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Introduction to Neural Network Models

A Black Box with a Billion Dials

But we can do better...
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The Artificial Neuron

Base unit for (most) neural networks is a simplified version of a
biological neuron

Neuron has a set of inputs which have associated weights, an
activation function which then determines whether a neuron will
”fire” or be activated

Together these can form very complex function
modellers/approximators
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The Artificial Neuron

Output y is some function of the sum
of the weights and the inputs.

y = f
(∑m

j=0 wkjxj

)
Each neuron has a weight vector and
each layer has a weight matrix W
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Multilayer Perceptron

Performs multiple logistic regressions at once for arbitrary function
approximation

The multilayer perceptron which you might consider “deep” but isn’t.
It suffers from the “vanishing gradient problem”
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Backpropogation: Learning with Derivatives

The basic idea behind learning in a neural network is that a network will
have:

Objective function: J(θ), E (v , h) or training vector
I This applies for supervised and unsupervised learning
I The network’s output is compared with objective to obtain an error

Optimization algorithm: Stochastic Gradient Descent, Contrastive
Divergence etc.

I These algorithms direct learning within the “weight space”

But how do we adjust weights to optimize the objective?
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Chain Rule

Use the chain rule to determine how each output effects the final
desired output

Now have many gradients that we can use for optimization
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Backpropogation

Calculate network error (where, t is the target, y is the network output)

E = 1
2(t − y)2

∂E

∂wij
=
∂E

∂oj

∂oj
∂netj

∂netj
∂wij

∂netj
∂wij

=
∂

∂wij

(
n∑

k=1

wkjxk

)
= xi

∆wij = −α ∂E

∂wij
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High Dimensional Optimization Problem: Weight Space

Training a neural network is a N-dimensional optimization problem

Weight in a NN, is a dimension and the goal is to mind the
minimum error (“hight”) with gradient descent

There are many optimization algorithms for finding weights
I Hessian-Free Optimization, Stochastic Gradient Descent, RMSProp,

AdaGrad, Momentum, etc.

Dylan Drover, Borui Ye, Jie Peng (University of Waterloo) NN for NLP July 8, 2015 10 / 59



What is ”Deep Learning” and why should we care?

Deep Learning is just a re-branding of artificial neural networks

Multiple factors led to the new deeper NN architectures
I Pre-training (unsupervised)
I Faster optimization algorithms
I Graphic Processing Units (GPU)

A myriad of techniques existed previously but things began to come
together in the mid 2000s
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Better Results Through Pre-Training

Train each layer of network greedily using other layers output as
input with unsupervised learning

Combine layers and use fine tune training as in MPL

Network starts with better position in weight space

MNIST error rates [Erhan et al., JMLR 2010]
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Promise for NLP

Improved results for Part of Speech tagging and Named Entity Recognition
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Application of Deep Belief Networks for Natural Language
Understanding [Sarikaya et al.]

Sarikaya et al. attempt to solve the problem of spoken language
understanding (SLU) in the context of call-routing (call-centre data)

Data:
I 27 000 transcribed utterances serve as unlabelled data
I Sets of 1K, 2K, 3K, 4K, 5K, 6K, 7K, 8K, 9K, 10K are used as labelled

data sets

Restricted Boltzmann Machines (RBM) were trained with unlabelled
data and then stacked to form a Deep Belief Network
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Restricted Boltzmann Machine

Composed of visble and hidden neurons

Unlabelled training data is presented as v

Hidden neurons (stochastic binary units) and weights attempt to
approximate a joint probability distribution of data (Generative
Model)
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Learning Without Knowing
Joint energy distribution of RBM is defined as:

E (v , h) = −
∑
i

aivi −
∑

bihi −
∑∑

viwi ,jhj

Which defines the probability distribution:

p(v,h) =
1

Z
e−E(v ,h)

Which is marginalized over over hidden vectors:

p(v) =
1

Z

∑
h

e−E(v ,h)

Z acts as a normalizing factor:

Z =
∑
v ,h

e−E(v ,h)
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Learning without Knowing

Training uses a “reconstruction” (the math is easier)of the input vector
that is achieved in the hidden units with:

p(hj = 1|v) = σ(aj +
∑
i

viwij)

Which is used in:

p(vi = 1|h) = σ(bi +
∑
j

hjwij)

Dylan Drover, Borui Ye, Jie Peng (University of Waterloo) NN for NLP July 8, 2015 17 / 59



Learning without Knowing

The hidden units compare their rough reconstruction to the actual
input.

Based on the reconstruction, the weights are changed to improve

∂logp(v)

∂wij
= 〈vihj〉v − 〈vihj〉model

∆wij ∝ 〈vihj〉data − 〈vihj〉model

∆wij ∝ 〈vihj〉data − 〈vihj〉recon

This is a rough approximation, however it works well in practice.

*(Angle brackets are the expectation with respect to the subscript
distribution)
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Visualization of Weights from a RBM

Each square is a set of weights for one neuron

Features emerge from unsupervised learning
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Deep Belief Network

Use one RBM to train the next layer RBM
I Each layer learns features
I Each successive layer learns features of features

This continues until a supervised layer

Results in a Deep Belief Network
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Results

Results show improvements from unsupervised learning in all aspects
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Autoencoders

Creates compressed
representation of data
(Dimensionality reduction)

Central layer acts as a
non-linear principal
component analysis

Decoder weights are transposed
encoder weight matrices: Wli

and W T
li

Each layer trained greedily
(similar to DBN layers)
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Recurrent Neural Networks

Input is treated as time series:
..., xt−1, xt , xt+1, ...

Retain temporal context or
short term memory

Trained with backpropogation
through time (BPTT)
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Long Short Term Memory

Prevent the “vanishing
gradient” problem

Can retain information
for arbitrary amount of
time
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Learning Phrase Representations using RNN
EncoderDecoder for Statistical Machine Translation [Cho
et al.]

Combination of a RNN with an autoencoder

Encoder maps variable length source phrase X = (x1, x2, ..., xN)
(English sentence) into a fixed length internal representation vector c

The decoder then maps this back into another variable length
sequence, the target sentence Y = (y1, y2, ..., yN) (French Sentence)

Analysis showed that the internal representation (in the 1000 hidden
units) preserved syntactic and semantic information

Learns probability distribution:

p(y1, ..., yT ′ |x1, ..., xT )
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Learning Phrase Representations using RNN
EncoderDecoder for Statistical Machine Translation

The decoder uses the compressed semantic meaning vector c as well
as the previous word in its translation

h〈t〉 = f (h〈t−1〉, yt−1, c)

Next element in translated sequence is conditioned on:

P(yt |yt−1, ..., y1, c) = g(h〈t−1〉, yt−1, c)

Training of the network attempts to maximize the conditional log
likelihood of:

max
θ

1

N

N∑
n=1

log pθ(yn, xn)

where θ are the model parameters (weights) and (yn, xn) are input
and output pairs.
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Encoder - Decoder
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Big Data

The training of the model used:
I Bilingual corpora Europarl (61M words)
I News commentary (5.5M words)
I UN transcriptions (421M words)
I 870M words from crawled corpora

However to optimize results only a subset of 348M words for training
translation

Final BLEU scores for the model were 34.54
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Learning Phrase Representations using RNN
EncoderDecoder for Statistical Machine Translation

This model is not restricted to just translation (which is why ANN are
so useful and exciting)

This model also created semantic relations between similar words
and sentences from their continuous vector space representations
(more on that later)
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Results
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Results
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Results
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Results
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Neural Probabilistic Language Model

Presenter: Borui Ye
Papers:

1 Efficient Estimation of Word Representations in Vector Space

2 A Neural Probabilistic Language Model
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What is Word Vector

One-hot representation: represents a word using a long vector. For
example:
“microphone” is represented as : [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...]
“phone” is represented as : [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ...]

PROS: this method can coordinate well with max entropy, SVM,
CRF algorithm.

CONS: word gap
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What is Word Vector (Cont.)
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How To Train Word Vector

Language Model In practice, we usually need to calculate the probability
of a sentence:

P(S) = p(w1,w2,w3,w4,w5, ...,wn)

= p(w1)p(w2|w1)p(w3|w1,w2)...p(wn|w1,w2, ...,wn−1)

Markov’s Assumption Each word depends only on the last n − 1 words.

P(S) = p(w1,w2,w3,w4,w5, ...,wn)

= p(w1)p(w2|w1)p(w3|w1,w2)...p(wn|w1,w2, ...,wn−1)

≈ p(w1)p(w2|w1)p(w3|w2)...p(wn|wn−1) (bigram)
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How To Train Word Vector (Cont.)

Problems With N-gram Model:

It is not taking into account contexts farther than 1 or 2 words

Cannot capture the similarities among words.

Example:
The cat is walking in the bedroom

A dog was running in a room
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Bengio’s Neural Network

Training Set a sequence w1...wT of words wt ∈ V , where the vocabulary
V is a large but finite set.
Objective learn a model : f (wt , ...,wt−n+1) = P̂(wt |w t−1

1 )

Constraint
∑|V |

i=1 f (i ,wt−1, ...,wt−n+1) = 1, with f > 0
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Bengio’s Neural Network (Cont.)
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Parameters
Definitions
C : a shared word vector matrix, C ∈ R|V |∗m
x : vector of hidden layer, x = (C (wt−1),C (wt−2), ...,C (wt−n+1))
y : vector of output layer, y = b + Wx + Utanh(d + Hx)
P(wt = i |context) = P̂(wt |wt−1, ...,wt−n+1) = eywt∑

i e
yi
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Parameter Estimation
The goal is to find the parameter that maximized the training corpus
penalized log-likelihood: L = 1

T

∑
t log f (wt ,wt−1, ...,wt−n+1; θ) + R(θ)

where θ = (b, d ,W ,U,H,C )

SGD: θ ← θ + ε∂P̂(wt |wt−1,...,wt−n+1)
∂θ
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Google’s Word2Vec

Project url : http://code.google.com/p/word2vec/

Feature : Additive Compositionality :
vector(‘Paris’) - vector(‘France’) + vector(’Italy’) ≈ vector(’Rome’)
vector(‘king’) - vector(‘man’) + vector(’woman’) ≈ vector(‘queen’)
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Google’s Word2Vec (Cont.)

./distance
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Two Models and Two Algorithms

Models Continuous Bag of Words Skip-gram

Alg.
Hierarchical

Softmax
Negative
Sampling

Hierarchical
Softmax

Negative
Sampling
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CBOW+Hierarchical Softmax

Predict the probability of a word given its context:

P(w |Context(w))

Learning objective : maximize log-likelihood:

ζ =
∑
w∈C

log p(w |Context(w))
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CBOW+Hierarchical Softmax (Cont.)

Input Layer 2c word vectors in Context(w) :
v(Context(w)1), v(Context(w)2), ...v(Context(w)2c) ∈ Rm

Projection Layer Adding all the vectors in input layer:

xw =
2c∑
i=1

v(Context(w)i ) ∈ Rm

Output Layer A Huffman tree using words in vocabulary as leaves.
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CBOW+Hierarchical Softmax (Cont.)

Notations

pw : Path from root to corresponding leaf w

lw : Number of nodes included in pw

pw1 , p
w
2 , ..., p

w
lw : lw nodes of path pw

dw
2 , d

w
3 , ..., d

w
lw ∈ {0, 1} : Huffman code of each node on path pw ,

root does not have code

θw1 , θ
w
2 , ..., θ

w
lw : vector of each node on path pw ,
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Huffman Tree

    I

love watching Brazil

football game
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Learning Objective

We assign every node a label:

Lable(pwi ) = 1− dw
i , i = 2, 3, ..., lw

So the probability of a node being classified as positive label is :

δ(xTw σ) =
1

1 + e−xTw θ

Then:

p(w |Context(w)) =
lw∏
j=2

p(dw
j |xw , θwj−1)

where

p(dw
j |xw , θwj−1) =

{
σ(xTw θ

w
j−1), dw

j = 0;

1− σ(xTw θ
w
j−1), dw

j = 1;
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Learning Objective

Full learning objective is to maximize:

ζ =
∑
w∈C

log
lw∏
j=2

{[σ(xTw θ
w
j−1)]1−d

w
j [1− σ(xTw θ

w
j−1)]d

w
j }

=
∑
w∈C

lw∑
j=2

{(1− dw
j ) log[σ(xTw θ

w
j−1)] + dw

j log[1− σ(xTw θ
w
j−1)]}
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CBOW+Negative Sampling

In a nutshell, it doesn’t have Huffman tree in the output layer, but a set of
negative samples instead (Given Context(w), word w is positive, while
others are negative). Negative samples are randomly selected.
Assume that we have had a negative sample set NEG (w) 6= Φ, ∀w̃ ∈ D,
we denote the label of w as follows:

Lw (w̃) =

{
1, w̃ = w ;

0, w̃ 6= w ;
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CBOW+Negative Sampling (Cont.)

Given (Context(w),w) our goal is to maximize:

g(w) =
∏

u∈w
⋃

NEG(w)

p(u|Context(w))

where

p(u|Context(w)) =

{
σ(xTw θ

u), Lw (u) = 1;

1− σ(xTw θ
u), Lw (u) = 0;
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CBOW+Negative Sampling (Cont.)

To increase the probability of positive sample and decrease negative ones:

g(w) =
∏

u∈w
⋃

NEG(w)

p(u|Context(w))

= σ(xTw θ
w )

∏
u∈NEG(w)

(1− σ(xTw θ
w ))

Then:
G =

∏
w∈C

= g(w)

where C is the corpus.
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Learning Objective

Full learning objective: maximize the following:

ζ = logG = log
∏
w∈C

g(w) =
∑
w∈C

log g(w)

=
∑
w∈C

log
∏

u∈{w}
⋃

NEG(w)

{[σ(xTw θ
u)]L

w (u)[1− σ(xTw θ
u)](1−L

w (u))}
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Difference Between CBOW and Skip-gram

Skip-gram is more accurate.

Skip-gram is slower given larger context.
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Why Use Negative Sampling & Hierachical Softmax

    I

love watching Brazil

football game
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Thank you!
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