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● Applications of Deep Reinforcement Learning
● Games
● Self Driving Cars
● Manufacturing
● Robotics
● Natural Language Processing
● Computer Vision
● Etc...

Motivation



  

● How is it different?

Reinforcement Learning
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● Sparse and time-
delayed labels



  

Reinforcement Learning
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● Sparse and time-delayed labels
● Credit Assignment Problem
● Explore-Exploit Dilemma: Action Selection

● Greedy Approach
● Random Approach
● Epsilon-Greedy Approach

Reinforcement Learning
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Markov Decision Process
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● Most common way to formalize a reinforcement learning 
problem

● An episode of a Markov decision process is a finite 
sequence of states, actions, and rewards:

● An experience or transition is defined as:

● "A Markov decision process relies on the Markov 
assumption, that the probability of the next state s

i+1
 

depends only on current state s
i
 and performed action a

i
, but 

not on preceding states or actions." (3)

Markov Decision Process



  

● Total Reward:

● Total Future Reward:

● Discounted Future Reward:

● Discounted Future Reward:

Discounted Future 
Reward



  

● "In Q-learning we define a function Q*(s,a) representing the 
discounted future reward when we perform action ‘a’ in state 
‘s’, and continue optimally from that point on." (3)

● Rewrite as the Bellman Equation:

● If we have Q*(s, a) then:

Q-Learning



  

● However, we do not know Q*(s,a); therefore we must 
estimate it with a non-optimal function Q(s,a). This enables 
us to define Q*(s,a) as

● The whole idea behind Q-learning is that the Bellman 
equation can be used iteratively to improve our 
approximation of the optimal Q-function.

Q-Learning



  

Action 0 Action 1 ... Action n-1

State 0 Q(0, 0) Q(0, 1) ... Q(0, n-1)

State 1 Q(1, 0) Q(1, 1) ... Q(1, n-1)

... ... ... ... ...

State n-1 Q(n-1, 0) Q(n-1, 1) ... Q(n-1, n-1)

Q-Learning

Update for simple Q-Learning:

Bellman Equation:



  

Deep Q Network

Input Convolutional
Layers

Fully Connected
Layers Q-values
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Problem? Too many states!
Solution? Use a Neural Network to approximate it!



  

● Now that we have a DQN all we need for deep 
reinforcement learning is a loss function,

● where δ is temporal difference,

● L(δ) for MSE loss is,

●  and L(δ) for Huber Loss is,

Deep Q-Learning:
Stage 1



  

● Add Experience Replay
● Store transitions and sample batches during training
● Stabilizes learning
● Needed because successive experiences are highly co-

related

Deep Q-Learning:
Stage 2



  

Add a separate target network

● The problem: “...the max operator uses the same values to 
both select and evaluate an action. This can therefore lead 
to overoptimistic value estimates.” (7)
● The target network is used to:

● Determine a’
● Evaluate state-action value of Q(s’, a’)

Deep Q-Learning:
Stage 3



  

Double Deep Q-Networks
● Mitigates overoptimistic value estimates.

● Use the online network to determine a' and then use the 
target network as a measure of how good that action is Q(s', 
a').

Deep Q-Learning:
Stage 4



  

Dueling Double Deep Q-Networks

Deep Q-Learning:
Stage 5
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Now we must combine the approximate value and 
advantage functions to form an approximate state-action 
value function.

Deep Q-Learning:
Stage 5
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● Stage for further extensions such as:
● Prioritized Replay
● Continuous Action Domain
● Continuous target network updates

Deep Q-Learning:
Stage 6



  

● What is 2048?
● Demo

● State space: realistically ~1516, theoretically more.
● Action Space = {0, 1, 2, 3} or {<up>, <right>, <down>, 

<left>}

2048-Unlimited



  

● Show a config file
● Huber Loss & MSE Loss & batch updates
● Gradient Clipping
● Double DQN
● Dueling DQN

● Average Advantage
● Max Advantage

● Target Network syncing
● Slow tracking
● Update frequency
● Adaptive Learning Rate
● Replay memory
● Epsilon decay mode = {linear, exponential, sinusoidal}
● Epsilon annealing duration
● Epsilon Explorer
● Agent knows best & unsticking agent
● Various activation functions: ReLU, ELU, SreLU
● Various Networks: Convolutional, Fully Connected, Self Normalizing Fully Connected

Implementation 
Overview



  

● PyTorch; my own implementation starting from DQN State 2
● Normalize states and rewards:

● Epsilon Decay Modes

Implementation 
Overview



  

● Epsilon Explorer
● A novel contribution: modify epsilon within an episode in addition to between 

episodes
● Goal: increase exploration as you get further in the episode and reduce exploration 

near the beginning of the episode
● See jupyter notebook

● Use smaller epsilon values
● Agent Knows Best
● Unstick Agent

Implementation 
Overview



  

Research and Results

● ~26 runs with my code
● We will look at a very small subset

● Exploration of the hyperparameter space was limited by 
computational constraints
● See config file and networks module

● Best human performance is ~100,000 



  

Research and Results

● scspc677:run20170719_01
● Parameters: 75236
● epsilon_decay_mode = 

linear
● epsilon_annealing_duration 

= 20,000
● slow_tracking = False
● epsilon_explorer = False

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc



  

Research and Results

● ubuntu1404:run20170719_0
1

● Parameters: 75236
● Compare to 

scspc677:run20170719_01
● epsilon_decay_mode = 

exponential
● epsilon_annealing_duration 

= 40,000
● slow_tracking = False
● epsilon_explorer = True

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc



  

Research and Results

● ubuntu1404:run20170719_0
2

● Parameters: 75236
● Compare to 

scspc677:run20170719_01
● slow_tracking = True
● epsilon_explorer = False

Neural Network: DQN_00

1@4x4 32@3x3 Conv2d(1, 32, (2, 2)) 64@2x2 Conv2d(32, 64, (2, 2)) 256 fc 4 fc



  

Research and Results

Neural Network: DQN_02

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2)) 256 fc 4 fc

● scspc675.cs:run20170720_0
3

● Parameters: 198660



  

Research and Results

● scspc665:run20170721_01
● Parameters: 920836
● This is the same run as 

scspc675:run20170720_03 
except:
● Network 4 instead of 

network 2

Neural Network: DQN_04

1@4x4 256@3x3 Conv2d(1, 256, (2, 2)) 256@2x2 Conv2d(256, 256, (2, 2)) 512@1x1 Conv2d(256, 512, (2, 2)) 256 fc 4 fc



  

Research and Results

● scspc675:run20170723_01
● Parameters: 330245
● This is the same run as 

scspc675:run20170720_03 
except:
● dueling_dqn = True instead 

of False
● plateau length changed 

from annealing_duration to 
annealing_duration/4

Neural Network: DQN_02

Advantage
Stream

Value
Stream

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2))

256
 fc

256

 fc

4 fc

4

 fc

1 fc
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Research and Results

● Show a config file

Neural Network: DQN_02

1@4x4 128@3x3 Conv2d(1, 128, (2, 2)) 128@2x2 Conv2d(128, 128, (2, 2)) 256 fc 4 fc

● scspc675:run20170723_02
● Parameters: 198660
● This is the same run as 

scspc675:run20170720_03 
except:
● no penalty for a reward of 0
● plateau length changed 

from annealing_duration to 
annealing_duration/4



  

Research and Results

● Best results so far:
● Largest Tile = 4096
● Longest Episode Duration = 3127
● Highest Score = 67988
● Largest Mean Total Rewards = 15390
● Largest Mean Duration = 893
● My personal highest Tile = 2048
● My personal highest Score = 27556 



  

● Show the demo and interactive results

Demonstration and 
Interactive Results



  

● We would like to experiment with ways that may increase 
the speed the model learns while avoiding longer training, 
longer annealing times, and larger models such as:
● Prioritized Experience Replay
● Epsilon Explorer

● We would like to experiment more (in general):
● Larger networks
● Longer training/annealing
● Different Networks
● Wider variety of activation funcitons

Future Work



  

● To the best of our knowledge, this is the first successful 
application of Deep Q-Learning to 2048

● My Deep Learning Model can play better than I can on 
average

● The model is not yet at superhuman performance
● Agent Knows Best is benificial
● We hypothesize that performance can be increased by:

● Longer training times
● Longer annealing times
● Larger models
● Prioritized Experience Replay
● Epsilon Explorer

Conclusion
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