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Abstract

This paper deals with value (and Q-) function approximation in deterministic
Markovian decision processes (MDPs). A general statistical framework based on
the Kalman filtering paradigm is introduced. Its principle is to adopt a parametric
representation of the value function, to model the associated parameter vector as a
random variable and to minimize the mean-squared error of the parameters condi-
tioned on past observed transitions. From this general framework, which will be
called Kalman Temporal Differences (KTD), and using an approximation scheme
called the unscented transform, a family of algorithms is derived. Contrary to
most of function approximation schemes, this framework inherently allows to de-
rive uncertainty information over the value function, which can be notably useful
for the exploration/exploitation dilemma.

1 Introduction

Many approaches have been designed to handle the well known dilemma between exploration and
exploitation, e.g. [3, 10, 14]. Uncertainty evaluation is a key part in handling this problem. Uncer-
tainty can be over models or directly over values of given states, however this information is very
useful. A problem which received little attention is how to compute value function uncertainty in the
context of generalization. Sometimes L∞ or L2 bounds are given, however they are global and not
local. To the best of our knowledge, the only approach able to provide uncertainty information about
value function in such a context is based on Gaussian processes [4]. An equivalence between kernel
ridge regression and Gaussian process regression is used in [9] to derive a similar uncertainty. This
paper introduces a new function approximation scheme based on Kalman filtering which allows to
derive uncertainty information at any point of the approximate function.

The focus is here on deterministic MDP {S, A, T,R, γ}, where S is the state space, A the action
space, T the deterministic transition function, R the bounded reward function, and γ the discount
factor. A policy π is a (here deterministic) mapping from states to actions. The value function of
a given policy is classically defined as V π(s) = E[

∑∞
i=0 γiri|s0 = s, π] where ri is the reward

observed at time i, and similarly Qπ(s, a) = E[
∑∞

i=0 γiri|s0 = s, a0 = a, π]. Reinforcement
Learning (RL) [15] aims at finding the policy π∗ which maximises the value function for every
state: π∗ = argmaxπ(V π). Two schemes (among others) can lead to the solution. First, policy
iteration implies to learn the value function of a given policy, and then improve the policy, the
new one being greedy respectively to the learned value function. It implies to solve the Bellman
evaluation equation, which is given here for the value function and the Q-function, respectively:

V π(s) = R(s, π(s), s′) + γV π(s′), ∀s (1)

Qπ(s, a) = R(s, a, s′) + γQπ(s′, π(s′)), ∀s, a (2)
∗Matthieu Geist is also with Supélec and with CORIDA team, INRIA Lorraine, France.
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Here and through the rest of the paper, s′ denotes the transiting state, that is s′ = T (s, π(s)) or
s′ = T (s, a), depending on the context. The second scheme, value iteration, aims directly at finding
the optimal policy without increment in the policy space. It implies to solve the Bellman optimality
equation

Q∗(s, a) = R(s, a, s′) + γ max
b∈A

Q∗(s′, b), ∀s, a (3)

The aim of this paper is to find an approximate solution of the Bellman evaluation or optimality
equations, for the value function or the Q-function, when the state or action spaces are too large
for classical approaches to hold. Moreover the proposed algorithm should be online, which is a RL
property which should be kept, and above all it should allow to derive an uncertainty information
for the value (or Q-) function for any state or action.

Temporal differences (TD) algorithms are a class of methods which consist in correcting the repre-
sentation of the value (or Q-) function according to the TD error made on the value (or Q-) function.
Most of them can be generically written as θi+1 = θi + Kiδi. In this expression, θi is the current
representation of the value function, θi+1 is an updated representation given an observed transition,
δi is the so-called TD error, and Ki is a gain which indicates in which direction the representation
of the value function should be corrected. Each of these terms is now discussed.

If the state space S and the action space A are finite and small enough, an exact description of
the value function is possible, and θ is a tabular representation. If these spaces are too large, an
approximation should be chosen. A classical choice in RL is the linear parameterization. Many
function approximation algorithms require such a representation to ensure convergence [12], or even
to be applicable [2]. Other representations are possible such as neural networks where θ contains the
set of associated weights. Indeed, the proposed KTD framework is applicable to any representation
of the value (or Q-) function, as long as it can be fully described by a finite set of p parameters.

The term δi is the TD error. Suppose that at time i a transition (si, ai, si+1, ri) is observed. For
TD-like algorithms, that is algorithms which aim at evaluating the value function of a given policy
π, the TD error is of the form δi = ri + γV̂θi(si+1) − V̂θi(si). For SARSA-like algorithms,
that is algorithms which aim at evaluating the Q-function of a given policy π, the TD error is of
the form δi = ri + γQ̂θi(si+1, ai+1) − Q̂θi(si, ai). Finally, for Q-learning-like algorithms, that
is algorithms which aim at computing the optimal Q-function, the TD error is of the form δi =
ri + γ maxb∈A Q̂θi

(si+1, b) − Q̂θi
(si, ai). The type of TD error which is used determines which

Bellman equation is to be solved, and thus if the algorithm is of the type policy or value iteration.

The term Ki is a gain. The most famous common are reviewed here. For TD, SARSA and
Q-learning (see [15] for example), the gain can be written as Ki = αi

∑i
j=1 λi−jej where

αi is a classical learning rate in stochastic approximation theory, and should verify
∑∞

i=0 αi =
∞ and

∑∞
i=0 α2

i < ∞, ej is an unitary vector which is zero everywhere except in the component
corresponding to the state sj (or to the state-action (sj , aj)) which is equal to one, and λ is the
eligibility factor. These algorithms have also been extended to take into account approximate rep-
resentations of the value function. According to [7] they are called direct algorithms. The gain
can be written as Ki = αi

∑i
j=1 λi−j∇θi V̂θi(sj) where ∇θi V̂θi(sj) is the derivation following the

parameter vector of the parameterized value function in the state sj . Note that the value function
can be replaced straightforwardly by the Q-function in this gain. Another well known approach
is the set of residual algorithms [7], for which the gain is obtained through the minimization of the
L2-norm of the Bellman residual: Ki = αi∇θi

(V̂θi
(si)−γV̂θi

(si+1)). The last approach we review
is the Least-Squares Temporal Differences (LSTD) algorithm [2], which is only defined for linear
parameterization and for which the gain is defined recursively.

So, a question holds, given a representation of the value function (or of the Q-function) and given a
temporal differences scheme, what is the best gain K ? To answer this question, a statistical point
of view is adopted here and the Kalman filtering framework [11] is followed.

2 Kalman Temporal Differences

In this section a very general point of view is adopted, and practical algorithms will be derived
later. For now, a transition is generically noted as ti and the shortcut gti

is adopted according to the
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following notations:

ti =


(si, si+1)
(si, ai, si+1, ai+1)
(si, ai, si+1)

and gti
(θi) =


V̂θi

(si)− γV̂θi
(si+1)

Q̂θi
(si, ai)− γQ̂θi

(si+1, ai+1)
Q̂θi

(si, ai)− γ maxb∈A Q̂θi
(si+1, b)

(4)

given that the aim is the value function evaluation (1), the Q-function evaluation (2) or the Q-
function optimization (3). Thus all TD schemes can be written generically as δi = ri − gti(θi).

As said before, a statistical point of view is adopted. The parameter vector θi is modeled as a random
variable following a random walk. The problem at sight can thus be stated in a so-called state-space
formulation: {

θi+1 = θi + vi

ri = gti(θi) + ni
(5)

The first equation is the evolution equation, it specifies that the parameter vector follows a random
walk which expectation corresponds (approximately) to the optimal value function. The evolution
noise vi is centered, white and independent. The second equation is the observation equation, it links
the observed transition to the value (or Q-) function through a Bellman equation. The observation
noise ni is supposed centered, white and independent. Notice that this necessary assumption does
not hold for stochastic MDPs, that is why deterministic transitions are considered here. This model
noise arises from the fact that the solution of the Bellman equation does not necessarily exists in the
functional space spanned by the set of parameter vectors.

The objective could be to estimate the parameter vector which minimizes the expectation of the
mean square error conditioned on past observed transitions. The associated cost can be written as:

J(θ̂i) = E
[
‖θi − θ̂i‖2|r1:i

]
with r1:i = r1, r2, . . . , ri (6)

Generally speaking, the minimum mean square error (MMSE) estimator is the conditional expecta-
tion: argminθ̂i

J(θ̂i) = θ̂i|i = E [θi|r1:i]. However, except in specific cases, this estimator is not
computable. Instead, the aim here is to find the best linear estimator:

θ̂i|i = θ̂i|i−1 + Kir̃i (7)

In equation (7), θ̂i|i is the estimate at time i, θ̂i|i−1 = E[θi|r1:i−1] is the prediction of this esti-
mate according to past rewards r1:i−1, and for a random walk model the prediction is the previous
estimation: θ̂i|i−1 = θ̂i−1|i−1. The innovation

r̃i = ri − r̂i|i−1 (8)
is the difference between the observed reward ri and its prediction based on the previous estimate
of the parameter vector:

r̂i|i−1 = E [gti
(θi)|r1:i−1] (9)

Using classical equalities, the cost function can be rewritten as:

J(θ̂i) = E
[
‖θi − θ̂i‖2|r1:i

]
= E

[
(θi − θ̂i)T (θi − θ̂i)|r1:i

]
= trace

(
E

[
(θi − θ̂i)(θi − θ̂i)T |r1:i

])
= trace

(
cov

(
θi − θ̂i|r1:i

))
(10)

A first step is so to express the conditioned covariance over parameters as a function of the gain Ki.
A few more notations are first introduced (recall also the definition of the innovation (8)):

θ̃i|i = θi − θ̂i|i and θ̃i|i−1 = θi − θ̂i|i−1

Pi|i = cov
(
θ̃i|i|r1:i

)
and Pi|i−1 = cov

(
θ̃i|i−1|r1:i−1

)
Pri = cov

(
r̃i|ri|i−1

)
and Pθri = E

[
θ̃i|i−1r̃i|r1|i−1

] (11)

Using the postulated update of equation (7), and the various estimators being unbiased, the covari-
ance can be expanded:

Pi|i = cov
(
θi − θ̂i|i|r1:i

)
= cov

(
θi −

(
θ̂i|i−1 + Kir̃i

)
|r1:i−1

)
= cov

(
θ̃i|i−1 −Kir̃i|r1:i−1

)
= Pi|i−1 − Pθri

KT
i −KiP

T
θri

+ KiPri
KT

i (12)
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The optimal gain can thus be obtained by deriving the trace of this matrix. First note that the
gradient being linear, for three matrixes of ad hoc dimensions A, B and C, B being symmetric,
the following algebraic identities hold: ∇A

(
trace

(
ABAT

))
= 2AB and ∇A

(
trace

(
ACT

))
=

∇A

(
trace

(
CAT

))
= C, and thus using also equation (12):

∇Ki

(
trace

(
Pi|i

))
= 0⇔ 2KiPri

− 2Pθri
= 0⇔ Ki = Pθri

P−1
ri

(13)

Using this optimal gain, the error covariance matrix is Pi|i = Pi|i−1 − KiPriK
T
i . Notice that no

Gaussian assumption has been used to derive this algorithm.

The most general KTD algorithm, which breaks down in three stages, can now be derived. The first
step consists in computing predicted quantities θ̂i|i−1 and Pi|i−1. Recall that for a random walk
model, the prediction is the previous estimation, and the predicted covariance can also be computed
analytically:

Pi|i−1 = cov
(
θ̃i|i−1|r1:i−1

)
= cov

(
θ̃i−1|i−1 + vi−1|r1:i−1

)
= Pi−1|i−1 + Pvi−1 (14)

where Pvi−1 is the variance matrix of the evolution noise (which is known).

The second step is to compute some statistics of interest. It will be specialized later. The first
statistic to compute is the prediction r̂i|i−1 (9). The second statistic to compute is the covariance
Pθri

between the parameter vector and the innovation (11). However, from the state-space model (5),
ri = gti

(θi) + ni, and the observation noise is centered and independent, so

Pθri = E
[(

θi − θ̂i|i−1

)
(gti

(
θi)− r̂i|i−1

)
|r1:i−1

]
(15)

The last statistic to compute is the covariance of the innovation (11), which can be written (using
again the characteristics of the observation noise):

Pri = E
[(

gti(θi)− r̂i|i−1

)2 |r1:i−1

]
+ Pni (16)

where Pni
is the variance of the observation noise.

The last step of the algorithm is the correction step. It consists in computing the gain (13), correcting
the parameter vector (7) and correcting the associated covariance (12) accordingly. Notice that the
matrix Pi|i−1 is the predicted error made on parameter estimate; it is used to compute the statistics of
interest and it is a necessary quantity to compute (predicted) uncertainty over value (or Q-) function.
Note also that as the proposed method is recursive, it must be initialized with some prioris θ̂0|0
and P0|0. The proposed general framework is summarized in algorithm 1. The main difficulty in
applying KTD is to compute the statistics of interest r̂i|i−1, Pθri

and Pri
, which is the subject of the

next section.

3 Specializations

Analytic solutions to equations (9,15,16) can be derived for value function evaluation with linear
parameterization. However the focus is here on more general cases involving nonlinearities. More-
over the Bellman optimality equation is considered in this framework. It implies to handle the max
operator, which is non-derivable. As a consequence, local linearization is not sufficient. Comput-
ing statistics of interest can be state as computing first and second order moments of a nonlinearly
mapped random variable. A useful approximation scheme, the unscented transform, is first intro-
duced. It is then used to derive a set of three algorithms. Finally it is used to get uncertainty
information of the value (or Q-) function for any given state.

3.1 The Unscented Transform

Let’s abstract a little bit from RL and Kalman filtering. Let X be a random vector, and let Y be
a mapping of X . The problem is to compute mean and covariance of Y knowing the mapping
and first and second order moments of X . If the mapping is linear, classical analytical solution
holds. If the mapping is nonlinear, the relation between X and Y can be generically written as
X = f(Y ). A first solution would be to approximate the nonlinear mapping, that is to linearize

4



Algorithm 1: General KTD algorithm

Initialization: priors θ̂0|0 and P0|0 ;

for i← 1, 2, . . . do
Observe transition ti and reward ri ;

Prediction step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi−1 ;

Compute statistics of interest (using notably θ̂i|i−1 and Pi|i−1);
r̂i|i−1 = E[gti(θi)|r1:i−1] ;

Pθri
= E

[
(θi − θ̂i|i−1)(gti

(θi)− r̂i)|r1:i−1

]
;

Pri = E
[
(gti(θi)− r̂i|i−1)2|r1:i−1

]
+ Pni ;

Correction step;
Ki = PθriP

−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPri
KT

i ;

it around the mean of the random vector X , which leads to E[Y ] ≈ f (E[X]) and E[Y Y T ] ≈
(∇f (E[X]))E[XXT ] (∇f (E[X]))T . This approach is the base of Extended Kalman Filtering
(EKF) [13], which has been extensively studied and used in past decades. However it has some
limitations. First it cannot handle non-derivable nonlinearities (max operator). It also supposes that
the nonlinear mapping is locally linearizable, which is unfortunately not always the case and can
lead to quite bad approximation, as exemplified in [8].

The basic idea of the unscented transform is that it is easier to approximate an arbitrary random vec-
tor than an arbitrary nonlinear function. Its principle is to sample deterministically a set of so-called
sigma-points from the expectation and the covariance of X . The images of these points through
the nonlinear mapping f are then computed, and they are used to approximate statistics of inter-
est. It shares similarities with Monte-Carlo methods, however here the sampling is deterministic,
nonetheless allowing a given accuracy [8].

The original unscented transform is now described more formally (some variants have been intro-
duced since, but the basic principle is the same). Let n be the dimension of the random vector X . A
set of 2n + 1 sigma-points is computed as follows:

x0 = X̄ w0 = κ
n+κ , j = 0

xj = X̄ +
(√

(n + κ)PX

)
j

wj = 1
2(n+κ) , 1 ≤ j ≤ n

xj = X̄ −
(√

(n + κ)PX

)
n−j

wj = 1
2(n+κ) , n + 1 ≤ j ≤ 2n

(17)

where X̄ is the mean of X , PX is its variance matrix, κ is a scaling factor which controls the
accuracy of the unscented transform [8], and

(√
(n + κ)PX

)
j

is the jth column of the Cholesky

decomposition of the matrix (n + κ)PX . Then the image through the mapping f is computed for
each of these sigma-points: yj = f(xj), 0 ≤ j ≤ 2n. The set of sigma-points and their images
can then be used to compute first and second order moments of Y , and even PXY , the covariance
between X and Y :

Ȳ ≈
2n∑

j=0

wjyj , PY ≈
2n∑

j=0

wj (yj − ȳ) (yj − ȳ)T and PXY ≈
2n∑

j=0

wj (xj − x̄) (yj − ȳ)T (18)

where x̄ = x0 = X̄ and ȳ =
∑2n

j=0 wjyj . The unscented transform having been presented, the
specialization of KTD is now addressed.
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3.2 KTD-V, KTD-SARSA and KTD-Q

The unscented transform having been introduced, the general KTD framework is specialized to the
value function evaluation (KTD-V), the Q-function evaluation (KTD-SARSA) and the Q-function
optimization (KTD-Q). Recall that the problem in applying KTD is to compute the statistics of in-
terest given in equations (9,15,16). The unscented transform allows to approximate these quantities.

The three algorithms share the same computation of sigma-points from known statistics θ̂i|i−1 and
Pi|i−1 as described in section 3.1, as well as associated weights:

Θi|i−1 =
{

θ̂
(j)
i|i−1, 0 ≤ j ≤ 2p

}
and W = {wj , 0 ≤ j ≤ 2p} (19)

The images of sigma-points have then to be computed, according to observation equation of state-
space model 5. This step is specialized for each algorithm:

Ri|i−1 =



{
r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si)− γV̂
θ̂
(j)
i|i−1

(si+1), 0 ≤ j ≤ 2p
}

(KTD-V){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γQ̂
θ̂
(j)
i|i−1

(si+1, ai+1), 0 ≤ j ≤ 2p
}

(KTD-SARSA){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γ maxb∈A Q̂
θ̂
(j)
i|i−1

(si+1, b), 0 ≤ j ≤ 2p
}

(KTD-Q)

(20)

Then the sigma-points and their images can be used to compute the statistics of interest as exempli-
fied in section 3.1. The associated equations are the same for the three algorithms:

r̂i|i−1 =
∑2p

j=0 wj r̂
(j)
i|i−1

Pri
=

∑2p
j=0 wj

(
r̂
(j)
i|i−1 − r̂i|i−1

)2

+ Pni

Pθri
=

∑2p
j=0 wj

(
θ̂
(j)
i|i−1 − θ̂i|i−1

) (
r̂
(j)
i|i−1 − r̂i|i−1

) (21)

This gives a practical implementation of the general KTD in the case of value function evaluation,
Q-function evaluation and Q-function optimization, which is summarized in algorithm 2.

3.3 Computing Uncertainty on Value

Given the KTD algorithm, the first and second order moments of the parameter vector, which is
modelled as a random variable, is available. However, being a mapping of the parameter vector, the
value (or Q-) function is a random function. The issue addressed here is how to compute associated
mean and variance. The solution is once again based on the unscented transform.

This section focuses on the value function, extension to Q-function is straightforward. Suppose that
the value function V̂θ is parameterized by the random vector θ of associated mean θ̂ and covariance
Pθ. The set of sigma points Θ = {θ(j), 0 ≤ j ≤ 2p} and associated weightsW = {wj , 0 ≤ j ≤
2p} can be computed (see section 3.1). Then, to compute the estimation of the value for a given
state s and the associated covariance the following set of images of sigma-points must be computed:
V(s) =

{
V̂ (j)(s) = V̂θ(j)(s), 0 ≤ j ≤ 2p

}
. Given the images and the associated weights, the

prediction V̂ (s) and the associated variance σ̂2
V (s) can be approximated by:

V̂ (s) =
2p∑

j=0

wj V̂
(j)(s) and σ̂2

V (s) =
2p∑

j=0

wj

(
V̂ (j)(s)− V̂ (s)

)2

(22)

Thus, given a representation θ of the value (or Q-) function, it is quite easy to compute associated
estimation and variance of the value (or Q-) function for any given state s. This is exemplified
in [5] for a simple regression problem. So, at each time step, an estimate θ̂i|i and the associated
matrix error Pi|i are available, and the unscented transform is used to propagate the uncertainty
from parameters (modelled as Pi|i) to values (for any state).

4 Discussion and Perspectives

A general Kalman-based function approximation scheme for RL in deterministic MDPs has been
introduced, and algorithms for value function and Q-function evaluation (policy iteration scheme)
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Algorithm 2: KTD-V, KTD-SARSA and KTD-Q

Initialization: priors θ̂0|0 and P0|0 ;

for i← 1, 2, . . . do

Observe transition ti =


(si, si+1) (KTD-V)

(si, ai, si+1, ai+1) (KTD-SARSA)

(si, ai, si+1) (KTD-Q)

and reward ri ;

Prediction Step;
θ̂i|i−1 = θ̂i−1|i−1;
Pi|i−1 = Pi−1|i−1 + Pvi−1 ;

Sigma-points computation ;
Θi|i−1 =

{
θ̂
(j)
i|i−1, 0 ≤ j ≤ 2p

}
(from θ̂i|i−1 and Pi|i−1);

W = {wj , 0 ≤ j ≤ 2p } ;

Ri|i−1 =



{
r̂
(j)
i|i−1 = V̂

θ̂
(j)
i|i−1

(si)− γV̂
θ̂
(j)
i|i−1

(si+1), 0 ≤ j ≤ 2p
}

(KTD-V){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γQ̂
θ̂
(j)
i|i−1

(si+1, ai+1), 0 ≤ j ≤ 2p
}

(KTD-SARSA){
r̂
(j)
i|i−1 = Q̂

θ̂
(j)
i|i−1

(si, ai)− γ maxb∈A Q̂
θ̂
(j)
i|i−1

(si+1, b), 0 ≤ j ≤ 2p
}

(KTD-Q)

;

Compute statistics of interest;
r̂i|i−1 =

∑2p
j=0 wj r̂

(j)
i|i−1;

Pθri
=

∑2p
j=0 wj(θ̂

(j)
i|i−1 − θ̂i|i−1)(r̂

(j)
i|i−1 − r̂i|i−1);

Pri
=

∑2p
j=0 wj

(
r̂
(j)
i|i−1 − r̂i|i−1

)2

+ Pni
;

Correction step;
Ki = Pθri

P−1
ri

;
θ̂i|i = θ̂i|i−1 + Ki

(
ri − r̂i|i−1

)
;

Pi|i = Pi|i−1 −KiPri
KT

i ;

and for Q-function direct optimization (value iteration scheme) have been derived from it, as well as
a way to compute value uncertainty for any state. Experimental results are not given here, however
the KTD-Q algorithm has been first introduced in [6] from a Bayesian perspective, and related
experiments are provided. Experimental results are promising.

The proposed framework has some potential advantages. First it does not suppose stationarity. An
immediate application is to handle non-stationary environments. But an even more interesting one
is the control case. The algorithm LSTD [2] is known to fail when combined with optimistic policy
iteration, because of the induced non-stationarities of this specific learning and control scheme.
Kalman filtering and thus the proposed framework is designed to be robust to non-stationarities
(random walk model of the parameter vector). This can be quite interesting for the control case,
which has not been treated in this paper (the focus was on learning the value function or the Q-
function and associated uncertainty, given observed transitions, and not on how to choose action for
a given state). Second, the parameter vector is modelled as a random vector. As a consequence, at
each time step, the covariance of this random vector is available. It can be propagated to the value
function in order to provide uncertainty information for the value at a given state, as demonstrated in
section 3.3. This uncertainty propagation can be useful to handle the well known dilemma between
exploration and exploitation. For now this uncertainty can be computed, however how to use it is
still an open research problem.

Yet the proposed framework presents a major drawback. In the case of stochastic transitions,
the KTD can produce biased estimates of the parameters, or even be unstable. The problem
lies in the fact that the KTD minimizes a squared Bellman residual (see [16] for the demonstra-
tion of the minimized cost function with unscented filtering and random walk evolution model):
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Ji(θ) =
∑i

j=1 P−1
nj

(rj − gtj
(θ))2. The cost function which should be considered to truly minimize

the squared Bellman residual is L(θ) = ‖Vθ − TVθ‖2 where T is one of the Bellman operators
(depending on the function we want to solve and involving transition probabilities). As noted in [1],
Ji(θ) is a biased estimator of L(θ), the bias being a variance term which favorises smooth value
functions. The same problem arises in the residual approach of [7]. A solution could be to introduce
an auxiliary filter, in the same manner an auxiliary function has been introduced in [1]. Another
solution could be to adapt the colored noise model used in [4]. For now, KTD can be applied with-
out modification to stochastic environments (see [6] for a successful application of KTD-Q to a
stochastic problem), but it can become unstable, depending on the problem at sight.

To finish with, most interesting perspectives are to extend the framework to the control case, for
which the non-stationarity hypothesis and the uncertainty propagation should be useful, and to han-
dle more rigorously stochastic transitions. It is also planned to conduct more comparisons, theoreti-
cally and experimentally, of KTD to other related function approximation schemes.
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