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Decision problems for infinite words

The goal:

Given an infinite word determine

I if w is ultimately periodic;

I if w has squares, cubes, or higher powers;

I if w has a given fractional power;

I what the lexicographically least (or greatest) word in the orbit
closure of w is;

I if w is recurrent;

I if w is uniformly recurrent.
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Morphic words

Can’t answer these questions for arbitrary infinite words, so we
restrict to a subclass: morphic words.

A morphism is a map h from Σ∗ to ∆∗ such that

h(xy) = h(x)h(y)

for all words x , y .

If Σ = ∆, we can iterate h, writing h2 for h ◦ h, etc.
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Morphic words

For example, if µ(0) = 01, µ(1) = 10, then

µ0(0) = 0

µ1(0) = 01

µ2(0) = 0110

µ3(0) = 01101001

...

As each word is a prefix of the next, there is a unique infinite word
of which each µi (0) is a prefix, which we write as

µω(0) = 0110100110010110 · · · ,

which is t, the Thue-Morse word.
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Morphisms and morphic words - terminology

I A morphism is said to be k-uniform if every letter is mapped
to a word of length k.

I A morphism is uniform if it is k-uniform for some k.

I A coding is a 1-uniform morphism.

I An infinite word is said to be pure morphic if it can be
generated by iterating a morphism.

I An infinite word is said to be morphic if it is the image (under
a coding) of a pure morphic word.

I An infinite word is said to be automatic if it is the image
(under a coding) of a word generated by iterating a k-uniform
morphism.
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Decision problems for repetitions

I Decision problem: given a morphism h, does the word hω(a) it
generates by iteration contain squares?

I If the morphism is over a three-letter alphabet, a decision
procedure was given by Berstel in 1979.
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Decision problems for repetitions

I Similarly, one can ask, does the word generated by a
morphism contains cubes, or higher powers?

I A general decision procedure was given by Mignosi and
Séébold in 1993.

I Cassaigne (1994) gave a general decision procedure for certain
kinds of HD0L words.

I Krieger (2007, 2008) gave a procedure to compute the critical
exponent for binary uniform morphisms and an “almost
algorithm” for arbitrary non-erasing morphisms.

7 / 36



Goal of this talk

I Will show how a simple idea leads to a general decision
procedure for all kinds of repetitions in the case of uniform

morphisms and, more generally, automatic sequences

I Will show how this idea can be applied to other kinds of
questions
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Automatic sequences

But first, one more observation:

I A sequence (an)n≥0 is k-automatic if there is an automaton
with output such that, after feeding in n expressed in base k,
you arrive at a state with an output of an.

I The input alphabet is Σk = {0, 1, . . . , k − 1}.

I Cobham proved: a sequence is k-automatic iff it is k-uniform
morphic.
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Example: the Thue-Morse sequence

0 0
1

1

0 1

Figure: Automaton generating the Thue-Morse sequence
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Testing if an automatic sequence is ultimately periodic

An infinite word a = (an)n≥0 is ultimately periodic if there exist
integers P ≥ 1,N ≥ 0 such that aI = aI+P for all I ≥ N.

In 1986, Honkala gave a procedure to decide if an automatic
sequence is ultimately periodic.

Leroux (LICS 2005) even gave a method to decide this question in
polynomial time.

But both methods are rather complicated.
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Testing if an automatic sequence is ultimately periodic

Our approach:

I Construct an NFA M1 that on input (P,N) “guesses” I and
accepts iff I ≥ N and aI 6= aI+P .

I Convert this NFA M1 to a DFA M2 using the usual subset
construction.

I Interchange accepting and nonaccepting states, obtaining a
DFA M3 such that M3 accepts (P,N) iff aI = aI+P for all
I ≥ N.

I Now a is ultimately periodic iff M3 accepts some input with
P ≥ 1, which can be checked using depth-first search to see if
there is a path from M3’s initial state to a final state.
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Filling in the details

What does it mean to have input (P,N)?

Answer: we actually feed in the base-k representation of P and N

in parallel, starting with the least significant digit, where one
expansion is padded with leading zeroes, if necessary.

Saying that the digits are fed in in parallel means the input
alphabet is Σk × Σk .
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Filling in the details

What does it mean to “guess I”?

Answer: it really means we successively guess the base-k digits of
I , starting with the least significant digit.

14 / 36



Filling in the details

How do we verify that I ≥ N?

Answer: we maintain a flag that keeps track of whether the digits
of I we guessed so far represent a number that is ≥ the digits of N

seen so far, and we update this flag as we see additional digits.

u(<, i ′, n′) =

{

<, if i ′ ≤ n′;

>, if i ′ > n′;

u(=, i ′, n′) =







<, if i ′ < n′;

=, if i ′ = n′;

>, if i ′ > n′;

u(>, i ′, n′) =

{

<, if i ′ < n′;

>, if i ′ ≥ n′.
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Filling in the details

What if the base-k representation of the appropriate I to guess is
much larger than the base-k representations of the input P and N?

Answer: we use the fact that there are infinitely many different
representations of P and N, arising from allowing leading zeroes
(actually trailing zeroes, since we are inputting representations
starting with the least significant digit).

To handle this, we modify the accepting states, allowing a state to
be accepting if we could reach it by following a path labeled with

j
︷ ︸︸ ︷

(0, 0) · · · (0, 0).
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Applying the same idea

We can use the same idea to solve other problems, provided we
can express our decision problem as a predicate involving
quantifiers, addition, and inequalities.
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Testing for the presence of overlaps

An overlap is a word of the form axaxa, where a is a single letter
and x is a (possibly) empty string, as in alfalfa or entente.

Testing if a sequence contains an overlap can be phrased as:

a = (an)n≥0 contains an overlap if and only if there exist integers
I ≥ 0, T ≥ 1 such that aI+J = aI+T+J for all J with 0 ≤ J ≤ T .

aIa0

I
︷ ︸︸ ︷

T
︷ ︸︸ ︷

· · ·xxau aa

aI+2TaI+T

a = v

Figure: Hypothesized overlap
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Carrying out the construction for the Thue-Morse sequence

I Whether an automatic sequence has overlaps is decidable

I We carried out the overlap-testing construction for the
Thue-Morse sequence t.

I The original NFA M1 had 72 states.

I We converted this to a DFA with 801 states.

I We then minimized, obtaining a DFA with 2 states accepting
only words with T = 0. Thus t is overlap-free.
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Fractional powers

We say a word x = a0a1 · · · an−1 is a p/q power (for integers
p ≥ 0, q ≥ 1) if

I p divides n; and

I x is periodic with period length nq/p; in other words,
ai = ai+nq/p for all suitable i .

For example:

I entanglement is a 4/3-power;

I alfalfa is a 7/3-power.
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Applying our idea to fractional powers

Expressed as predicate:

a = (an)n≥0 contains a ≥ p/q-power iff there exist I ≥ 0, T ≥ 1
such that aI+J = aI+T+J for all J, 0 ≤ qJ < (p − q)T .

Thus whether a k-automatic sequence has a particular fractional
power is decidable.
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Decidability of similar predicates

In a similar way, the following problems are also decidable:

Whether a k-automatic sequence:

I Has infinitely many occurrences of α-powers;

I Has infinitely many distinct α-powers;

I Avoids palindromes of length ≥ L;

I Satisfies the property that if x is a factor, then xR is not, for
all x of length ≥ L.
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Testing recurrence

An infinite word a = (an)n≥0 is said to be recurrent if every factor
that occurs at least once in a occurs infinitely often.

Given an automatic sequence, can we decide if it is recurrent?

Using our technique, the answer is yes. To see this, rewrite the
definition of “recurrent” as follows: a word is recurrent if and only
if for each occurrence of a factor of a, there exists a later
occurrence of that factor in a.

Equivalently, for every N ≥ 0, K ≥ 1, there exists M > N such
that aN+I = aM+I for 0 ≤ I < K .
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Testing uniform recurrence

An infinite word a = (an)n≥0 is said to be uniformly recurrent if
every factor that occurs at least once in a occurs infinitely often,
with bounded gaps between consecutive occurrences.

Given an automatic sequence, can we decide if it is uniformly
recurrent?

Using our technique, the answer is yes. To see this, rewrite the
definition of “uniformly recurrent” as follows: a word a = (an)n≥0

is uniformly recurrent iff for every K ≥ 1 there exists A > 0 such
that for every N ≥ 0 there exists M ≥ 0 with N < M < N + A

such that aN+I = aM+I for 0 ≤ I < K .

Better results have recently been obtained by Nicolas and Pritykin.
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Orbit closure

I We can associate a dynamical system with any infinite word:
the topological closure of all shifts of that word.

I The orbit closure of a sequence a = (an)n≥0 is the set of all
sequences b = (bn)n≥0 such that every finite prefix of b is a
factor of a.

I If a is recurrent but not periodic, then the orbit closure is
uncountable, but this is not necessarily true if a is not
recurrent.
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Orbit closure

Two sequences of particular interest in the orbit closure are the
lexicographically least and lexicographically greatest.

For example, the lexicographically least sequence in the orbit
closure of t is the sequence obtained from the complement of t by
dropping the first letter:

001011001101001 · · ·
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Orbit closure

We can define the lexicographically least sequence in the orbit
closure as follows:

Let a = (an)n≥0 be a sequence, and let b = (bn)n≥0 be the
lexicographically least sequence in the orbit closure of a. Then
bI = c if and only if there exists J ≥ 0 such that aJ+I = c and
aLaL+1 · · · aL+I ≥ aJaJ+1 · · · aJ+I for all L ≥ 0.

Theorem If a = (an)n≥0 is a k-automatic sequence then so is the
lexicographically least sequence in the orbit closure of a.
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Continued fractions

Every real number α can be expressed essentially uniquely as a
continued fraction

a0 +
1

a1 +
1

a2 +
1

a3 + .. .
+

1

an

which is usually abbreviated

[a0, a1, . . . , an].

Here the ai are positive integers except possibly for a0, which can
be any integer, and the expansion terminates iff α is irrational.
The ai are called partial quotients.
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Continued fractions

We say a real number is k-automatic if its continued fraction has
bounded partial quotients and the sequence of partial quotients is
k-automatic.

If we truncate a continued fraction [a0, a1, . . . , an] after the
(n + 1)th term, we get a rational number pn/qn, called the n’th
convergent.

Galois proved that

qn/qn−1 = [an, an−1, . . . , a1]
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Our original motivation

We can use our technique to prove

Theorem. Suppose α = [a0, a1, . . . , ] is an irrational real number
with a k-automatic continued fraction expansion. Then
lim supn→∞ qn/qn−1 does too.

The idea of the proof is similar to what we have seen, but there are
some small complications arising from the fact that the ordering on
continued fraction expansions is not quite the lexicographic order
(it reverses alternately at odd and even positions).
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The quantity lim supn→∞ qn/qn−1

The quantity lim supn→∞ qn/qn−1 comes up in

I The value of the recurrence quotient of a Sturmian word with
slope α (Cassaigne);

I irrationality measure of numbers of the form
(b − 1)

∑

n≥1 b−bnαc; (Adamczewski & Allouche);

I critical exponent of Sturmian words (Damanik & Lenz; Cao &
Wen)
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An example

For integers k ≥ 3 the real number

αk =
∑

i≥0

k−2i

= [0, k−1, k+2, k, k, k−2, k, k+2, k, k−2, k+2, k, . . .]

has a 2-automatic continued fraction expansion, as given below:

1

0

0

k − 1

1

0

1

1

1

0

0

0

k

k0

0

1

0,1

0

1

0,1k − 2
0

0,1
1

0

1

k − 2

k + 2

k − 1

k

k + 2

0

Figure: Automaton generating the continued fraction for αk 32 / 36



An example

Then
ζ = lim supn≥0 qn/qn−1 = [k + 2, k − 2, k, k + 2, k, k − 2, k, k, . . .]
is 2-automatic.

0

1

1

k + 2

k − 2

k + 2

0

0

k − 2

k − 2

k

k − 2

k + 2

k

0,1

1

0

1

1

k

k

k + 2

0
1

1

0
0

k − 2

0,1

0,1

0

0

1

1

0

1

Figure: Automaton generating the continued fraction for ζ
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An open problem

Let r = (rn)n≥0 be the Rudin-Shapiro sequence, defined as follows:
rn is the parity of the number of occurrences of 11 in the binary
expansion of n.

Then the lexicographically least sequence in the orbit closure of r

seems to be the sequence obtained by concatenating 0 on the front
of r.

But we have not succeeded in proving this rigorously.
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Another open problem

Extend all these ideas to arbitrary morphic sequences, not just
uniform ones.
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I F. Nicolas and Yu. Pritykin, On uniformly recurrent morphic
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I J.-P. Allouche, N. Rampersad, and J. Shallit, Periodicity,
repetitions, and orbits of an automatic sequence. Theoret.
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