

Learning 2048 with Deep
Reinforcement Learning

Zachariah Levine
Department of Computer Science, University of Waterloo

Ref. 1

● Motivation
● Reinforcement Learning
● Q-Learning
● Six (Unofficial) Stages of Deep Q-Learning
● 2048-unlimited
● Implementation Overview
● Research and Results
● Demonstration and Interactive Results
● Future Work
● Conclusion
● References

Outline

● Applications of Deep Reinforcement Learning
● Games
● Self Driving Cars
● Manufacturing
● Robotics
● Natural Language Processing
● Computer Vision
● Etc...

Motivation

● How is it different?

Reinforcement Learning

Ref. 10

● Sparse and time-
delayed labels

Reinforcement Learning

Environment

Agent

State Reward Action

● Sparse and time-delayed labels
● Credit Assignment Problem
● Explore-Exploit Dilemma: Action Selection

● Greedy Approach
● Random Approach
● Epsilon-Greedy Approach

Reinforcement Learning

Ref. 5

Markov Decision Process

S0

a 1

a0

S2

S1

a 1

a0

a0

a 1

Ref. 11

● Most common way to formalize a reinforcement learning
problem

● An episode of a Markov decision process is a finite
sequence of states, actions, and rewards:

● An experience or transition is defined as:

● "A Markov decision process relies on the Markov
assumption, that the probability of the next state s

i+1

depends only on current state s
i
 and performed action a

i
, but

not on preceding states or actions." (3)

Markov Decision Process

● Total Reward:

● Total Future Reward:

● Discounted Future Reward:

● Discounted Future Reward:

Discounted Future
Reward

● "In Q-learning we define a function Q*(s,a) representing the
discounted future reward when we perform action ‘a’ in state
‘s’, and continue optimally from that point on." (3)

● Rewrite as the Bellman Equation:

● If we have Q*(s, a) then:

Q-Learning

● However, we do not know Q*(s,a); therefore we must
estimate it with a non-optimal function Q(s,a). This enables
us to define Q*(s,a) as

● The whole idea behind Q-learning is that the Bellman
equation can be used iteratively to improve our
approximation of the optimal Q-function.

Q-Learning

Action 0 Action 1 ... Action n-1

State 0 Q(0, 0) Q(0, 1) ... Q(0, n-1)

State 1 Q(1, 0) Q(1, 1) ... Q(1, n-1)

...

State n-1 Q(n-1, 0) Q(n-1, 1) ... Q(n-1, n-1)

Q-Learning

Update for simple Q-Learning:

Bellman Equation:

Deep Q Network

Input Convolutional
Layers

Fully Connected
Layers Q-values

Ref. 3

Problem? Too many states!
Solution? Use a Neural Network to approximate it!

● Now that we have a DQN all we need for deep
reinforcement learning is a loss function,

● where δ is temporal difference,

● L(δ) for MSE loss is,

● and L(δ) for Huber Loss is,

Deep Q-Learning:
Stage 1

● Add Experience Replay
● Store transitions and sample batches during training
● Stabilizes learning
● Needed because successive experiences are highly co-

related

Deep Q-Learning:
Stage 2

Add a separate target network

● The problem: “...the max operator uses the same values to
both select and evaluate an action. This can therefore lead
to overoptimistic value estimates.” (7)
● The target network is used to:

● Determine a’
● Evaluate state-action value of Q(s’, a’)

Deep Q-Learning:
Stage 3

Double Deep Q-Networks
● Mitigates overoptimistic value estimates.

● Use the online network to determine a' and then use the
target network as a measure of how good that action is Q(s',
a').

Deep Q-Learning:
Stage 4

Dueling Double Deep Q-Networks

Deep Q-Learning:
Stage 5

Advantage Stream

Value StreamInput Convolutional
Layers

Fully
Connected

Layers

Fully
Connected

Layers

Advantage
Values

Q-values

State
Value

Now we must combine the approximate value and
advantage functions to form an approximate state-action
value function.

Deep Q-Learning:
Stage 5

Advantage Stream

Value StreamInput Convolutional
Layers

Fully
Connected

Layers

Fully
Connected

Layers

Advantage
Values

Q-values

State
Value

● Stage for further extensions such as:
● Prioritized Replay
● Continuous Action Domain
● Continuous target network updates

Deep Q-Learning:
Stage 6

● What is 2048?
● Demo

● State space: realistically ~1516, theoretically more.
● Action Space = {0, 1, 2, 3} or {<up>, <right>, <down>,

<left>}

2048-Unlimited

● Show a config file
● Huber Loss & MSE Loss & batch updates
● Gradient Clipping
● Double DQN
● Dueling DQN

● Average Advantage
● Max Advantage

● Target Network syncing
● Slow tracking
● Update frequency
● Adaptive Learning Rate
● Replay memory
● Epsilon decay mode = {linear, exponential, sinusoidal}
● Epsilon annealing duration
● Epsilon Explorer
● Agent knows best & unsticking agent
● Various activation functions: ReLU, ELU, SreLU
● Various Networks: Convolutional, Fully Connected, Self Normalizing Fully Connected

Implementation
Overview

● PyTorch; my own implementation starting from DQN State 2
● Normalize states and rewards:

● Epsilon Decay Modes

Implementation
Overview

● Epsilon Explorer
● A novel contribution: modify epsilon within an episode in addition to between

episodes
● Goal: increase exploration as you get further in the episode and reduce exploration

near the beginning of the episode
● See jupyter notebook

● Use smaller epsilon values
● Agent Knows Best
● Unstick Agent

Implementation
Overview

Research and Results

● ~26 runs with my code
● We will look at a very small subset

● Exploration of the hyperparameter space was limited by
computational constraints
● See config file and networks module

● Best human performance is ~100,000

Research and Results

● scspc677:run20170719_01
● Parameters: 75236
● epsilon_decay_mode =

linear
● epsilon_annealing_duration

= 20,000
● slow_tracking = False
● epsilon_explorer = False

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc

Research and Results

● ubuntu1404:run20170719_0
1

● Parameters: 75236
● Compare to

scspc677:run20170719_01
● epsilon_decay_mode =

exponential
● epsilon_annealing_duration

= 40,000
● slow_tracking = False
● epsilon_explorer = True

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc

Research and Results

● ubuntu1404:run20170719_0
2

● Parameters: 75236
● Compare to

scspc677:run20170719_01
● slow_tracking = True
● epsilon_explorer = False

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc

Research and Results

Neural Network: DQN_02

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2)) 256 fc 4 fc

● scspc675.cs:run20170720_0
3

● Parameters: 198660

Research and Results

● scspc665:run20170721_01
● Parameters: 920836
● This is the same run as

scspc675:run20170720_03
except:
● Network 4 instead of

network 2

Neural Network: DQN_04

1@4x4 256@3x3 Conv2d(1, 256, (2, 2)) 256@2x2 Conv2d(256, 256, (2, 2)) 512@1x1 Conv2d(256, 512, (2, 2)) 256 fc 4 fc

Research and Results

● scspc675:run20170723_01
● Parameters: 330245
● This is the same run as

scspc675:run20170720_03
except:
● dueling_dqn = True instead

of False
● plateau length changed

from annealing_duration to
annealing_duration/4

Neural Network: DQN_02

Advantage
Stream

Value
Stream

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2))

256
 fc

256

 fc

4 fc

4

 fc

1 fc

 fc

Research and Results

● Show a config file

Neural Network: DQN_02

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2)) 256 fc 4 fc

● scspc675:run20170723_02
● Parameters: 198660
● This is the same run as

scspc675:run20170720_03
except:
● no penalty for a reward of 0
● plateau length changed

from annealing_duration to
annealing_duration/4

Research and Results

● Best results so far:
● Largest Tile = 4096
● Longest Episode Duration = 3127
● Highest Score = 67988
● Largest Mean Total Rewards = 15390
● Largest Mean Duration = 893
● My personal highest Tile = 2048
● My personal highest Score = 27556

● Show the demo and interactive results

Demonstration and
Interactive Results

● We would like to experiment with ways that may increase
the speed the model learns while avoiding longer training,
longer annealing times, and larger models such as:
● Prioritized Experience Replay
● Epsilon Explorer

● We would like to experiment more (in general):
● Larger networks
● Longer training/annealing
● Different Networks
● Wider variety of activation funcitons

Future Work

● To the best of our knowledge, this is the first successful
application of Deep Q-Learning to 2048

● My Deep Learning Model can play better than I can on
average

● The model is not yet at superhuman performance
● Agent Knows Best is benificial
● We hypothesize that performance can be increased by:

● Longer training times
● Longer annealing times
● Larger models
● Prioritized Experience Replay
● Epsilon Explorer

Conclusion

1. https://gabrielecirulli.github.io/2048/
2. http://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html#sphx-glr-

intermediate-reinforcement-q-learning-py
3. http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
4. https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-

part-0-q-learning-with-tables-and-neural-networks-d195264329d0
5. Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning."

Nature 518.7540 (2015): 529-533.
6. Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning with

Double Q-Learning." AAAI. 2016.
7. Wang, Ziyu, et al. "Dueling network architectures for deep reinforcement learning."

arXiv preprint arXiv:1511.06581 (2015).
8. Schaul, Tom, et al. "Prioritized experience replay." arXiv preprint arXiv:1511.05952

(2015).
9. Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv

preprint arXiv:1509.02971 (2015).
10. https://www.saagie.com/blog/machine-learning-concepts-overview
11. https://en.wikipedia.org/wiki/Markov_decision_process

References

https://gabrielecirulli.github.io/2048/
http://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/
https://www.saagie.com/blog/machine-learning-concepts-overview

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

