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I. INTRODUCTION

Experimental and theoretical studies have led to the emergence of a unified
general mechanism for protein folding that serves as a framework for the design
and interpretation of research in this area [1]. This is not to suggest that the
details of the folding process are the same for all proteins. Indeed, one of the
most striking computational results is that a single model can yield qualitatively
different behavior depending on the choice of parameters [1-3]. Consequently, it
remains to determine the behavior of individual sequences under given
environmental conditions and to identify the specific factors that lead to the
manifestation of one folding scenario rather than another. Although doing so
requires investigation of the kinetics of particular proteins at the level of
individual residues, for which protein engineering [4] and nuclear magnetic
resonance (NMR) [5] experiments are very useful, complementary information
about the roles played by the sequence and the structure can also be obtained by a
statistical analysis of the folding rates of a series of proteins.

Statistical methods have been applied for many years in attempts to predict
the structures of proteins (for a review of progress in this area, see the chapter
by Meller and Elber, this volume), but their use in the analysis of folding kinetics
is relatively recent. The first such investigations focused on “toy”” protein models
in which the polypeptide chain is represented by a string of beads restricted to
sites on a lattice. It was found that the ability of a sequence to fold correlates
strongly with measures of the stability of its native (ground) state (such as the
Z-score or the gap between the ground and first excited compact states) [6-9],
but the native structure also plays an important role for longer chains [10,11].
While lattice models are limited in their ability to capture the structural features
of proteins, they have the important advantage that the results of statistical
analyses can be compared with calculated folding trajectories to determine the
physical bases of observed correlations. Consequently, studies based on such
models are particularly useful for the quantitation of observed effects, the
generalization from individual sequences, the identification of subtle relation-
ships, and ultimately the design of additional sequences that fold at a given rate.

Analogous statistical analyses of experimentally measured folding kinetics
of proteins were hindered by the fact that complex multiphasic behavior was
exhibited by most of the proteins for which data were available (e.g., barnase
and lysozyme). In recent years, an increasing number of proteins that lack
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significantly populated folding intermediates and thus exhibit two-state folding
kinetics have been identified, and a range of data have been tabulated for them
[12—14]. The initial linear analyses of such proteins indicated that their folding
rates are determined primarily by their native structures [12,14]. More recently,
a nonlinear, multiple-descriptor approach revealed that there is a significant
dependence on the stability as well [15]. These and related studies are discussed
in Section IV.A, after an overview of the statistical methods employed in this
area (Section II) and a review of the results from lattice models (Section III).
An in-depth analysis of a database of 33 proteins that fold with two- or
weakly three-state kinetics is presented in Sections IV.B through V. We explore
one-, two-, and three-descriptor nonlinear models. A structurally based cross-
validation scheme is introduced. Its use in conjunction with tests of statistical
significance is important, particularly for multiple-descriptor models, due to the
limited size of the database. Consistent with the initial linear studies [12,14], it
is found that the contact order and several other measures of the native structure
are most strongly related to the folding rate. However, the analysis makes clear
that the folding rate depends significantly on the size and stability as well. Due
to the importance ascribed to the stability by analytic [16—18] and simulation
[2,3,6-11] studies, as well as its recent use in one-dimensional models for fitting
and interpreting experimental data [19,20], we examine its connection to the
folding rate in more detail. The unfolding rate, which correlates more strongly
with stability, is considered briefly. The relation of the statistical results to
experiments and the model studies is discussed in Sections VI and VIIL.

II. STATISTICAL METHODS

Before reviewing the results for specific systems, we introduce the statistical
methods that have been used to analyze folding kinetics. Perhaps the simplest
such method is to group sequences; here, one categorizes each sequence in a
database according to one or more of its native properties (‘‘descriptors’’) and its
folding behavior. Visualization can be used to identify patterns, and averages and
higher moments of the distributions of descriptors can be used to quantitate
differences between groups. For properties on which the folding kinetics depend
strongly, such as the energy gap in lattice models, this type of analysis has proven
effective [6].

However, simple grouping is often insufficient to identify weaker but still
significant trends and makes it difficult to determine the relative importance of
relationships. Consequently, more quantitative methods are necessary. One stati-
stic that is employed widely is the Pearson linear correlation coefficient (ry,):
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Typically, the x; are a set of values of a particular descriptor, such as the sequence
length, and the y; are a set of values for a measure of the folding kinetics, such as
the logarithm of the folding rate constant (log k) [9,10,12]. The magnitude of r,
determines its significance, and its sign indicates whether x; and y; vary in the
same or opposite manner: 7, , = 1 corresponds to a perfect correlation, 7, = —1
to a perfect anticorrelation, and r,, =0 to no correlation. In spite of its
popularity, this statistic has several shortcomings when used by itself. It is
limited to the identification of linear relationships between pairs of properties; it
is not straightforward to test or cross-validate those relationships, which is
important, as discussed below; and it cannot be used directly to predict the
behavior of additional sequences.

These limitations can be overcome by constructing models to predict folding
behavior and then quantifying their accuracy. For the latter step, the Pearson
linear correlation coefficient can be used with x; as the observed values and y; as
the predicted ones (for which we introduce the shorthand notations 7, rjc, and
ey, described below). Alternatively, one can calculate the root-mean-square
error or the closely related fraction of unexplained variance:

(2)

Again, x; (y;) are the observed (predicted) values. Typically, r and ¢*> behave
consistently. The latter is useful for quantitating the improvement obtained upon
extending a model with N descriptors to one with N 4 1 with Wold’s statistic:
E=(1-q%.,)/(1—q%) [21,22]. A value of less than 1.0 for the latter shows
that ¢ increases upon adding a descriptor. The statistical significance of a
particular value of E depends on the specific data, but E = 0.4 has been
suggested to correspond typically to the 95% confidence interval [23].

For constructing the models themselves, linear regression (on one or more
descriptors) is attractive in that the best fit for a set of data can be determined
analytically, but, as its name implies, it is limited to detecting linear relation-
ships. While fits with higher-order polynomials are possible, a general and
flexible alternative is to use neural networks (NNs). The latter are computational
tools for model-free mapping that take their name from the fact that they are
based on simple models of learning in biological systems [24,25]. Neural
networks have been used extensively to derive quantitative structure—property
relationships in medicinal chemistry (for a review, see Ref. 26) and were first
used to analyze folding kinetics in Ref. 11. A schematic diagram of a neural
network is shown in Fig. 1. In this example, there are three inputs (indicated by
the rectangles on the left); in the present study these would each contain the
value of a descriptor, such as the free energy of unfolding or the fraction of
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input layer hidden layer output layer
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descriptor 2 predicted log k¢
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Figure 1. Schematic of a neural network.

helical contacts. The circles represent sigmoidal functions (nodes). There are
many possible choices for the specific form of these functions; we use
Fe 1

1+exp(—0— >, wipi)
where the sum ranges over the previous layer (to the left in the diagram), p;
are the values of the elements of that layer, w; are the weights for each of
those elements (represented by the connecting lines in the diagram), 6 is an
arbitrary constant, and the data are assumed to be normalized for clarity. Thus, to
“fire” the network in Fig. 1, a weighted sum over the three inputs to each hidden
node is made, the resulting sums are used to calculate the values of the sigmoidal
functions associated with those nodes, a weighted sum of those values is then
made, and the final sigmoidal function of the output node is calculated. To fit
data, the w; are initialized to random values and adjusted with standard
optimization techniques to maximize the accuracy of the output for the (training)
set. In the present study, we varied the weights with the scaled conjugate gradient
method [27].

When one wishes to test many different possible descriptors, the number of
possible NN input combinations can be very large. One can avoid making an
exhaustive search by using a genetic algorithm (GA) to select the descriptors to
test. This tool is also biologically motivated—in this case, by evolution. A
population is created in which each individual consists of a particular set of
descriptors. Repeatedly, each such set (a “parent’) is duplicated (*“‘asexual repro-
duction”), the new copy (a ““child’”) is changed by one descriptor (‘“‘mutated”),
and then only the best (““fittest”) individuals in the combined pool of parents
and children are kept. Here, “‘best” means that a linear regression or NN model
employing those descriptors yields the greatest accuracy for the training set.
Alternative schemes that involve combining features from different individuals
(“sexual reproduction”) also exist but are not employed here; for a compre-
hensive review of the use of GAs in medicinal chemistry see Ref. 28. In the
present study, we used 40 individuals with 20 genetic cycles; a few trials with
200 individuals and 50 cycles did not yield significantly different results.

3)
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An important point concerning neural networks, and indeed any multiple
parameter model, is that it is possible to overfit the data. For small sample sizes
(here, a small number of proteins), even relatively simple neural networks can
memorize the examples in the training set at the expense of learning more
general rules. Thus, it is important to test a model on novel data not used during
the fitting process. One approach is cross-validation, in which one partitions the
existing data into a series of training and test sets. In the special case of
jackknife cross-validation, all possible combinations are formed in which a
single protein is used to test the network and the remainder are used to train it.
While jackknife cross-validation is straightforward to automate, it is not
appropriate if any members of the database are significantly related (e.g.,
homologous proteins) because the inclusion of the similar data in the training
set can bias the test. A structurally based partitioning scheme is presented in
Section IV.B. Throughout, care is taken to distinguish statistics (r and ¢?) for fits
of the entire (training) set (denoted ‘“‘trn’’) from those for predictions obtained
with either jackknife or structurally based cross-validation (denoted “‘jck’ and
“cv,” respectively).

III. LATTICE MODELS

The first study in which a large number of unrelated sequences were analyzed to
identify the factors that determine their folding kinetics was based on a 27-
residue chain of beads subject to Monte Carlo dynamics on a simple cubic lattice
[6]. In this and the subsequent studies of 125-residue sequences [10,11], folding
rate constants were calculated for only a few sequences due to the large number
of trajectories required to obtain accurate results. Folding ‘‘ability” was
measured by either (a) the fraction of Monte Carlo trials that reached the native
state within the allotted simulation time or (b) the average fraction of native
contacts in the lowest energy states sampled. When the results for the 27-residue
sequences were grouped according to the former, it was found that the stability of
the native (ground) state is the only feature that distinguishes those that folded
repeatedly within the simulation time from those that did not. If the native state is
maximally compact, the stability criterion can be simplified to a consideration of
the difference in energy between the ground state and the first fully compact
(3 x 3 x 3) excited state [6]. These criteria have been used in the design of fast
folding sequences [29] and are consistent with similar studies which focus on
exhaustive enumeration of folding paths for two-dimensional chains [7,30] or on
the ratio of the folding and the “‘glass’ transition temperatures for the (three-
dimensional) 27-residue model [8].

In a number of subsequent studies of the 27-residue model, it was argued that
the kinetic folding behavior is determined by factors other than the energy gap



STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS 7

[31-33]. Unger and Moult [31] suggested that the dependence on the energy gap
derived from the variation in the simulation temperature in Ref. 6 and identified
the structure of the ground state as the primary determinant of the folding
kinetics of this system. However, in a study of 15- and 27-residue three-dimensional
chains that employed the Pearson linear correlation coefficient to quantitate the
relationships between various sequence factors and the logarithm of the mean
first passage time, the correlation with the Z-score was robust to use of a single
temperature [9]. Examination of Ref. 31 showed that sequences were designed
to have strong short-range contacts without mandating a certain fraction of long-
range contacts, so that the resulting ground states were more appropriate for
modeling a helix-coil transition than protein folding. Nevertheless, as will be
discussed below, native structure does play a role for certain lattice models
[10,11] as it does for proteins [12,14,15]. Klimov and Thirumalai [32,33]
introduced the parameter ¢ = 1 — Ty /Ty, where T} is the temperature at which
the fluctuation of the order parameter is at its maximum and Ty is the
temperature at which the specific heat is at its maximum. They found that c
is positively correlated with the logarithm of the mean first passage time (i.e.,
small sigma gives fast folding). However, the interpretation of Ty as the collapse
transition temperature is not correct in general, and the correlation described
above arises from the fact that o is related to the energy gap [9]. These
statistical studies of short chains are discussed in detail in Ref. 9.

The correlation of the folding time with the energy gap can be understood in
terms of its effect on the energy surface. For random 27-residue sequences,
folding proceeds by a fast collapse to a semicompact disordered globule,
followed by a slow, nondirected search through the relatively small number
of semicompact structures for one of the many transition states that lead rapidly
to the native conformation [2]. A large energy gap results in a native-like
transition state that is stable at a temperature high enough for the folding
polypeptide chain to overcome barriers between random semicompact states. As
the energy gap increases to the levels obtainable in designed sequences, the
model exhibits Hammond behavior [34] in that there is a decrease in the fraction
of native contacts required in the transition state from which the chain folds
rapidly to the native state. Random sequences with relatively small gaps must
form about 80% of the native contacts [2], whereas designed sequences with
large gaps need form only about 20% [35]. This shift increases the ratio of the
number of transition states to the number of semicompact states and results in a
nucleation mechanism [35].

The first study to employ the Pearson linear correlation coefficients between
various individual sequence properties and measures of folding ability concerned
the analysis of 125-residue lattice model simulations [10]. It revealed that, in
addition to the stability, the native structure plays an important role in determining
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folding ability for chain lengths comparable to that typical of certain well-
studied proteins (e.g., barnase and lysozyme); that is, a strong correlation was
observed between the frequency of reaching the native state within the
simulation time and the number of native contacts in tight turns or antiparallel
sheets. On the lattice, these are the cooperative secondary structural elements
that have the shortest sequential separations between contacts; lattice ‘“‘helices,”
which typically consist only of i, i + 3 contacts, are noncooperative and thus do
not accelerate folding. The physical basis of the relation between structure and
kinetics in lattice models and in proteins is discussed in Section IV.E.

The initial linear analysis of the 125-residue model also made clear that one
descriptor can compensate for others, so that it is necessary to consider more
than one simultaneously [10]. Accordingly, the functional dependence of the
folding ability on sets of sequence properties was derived with an artificial
neural network, and a genetic algorithm was used to select the sets that
maximize the accuracy of the predictions. Not only did the nonlinear, multi-
ple-descriptor method increase the correlation coefficients between the observed
folding abilities and the cross-validated predictions from about 0.5 to greater
than 0.8, but it revealed (in addition to the strong dependences on the stability
and structure of the native state) a role for the spatial distribution of strong and
weak pairwise interactions within the native structure. Sequences with native
structures that have more labile contacts between surface residues were found to
fold faster in general because misfolded subdomains are less likely to form and
lead to off-pathway traps [10,11,36]. This observation indicates that, as one goes
to longer sequences, the relationship between the folding rate and the native
state descriptors becomes more complex.

The genetic neural network (GNN) method was further validated by use of
one of the resulting quantitative structure—property relationships (QSPRs) to
design additional fast-folding 125-residue sequences [37]. The target native
structure and the pairwise interaction energies were varied to maximize the
output of a network trained on the original set of sequences to predict the aver-
age fraction of native contacts in the lowest energy structure sampled in each of
10 Monte Carlo simulations [10,11]. The specific descriptors employed were the
number of contacts in antiparallel sheets, the estimated gap in energy between
the native state and the lower limit of the quasi-continuous spectrum [38], and
the total energy of the contacts between surface residues. On average, the
designed sequences folded more rapidly than those for which only the stability
of the native state was optimized [29,39]. The studies of the 125-residue lattice
models thus make clear that simultaneous consideration of multiple descriptors
can improve our understanding of protein folding and our ability to extrapolate
from the analysis to predict the behavior of novel sequences. The utility of the
statistical approach for obtaining a better understanding of the folding rates of
proteins is described in the following section.
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IV. FOLDING RATES OF PROTEINS

In this section we describe statistical analyses of measured rates of protein
folding. Earlier studies are reviewed and an analysis of currently available experi-
mental data is presented. The physical bases of the results are then discussed.

A. Review

As mentioned in the Introduction, statistical analyses of the folding kinetics of
proteins were delayed until a sufficient number of proteins that fold with two-
state kinetics overall were identified [12,13]. Plaxco et al. [12] carried out an
analysis much like the initial 125-mer lattice model study mentioned above [10]
for a set of 12 two-state proteins (extended to 24 proteins in Ref. 14); that is, they
calculated linear correlation coefficients between several individual sequence
properties and the logarithm of the measured folding rate constants (log k¢). The
only descriptor examined that exhibited a high correlation (r./, 1og 1, = 0.81) was
the structure of the native state as measured by the normalized contact order
(c¢/n), the average sequential residue separation of atoms in contact divided by
the length of the sequence (see the footnote to Table III for the exact definition of
¢/n employed here). It is important to note that the contact order does not include
any information about the energies of the interactions in the native state; it is only
a measure of the structure (we use the term “structure’ rather than “topology”
[12,14] because, according to the standard mathematical meaning of the latter,
all proteins that lack disulfide bonds have the same topology).

We used a neural network to carry out a nonlinear, two-descriptor analysis of
the database of 33 proteins described in Section IV.B [15] and demonstrated that
the stability contributes significantly to determining folding rates for a given
contact order. Moreover, for 14 slow-folding proteins with high contact orders
(mixed-o/f and B-sheet proteins), the free energy of unfolding can be used by
itself to predict folding rates. By contrast, the folding rates of a-helical proteins
show essentially no dependence on the stability. The variation in behavior
observed for the structural classes suggests that, although there is a general
mechanism of folding (see the Introduction), its expression for individual
proteins can lead to very different behavior.

A number of simple physically motivated one-dimensional models have been
introduced recently to fit and interpret data on peptide and protein folding [19,
20,40-42]. These models, which use only native state data, have elements in
common with earlier theoretical treatments by Zwanzig, Wolynes, and their co-
workers [16,17,43]. The conformation of a protein is represented by a series of
binary variables (based on one or two residues), each of which can be either
native or random coil. Pairwise interactions (which are assumed to be entirely
favorable, as in a Go model [44,45]) are counted if and only if both the sequence
positions involved are native. Often, an additional approximation is made in
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which the formation of the native structure is limited to one or two sequential
segments [46]. Independent of this assumption, the one-dimensional character
of these models and the choice of energy functions typically force the native
structure to propagate in an essentially sequential manner. By adjusting
parameters, one of these models was shown to fit log k; with an accuracy of
0.83 < 1y < 0.87 for 18 proteins [20]. The fact that this correlation is some-
what higher than that obtained using only the contact order (Table I and Refs.
12,14, and 20) has been used as evidence for the physical basis of the model;
that is, it provides an ‘“‘explanation” of the empirical relationship between the
folding rate and the contact order. However, the improvement appears to be due
to the incorporation of the protein stabilities into the model. These were
introduced by adjusting the pairwise interactions separately for each protein
such that the model yielded free energies for folding that matched experimental
AG values. Using the methods described in Section II and applied in
Section IV.B, we were able to obtain r;;, = 0.93 with two descriptors (AG
and q,, described in Table I) and r,,, = 0.98 with three (AG, ¢, and b) for the
same set of 18 proteins; for ¢/n, and AG/n, r,,, = 0.85, which is very similar to
the correlations reported in Ref. 20 (0.83 < ry,,, < 0.87). Thus, further work is
required to show that such simple phenomenological models can predict aspects
of the folding reaction that go beyond the experimental data used in the fitting
procedures. Although these model studies consider the prediction of ¢ values
[4], it appears from the published results and statements in the text of Ref. 20
that the correlation is poor. This suggests that quantitative comparisons of
predicted ¢-values with the observed ones could serve as a meaningful test of
such phenomenological models.

An alternative phenomenological model was developed by Debe and God-
dard [47]. In essence, they assumed a sequence of events which is, in a certain
sense, the reverse of the diffusion—collision model [48,49]: the correct overall
(tertiary) structure is formed at low-resolution first by a random search and then
local (secondary) refinement takes place within the manifold of states in that
fold. Thus, the factor that determines the relative rate of folding for a series of
proteins is the probability of randomly sampling a structure with the known
native contacts (estimated by a Monte Carlo procedure); the distance at which a
contact was counted was adjusted to optimize the fit. For mixed-o/f and B-sheet
proteins, an accuracy of r,,, = 0.78 was obtained. This statistic is comparable to
the correlation coefficients associated with the contact order (Table I and Refs.
12 and 14), which could suggest that this model is a rather complex procedure
for reproducing the simple (essentially linear) dependence of log k; on that
descriptor. For a-helical proteins, the folding rates were considerably under-
estimated, which led Debe and Goddard to conclude that hose proteins must
instead fold by a diffusion—collision mechanism [48,49]. The discussion in the
present section shows that phenomenological models can be useful for
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interpreting the observed statistical correlations. However, it is important to
keep in mind that the ability to fit a particular set of data is not sufficient to
demonstrate that the folding mechanism on which the model is based is correct.

B. Database

To illustrate the methods described in Section II and to show that simultaneous
consideration of multiple descriptors improves prediction of protein folding
kinetics, we describe a detailed analysis of the available data for the folding rates
of two- and weakly three-state proteins. The descriptors tested are listed in Table I
and can be divided into several categories: native state stability (0 and 1), size (2
to 5), native structure (8 to 15), and the propensity for a given structure (16 to 23).
Definitions and sources for the descriptors as well as the data themselves are
given in Tables II and III. Although certain descriptors are significantly

TABLE I
Descriptors Tested as Inputs to the GNN and Their Correlations®
Index  Symbol Description Txlogks Tirn Ty qfv
0 AG Stability 0.29 0.40 0.06 —0.16
1 AG/n Normalized stability 0.37 0.42 —0.00 -0.13
2 m Buried surface area —0.04 0.38 —-0.16 —-0.40
3 m/n Normalized surface area —0.04 0.24 -0.29 -0.21
4 n Sequence length —-0.10 0.35 —-0.52 —-0.19
5 ne Number of atomic contacts —0.08 0.34 —0.32 —0.18
6 c Contact order —-0.73 0.74 0.67 0.45
7 c/n Normalized contact order -0.79 0.83 0.74 0.54
8 h a-Helix content 0.63 0.64 0.39 0.11
9 e B-Sheet content —0.67 0.71 0.59 0.34
10 t H-bonded turn content 0.04 0.34 —0.07 —-0.21
11 K Bend content —0.11 0.31 —-0.25 —-0.26
12 g 3,0-Helix content —0.01 0.35 —0.47 —0.28
13 b B-Bridge content —0.15 0.30 —-0.36 —-0.32
14 0 Other 2° structure —0.05 0.27 —-0.32 —0.44
15 a Total helix content (h + g) 0.63 0.67 0.28 —0.04
16 Py Predicted o-helix 0.47 0.49 0.05 —0.10
17 P, Predicted f-sheet —0.48 0.57 0.29 0.01
18 P, Predicted other 2° -0.27 043 —0.39 —-0.32
19 Dh a-Helix propensity 0.51 0.55 0.21 —0.03
20 Pe B-Sheet propensity —0.47 0.64 0.42 0.14
21 Do Other 2° propensity —0.40 0.50 —-0.20 —-0.16
22 qe Expected 2° prediction accuracy 0.21 0.42 0.07 —-0.14
23 qa Actual 2° prediction accuracy 0.40 0.45 —-0.14 —0.45

“Here ry, and r,, are correlation coefficients between observed and calculated values of log ks for
training set fits and cross-validated predictions, respectively. Correlations are the maximum ones
observed for 10 independent trials, each with a different random number generator seed. Statistics
for linear regression are available in Table V.
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16 AARON R. DINNER ET AL.

correlated with others (Table IV), consideration of all of them is useful because
exhaustive enumeration or a genetic algorithm (GA) is employed to determine
which to include for optimal fitting and prediction.

The database consists of 33 proteins. Twenty-four of these fall into six struc-
turally related groups, and nine are structurally unique. The former are SH3
domains [INYF (82 to 148), 1PKS, 1SHG, and 1SRL], Ig-like B-sandwiches
[IENF (1326 to 1415), 1FNF (1416 to 1509), 1HNG, 1TEN (802 to 891), 1TIT,
and 1WIT], members of the acylphosphatase family (1APS, 1HDN, 1PBA,
1URN, and 2HQI), cytochromes (IHRC, 1HRC-oxidized, 1YCC), cold shock
proteins [1CSP and IMIJC (2 to 70)], A-repressor variants (ILMB wild type and
G46A/G48A), and ubiquitin variants (1UBQ wild type and V26A). The remain-
der of the proteins are 1COA (20 to 83), 1DIV (1 to 56), 1IFKB, 1IMQ, 2ABD,
2AIT, 2PDD, 2PTL (94 to 155), and 2VIK. Numbers in parentheses indicate the
residue numbers of the domain or fragment studied.

To cross-validate the results, each group of structurally related proteins is left
out of the training set in turn and used to test the network. Such a partitioning
scheme (in contrast to a jackknife one, for example) minimizes the likelihood of
biasing the results in favor of structural descriptors (see Section II). Its use
yields true predictions (denoted ““cv’’) in contrast to fits of the data, in which all
the proteins are included during the training (denoted “trn’’). The latter tend to
yield inflated accuracy statistics, but we describe them here as well for
comparison with earlier studies [12,13,20,47], which failed to cross-validate
their results [however, it should be noted that the relationship in Ref. 12 has been
used successfully for blind predictions (K. W. Plaxco and D. Baker, personal
communication)].

C. Single-Descriptor Models

We begin by examining the relationship between logk; and each individual

descriptor.
1. Linear Correlations

The first column of statistics given in Table I contains the Pearson linear
correlation coefficients between the descriptor values (x) and log ky (7, og k/). This
is the statistical measure used by Plaxco et al. in their analysis of a subset of the
descriptors considered here [12,14]. Consistent with their results, the two
coefficients with the largest magnitudes are associated with the contact order
(c and ¢/n). Several descriptors not examined by Plaxco et al. [12,14] exhibit
|rx710g kf| > (.5 as well: the a-helix content and propensity (4 and pj,), total helix
content (a), and B-sheet content (¢). Additional linear statistics are provided in
Table V. Physical interpretations of the results are given in Section IV.E.

2. Neural Network Predictions

The second and third columns of statistics in Table I measure the ability of a
single-input neural network to predict the folding rate. They contain Pearson
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18 AARON R. DINNER ET AL.

TABLE V
Linear Regression Statistics for log k¢
Index Symbol Tirn Tey qf‘,
0 AG 0.29 -0.02 —0.09
1 AG/n 0.37 0.13 —0.05
2 m 0.04 —0.65 —0.19
3 m/n 0.04 -0.52 -0.20
4 n 0.10 -0.53 -0.27
5 ne 0.08 —0.60 —0.24
6 c 0.73 0.70 0.48
7 c/n 0.79 0.77 0.59
8 h 0.63 0.55 0.30
9 e 0.67 0.59 0.34
10 t 0.04 -0.76 -0.23
11 s 0.11 -0.52 —-0.19
12 g 0.01 -0.75 —041
13 b 0.15 —043 —0.26
14 0 0.05 -0.74 —0.31
15 a 0.63 0.57 0.32
16 Py 0.47 0.29 0.06
17 P, 0.48 0.31 0.08
18 P, 0.27 -0.27 —0.28
19 Dh 0.51 0.37 0.13
20 De 0.47 0.28 0.05
21 Do 0.40 0.07 -0.09
22 qe 0.21 -0.21 —0.14
23 Ga 0.40 0.12 —-0.07

linear correlation coefficients (r,,, and r.,) between observed and calculated
values of log k;; thus, only positive values of r are significant. Because there are
only 24 different input possibilities, it is feasible to consider each one in turn, so
that use of a genetic algorithm is not necessary at this stage. However, the NN
weights depend on the random number generator seed through the training pro-
cedure. Consequently, for each descriptor, the network was trained indepen-
dently with ten different seeds. The maximum correlation coefficient for each set
of 10 networks corresponding to a particular descriptor is listed in Table I; the
average standard deviation for a given descriptor was 0.03 for r,,, and 0.06 for r,.
As stated above, the coefficients denoted “trn” are for results obtained with
networks trained on all 33 proteins; in other words, they are not true predictions
since all the data are included in the training set. For descriptors that are linearly
related to log kg, 7, is expected to be comparable in magnitude to 7y e ks
(in fact, for linear regression, ri, = |Fylog k1), whereas, for ones that are
non-linearly related, it should be higher. Thus, r,, can be viewed as essentially
a nonlinear version of the statistic employed in Ref. 12. Accordingly, most of
the descriptors that exhibit high r,,, were included in the analysis of 7y jog -
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The coefficients denoted “cv” are for the predictions obtained with the
structurally based cross-validation scheme. Negative values of r,, indicate that
the accuracy of the network is lower than that which would be obtained from
random guesses. If a network fails in this way when confronted with novel test
data, it has derived a spurious relationship by memorizing the information in the
training set at the expense of learning more general rules. The highest r,, do
correspond to the highest r,,, but overall the cross-validated coefficients are
much lower. The large differences between r,,, and r., in many cases (Table I)
make clear that the former is a relatively indiscriminate statistic for such a small
database. If linear regression is used, r,, and r., are often closer due to the
decreased flexibility of the fitting method (Table V). However, such an approach
fails to identify nonlinear relationships and can hide complexities in the results.

In summary, the contact order yields relatively good prediction of log &y but
is not alone in doing so. Several measures of the propensity of the sequence for
a given structure also exhibit significant relationships with the folding rate.
Although r., values for the various descriptors obtained from the secondary
structure prediction program (indices 16 to 21 in Table I) are lower than those
for measures of the known native structure (indices 6 to 15), the former
correlations may be sufficiently high that the calculated descriptors could be
used to identify particularly fast or slow proteins without the need for high-
resolution structures. The stability, which has been suggested to be of im-
portance based on model studies, exhibits no clear relation to the folding rate.
An essential additional point of the single-descriptor analysis is that large
differences are observed between most of the values obtained with and without
cross-validation. This highlights the need for care in assessing the significance
of correlations when working with small numbers of sequences.

D. Multiple-Descriptor Models

We present results for two- and three-descriptor models; addition of a fourth
descriptor yielded no significant improvement in predictive accuracy. In the two-
descriptor case there are only 276 possible input combinations, so we examine
each explicitly, whereas, in the three-descriptor case there are 2024, so we use the
genetic algorithm (GA) to optimize the descriptor selection. Use of the GA in the
two-descriptor case gives models of comparable quality to the exhaustive search,
but this test of the algorithm is not very stringent because the space of input
combinations is small. Because both the GA and the NN depend on the random
number generator seed, several trials were performed in each case (as detailed in
Section IV.D.2).

1. Two Descriptors

The best five two-descriptor models are shown in Table VI, and selected
examples to illustrate the types of behavior that are observed are shown in Fig. 2.
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There is a significant increase in fitting ability (training) and, more importantly,
in predictive accuracy (cross-validation) upon adding a second descriptor. In
Figure 2, we see that the squares ([J) tend to be closer to the ideal line than the
circles (O), particularly for lower log k; (slower-folding proteins). To quantitate
the improvement, we calculated Wold’s E statistic from the q?v values (Table VI).
While these figures suggested to us that the additional descriptors significantly
improve the accuracies of the cross-validated predictions, general confidence
limits are not straightforward to calculate. Consequently, we did the following.
We shuffled the values of each secondary descriptor (other than ¢/n) 10 times
and then trained neural networks to predict log k¢ as for the actual data. Averages
and standard deviations of the correlation coefficients are reported in Table VII.
We see that, even though the r,, values are comparable to those in Table VI, the
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Figure 2. Comparison of observed and calculated values of log k¢ for selected models. (a and
b) ¢/n(Q); ¢/n and AG/n (0O); and ¢/n, AG/n and p.(A). (¢ and d) ¢/n(QO);c/nandn. ((1); and
¢/nyne, and AG(A). (a and c¢) Training set fits. (b and d) Cross-validated predictions.
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TABLE VI
The Best (as Measured by r.,) Five Two-Descriptor Models Obtained by Examining All Possible
Combinations for Ten Different Random Number Generator Seeds®

Descriptors Tirn Tey 7, E

c/n  AG/n 0.89 0.81 0.66 0.74
c/n Py 0.87 0.80 0.63 0.81
c/n ne 0.89 0.79 0.62 0.82
c/n py 0.86 0.77 0.57 0.93
c/n qa 0.84 0.77 0.59 0.89

“For the calculation of E, g%, was compared with that for ¢/n. Statistics for linear regression and
additional measures of the predictive accuracy are available in Tables VII and VIIIL.

rey values are close to that for c¢/n by itself (Table I); the NN ignores the
randomized descriptor. The fact that the r,, values for the actual data are two to
four standard deviations above the average r., values for the randomized data
demonstrates that the improvement is significant and is not due to the increase in
the number of fitting parameters.

The best predictions are obtained with AG/n paired with ¢/n (AG with c is
the sixth best set of inputs with r,,= 0.77 and E = 0.76) This combination of
input descriptors was investigated previously [15], but it is of interest that it
ranks first in the exhaustive search performed here. To better understand the
physical basis for the correlations, we show the dependence of log k; on ¢/n and
AG/n in Fig. 3a. When ¢/n is small (¢/n <19; mainly o-helical proteins),
folding is always fast (k; > 400s~'), whereas when c/n is large (c/n >25;
either mixed-o/f or P-sheet proteins), the rate spans over three orders of
magnitude. Thus, proteins with lower contact orders fold fast regardless of
their stabilities, whereas for those with higher contact orders, the rate increases
with AG/n. As described in Ref. 15, a single-input neural network can be
trained to predict log ky from AG for the 14 proteins with ¢ > 21 (Fig. 4);
ryn = 0.81, and r,, = 0.64, which confirms that stability plays a significant role
in determining the folding rates of mixed-o/f and B-sheet proteins. For these 14

TABLE VII
Randomization Tests for the Models in Table VI*
Descriptors Tirn Tey q%v
c/n AG/n 0.83 +0.01 0.71 +0.03 0.49 +0.04
c/n Py 0.84 +£0.03 0.68 +0.07 0.43+0.12
c/n ne 0.87 +0.02 0.69 +0.04 0.46 £ 0.05
c¢/n py 0.84 +0.02 0.68 +0.06 0.42 +0.10
c/n qa 0.84 £+ 0.00 0.68 +0.07 044 +0.11

“In each case, the second descriptor listed was shuffled 10 times, and the networks were trained as
for the original data. Values shown are averages for the 10 trials; ranges indicate standard deviations.
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TABLE VIII
Linear Regression Statistics for the Models in Table VI
Descriptors Ttn Tev 0 E
c/n  AG/n 0.81 0.72 0.47 1.27
c/n Py 0.79 0.75 0.57 1.04
c/n ne 0.82 0.79 0.62 0.92
c/n pu 0.79 0.75 0.56 1.05
c/n qa 0.80 0.77 0.60 0.97

proteins, 7agogk = 0.80 while r.jogr = —0.22;E = (1 — qf‘AG)/(l - q%)
=0.23.

Two of the other models in Table VI combine the contact order with a
measure of the o-helical propensity: ¢/n with either P, or pj,. These pairings
essentially reflect the results of the previous section. The remaining model
couples ¢/n with n., which reveals a secondary dependence on protein size.
Consistent with the sign of 7,10 ks (Table I), the functional dependences of
log ks on these descriptors for the models in Table VI indicate that shorter
proteins fold faster than longer ones (Fig. 3b).

2. Three Descriptors

As mentioned above, there are 2024 possible combinations of three descriptors,
so we use a GA to identify the inputs that are likely to yield the greatest
predictive accuracy. Use of the GA requires selection of a particular measure of
predictive accuracy to decide which models to keep at each cycle. Because we
are interested primarily in cross-validated predictions, r,, is a natural choice.
However, the structurally based partitioning scheme is less straightforward to
automate than a jackknife one. Consequently, for the GNN, we used the Pearson
linear correlation coefficient for the jackknife cross-validated outputs (rj) and
subsequently tested each selected combination of descriptors with the
structurally based cross-validation scheme (r.,). We performed five GNN trials,
from each of which we saved the best 20 models. Of these 100 models, 46 were
unique, and each of these was subjected to 10 trials with the structurally based
cross-validation scheme.

In general, the GA combines the descriptors that were identified above by the
two-dimensional exhaustive search (¢, ¢c/n, AG, AG/n, and n,) to further refine
the predictions (Tables IX to XI and Fig. 2). The propensity for sheet structure
(p.) appears in two of the five models; not surprisingly, it is strongly anti-
correlated with the propensity for helical structure, which appeared in Table VI
(7, p, = —0.89). In considering these results, it is necessary to keep in mind that
the database is small, so that there is a danger of overfitting (but see Table X).
Nevertheless, given this disclaimer, we see that simultaneous consideration of
multiple descriptors improves prediction of the folding rate and that both the
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contact order (¢/n) and either (a) the normalized stability (AG/n in kcal/mol) or (b) the total number
of atomic contacts (n,).
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Figure4. Observed (points)
and calculated (line) log kr as a
function of the stability in kcal/
mol for the 14 proteins in the
database with ¢ > 21.

size and the stability play significant secondary roles that could not have been
anticipated from the single-descriptor analyses.

E. Physical Bases of the Observed Correlations

Consistent with earlier, single-descriptor linear analyses of protein folding
[12,13,50], the primary determinants of the folding rate are measures that
characterize the native structure; that is, proteins with more sequentially local
interactions tend to fold faster. As discussed below, the equilibrium structure and
the kinetics are connected by the fact that the structure of the transition state
resembles that of the native state in many small proteins [50]. Thus, the kinetics
and the underlying thermodynamics of the reaction are affected in a similar way,
in accord with linear free energy relations.

The microscopic origin for the statistical dependence of the folding kinetics
on the structure is the stochastic diffusive search that is required to find the

TABLE IX
The Best (as Measured by r.,) Five Unique Three-Descriptor Models Obtained from the GNN
Protocol for Ten Different Random Number Generator Seeds”

Descriptors T Tick Tey ‘1(2~u E

c¢/n AG/n  p, 0.92 0.84 0.86 0.74 0.76
c¢/n AG ne 0.93 0.84 0.84 0.70 0.80
¢/n AG/n ne 0.92 0.81 0.83 0.67 0.97
c/n AG c 0.90 0.83 0.83 0.66 0.81
c/n AG Pe 0.91 0.80 0.83 0.67 0.72

“For the calculation of E, g2, was compared with the highest observed g2, of the six possible two-
descriptor models that could be formed from the three selected inputs (corresponding to the
unshuffled pair in Table X). Statistics for linear regression and additional measures of the predictive
accuracy are available in Table X and XI.
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TABLE X
Randomization Tests for the Models in Table IX
Descriptors Randomized Ttrn Tev 7,
¢/n AG/n  p, Pe 0.89 £0.02 0.80 +£0.03 0.61 £0.07
c/n AG ne AG 0.88 £0.02 0.72 £ 0.05 0.48 +£0.10
¢/n AG/n  n, ne 0.89 £ 0.01 0.74 £ 0.04 0.49 +0.09
c/n AG c ¢/n 0.89 +£0.01 0.71 £ 0.04 0.46 4+ 0.08
c/n AG Pe AG 0.88 £ 0.01 0.69 £+ 0.06 0.41+0.10

transition state. As described in the formulation of the ‘“hydrophobic zipper
hypothesis™ [51,52] and in the statistical analyses of 125-residue lattice models
[10,11], having sequentially short-range contacts in the transition state should
increase the folding rate for two reasons. First, such contacts are found more
readily because there are fewer conformations to search (the number grows ex-
ponentially with loop length). Second, making sequentially long-range contacts
costs more entropy because they constrain the chain to a greater degree. These
advantages correspond to different components of the macroscopic rate law
[kf = A(T)exp(—AG/kgT)]. In this regard, it is necessary to keep in mind that
the preexponential factor can be nontrivial for protein folding [53,54]. If A(T) is
sufficiently large, there is a separation of time scales; the protein reaches an
effective equilibrium within the unfolded state rapidly, and the rate is dominated
by the time required to surmount the barrier [55]. In this case, the observed
statistical dependence on the structure implies that the barrier is entropic (as in
Fig. 3a of Ref. 1 and Figs. 6 and 7 of Ref. 36). Based on these ideas, Fersht
recently derived a simple relationship to show that changes in contact order are
directly proportional to changes in log ks [50]. On the other hand, if A(T) is
small, there is no separation of time scales. Because a dependence on the
structure enters through the preexponential factor in this case, the barrier, if
there is one, could be either entropic or energetic (as in Fig. 3b of Ref. 1).
Free energy surfaces for folding have now been determined for high-
resolution (all-atom) models of several peptides and proteins [72-77]. For
both a-helical and B-hairpin peptides, decomposition of the surfaces into
contributions from the effective energies (which include the full solvent free

TABLE XI
Linear Regression Statistics for the Models in Table IX
Descriptors Tirn Tev @ E
c¢/n AG/n p, 0.83 0.71 0.46 1.57
c¢/n AG ne 0.84 0.73 0.46 1.42
c¢/n AG/n n, 0.84 0.76 0.55 1.29
c/n AG c 0.83 0.71 0.41 1.40

c¢/n AG De 0.82 0.69 0.38 1.34
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energies) and configurational entropies indicated that the free energy barriers
derive primarily from the fact that the entropy decreases more rapidly than the
energy [75-77], as in Ref. 36 discussed above. However, consistent with the
statistical analyses of proteins, differences in secondary structure content
correspond to differences in the general shapes of the free energy surfaces.
For a-helical sequences, the transition states tend to be less folded, and
secondary and tertiary structure form concurrently [72,77]. For peptides and
proteins which contain -hairpins and B-sheets, a collapse to a native-like radius
of gyration occurs first, and rearrangement to the native state follows wihout
significant expansion [73-75]. At least for peptides at elevated temperatures
[76,77], determination of the rate of diffusion on the free energy surfaces, which
relates directly to the pre-exponential factor in the rate law [53], should now be
possible but has not been done and would be of interest.

In connecting these ideas with earlier phenomenological models, it is not
obvious how to reconcile the dependence of the rate on the structure with a
nucleation mechanism, as in Ref. 50. The statistical relationship suggests that
the transition state contains a considerable amount of native structure, while a
nucleus, in the classic sense of the word, is a small part of the structure.
However, it could be that a limited number of native contacts (i.e., those in the
nucleus) are sufficient to confine the transition state ensemble to a native-like
fold. This idea is supported by a recent analysis of the folding transition state of
acylphosphatase in which key residues, as determined by a ¢ value analysis,
play a critical role [56].

V. UNFOLDING RATES OF PROTEINS

To function, a protein must not only fold (kinetic criterion) but populate its native
state for a significant fraction of the time (thermodynamic criterion). The
unfolding rate (k,) as well as k; contribute to the equilibrium constant, which
determines to what degree the latter condition is satisfied. To find the factors that
affect the unfolding rate, we carried out an analysis for logk,. Rate data for
unfolding in water were not available for three of the proteins (2HQI, 1YCC, and
1HRC-oxidized), so these were excluded from the analysis; the choice of
descriptors was the same.

For single-descriptor models, the best cross-validated predictions are ob-
tained with the contact order (c and c¢/n ), the free energy of unfolding (AG and
AG/n), and the buried surface area (m) (Table XII). The strong dependence of
the unfolding rate on the contact order for these proteins is somewhat surprising
because no significant correlation was observed in a previous study of a
database of 24 proteins [14], 19 of which are included here. For those 19 proteins
we have raglogr, = —0.61, relogk, = —0.56 and r,jp 10gx, = —0.45, whereas for
the 11 additional proteins included in the present analysis of the unfolding rate
we have rag logk, = —0.64, re1ogk, = —0.85, and r/, 10gr, = —0.83. The proteins
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TABLE XII
Single-Input Correlations for Unfolding Rates
Index Symb()l Fxslogk, Ttrn Tev q?»
0 AG —0.64 0.69 0.53 0.21
1 AG/n —0.45 0.55 0.40 0.12
2 m —0.41 0.61 0.45 0.14
3 m/n —0.31 0.36 0.08 —0.11
4 n —043 0.58 0.09 -0.09
5 ne —0.40 0.53 0.09 —0.05
6 c —0.68 0.77 0.67 0.44
7 c/n —0.58 0.69 0.52 0.20
8 h 0.40 0.49 —0.57 —0.86
9 e —0.34 0.53 0.16 —0.06
10 t —0.01 0.39 —-0.25 —-0.12
11 s —0.08 0.26 —-0.19 —-0.24
12 g 0.03 0.36 —0.16 -0.32
13 b —-0.27 0.27 —-0.19 —-0.23
14 0 —0.20 0.55 0.15 —0.08
15 a 0.40 0.50 —-0.27 —-0.27
16 Py 0.29 0.53 —0.64 —-0.32
17 P, —0.28 0.30 —0.38 —0.47
18 P, —0.20 0.52 -0.22 —-0.20
19 P 0.29 0.50 —0.31 —-0.42
20 De —-0.23 0.50 —0.38 —0.40
21 Po —-0.27 0.49 —0.56 —0.11
22 qe 0.14 0.35 —0.11 —0.14
23 qa 0.24 0.48 0.19 —0.06

that appear to be primarily responsible for decreasing the correlation with the
free energy of unfolding and increasing the correlation with the contact order
are the helical proteins—in particular, 2PDD and 1LMB. Because for the 30
proteins considered in this section there is no significant correlation between the
contact order and either the free energy of unfolding (rag,. = 0.28) or the
amount of buried surface area (r,. = 0.23), higher predictive accuracy is
obtained by combining these descriptors (Table XIII). Only a slight improve-
ment was observed upon adding a third descriptor.

We end this section by noting that, for these 30 proteins, there is a significant
correlation between the folding and unfolding rates (riog & logk, = 0.59). At least
in the case that k; and k,, are determined by an entropic barrier (Section IV.E),
this relationship can be understood in the following way. Because all the
proteins are roughly the same size, the stability of the native state does not
depend on contact order (for the overall reaction, AS  n). Changes to ¢ that
raise or lower the free energy of the transition state (TS) relative to the fixed
endpoints (U and F) will change Ay_rs and AGp_zs in the same manner. This
dependence of the activation free energies is the basis not only for the correlation
of log k, with logk; but also that with c.
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TABLE XIII

The Best (as Measured by r.,) Five Two-Descriptor Models for the Unfolding Rates
Descriptors Ttrn Tev @ E
c AG/n 0.90 0.85 0.71 0.53
c AG 0.88 0.81 0.66 0.62
c/n AG 0.89 0.80 0.61 0.49
c m 0.83 0.73 0.53 0.85
c m/n 0.90 0.71 0.49 0.92

VI. HOMOLOGOUS PROTEINS

Information about the transition state of a protein can be obtained from protein
engineering experiments in which one compares the effects of mutations on the
folding rate to their effects on the overall stability (¢ values). Several proteins
have been mutated extensively, and their kinetics have been measured. The fact
that proteins with related structures but low sequence homologies are found to
have similar transition states has been taken to support the relation between
native structure and folding behavior; this is the case for the transition states of
the src [57] and a-spectrin [58] SH3 domains, which have 36% sequence homo-
logy. A particularly interesting transition state comparison involves acylphos-
phatase (AcP) [59] and procarboxypeptidase A2 [60]. These two proteins fold to
sandwich structures with two a-helices packed against a five- or four-stranded
antiparallel sheet, respectively. Although their sequences have only 13% identity,
the average ¢ values for all elements of secondary structure (except one, B-strand
4) are almost the same. Moreover, it has been suggested that the reason
that procarboxypeptidase A2 folds about 4000 times faster than AcP is that the
transition state of the latter involves longer loops and secondary structure
elements; consistent with this observation, there is a strong correlation between
log ks and the contact order for proteins with this fold [59].

The dependence of the folding rate on the stability can be evaluated by
measuring the kinetics of a family of proteins with native states that have
similar structures but different AG values. Such an analysis was made recently
for a set of six immunoglobulin-like B-sandwich domains [61]. They have
stabilities that are distributed relatively uniformly over the range 1.2 < AG <
9.4 kcal/mol (in contrast to the AcP family discussed above, for which four of
the five members have 3.8 < AG < 5.4 kcal/mol). Although there is some
variation in the detailed structures of these six proteins, using the definition of
the contact order given in Section II, all of them have c¢/n > 28 (for these six,
28.22 < ¢/n < 32.53; for the five members of the AcP family, 25.83 < ¢/n <
35.08; for all 33 proteins, 12.21 < ¢/n < 37.32). In accord with the functional
dependence on AG shown in Figs. 3a and 4, a strong positive correlation
between log kr and AG was observed for this family (rac,jog k= 0.99). The data
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TABLE XIV
Relation Between Stability and Folding Rate for Six Two-State Proteins That
Have Been Mutated Extensively”

Protein Reference c Number of Mutants  rag ogk Tt Tick

Acylphosphatase 59 344 25 0.614 0.667  0.386
Procarboxypeptidase A2 60 20.7 19 0.531 0.712  0.464
src SH3 57 20.5 58 0.552 0.556  0.408
a-Spectrin SH3 58 18.0 18 0.481 0.476  0.099
CI2 71 16.1 86 0.554 0.606  0.519
A-Repressor 64 9.8 9 0.720 0.760  0.307

“The coefficients r;,, and rj are for single-input (AG) neural networks. The a-spectrin SH3 domain
values are those for pH 7; the src SH3 domain values are for pH 6. The A-repressor values are for
2M urea.

suggest that for a given structural family with significant variation in AG, the
folding rates of individual sequences are determined by their stabilities.

This conclusion is consistent with the fact that both log k; and log &, typically
vary linearly with the stability of the native state as a protein is mutated. Such
Brgnsted behavior has been used in protein engineering studies to argue that
fractional ¢ values derive from partial structure formation rather than multiple
parallel folding pathways [62]. Correlation coefficients for published folding
rates of mutants of six two-state proteins are given in Table XIV. For the most
part, there is a strong, essentially linear relation that is reasonably robust to
jackknife cross-validation. For all the sequences, increases in stability tend to
accelerate folding. Similar behavior is obtained simply by varying the condi-
tions to affect the stability of a protein (for example, see Fig. 2a of Ref. 14).
This analysis thus confirms that the stability is an important secondary factor in
determining folding rate. As described in Ref. 9, in accord with the Hammond
postulate [34], stabilizing the native state of a protein in most cases also lowers
the energy of its transition state relative to the unfolded state and thus increases
the folding rate.

VII. RELATING PROTEIN AND LATTICE MODEL STUDIES

The fact that the folding (and unfolding) kinetics of relatively small, two-state
proteins can be predicted with reasonable accuracy from global features of the
native state like the contact order, stability, and number of contacts supports the
idea that the details of protein structure are not required to capture the key
features of protein folding, so that reduced representations should be adequate.
However, the most widely used simple heteropolymer models, those restricted to
a simple cubic lattice, predict that stability is more important than native
structure, in contrast to the experimental data for proteins. In this section we seek
to understand why lattice models differ from proteins in this regard. Doing so is
of importance because complete details of the folding trajectories of such models
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can be obtained and used to test phenomenological models like those described
in Section IV.A.

In the case of the 27-residue model described in Section III [6,9], it is likely
that the chain length is too short for there to be contacts that are sufficiently long
range to slow-folding. In the case of the 125-residue model, which is larger than
all but one (2VIK) of the proteins considered in the present study, significant
correlations between various measures that characterize the native structure and
the folding behavior were observed [10,11] (it should be mentioned that, in
contrast to the number of antiparallel sheet contacts discussed in Section III, the
contact order is a poor measure for characterizing lattice model structure;
18.7 < ¢ <31.0 for the 100 helical proteins in Refs. 10 and 11, whereas
17.2 < ¢ < 32.0 for the 100 sheet proteins). However, in the lattice model, the
functional dependence of the folding stability is essentially the same regardless
of the native structure; at a particular threshold value of the stability (which
varies only slightly with the number of antiparallel sheet contacts), the folding
ability rises rapidly and then levels off [11,37]. There are two likely reasons that
the functional dependence is much simpler than that for proteins (Fig. 3a). First,
the 125-residue sequences were energetically optimized to observe folding on
the time scale of feasible simulations and are thus expected to correspond to the
more stable region in Fig. 3a. Second, due to the highly restricted confor-
mational space of the lattice and the choice of move set, helices that form in
isolation cannot diffuse as semirigid units [49]; as a result, lattice models cannot
correctly capture the lower contact order region of Fig. 3a. Once one restricts
oneself to the remaining part of Fig. 3a, the behaviors observed in the lattice
models and proteins are consistent; in both, the folding ability increases
sigmoidally with the stability [compare Fig. 4 with Fig. 16 of Ref. 11 and
Fig. 1 of Ref. 37]. It should be noted, however, that an exact correspondence is
not expected because, in the lattice model [2,6—11] and related analytic [16—18]
studies, the stability descriptors are calculated from effective energies that
include solvent effects implicitly rather than from full free energies, while the
experimental AG values include the protein configurational entropy as well. It
would be useful in this regard to have experimental enthalpies of folding for the
proteins considered.

VIII. CONCLUSIONS

In the present study a nonlinear, multiple-descriptor method was applied to the
prediction of the logarithm of the folding rate constant for a set of 33 two- and
weakly three-state proteins. With two (three) descriptors, the Pearson linear
correlation coefficient between the observed values and the training set and
cross-validated predictions reach 0.89 (0.93) and 0.81 (0.86), respectively. These
results are to be compared with those obtained by using the contact order by
itself: r,,, = 0.83 and r., = 0.74. In addition to the contact order, some measures
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of the propensity of the sequence for a given structure also exhibited significant
relationships with the folding rate; for example, r., = 0.42 for p,. Although the
propensity correlations are somewhat lower than those for measures obtained
from the observed native structure, the sequence-based predictions may be
sufficient to identify fast- or slow-folding proteins without the need for high-
resolution structures. For example, using n and p,, the folding rates for all 33
proteins, which range over almost six orders of magnitude, are predicted within a
factor of 200; these (cross-validated) predictions are to be compared with those
based on n, and ¢/n, which are accurate within a factor of 60. In addition to the
contact order, the size and stability play significant roles and are selected
frequently for two- and three-descriptor models. Of particular interest is the
finding that, for mixed-o/f and PB-sheet proteins with higher contact orders
(c > 21), the stability not only significantly improves the accuracy of multiple-
descriptor models but gives excellent predictions by itself. The explicit or
implicit inclusion of the stability in phenomenological models accounts for
recent improvements in fitting experimental kinetic data [19,20,42]. Given the
high quality of predictions that are obtained with the present analysis, further
investigation of such correlations and their physical origins appear worthwhile,
as has been suggested elsewhere [50].
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