Bernoulli Trials Problems for 2010

1: There exists a rational number x with $x \neq \pm 1$ such that $x+\frac{1}{x}$ is an integer.
2: For every positive integer n there exist positive integers x, y and z such that $x^{2}+y^{2}=z^{n}$.
3: If there exists a triangle with sides of lengths a, b and c, then there also exists a triangle with sides of lengths \sqrt{a}, \sqrt{b} and \sqrt{c}.

4: Let p_{n} be the probability that a number selected at random from the set $\{1,2,3, \cdots, n\}$ has its leading digit equal to 1 . Then $\lim _{n \rightarrow \infty} p_{n}=\frac{1}{9}$.

5: If the sequence $\left\{a_{n}\right\}$ is bounded with $\lim _{n \rightarrow \infty}\left(a_{n}-a_{n+1}\right)=0$ then it converges.
6: There exists a bounded sequence $\left\{a_{n}\right\}_{n \geq 1}$ of real numbers with the property that for all $k>l \geq 1$ we have $\left|a_{k}-a_{l}\right| \geq \frac{1}{k-l}$.

7: There exists a quadratic $f(x)=a x^{2}+b x+c$ with integral coefficients whose discriminant is equal to 23 .

8: There exists a cubic $f(x)=a x^{3}+b x^{2}+c x+d$ with integral coefficients such that $f(19)=1$ and $f(62)=2$.

9: Let $f(x)$ be positive and continuous for $x \in[0, \infty)$. If $\int_{0}^{\infty} f(x) d x$ converges then so does $\int_{0}^{\infty} f(x)^{2} d x$.

10: There exist 100 positive integers whose sum is equal to their least common multiple.
11: There exist 7 distinct primes, all less than 900 , which are in arithmetic progression.
12: Every open set in the plane is equal to the union of a set of disjoint non-degenerate closed line segments.

13: A rectangular box with sides of length 1,2 and 3 hovers above the flat ground. The maximum possible area of its shadow on the ground is equal to 7 .

