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Abstract— The existing telecommunications infrastructure in
most of the world is adequate to deliver voice and text applica-
tions, but demand for broadband services such as streaming video
and large file transfer (e.g. movies) is accelerating. The explosion
in Internet use has created a huge demand for telecommunications
capacity. However, this demand is extremely volatile, making net-
work planning difficult. In this paper, modern financial option
pricing methods are applied to the problem of network investment
decision timing. In particular, we study the optimal decision prob-
lem of building new network capacity in the presence of stochastic
demand for services. Adding new capacity requires a capital in-
vestment, which must be balanced by uncertain future revenues.
We study the underlying risk factor in the bandwidth market, and
then apply real options theory to the upgrade decision problem.
We notice that sometimes it is optimal to wait until the maximum
capacity of a line is nearly reached before upgrading directly to
the line with the highest known transmission rate (skipping the in-
termediate lines). It appears that past upgrade practice underesti-
mates the conflicting effects of growth and volatility. This explains
the current overcapacity in available bandwidth. To the best of
our knowledge, this real options approach has not been used pre-
viously in the area of network capacity planning. Consequently,
we believe that this methodology can offer insights for network
management.

Index Terms—uncertain demand for capacity, real options, net-
work planning

I. INTRODUCTION

In the past, bandwidth was traded infrequently, with deals
taking months to complete. Performance, which can be mon-
itored in terms of packet losses and/or response times (ping
times), was rarely considered. However, in May 1999 Enron
proposed the development of a global bandwidth commodity
market. The concept of a pooling point where bandwidth mar-
ket players could settle contracts in a matter of seconds was
introduced. Today, long-term contracts (e.g. indefeasible rights
of usage or IRUs) are being replaced by shorter-term contracts,
and bandwidth is moving towards being effectively traded on
demand. With a forecasted notional size exceeding $1 trillion
annually [1], the bandwidth market is expected to become sim-
ilar in size to large commodity markets.

The bandwidth market is still in its infancy and high quality
detailed market data does not exist yet. The volatility present
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in the demand market for capacity requires the development of
risk management and investment decision systems. As in most
corporate investment decisions, timing is crucial in a competi-
tive market. The traditional approach of valuing an investment,
which consists of using the net present value (NPV) rule to de-
cide whether to invest, ignores the opportunity of waiting for
new information before committing to the investment. As an
alternative, the real options approach [2], [3] can be used to
effectively model investment flexibility.r A number of publica-
tions discuss the use of real options theory for optimal invest-
ment timing (e.g. [2], [3], [4] and references therein), but re-
searchers in network planning and management do not appear
to have used these concepts [5], [6].

In this paper, we apply a real options framework to the prob-
lem of the optimal timing investment into new capacity. Given
a set of lines with different characteristics, we aim to find the
percentage (in terms of the maximum transmission rate of a
line) at which it is optimal to upgrade. To the best of our
knowledge, this approach has not been used previously. Con-
sequently, we believe that this methodology can offer insights
for the telecommunications industry. The outline of this pa-
per is as follows: Section Il describes the modeling framework;
Section 111 presents the mathematical model and introduces an
upgrade decision algorithm; Section IV presents the estimated
model parameters; and Section V contains different simulated
results. The conclusions are provided in Section V1.

Il. BACKGROUND

In some cases, the fundamental factor driving profitability is
the amount which can be sold, as opposed to the price received
per unit. The owner of a fiber optic network faces this type of
situation. New wavelength services allow the user to purchase
limited capacity for days or even hours. Effectively, users pay
only for the bandwidth that they use. Consequently, the rev-
enue to the owner of the network is determined by the prevail-
ing price and the amount used (demand for capacity). A study
of the bandwidth market reveals some interesting facts. As will
be discussed later in Section V, the demand for bandwidth is
highly volatile. Our estimate of volatility is about 95% (see Ap-
pendix B). This can be compared with a volatility of 20%-40%
for most major stock market indexes. In contrast, the price per

INote that the distinction between the real options approach and the NPV
approach is more one of degree than one of kind. The NPV approach, as tradi-
tionally applied, fails to sufficiently account for much of the optionality inherent
in corporate investments. The real options approach focuses on this optionality.
Provided that the values of all options are appropriately included in the analysis,
the NPV approach will give the same conclusions as the real options approach.



TABLEI
PRICES FOR DIFFERENT TRANSMISSION RATES. PRICES ARE IN
$/YEAR/DS-0MILE. A DS-0 LINE HASA MAXIMUM TRANSMISSION RATE
OF 64KBPS.

Q11999 Q12000 Q12001 Q1 2002

0OC-3 0.013 0.011 0.0082 0.0055
0C-12  0.012 0.01 0.0066 0.0045
0C-48 0.01 0.0095 0.0054 0.0035

bit per second is falling exponentially (see Table I). This phe-
nomenon is in fact typical of computer components. Relent-
less technological development decrease costs while demand
increases exponentially. An example of this effect can be found
in storage media. The price per megabyte of disk drives has
decreased exponentially. However, a disk manufacturing plant
can be profitable as long as demand increases rapidly enough to
offset falling prices due to technological improvements.

This situation is in contrast with traditional financial markets
where price, and not demand, is the dominating factor (in other
words, in financial markets it is almost always assumed that de-
mand curves are perfectly elastic). The current inefficiencies in
the bandwidth market can be explained by the fact that dereg-
ulation is recent and consumers are paying for capacity rather
than paying for consumption. For example, most Internet Ser-
vice Providers (ISPs) have flat base fees for their clients, but
usage is very different across consumers. In an efficient mar-
ket, price should reflect the actual amount of bandwidth used
by a consumer. Already, some companies have started to charge
their customers based on usage (e.g. Wavelength Service con-
tracts). This is similar to telephone companies, which charge
long distance phone calls on a minute usage basis, or electric-
ity companies, which charge according to consumption. Con-
sequently, we believe that as the bandwidth market becomes
more efficient, contracts will be based on bandwidth spot prices.
However, during the current period of transition, we do not be-
lieve that there is a liquid enough spot market to value contracts
and investments based on these prices. Demand for capacity is,
in our opinion, the largest uncertainty in bandwidth investment.
Consequently, investment decisions should be valued based on
demand. However, we must emphasize that this situation will
be only temporary, i.e. for the next few years at most. We expect
that as bandwidth market inefficiencies disappear, price and de-
mand may both be determining risky factors. We note that a
model for the bandwidth market which includes both price and
quantity effects has been described in [7]. Nevertheless, we
should point out that demand may always be the main under-
lying source of risk. To go back to our example of disk stor-
age, the price per megabyte has decreased fairly smoothly over
the last few years, while demand for storage media has been
more uncertain. Technology-based industries seem to be “de-
mand pushed”, i.e. technology keeps shifting the supply curve
[2]. For example, at today’s level of demand for storage, most
users could not use a one terabyte disk drive, even if it was very
cheap.

I1l. MATHEMATICAL MODEL
A. Background on Option Theory

Before proceeding further, let us review the basics of options.
A financial option gives its holder the right, but not the obliga-
tion, to trade (buy or sell) at a future time for a specified price.
For example, an investor may own an option to purchase a par-
ticular stock for $50 on June 1. If the price of that stock on
June 1 is higher than $50, e.g. $60, then the option has turned
out to be valuable since the investor can use it to purchase the
stock for $50 and then sell the stock immediately for a profit
of $10. Conversely, if the stock price on June 1 is lower than
$50, the option becomes worthless: the investor would not use
it to pay $50 to own the stock when it could be purchased at a
lower price on a financial exchange. The field of option pricing
is largely concerned with determining the fair price to pay for
options. Over the past three decades, this has been a very active
area of research in finance (see [8] or [9] for an overview).

The related field of real options extends the basic ideas of
option pricing to corporate investment decisions. For example,
a network planning manager may buy an option on a bundle of
dark fiber lines. This gives the manager the right, but not the
obligation, to buy this bundle of lines in six months at a certain
price X. Six months later, the manager will decide if it is still
necessary to buy the dark fiber lines. If so, the manager will
compare the exercise price of the option X to the current price
Y of the bundle. If X < Y, the option will be exercised to
buy the bundle of dark fiber lines for X. On the other hand,
if X > Y the option will not be exercised. The bundle will
simply be purchased at the current price of Y.

Every option has some defining characteristics. Two key
ones which we need to consider for our application are:

« An expiry date (e.g. six months): the last date at which
the option can be exercised. Note that some options have
multiple possible exercise dates.

o A strike price (X): the price at which one party has
agreed to pay the other party should the option be exer-
cised. This is also known as the exercise price.

In addition, in our real options setting we must define:

« Aninvestment horizon: the time at which all equipment
is written off, and the value of any contracts/rights is con-
verted to cash.

An underlying random factor determines the value of an option
contract as an investment. In financial markets, this is usually
the price of the asset for which the option can be used. How-
ever, in our case we will consider usage to be the underlying
factor during the transition from regulated to deregulated mar-
kets. In order to use this factor we need to show how we can
model the demand for capacity over time.

B. Mathematical Model

Let Q represent the demand for capacity (measured in
megabits). The different possible paths followed by the demand
can be modeled as a stochastic process given by

dQ = pQdt + 0 QdZ, )

where p is the drift rate or growth rate, o is the volatility and
dZ is the increment of a Wiener process (readers unfamiliar



with these ideas should consult [8], [2], [9] for a simple intro-
duction).
Based on hedging arguments (see [8], [9] and Appendix A),
a partial differential equation for the value of an investment
V(t, Q) is found to be
1
S+ 3o+ n= o) QOY — 1V +R(Q,0) =
(2)

where V is the value of the investment in $, R(Q, t) is the rev-
enue term in $/time, r is the risk free interest rate and  is the
market price of risk. This latter variable is a function of Q.
It will hereafter be referred to as the “telecom market price of
risk.” Essentially, x captures the tradeoffs between risk and
return for investments that are dependent on Q. A complete
derivation of the equation is given in Appendix A.

In the pricing of financial options, the price of the option at
the expiry date is known (as a function of the underlying stock
price), but the price of the option before expiry is unknown (and
that is what we would be attempting to determine). In our case,
we consider an investment horizon T'. Mathematically, we then
have

V(T, Q) = f(Q).

Although the methods discussed in this paper can be used with
arbitrary f(Q), for simplicity we will restrict attention to the
case where the value of all capital investment at 7' is assumed to
be zero, i.e. f(Q) = 0. We will take this investment horizon to
be T' = 5 years. This may be somewhat pessimistic, but in the
rapidly changing field of telecommunications, this is perhaps
an appropriate length of time to consider.

Since the value of the investment is known at ¢ = T', the for-
ward equation (2) is transformed into a backward equation by
substituting 7 = T' — ¢ (which evolves from the future invest-
ment horizon date 7" back to the present date) to give

oy 1 5202 0%y )Y
— — = 3
9 = Q8Q2 (e fia)aQ rV+R(Q,7). (3)
Inthe followmg, we describe the factors that need to be taken
into account when determining the optimal decision to upgrade
and their effects on our initial modeling equation (3).

C. Payment

We assume that the owner of the line receives continuous
payments. For line ¢ of maximum transmission rate Q; (in
megabits), we have

Ri(Q,7) = min(Q, Q;)DP(7), (4)

where D is the length of the line (in miles) and P(7) is the spot
price at time 7 for bandwidth (in $/year/mile/megabit). The
payment received can be no larger than the maximum transmis-
sion rate of the line multiplied by the price and the length of the
line. We assume that the price is a known decreasing function
of time [1]. Note that this does not create an arbitrage opportu-
nity because unused bandwidth cannot be stored for later use.
This function is given by

P(r) = Poexp(—a(T — 7)),

maximum transmission rate (mega-bites)
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Fig. 1. We consider a set of lines Q; with maximum transmission rate Q;. We
solve a set of PDEs (7) for each upgrade possibility.

where P, is the current spot price and « is a decay parameter
determining the rate at which the spot price decreases. Note
that we require that the spot price be the same across the various
possible lines at any point so as to avoid arbitrage. For example,
if the spot price (in $/year/mile/megabit) of an OC-48 line was
less than that of an OC-12, we could buy capacity on an OC-
48 line and then immediately sell it at the OC-12 spot price.
Consequently, equation (3), becomes

0V _1 5 50V ay
E 5 QaQZ (/J/—K/O')@—T'V
+ min(Q, Q;)DP(1) (5)

D. Maintenance Costs

Each line has a different maintenance cost that is constant
with time. The maintenance costs are paid at discrete time inter-
vals (i.e. monthly). Let 7= and 71 respectively denote the times
immediately before and after a maintenance payment. Given a
line 4 with maximum transmission rate Q;, we have

Vi(Q, ) =Vi(Q,7) —

where M; is the maintenance cost of the line in $/year/mile, D
is the length of the line in miles and AT = 1/12.

M;DAT, (6)

E. Upgrade Decision

Consider a set of lines Q; with maximum transmission rate
Q;. For example, Q; could be an OC-12, Q, an OC-48, and
so on (see Figure 1). Let V; be the value of an investment in a
line with capacity Q;. We must solve a set of PDEs (3) for each
upgrade possibility, i.e.

Wi _ 1 5,0 V;
ar ~2° ¢ 8Q2 + (1 —r9) 55
+ mln(Q, Q,)DP(r). )

A set of equations (7) must be solved for each possible line
capacity 1 = 1,...,n, where n is the maximum number of
types of line. This can be done easily using a general numerical
partial differential equation (PDE) solver [10], [11]. This nu-
merical PDE approach involves discretizing equation (7) using

— ’I“V,'
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Fig. 2. We consider a set of lines Q; with maximum transmission rate Q;. At
the notice date Tpotice, fOr each line 5 with maximum transmission rate higher

than Q;, we solve the PDE (equation (7)) of line 7 using the solution of line j at

time 7up, to obtain V7 (Thotice ). We then compare each solution VX (notice )
for k = 4,... ,n to determine the optimal choice.

a finite volume method [12]. This method has been extensively
studied in [10], [11]. As it is beyond the scope of this paper, we
will not present the details of the discretization scheme here.
Interested readers should see [13], [12]. It is worth pointing out
that the actual algorithm used shares some characteristics with
that used in [13] for pricing a callable bond.

We assume that the upgrade decision is evaluated periodi-
cally (i.e. on a quarterly basis). Times at which this evaluation
takes place are called notice dates. We use a dynamic program-
ming approach. Essentially, we solve the PDEs (7) backward in
time (7 increasing) and determine the optimal decision at each
notice date. Consider the lines orderedas ¢ = 1,... ,n where
Qi1 > Q; (see Figure 1). At each notice date T,,¢ice, O
each line j with maximum transmission rate higher than Q;,
we solve the PDE (equation (7)) of line 4 using the solution of
line j at time 7., to obtain V;? (Tnotice). We then compare each
solution V*(Thotice) for k = i, ..., n to determine the optimal
choice (see Figure 2). More specifically, our algorithm is:

FOR ¢:=1...n DO
FOR j=i+1...n DO
FOR ‘all Q DO
vij(QaTvltotice) =
max (Vf(Q,Tmtice) —
END
END

ICL—}J (Tnot'ice ) 3 V»Z ( Qy Tnot'ice))

END

where JC;_ j (Tnotice) 1S the cost of upgrading from line ¢ of
maximum transmission rate Q; to line j of maximum trans-
mission rate @;. The upgrade costs are assumed to follow the
same decreasing pattern as the spot price per year/mile/megabit.
Thus we will use the same decay factor « as for the spot price,
i.e.

A

Kivsj (1) = Kivsj exp(=a(T = 7)) (®)

where ICHj is the initial upgrade cost from line i to j in $. Note
that the algorithm above allows for the possibility that it may be
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Fig. 3. Total daily network traffic into and out of the University of Waterloo
since July 7, 2000.

optimal to jump several levels of capacity when the demand for
capacity Q is very large or the cost /C(7) is low.

When the decision to upgrade is made, there is a delay be-
fore the new equipment is available (usually three months) [14],
[15]. Meanwhile, the line to be upgraded still generates rev-
enue. There is no downtime period during which the stream of
revenues is interrupted.

IV. ESTIMATION OF THE PARAMETERS

Parameter values will obviously have a large impact on our
computed results. Parameter estimation is complicated by the
fact that the bandwidth market is still in its infancy and past
data is limited. This section describes how parameters were es-
timated for this paper in broad terms. More details are provided
in Appendices B, C, and D.

To estimate the uncertainty parameter o, we use data from the
University of Waterloo campus network [16]. Figure 3 shows
the total daily network traffic into and out of the university since
July 7, 2000. An initial analysis of the data showed strong au-
tocorrelation of the time-series within each week. This is not
surprising, since we expect that there will be repetitive patterns
within each week. To filter out this effect, we average the net-
work traffic for the entire period for each day of the week sep-
arately, and choose the day with the highest average total daily
traffic. We then use this same day each week to estimate the
effects from week to week. This smoothing is not unusual and
should not be considered as a source of inaccuracy. We find that
o = .95. As an aside, note that as o2 is measured on a per year
basis, ¢ is in units of year'/2. See Appendix B for more details
on the estimation of o.

The growth rate y is also obtained from University of Wa-
terloo data. The data set used here, however, differs from that
used to estimate o. In particular, to estimate p we use sum-
mary traffic data for each academic term dating back to 1997.
Statistically, this should provide a better estimate of the long
run growth trend (though it would not give a good estimate of
volatility, as the time between observations is too long). Our
estimate of about y = .75 per year is consistent with the results
reported in [17]. See Appendix B for further details).

We use r = .05 per year for the risk free interest rate. The
telecom price of risk « (in units of year'/? is obtained by fitting



TABLEII
TRANSMISSION RATE CONVERSION.

Rate Max Capacity (Mbps)  Voice Circuit Capacity
0OC-12 622 8064
0C-48 2488 32256
0OC-192 9952 129024
OC-768 39808 516096
TABLEIII

ESTIMATED PARAMETERS.

Estimated Value

0.95
0.05
0.75
0.10
0.90
1.40

Parameter

QR = ® = Q9

the price of dark fiber to the cost of an OC-12 investment (see
Appendix D for details). The prevailing price of dark fiber when
our estimate was made was $1500 per mile between New York
and Toronto. We find that k ~ 10%. As a rough check on this
estimate, note that the expected return on an investment in the
telecom sector should be about r + ko. Using r = .05, k = .10,
and ¢ = .95 implies an expected return of approximately 15%,
consistent with that commonly used in NPV calculations in the
industry [18].

In this study we consider only the fiber optic lines contained
in Table Il. At the time of writing, the spot price for an OC-
12 was approximately 0.069$/year/mile/voice capacity [15].
To obtain the lease price per year per megabit, we multiply the
OC-12 price by the voice circuit capacity of an OC-12 line and
divide by the OC-12 maximum capacity in megabits. We find
that the spot price P = .90$ /year/mile/megabit.

The decay factor is obtained from the observation that prices
are decreasing by about 50% every six months. We find that
a = 1.4 per year. These estimated parameters are summarized
in Table I11.

The costs of upgrading and maintenance are critical to deter-
mining when it is optimal to upgrade. We obtained the data
in Table 1V from the hardware manager of the Mathematics
Faculty Computing Facility of the University of Waterloo [14].
These costs are based on the fact that upon upgrading only the
switching cards are changed, while the rest of the basic hard-
ware stays the same. We also made this assumption when es-
timating the telecom market price of risk (see Appendix D).
From Table IV, we build the upgrade cost Table V.

As a rule of thumb, maintenance costs are usually between
3% and 10% of the upgrade capital cost. To simplify matters,
we assume that maintenance costs do not include repeater costs.
Repeaters in fiber optic lines are used to clean noise from the
signal; this noise is intrinsic to the transportation of a signal
over a long distance. The details of the maintenance cost com-
putation are contained in Appendix C. The maintenance cost
rates can be found in Table VI.

TABLE IV
ESTIMATED UPGRADE COSTS FOR BOTH SWITCHESIN $. THESE UPGRADE
COSTS ARE BASED ON THE ASSUMPTION THAT THE BASIC HARDWARE
INFRASTRUCTURE IS ALREADY IN PLACE AND ONLY SWITCHING CARDS
HAVE TO BE CHANGED.

Upgrade from line i to line j  Price $
0C-3 —+ 0C-12 4,000
0C-12 — OC-48 30,000
0C-48 — 0C-192 80,000
0C-192 — OC-768 160,000
TABLEV
UPGRADE COST TABLE CONSTRUCTED FROM THE COST ESTIMATESIN
TABLEIV.
0C-12 0C-48 0C-192 OC-768
0OC-12 na.  $30,000 $80,000 $160,000
0C-48 n.a. n.a. $80,000 $160,000
0C-192 na. n.a. n.a. $160,000

V. SIMULATION RESULTS

In this section we conduct a sensitivity analysis of the opti-
mal decision to upgrade to the different model parameters. Un-
less specified otherwise, we are solving for a 5 year investment,
with continuous revenues, monthly maintenance costs, and
quarterly investment decisions. We consider the Toronto/New
York City pair which is 550 miles apart. We study the optimal
investment strategy for four different transmission rates: OC-
12, OC-48, OC-192 and OC-768.

A. Base Case

We begin by considering the issues raised by the optimal de-
cision scheme. Anecdotal evidence suggests that lines were up-
graded when usage reached about 50% of the maximum trans-
mission rate. In Table V11, we notice that the minimum upgrade
percentage found for an OC-12 and OC-48 is 101% and 76%.
The minimum percentage for an OC-192 line is found to be
18%. This low percentage can be explained by the fact that the
maximum transmission rate considered in these simulations is
that of an OC-768 line. Thus, this percentage is not truly rep-
resentative of what would happen if we had included lines with
a higher transmission rate. Note that these minimum percent-
ages are all found at the start of the 5 year period: the upgrade
percentages rise as time evolves over the first two years. This is

TABLE VI
MAINTENANCE COSTSIN $/MILE/YEAR FOR DIFFERENT TRANSMISSION
RATES.

Rate  Cost in $/mile/year
0C-12 24
0C-48 18
0C-192 48
OC-768 96




TABLEVII
UPGRADE PERCENTAGE FOR DIFFERENT TRANSMISSION RATES. BASE CASE PARAMETERS. WE SOLVE FORA 5 YEAR INVESTMENT HORIZON WITH
p=.75,0= .95k =.1, AND7 = .05. UPGRADE DECISIONSARE MADE QUARTERLY. ONLY THE UPGRADE RESULTS FOR THE FIRST TWO YEARS ARE

REPORTED.
0C-12 0C-48 0C-192
Time (year) | Upgrade (%) | Upgradingto | Upgrade (%) | Upgradingto | Upgrade (%) | Upgrading to
0.00 101.28 0C-48 76.36 0OC-768 18.00 0OC-768
0.25 104.50 0C-48 82.39 0OC-768 19.00 0OC-768
0.50 109.32 0C-48 88.42 OC-768 20.00 OC-768
0.75 118.97 0C-48 97.26 OC-768 22.00 OC-768
1.00 125.40 0C-48 108.52 OC-768 24.20 OC-768
1.25 144.69 0C-48 120.57 0OC-768 27.50 0OC-768
1.50 160.77 0C-48 136.65 0OC-768 32.00 0OC-768
1.75 176.84 0C-48 160.77 OC-768 36.00 0OC-768
2.00 209.00 0C-48 184.88 OC-768 40.00 0OC-768

because it takes time to recover the costs of upgrading and and
the higher costs maintenance associated with a higher capacity
line. With less time remaining in the five year horizon, there is
less incentive to upgrade.

Furthermore, we see that for an OC-48 line it is better to
upgrade to the maximum transmission rate attainable (i.e. OC-
768) rather than to upgrade to the intermediate OC-192 line.
This appears to contradict the common conception that upon
upgrading we should go to the next available transmission rate.
This contradiction with practice comes from the high degree of
uncertainty in the demand for capacity. Intuitively, this means
that it is worthwhile waiting to see how demand evolves and
then upgrading to the maximum transmission rate line we can
build (e.g. OC-768) at that time. It can be optimal to upgrade
an OC-48 line to an OC-192 line, but in this particular case it is
optimal to wait until demand is at 76% of an OC-48 transmis-
sion capacity and then to upgrade directly to an OC-768. We
emphasize that the results indicate that it is better to wait until
the maximum capacity of the line is reached, and then upgrade
to the highest transmission rate possible, rather than to upgrade
incrementally at lower usages. This is due to decreasing up-
grade costs (with time) and the uncertainty due to volatility in
usage.

B. Uncertainty and growth rate sensitivity analysis

In this scenario we try to reconcile the results given by our
simulations and past industry practice. By inspection, we try
to find the volatility and the growth rate that would make our
model results agree with industry practice.

The anecdotal rule that lines should be upgraded at 50% of
the maximum transmission rate appears to apply only for cases
of extremely high growth (¢ = .95, u > 1.25) or very low
volatility (o = .35, p = 0.75) when considering the investment
decision for an OC-48 line (see Table VIII). These values are
not realistic given today’s market conditions. They are indica-
tive of either overoptimism about growth or underestimation of
volatility. This would suggest that past industry practice would
lead to overcapacity, consistent with today’s market.

C. Penalty Due to Network Congestion

Due to the uncertainty in demand, we have observed that it
may be optimal to wait until the maximum capacity for a line
is reached before upgrading. Essentially, this is because an in-
crease in usage may be a random event and may not be sus-
tained. However, there will be many times when the demand for
capacity exceeds the maximum capacity available. Up to now,
we have ignored any detrimental effects due to network conges-
tion. We remark that some European operators have contracts
where performance is guaranteed, i.e. slow packets are deliv-
ered free. As well, a congested network may drive customers
to other bandwidth suppliers. We will model these effects in a
simple way. We assume that if the demand for capacity exceeds
the maximum transmission rate available by 20%, revenue is
reduced to zero. Again, we could view this as a penalty fac-
tor introduced into contracts or as a penalty for producing cus-
tomer dissatisfaction. The new revenue term is given by (see
equation (7))

i 9;)D if 0 <1.20;
Ri(Q.7) = min(Q, Q;)DP(r) ifQ < [6)
0 otherwise.
As expected, the upgrade decision arises much earlier. See the
results reported in Table IX.

VI. CONCLUSION

In this paper, we have considered only a limited number of
scenarios. However, our modeling framework allows us to con-
sider numerous possibilities. For example, we could solve for
longer investment horizons (e.g. more than five years) and in-
troduce new lines that will only be available in the future (e.g.
4,5,6 years from now). Nevertheless, our study allows us to
draw some very interesting conclusions.

For our base case parameters, the only situation for which
the anecdotal rule of upgrading at a usage level of 50% of max-
imum capacity is optimal is for an OC-192 line. However, this
is an unusual case because there is only one line of higher ca-
pacity to which it could be upgraded. For lines of lower ca-
pacity, e.g. an OC-48 line, we find that the 50% rule is only
optimal if we use apparently unrealistic parameters (either very



TABLE VIII
UPGRADE PERCENTAGE FOR DIFFERENT TRANSMISSION RATES. EFFECTS OF GROWTH RATE AND VOLATILITY. WE SOLVE FORA 5 YEAR INVESTMENT
HORIZON WITH k = .1 AND 7 = .05. UPGRADE DECISIONSARE MADE QUARTERLY. ONLY THE UPGRADE RESULTS FOR THE FIRST TWO YEARS ARE

REPORTED.
n=1250=.95 1 =0.750=.35
0C-48 0C-48
Time (year) | Upgrade (%) | Upgradingto | Upgrade (%) | Upgrading to

0.00 52.25 0OC-768 60.28 0OC-768
0.25 56.27 OC-768 36.17 0C-192
0.50 64.30 OC-768 38.18 0C-192
0.75 72.34 OC-768 44.21 0C-192
1.00 80.38 0OC-768 48.23 0C-192
1.25 88.42 0OC-768 56.27 0C-192
1.50 100.48 OC-768 68.32 0C-192
1.75 116.55 OC-768 80.38 0C-192
2.00 136.65 OC-768 92.44 0C-192

TABLEIX

UPGRADE PERCENTAGE FOR DIFFERENT TRANSMISSION RATES. EFFECTS OF NETWORK CONGESTION. WE SOLVE FORA 5 YEAR INVESTMENT HORIZON
WITH 4 = .75, 0 = .95, kK = .1, AND 7 = .05. UPGRADE DECISIONSARE MADE QUARTERLY. ONLY THE UPGRADE RESULTS FOR THE FIRST TWO YEARS
ARE REPORTED. REVENUES ARE SET TO ZERO IF THE DEMAND IS HIGHER THAN 120% OF THE LINE’SMAXIMUM TRANSMISSION RATE.

0C-12 0C-48
Time (year) | Upgrade (%) | Upgradingto | Upgrade (%) | Upgrading to
0.00 72.34 0C-48 64.30 OC-768
0.25 75.56 0C-48 68.32 0OC-768
0.50 78.77 0C-48 72.34 0OC-768
0.75 81.99 0C-48 80.38 0OC-768
1.00 86.81 0C-48 88.42 OC-768
1.25 94.85 0C-48 96.46 OC-768
1.50 102.89 0C-48 108.52 0OC-768
1.75 115.75 0C-48 120.57 0OC-768
2.00 136.65 0C-48 136.65 0OC-768
high growth or very low volatility). Past industry practice ap- APPENDIX A

parently reflects either excessive optimism about growth rates
or an underestimation of volatility. This is a possible explana-
tion for the current overcapacity in bandwidth.

We also notice that in some cases it is optimal to skip the
intermediate lines and go directly to the line with the high-
est transmission rate. This results with an upgrade decision at
about 76% of the current transmission rate when there is the full
5 years remaining. These results are in general agreement with
the conclusions (in a different context) of [4].

Finally, we remark that a certain number of numerical issues
arise in our application. Since it was outside the scope of this
paper, most of the numerical issues (e.g. oscillations, numerical
accuracy) were not discussed. However, for future work it may
be worth considering a detailed study of the convergence of the
solution and how it is affected by the discontinuities introduced
at each notice date. Moreover, we could extend our modeling
framework to handle discontinuous jumps in the demand for
capacity.

DERIVATION OF THE MATHEMATICAL MODEL

Let Q be the variable representing the demand for capacity.
Mathematically, the different paths followed by the demand can
be modeled by a stochastic process defined by

dQ = pQdt +0QdZ, 9)
where Q is in megabits and dZ is a Wiener process. Let V(Q, t)

be the value of an investment dependent only on @ and time ¢.
Using It6’s lemma, the process followed by V(Q, t) is

dV = (BY + R)dt — yVdZ, (10)
where R represents revenue in $/year,
2% v 1., ,0%
V=" t19%g T3 % pge D
and
oy
02% —O'Q@. (12)



Let us pick two investments V; and V> expiring at some future
time (> t). From equation (10) we have

dV1 = (B1V1 + Rq)dt
dVs = (,82V2 + Rz)dt

- ’)’1V1dZ,
- ’YszdZ.

Both V; and V5 have the same factor of uncertainty dZ. We can
thus construct a portfolio IT composed of V; and V, such that
the return of this portfolio IT is non-stochastic. Let z; be the
fraction of the amount invested in V; and z» be the fraction of
the amount invested in V5. Note that z; + z5 = 1. The return
on the portfolio is given by

o aw
dll = x4 i + To—— V
R R
= (.Z'l,Bl + xlv—l + 2202 +.’I)2V—22) dt

— (z171 + 3272) dZ. (13)

Choosing z; = —v2/(1 — 72) and z2 = 71 /(11 — 72), We
have 211 + 2272 = 0. Thus we have

R4
dll = (mlﬂl +x1—

Ro
Vi +$2,32+.’E2V )dt

= rlldt, (14)

where the second equality comes from the fact that as IT is risk-
less, it must earn the risk free rate r. It follows that

B+ —r ﬁ2+7§—22—
Y1 Y2

(15)

Define & as the value of each side of equation (15), i.e.

B+ —r ,32 T2 —r
M 72

Dropping the subscripts, we have shown that if V' is an invest-
ment dependent on Q and ¢, such that

= BV +R)dt + yVdZ,

then

,B—r—}—%:'yn.

Substituting 8 from equation (11) and « from equation (12) into
equation (16), we find

(16)

oy 1 oy

V—TV+R=O.

2 2
— + —0°Q — KO) — 17
ot 892 + (u ) 1319) @n
APPENDIX B
ESTIMATION OF GROWTH RATE AND VOLATILITY
PARAMETERS

We begin by considering the growth rate u. We base our es-
timate on summary traffic data for each academic term (three
per year) from 1997 to the present. We use this data so as to ob-
tain an estimate of long term growth in network traffic. In par-
ticular, we use the following procedure. Given measurements

total daily traffic in MegaBytes
~

Im ’,

Jul2000

L L L L L L
0ct2000 Jan2001 Apr2001 Jul2001 Oct2001 Jan2002

time

Apr2002

Fig. 4. Total daily network traffic into and out of the University of Waterloo
since July 7, 2000. The stars indicate the weekly highest traffic days (Thurs-
days).

Q1,Q9s,...,QNattimesty, ts,... ,tN, We estimate y by least
squares:
U ot 2
U2 ot
min — . )
123
UN_1 ot

where N is the number of observations and u; = log(=5* Q‘“ ) for
1=1,...,N —1. Wefind that y = .75 per year.

In Figure 3, the time series shows strong autocorrelation
within each week. To filter out this effect, we average the net-
work traffic for the entire period for each day of the week sep-
arately, and the day with the highest average total daily traffic
(Thursday) is chosen. This same day is used each week to esti-
mate week to week effects (see Figure 4).

An inspection of Figure 4 reveals several suspicious large
drops in traffic, some for extended periods of time. Basing our
volatility estimate on this data would produce a very high value.
Some of the short term declines are simply due to holidays.
As these are known events for low network traffic, we should
not take them into account when estimating volatility. Conse-
quently, we smooth them out using linear interpolation. As the
University of Waterloo has an extended break period in August,
we remove this period entirely from the sample. There is also an
extended drop around May of 2001, which we delete from the
sample. One might think that this is due to the start of the sum-
mer term, but Waterloo is a co-operative university with three
full academic terms per year (the summer term running from
May to the first part of August), so the effect of summer on
network traffic is probably lower than at most other academic
institutions. The final data sample used to estimate volatility is
presented in Figure 5.

Prior to computing the volatility, we first remove the growth
trend p from the data. We then conduct the Ljung-Box Q test
[19] as a check that our smoothed and detrended data contains
pure white noise. Each part of the time series (see Figure 5)
is studied independently. We can conclude from the p-values
reported in Table X that there is no serial correlation in our
data.
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Fig. 5.  Total daily network traffic into and out of the University of Water-
loo since July 7, 2000. The data has been smoothed using linear interpolation
around short term drops due to factors such as holidays. Extended declines in
traffic in August 2000, May 2001, and August 2001 have been deleted.

TABLEX
THE LJUNG-BOX TEST FOR SERIAL CORRELATION. THE NUMBERS
REPORTED ARE P-VALUES. THERE IS NO EVIDENCE OF SERIAL
CORRELATION AT CONVENTIONAL STATISTICAL SIGNIFICANCELEVELS.
THE PARTS OF THE DATA (PRIOR TO DETRENDING) ARE SHOWN IN

FIGURE 5.
Ljung-Box Test (p-values)

Lag | 1stpart | 2nd part | 3rd part | 4th part
1 0.180 0.265 0.168 0.221
2 0.354 0.485 0.386 0.208
3 0.512 0.675 0.592 0.252
4 0.680 0.768 0.753 0.143

The volatility is finally estimated under the assumption that
relative changes in network traffic are lognormally distributed,
as implied by equation (1). We find that & = .95 (as noted
above in Section IV, this is in units of year'/2).

APPENDIX C
UPGRADE AND MAINTENANCE COSTS

As noted in Section IV, data on upgrade costs was obtained
from [14] (see Table V). These were used to construct Table V.

As a rule of thumb, annual maintenance costs are usually be-
tween 3% and 10% of the upgrade capital cost. As mentioned
earlier in the paper, maintenance costs do not include repeater
costs. We assume that repeaters are situated every 100 miles.
The maintenance cost for an OC-12 is computed as follows: we
take the upgrade cost from an OC-3 to an OC-12 (see Table 1V)
and divide it by 100 miles (fiber optic distance without any re-
peaters). We then take 6% of the resulting number. We thus
have the following for an OC-12:

4 .
@ = $40/month/mile,
100

Moc12 = 40 x .06 = $2.40/year/mile.

Analogous calculations were made for the other lines in order
to construct Table VI.

APPENDIX D
TELECOM MARKET PRICE OF RISK ESTIMATION

The price of dark fiber is estimated to vary between $1000
and $1500 per mile [15]. The cost of the initial circuit equip-
ment investment is estimated to be ~ $500,000 [14] for both
ends of the line. As a rough estimate, and consistent with [17],
we assume that we are using 50% of the available bandwidth.
Thus, assuming that the average capacity of a line is equivalent
to an OC-48 line (maximum transmission rate: 2488 Mbps), we
estimate that the level of demand is at @ = 1244 Mbps.

Although virtually all of the discussion in the paper relates
to the timing of the upgrade decision, note that this is only
one of the outputs of our model. The total value of the in-
vestment V is also determined in our computations. To cal-
culate the telecom market price of risk, we calibrate the in-
vestment value given by our model (at @ = 1244 Mbps) to
the investment cost in the market. The investment cost is ob-
tained by multiplying the dark fiber price by the distance in
miles between two city pairs and adding the initial investment.
In our simulations we considered the Toronto/New York City
pair (550 miles apart). We obtain the telecom market price of
risk « by fitting the investment value given by our model to
550 x $1000 + $500,000 = $1,050,000. We find that « = .1.

We choose to estimate « by calibrating our model to observed
market prices. This approach is standard in financial applica-
tions such as the pricing of bond derivatives [8]. This approach
makes no assumption about market equilibrium. Alternatively,
economic general equilibrium theory shows that the market
price of risk is determined by the covariance between demand
for network bandwidth and changes in aggregate wealth in the
economy. As this covariance is difficult to estimate, we prefer
the calibration approach as described above.
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