∞, a1] × · · · × (−∞, ad] and
each query box is of the form [b1,∞)× · · · × [bd,∞). Thus, the problem reduces
to offline dominance detection: decide for each query point (b1, . . . , bd) whether
it is dominated by some input point (a1, . . . , ad) and, if yes, report one such
input point.

For d = 3, Gupta et al. [24] gave an algorithm to answer n offline dominance
reporting queries in O((n+K) log logU) time where K is the total output size,
under the assumption that all coordinates are integers bounded by U . Their al-
gorithm can be easily adapted to answer n offline dominance detection queries in
O(n log logU) time. This implies an APSP algorithm running in O

(
n2 log logU

)
time. At the beginning, we can presort all coordinates in O(n log n) time and
replace each coordinate value with its rank; this ensures that U = n.

For d ≥ 4, Afshani et al. [1] (following Chan et al. [14]) gave a deterministic
algorithm to answer n offline dominance reporting queries in O

(
n logd−3 n+K

)
time where K is the total output size. It can be checked that their algorithm can
answer n offline dominance detection queries in O

(
n logd−3 n

)
time. (One step

in their algorithm which involves reversing the role between input and query
points becomes unnecessary for the detection problem.)
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Theorem 7. We can solve APSP in an unweighted intersection graph of n d-
dimensional axis-aligned unit hypercubes in O

(
n2 log log n

)
time for d = 3 and

in O
(
n2 logd−3 n

)
time for d ≥ 4.

Fat triangles in the plane. Finally we consider the intersection graph of fat
triangles (i.e., triangles that have bounded inradius-to-circumradius ratios) with
roughly equal size. Katz [27] (Theorem 4.1 (i) and (iii)) has given an (online)
data structure achieving SI (n, n) = O

(
n log4 n

)
. Thus:

Theorem 8. We can solve APSP in an unweighted intersection graph of n fat
triangles with roughly equal size in O

(
n2 log4 n

)
time.

4 Reducing SSSP to decremental intersection detection

We give in this section a reduction of SSSP in intersection graphs to dynamic
intersection detection.

We will emulate the classic BFS algorithm in the following way. Let s ∈ S be
the given source vertex. We proceed iteratively in n−1 steps and follow the same
process in each one. In step ` we assume that we have found all the distances
and predecessors for all the objects that are at distance no more than `−1 from
s. We employ the definitions of the frontier and undiscovered objects as given
in Section 2. The goal is to compute the distances and predecessors for all the
undiscovered objects that are at distance ` from s. Those objects are the ones
that have at least one intersection with a frontier object. To find those intersec-
tions we maintain an intersection detection data structure for the undiscovered
objects that supports deletion—a deletion-only dynamic data structure is often
referred to as a decremental data structure. We query the structure with the
frontier objects; each time we detect an intersection of a frontier object with an
undiscovered one, we properly update the latter’s distance and predecessor and
delete it from the data structure. The pseudocode of the algorithm is given in
Algorithm 3.

We conclude this section with the following theorem.

Theorem 9. We can solve SSSP in an unweighted, undirected geometric in-
tersection graph in O(DI (n, n)) time, where DI (n,m) is the time to construct
a decremental intersection detection data structure of n objects and perform n
deletions and m queries.

Proof. The correctness of the algorithm can be easily proved by induction.
For the running time, we notice that an object can be in the frontier in only

one step of the algorithm. In the beginning all the objects except the source
are undiscovered (thus in the decremental intersection detection data structure
as well), and once an object is deleted from that set, it is never inserted again.
When querying the intersection detection data structure with a frontier object
t there are two possible outcomes. If the query returns an undiscovered object
z that intersects t, then z is deleted from the data structure, and since it is
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Algorithm 3: SSSP(S, s)
1 dist [s, s] = 0
2 dist [s, t] =∞ ∀ t ∈ S − {s}
3 pred [s, t] = NULL ∀ t ∈ S
4 build a decremental intersection detection data structure for S − {s}

// i.e., for undiscovered objects
5 for ` = 1 to n− 1 do
6 F = {t ∈ S | dist [s, t] = `− 1} // frontier
7 for each t ∈ F do
8 while true do
9 query the data structure with t

10 let z be the answer
11 if z not NULL then
12 dist [s, z] = `
13 pred [s, z] = t
14 delete z from the data structure
15 else
16 break

never reinserted, this type of query happens only once ∀ z ∈ S. If the query
returns nothing, then this is the last query that t performs in that step, and
since t can be in the frontier at most once, this type of query happens only
once ∀ t ∈ S. Consequently the total number of queries in the data structure is
O(n). Furthermore, the number of deletions in the decremental data structure
is obviously O(n). Thus the total running time is O(DI (n, n)). ut

Application to axis-aligned line segments. We need a decremental intersection de-
tection data structure for horizontal input segments and vertical query segments.
(Vertical input segments and horizontal query segments can be handled by a
symmetric structure.) Giyora and Kaplan [23] (Theorem 5.3) and Blelloch [7]
(Theorem 6.1) provided a data structure for supporting vertical ray shooting
queries in O(log n) time and insertions and deletions of horizontal segments in
O(log n) time—the problem is sometimes referred to as dynamic orthogonal point
location. This immediately implies DI (n, n) = O(n log n). Thus:

Theorem 10. We can solve SSSP in an unweighted intersection graph of n
axis-aligned line segments in O(n log n) time.

The result can be easily be extended to any set of line segments with a
constant number of different orientations.

5 Conclusion

Interesting open problems in unweighted, undirected geometric intersection
graphs include constructing efficient distance oracles and computing the diam-
eter in truly subquadratic O

(
n2−ε) time for some ε > 0, in view of Cabello’s
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recent breakthrough for the diameter problem in planar graphs [8]. For certain
geometric objects such as arbitrary line segments, even a quadratic-time APSP
algorithm is already open. Finally, solving APSP in the weighted case seems to
be more difficult, as we can no longer exploit the general reduction from APSP
to static, offline intersection detection.
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A Appendix: Offline Rectangle Intersection Detection

Rectangle intersection detection (finding some input rectangle intersecting a query
rectangle) can be easily reduced [18] to

(i) axis-aligned line segment intersection detection (finding some input horizon-
tal/vertical segment intersecting a query vertical/horizontal segment),

(ii) orthogonal range detection (finding some input point inside a query rectangle),
and

(iii) rectangle stabbing detection (finding some input rectangle containing a query
point).

In Section 4, we have already noted how to answer n offline queries of type (i) in
O(n log logU) time, assuming that coordinates are integers bounded by U . Babenko
et al. [6] have already described how to adapt Chan and Pătraşcu’s technique [15] to
answer n offline queries of type (ii) in O

(
n
√
logn

)
time (Babenko et al. actually solved

the range successor problem, which is equivalent to finding the lowest point in a 3-sided
query rectangle unbounded from above—it is easy to see that 4-sided orthogonal range
detection reduces to this problem). We now describe how to adapt Chan and Pătraşcu’s
technique to answer n offline queries of type (iii) in O

(
n
√
logn

)
time. This result is of

independent interest. (Chan et al. [14] noted a similar result but only for the case of
disjoint rectangles.)

Theorem 11. Given n input axis-aligned rectangles and query points in the plane
whose coordinates have been pre-sorted, we can report, for each query point q, an input
rectangle containing q (if exists) in O

(
n
√
logn

)
time.

Proof. Let w be the word size. Without loss of generality, assume that all y-coordinates
are distinct.

Special case: all x-coordinates are small integers bounded by s. We use a divide-
and-conquer resembling a binary interval tree in x, and incorporate bit-packing tech-
niques.

The input to our recursive algorithm is a list of the vertices of the input rectangles
and query points, arranged in bottom-to-top order. We do not explicitly store the
y-coordinates, just the x-coordinates of the points in this list. The number of words
in the input list is thus O((n log s)/w). The output is represented as a list storing the
minimum and maximum x-coordinates of one rectangle containing each query point, in
bottom-to-top order of the query points; some of the entries may be null. The number
of words in the output list is O((n log s)/w).

The algorithm proceeds as follows. Let x = m be the vertical line that divides the
x-universe into two halves of length s/2. Let Rm be the subset of rectangles intersecting
x = m. We first compute the union of Rm (a y-monotone polygon, or multiple such
polygons). This subproblem reduces to computing the left/right envelope of a set of
vertical line segments; Eppstein and Muthukrishnan [20] have solved this subproblem
in linear time O(|Rm|), assuming that coordinates have been pre-sorted in x and y.
In our case, the coordinates have already been sorted in y, and we can sort in x by
counting sort in O(|Rm| + s) time. We can then solve the problem for Rm and Q by
a bottom-to-top scan, using O((n log s)/w) additional word operations. Next, let R`
(resp. Rr) be the subset of rectangles completely to the left (resp. right) of x = m, and
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let Q` (resp. Qr) be the subset of query points to the left (resp. right) of y = m. We
recursively solve the subproblem for R` and Q` and the subproblem for Rr and Qr. The
input to either subproblem can be formed by a linear scan using O((n log s)/w) word
operations, and the output can be merged by another linear scan using O((n log s)/w)
word operations.

Excluding the cost of computing the unions of the Rm’s, the total running time is
O((n log2 s)/w+ s log s), since there are O(log s) levels of recursion. Observe that each
rectangle lies in exactly one subset Rm over the entire recursion tree. Thus, the total
cost of computing the unions of the Rm’s is O(n).

One remaining issue is that the output only records the x-coordinates of the re-
ported rectangles. To retrieve the y-coordinates, we first partition the original set
of input rectangles into O(s2) classes with a common minimum and maximum x-
coordinates. For each query point, we have identified one class which contains an an-
swer. For each class χ, we can gather its input rectangles Rχ and query points Qχ,
both pre-sorted by y, and answer these queries; this is a 1-dimensional problem in y
(finding an input interval containing each query point), which is a special case of the
above-mentioned envelope problem and can be solved in linear time O(|Rχ| + |Qχ|).
The total extra time over all classes χ is thus O(n).

We conclude that the special case case can be solved in O(n+ (n log2 s)/w) time,
assuming that n ≥ s2.

General case. We use a divide-and-conquer resembling a degree-s segment tree. We
use s − 1 vertical lines to divide the plane into s slabs each with O(n/s) rectangle
vertices and query points. Each rectangle can be divided into at most three parts,
where the left (resp. right) part is contained in one of the s slabs, and the middle part
has x-coordinates aligned with the dividing vertical lines. For the middle parts, we can
round the x-coordinates of the query points to align with the dividing lines and apply
the algorithm for the above special case in O(n + (n log2 s)/w) time. For the left and
right parts, we recursively solve the subproblems inside the s slabs. The answers can
be combined in O(n) time.

Each rectangle and each query point participates in O(logs n) recursive calls. The
total time is thus O((n + (n log2 s)/w) · (logn/ log s)). Setting log s =

√
w yields

O(n(logn)/
√
w), assuming that n ≥ 2Ω(

√
w). One final issue is that the algorithm

has used exotic word operations on w-bit words. If we set w = δ logn for a sufficiently
small constant δ, we can replace these operations by table lookup after an initial pre-
computation in 2O(w) = nO(δ) time. ut
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