
DETECTING NATIVE PROTEIN FOLDS AMONG

LARGE DECOY SETS WITH THE OPLS

ALL-ATOM POTENTIAL AND THE

SURFACE GENERALIZED BORN

SOLVENT MODEL

ANDERS WALLQVIST, EMILIO GALLICCHIO, ANTHONY K. FELTS,

AND RONALD M. LEVY

Department of Chemistry, Rutgers University, Wright-Rieman Laboratories,

Piscataway, NJ, U.S.A.

CONTENTS

I. Introduction

II. Methods

A. Details of the Calculations

B. Data Sets of Decoys

III. Results and Discussion

A. Park and Levitt Decoys

B. Holm and Sander Single Decoys

C. CASP3 Targets

D. Energy Components

E. Approximate Effective Dielectric Models

1. Screened Coulomb Approximation

2. Distance-Dependent Dielectric Approximation

F. Dependence on the Interior Dielectric Constant

IV. Conclusions

Acknowledgments

References

Computational Methods for Protein Folding: Advances in Chemical Physics, Volume 120.
Edited by Richard A. Friesner. Series Editors: I. Prigogine and Stuart A. Rice.

Copyright # 2002 John Wiley & Sons, Inc.
ISBNs: 0-471-20955-4 (Hardback); 0-471-22442-1 (Electronic)

459



I. INTRODUCTION

The ability to distinguish native protein conformations from misfolded ones is a

problem of fundamental importance in the development of methods designed

to predict protein structure. To this end, several empirical functions for scoring

protein conformations have been proposed. [1–6]. Some of these empirical

scoring functions implement knowledge-based statistical potentials that are

‘‘trained’’ to recognize native conformations. Knowledge-based potentials are

best suited for ‘‘threading’’ applications where the best conformation of a protein

is selected from a database of known protein conformations. Scoring functions

applicable to ab initio folding studies, which require differentiable potentials and

the inclusion of excluded volume terms, have also been developed. These are

based on combinations of knowledge-based potentials and reduced atomic

models sometimes augmented by simplified solvation models based on hydro-

phobic or hydrophilic exposure [7].

Physics-based all-atom molecular mechanics force fields have not been

generally considered practical for fold detection because they are parameterized

on small molecule data rather than on proteins directly; the level of atomic detail

contained in these models is considered poorly matched to the fold detection

problem with respect to both accuracy and computational cost. Recent studies

have shown, however, that a scoring function based on the potential energy from

an all-atom molecular mechanics force field can recognize native protein con-

formations among a set of decoys as well as the best available knowledge-based

scoring functions [6].

The use of an all-atom force-field minimizes the assumptions that are inherent

in an empirical scoring function; and, as will be shown, the inclusion of more

refined solvation models enhances our ability to discriminate native folds. An

additional value of the all-atom potential lies in its suitability for modeling

proteins at higher resolution. This is an important feature for applications in

structure–function relation studies such as homology modeling, drug design,

and protein–protein recognition.

Although all-atom force fields allow for explicit simulations of solvent, the

cost required to appropriately sample solvent configurations rapidly becomes

prohibitive. Simplified solvation models are more computationally efficient

while preserving a reasonably accurate representation of the interactions

between the protein and the water solvent. Although no continuum model can

wholly account for the explicit inclusion of solvation [8,9], free energies of

solvation of small molecules have been obtained accurately to within a fraction

of a kcal/mol relative to experiments using these methods [10–15].

Solvation effects have been included using a variety of simple models [16–

23]. These models have been based on exposed surface area, dielectric con-

tinuum methods, and screened or modified Coulomb interactions. The validity
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of a continuum representation of the solvent based on the Poisson–Boltzmann

equation has been studied extensively for small and large molecules [24–30].

Continuum solvation models that treat solute and solvent as two dielectric

regions with different dielectric constants have been used successfully to

account for solute free energies of hydration [11,31–34]. Dielectric models

based on the Born model [35] have been developed for which the free energies

of hydration are comparable to the predictions of Poisson–Boltzmann and

explicit solvent models [36–42].

The inclusion of solvation effects with an all-atom molecular mechanics

force field has been shown to be important for the recognition of the native state

[16,17,43–45]. Scheraga and co-workers [46,47] used explicit all-atom protein

models in conjunction with solvation models based on the molecular exposed

surface area. A similar approach by Wang et al.[48,49] showed that inclusion of

solvation effects can be successful in discriminating native from non-native

structures. Vieth et al. [50] generated structures of the small 33-residue GCN4

leucine zipper proteins using a simplified lattice model; promising structures

were then converted to all-atom models and evaluated using a molecular

mechanics force field. A hierarchical method of generating large numbers of

protein folds was also employed by Monge et al. [20] to select and evaluate

structures using the AMBER all-atom force field model [51]. The generalized

Born continuum solvent model of Still et al. [37] has been used in this context to

represent the aqueous environment. For decoy sets of three different proteins the

protocol performed reasonably well in distinguishing the native structure. All-

atom models with continuum solvent were also used as the basis for discrimina-

tion of non-native states for a small set of 12 deliberately misfolded proteins

studied by Vorobjev et al. [52]. In their protocol, conformations for each protein

are first sampled from a molecular dynamics trajectory in order to capture

micro-states of the protein; this is followed by an evaluation using a dielectric

continuum model. Lazaridis and Karplus [22] used the CHARMM19 protein

force field together with a Gaussian solvation shell model for the solvation free

energy to distinguish deliberately misfolded from native conformations con-

sidered on a pairwise basis and in large decoy sets.

Given the complexity of the protein potential surface, it is virtually im-

possible to consistently find the global minimum starting from an arbitrary point

on the surface. Instead, tests have been designed whereby the scoring function is

‘‘challenged’’ to find the native conformation among an ensemble of conforma-

tions, most of which are compact but non-native. Many empirical energy

functions have been used to identify the correct native structure among a

collection of known protein structures using threading techniques [1,53–58].

Scoring functions are also used to identify native-like conformations from a

large set containing native and decoy non-native conformers [22,59–63]. Due to

the large ensemble of conformations available, the use of large decoy sets to
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evaluate scoring functions is a more demanding test than threading and is

well-suited for the evaluation of scoring functions based on an all-atom force

field.

In this work we show that the all atom (OPLS-AA) force field for proteins

[64] together with a surface integral formulation of the generalized Born model

(SGB) [40,42] is capable of discriminating between native and non-native folds

among large sets of compact decoy structures. Validation of the scoring protocol

is performed on a large database of well-packed misfolded and near-native

protein conformations generated by an algorithm designed to cover exhaustively

the relevant parts of conformational space [65,60,66]. The inclusion of near-

native decoys in these sets is important in determining whether the scoring

function is well-behaved in the vicinity of an idealized native conformation,

because it is unlikely that any ab initio method of generating conformations will

generate that state exactly. In any case, the native state actually represents an

ensemble of closely related conformations.

Two additional decoy data sets of misfolded proteins [17] and of predicted

protein structures from the Critical Assessment of Techniques for Protein

Structure Prediction (CASP) [67] are also used to illustrate the method and its

utility. Individual components of the energy perform worse than the total

energy; for example, for the bulk of the well-packed decoys, the van der Waals

energy provides very little information about structural similarity between a

well-packed non-native structure and the native state. It is also shown that some

aspects of the SGB model results can be mimicked by a screened electrostatic

energy, although the SGB approximation provides a better discriminatory

measure between non-native and native states.

II. METHODS

A. Details of the Calculations

The energy of each protein structure investigated was calculated using the

OPLS-AA/SGB force field implemented in the IMPACT modeling program

(Schrödinger, Inc.) [68]. Initial structures were first minimized in order to

remove any artifacts that result from the coordinates being generated with a

different energy function; only minimized energies are reported here. All non-

native coordinates were taken from independently generated data sets as

described below; native protein coordinates were obtained from the Protein

Data Bank (PDB) [69]. The force field employed in the calculation of the atomic

interactions was the OPLS all-atom force field [64], including parameters for all

intramolecular degrees of freedom. The surface formulation of the generalized

Born model [37,39] (SGB) as coded in IMPACT was used to estimate the

solvation energy [40,70].

462 anders wallqvist et al.



The total energy for a protein in vacuum is given by

Uvac
tot ¼ Ubond þ Uangle þ Utorsion þ UCoulomb þ UvdW ð1Þ

where the first three terms refer to intramolecular interactions arising from the

connectivity of the molecule, and the last terms reflect nonlocal interactions

within the protein. The van der Waals energy, UvdW, is modeled by the standard

6-12 Lennard-Jones interaction. The energy of the protein in water calculated

according to the SGB continuum solvent model is

Ucon
tot ¼ Uvac

tot þ USGB þ Ucav ð2Þ

where USGB denotes the electrostatic contribution to the solvation energy

calculated using the SGB method, and the cavity term Ucav is taken as gA where

A is the accessible surface area of the molecule and g ¼ 5 cal/(Å2 mole) [40].

The SGB model is the surface implementation [40,42] of the generalized

Born model [37]. The generalized Born equation

USGB ¼ � 1

2

1

Ein

� 1

Ew

� �X
ij

qiqj

fijðrijÞ
ð3Þ

(where qi is the charge of atom i, and rij is the distance between atoms i and j)

gives the electrostatic component of the free energy of transfer of a molecule

with interior dielectric Ein from vacuum to a continuum medium of dielectric

constant Ew, by interpolating between the two extreme cases that can be solved

analytically: one in which the atoms are infinitely separated and the other in

which the atoms are completely overlapped. The interpolation function fij in

Eq. (3) is defined as

fij ¼ ½r2
ij þ aiaj expð�r2

ij=4aiajÞ�1=2 ð4Þ

where ai is the Born radius of atom i defined as the effective radius that re-

produces through the Born equation

Ui
single ¼ � 1

2

1

Ein

� 1

Ew

� �
q2

i

ai

ð5Þ

the electrostatic free energy, Ui
single, of the molecule when only the charge of

atom i is turned on. The SGB method estimates Ui
single by integrating the

interaction between atom i and the charge induced on the molecular surface by

the Coulomb field of this atom:

Ui
single ¼ � 1

8p
1

Ein

� 1

Ew

� �ð
S

ðr � riÞ
r � rij j4

	 nðrÞd2 r ð6Þ
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The SGB method has been shown to compare well with the exact solution of the

Poisson–Boltzmann (PB) equation. The SGB implementation used in this work

includes further correction terms that bring the SGB reaction field energy even

closer in agreement with exact PB results [40].

To help assess the ability of the energy function to discriminate between non-

native and native protein conformations, the energy gaps between the decoy

conformations and the native are evaluated:

�U ¼ U
decoy
tot � Unative

tot ð7Þ

Energy gaps of individual energy terms have also been examined [see Eqs. (1)

and (2)]. Unless explicitly noted, all results presented below were performed

without energy cutoffs; that is, all possible non-bonded interactions are included

in the total energy. The structural similarity between two protein conformations

is expressed as a root mean square deviation (RMSD) between the best overlap of

the alpha-carbon (Ca) atoms of the two conformations.

B. Data Sets of Decoys

Although we are probing various energy functions for their ability to differenti-

ate between native and non-native structures, none of the coordinate sets

were originally generated by these functions. The vastness of the conformational

space and the complexity of an all-atom potential energy function effectively

hinders the full sampling of the appropriate degrees of freedom. Scoring

conformations with the OPLS/SGB potential may be considered as a last step in

the process of generating protein folds; that is, only at the end would it be

appropriate to spend the time and effort to evaluate a complex all-atom potential

energy function. For this study we focus on existing decoy data sets as our

conformational space. These data sets have proven to be highly nontrivial to

score correctly.

The first data set contains structure decoys for seven small proteins compiled

by Park and Levitt [60]. The protein structures were generated by exhaustively

enumerating the backbone rotamers states of 10 selected residues in each protein

using an off-lattice model with four discrete dihedral angle states per rotatable

bond. From this data set, containing hundreds of thousand of conformations, the

authors selected for further evaluation only compact structures that scored well

using a variety of scoring functions as well as those having a reasonable RMSD

from the native [60]. The coordinates, available on the internet (http://dd.

stanford.edu), are all-atom models built from the Ca atoms with the program

SEGMOD [71]. No further refinement of these coordinates was done except for

minimizing the structures using our energy function (see Eqs. 1 and 2). The

decoy data sets are summarized in Table I and encompass a range of small

proteins from 54 to 75 residues with varying topological folds. The number of
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decoys in these sets ranged from 630 for 1ctf (the carboxy-terminal domain of

L7/L12 50s ribosomal protein from Escherichia coli) to 687 for 4pti (bovine

pancreatic trypsin inhibitor).

An extended data set for the calcium-binding protein calbindin D9K from

bovine intestine (4icb) was also investigated using 2000 best-scoring conforma-

tions constructed using an ab initio procedure [72]. These structures were

generated from an exhaustive enumeration on a tetrahedral lattice [73,74] and

selected using a combination of scoring functions.

A third data set consists of 26 misfolded protein coordinates constructed by

threading the original sequence on to non-native folds with the same number of

residues [17]. These structures were generated by swapping main chains

between folds and placing the side chains using an annealing protocol. From

this data set we selected 25 misfolded structures with continuous backbone

coordinates for analysis. These latter coordinate sets were also taken from the

internet site listed above.

A fourth data set derived from the CASP3 [67] targets and model sub-

missions was also investigated. CASP3 is the third experiment run by the

Protein Structure Prediction Center at Lawrence Livermore National Laboratory

to test how well protein structures can be predicted from amino acid sequence.

Results are available on the internet at http://predictioncenter.llnl.gov/casp3/

Casp3.html. For our calculations, submitted targets were chosen for which

coordinates of the native structure were available from the PDB. For each target,

models were chosen which had predictions over all residues given in the PDB

file. We selected 11 targets and a total of 167 models, with RMS deviations

ranging from 1.3 Å to 22.9 Å. The target structures investigated are given in

Table IV.

The energy of each native and model structure was minimized using the full

atomic model with and without the SGB dielectric continuum solvation energy

term.

TABLE I

The Sequence Length, Nres, the Number of Decoys, Ndecoy, and Total Charge of the Seven Proteins

of the Park and Levitt Set [60]

PDB Name Nres Ndecoy q (e)

1ctf 68 630 �2

1r69 63 675 þ4

1sn3 65 660 þ1

2cro 65 674 þ6

3icb 75 653 �7

4pti 58 687 þ6

4rxn 54 677 �12
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III. RESULTS AND DISCUSSION

The problem of differentiating non-native states from native-like states can be

expressed as the ability of a scoring function, depending only on the coordinates

of each structure, to score the native states better than any other structures. If

such a scoring function were used also to generate structures, a further desirable

property would be that in the vicinity of the native state the structural similarity

to the native state would be a monotonically increasing function of improved

scores.

A. Park and Levitt Decoys

Examination of minimized energies for the seven extensive data sets of protein

decoys (see Fig. 1) shows that using the OPLS-AA/SGB potential, no decoy

scores better than the X-ray structure. The correlation between structural

similarity and score is strong only for structures with low RMSD. For RMSD>
4 Å this correlation breaks down. Native-like states appear around 2 Å at low

energies, with the bulk of the decoys being in non-native-like conformations with

RMSD above 4 Å.

In Table II we report the statistical indicators of the quality of the scoring

function. Some of the indicators depend on defining the reference structure as

the native X-ray structure. It has been verified that similar results are obtained

by selecting any native-like decoy as the reference structure. A global view of

the results for the Park and Levitt sets is given in Fig. 2. The fraction, Pð�UÞ,
of native-like decoys with an energy gap from the native less than �U is

shown. A decoy conformation with an RMS less than 3 Å is considered

native-like. Figure 2 indicates, for example, that structures with an energy

gap from the native less than 100 kcal/mol have a 
90% chance of being native-

like, whereas a decoy with a +200 kcal/mol energy gap from the native has only

a 20% chance of being native-like. For these data sets there are no decoy

structures with a total energy, Ucon
tot , below that of the native state (i.e., energy-

minimized X-ray coordinates; see Fig. 1). This suggests that if a fold prediction

program can generate protein structures within 100 kcal/mol of the native

state, there should be a high (>90%) chance of finding native-like states in this

data set.

Another measure of the fitness of the scoring functions is to evaluate the

RMSD of the lowest-energy structure in each decoy set. The results are sum-

marized in Table II. The RMSD of the lowest-energy decoy range from 0.94 Å

to 2.20 Å with an average RMSD of 1.9 Å. These decoys fall within the native-

like designation. The average energy deviation from the native energy is

þ79.5 kcal/mol, which represents an average deviation of þ2% from the native

total energy values. As we shall see below, not all scoring functions examined

yield decoy energies consistently higher than the native energy.
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Figure 1. OPLS-AA/SGB: Energy gap/RMS correlation plots for the Park and Levitt decoy

sets.
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In Table II we also report the native Z score, Znat, and the average Z score of

the native-like decoys, �Znat-like. The Z score of conformation i is defined as

Zi ¼
Ei � �E

s
ð8Þ

where Ei is the energy of the particular conformation, �E is the average score and

s is the standard deviation of the distribution of scores in the set. The average Z

score, �Znat-like; is obtained by averaging the Z scores of the native-like decoys. A

decoy is defined as native-like if its RMSD with respect to the native is less than

TABLE II

OPLS-AA/SGB Results: The Minimized energy, Unative, of the Native Conformation; the Energy

Gap, min (�U), and the RMS Devition Between the Best-Scoring Decoy and the Native

Conformation; the Native Z-Score Znat and the Average Z-Score �Znat-like of the

Native-like Conformations of the Park and Levitt Decoy Sets [60]

PDB Name Unative min(�U) RMSD Znat
�Znat-like

1ctf �4213.92 þ65.55 1.69 �3.24 �1.08

1r69 �3499.46 þ107.16 2.30 �4.03 �1.01

1sn3 �3467.53 þ96.08 2.19 �4.22 �1.04

2cro �3628.30 þ72.55 0.94 �3.69 �0.95

3icb �4694.45 þ18.08 1.84 �2.18 �1.34

4pti �3055.04 þ105.07 1.89 �4.53 �1.15

4rxn �3363.51 þ92.06 2.16 �3.76 �1.29
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Figure 2. Fraction of the Park and Levitt decoys with energy gap from the native less than �U

which are native-like (RMSD from native <3 Å), using the OPLS-AA/SGB potential function and

the vacuum OPLS-AA potential with screened Coulomb interactions.
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3 Å. The Z score measures the ability of the scoring function to recognize native

conformations. Assuming the distribution of scores is approximately Gaussian, a

native Z score of, say, �2 indicates that the native structure is ranked in the best

1% in the decoy set. In general, the more negative the Z score, the better. The

values of the native Z scores range from �3:2 to �4:5; indicating that the scoring

function is extremely successful in finding the native structure among the decoys.

The native-like average Z score represents the ability of the scoring function to

discriminate the native-like conformations from the non-native conformations.

The more negative the average native-like Z score, the larger the probability that

a low-energy conformation is a conformation structurally similar to the native.

The calculated values of the Z scores ranging from �0:95 to �1:34 indicate that,

although on average the native-like conformations have lower energies than the

non-native conformations, a significant number of native-like structures have a

favorably low Z score. This can also be seen from Fig. 1 by looking at the vertical

position of the low-RMSD structures with respect to the bulk of the decoys. This

does not necessarily indicate a deficiency of the energy function but rather that

for native-like conformations (i.e., those with the correct fold) the energy is also

sensitive to the position and orientation of the amino acid side chains. An

incorrect placement of a side chain may be enough to increase the energy of a

native-like fold to the level of the misfolded conformations. A native-like energy

is achieved only when all of the structural elements of the protein are placed

correctly [22].

Park and Levitt [60] have evaluated six simple empirical scoring functions

using the same decoy sets examined in this work. A comparison between the

native and native-like Z scores calculated here with those obtained by Park and

Levitt shows that the OPLS-AA/SGB energy model clearly outperforms the six

empirical scoring functions examined in the Park and Levitt work. Moreover,

none of the empirical scoring functions examined by Park and Levitt was able to

consistently rank first the native conformation, whereas the OPLS/SGB model

does.

It is instructive to evaluate the importance of each component of the OPLS-

AA/SGB energy function in recognizing native conformations. Because all the

decoys are well-packed, there is very little discrimination based on packing (as

measured by the van der Waals energies) of the non-native states from the near-

native conformations. In order to establish the role of intramolecular and solvent

electrostatic interactions, we have calculated the energy scores in vacuum, Uvac
tot ,

using the same protocol used for the calculations in continuum solvent. The

results are summarized in Table III. For several proteins the native conformation

does not correspond to the minimum energy, and decoys with large RMSD from

the native have very favorable scores. The native Z score and the near-native

average Z scores have also significantly degraded (compare Tables II and III).

This can be clearly seen in Fig. 3 showing the energy RMSD correlation plots
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for the seven proteins studied. The gain achieved by including the solvation

term is particularly noticeable for the 3icb data set. Figure 4 shows the

distribution of energy gaps from the native for the 3icb decoys using either

the vacuum OPLS-AA energy or the OPLS-AA/SGB energy. A shift of the

distribution to positive values indicates that no decoy structures have energies

lower than the native structure. Vacuum energies are scattered above and below

the native state energy with little correlation between energy and structural

similarity. The OPLS-AA/SGB energies produce a sharper distribution than the

vacuum energies. It is clear that for this decoy set the vacuum energy is

significantly poorer than the energy in solution in discriminating native folds.

An important contribution to protein stability arises from the tendency for

packing nonpolar side-chains in the interior of the proteins and placing polar

residues on the solvent exposed surface of the protein [75,76]. These tendencies

are not represented well by the intramolecular potential in vacuum, which in

general is equal to the strength of interaction between two nonpolar residues and

between a nonpolar residue and polar residue and does not particularly favor the

placement of a polar residue on the protein surface. The solvation energy

calculated using the SGB model, however, reproduces hydrophobic interactions

and favors the placement of polar residues on the protein surface where they can

interact strongly with the solvent. The presence of a hydrophobic core and a

polar surface is a key feature of the native protein conformation in solution.

Several empirical scoring function have been designed to recognize these

features [20,60,65,66,62]. A model that does not take into account solvation

effects is likely to perform poorly in native fold recognition among large

numbers of compact decoys.

Another important function of dielectric continuum models is to dampen the

strength of the electrostatic interactions between polar and charged residues.

Conformations having salt bridges and intramolecular hydrogen bonds are

TABLE III

Vacuum OPLS-AA Results: The Minimized Energy, Unative, of the Native Conformation; the Energy

Gap, min (�U), and the RMS Devition Between the Best-Scoring Decoy and the Native

Conformation; the Native Z-Score Znat and the Average Z-Score �Znat-like of the

Native-like Conformations of the Park and Levitt Decoy Sets [60]

PDB Name Unative min(�U) RMSD Znat
�Znat-like

1ctf �2795.74 þ43.68 6.49 �2.62 �0.51

1r69 �2489.72 þ76.49 1.65 �3.03 �0.42

1sn3 �2495.10 þ0.04 1.42 �3.10 �0.59

2cro �1122.06 �35.12 0.93 �2.37 �0.68

3icb �2795.74 �282.69 1.19 �0.63 �0.84

4pti �1324.06 þ37.53 6.21 �2.97 �0.71

4rxn �3581.88 �8.95 1.60 �2.47 �1.13
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Figure 3. Vacuum OPLS-AA: Energy gap/RMS correlation plots for the Park and Levitt decoy

sets.
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strongly favored in vacuum, but much less so in solution. The SGB implicit

solvent model provides a mechanism to filter out non-native conformations with

artificially low intramolecular electrostatic energies that would be otherwise

given a favorable score.

In these calculations, all charged interactions are included in the total energy;

employing a cutoff for atom–atom interactions destroys the correlation between

low energy values and native-like structures. Figure 4 shows that the proper

evaluation of the long-range Coulomb interactions is crucial in selecting native

conformations. If the electrostatic interactions are spatially truncated, many

non-native structures assume lower total energies than do the native structure.

As shown in Fig. 4, the correlation between energy and structural similarity

using the OPLS-AA/SGB force field with a nonbonded cutoff of 9 Å is poor.

This is a direct consequence of neglecting the long-range part of Coulomb

interactions and is aggravated by the highly charged nature of some of the

proteins examined (see Table I).

B. Holm and Sander Single Decoys

Recognizing single misfolded structures that have been carefully selected or

devised as possible alternate folds poses a different challenge than distinguishing

native-like states in large decoy data sets. Instead of picking native-like

conformations among a large set of decoys, the challenge is to differentiate

between two well-folded proteins, one of which corresponds to the native state.

In the decoy set of Holm and Sander [17], misfolded conformations were

constructed by swapping parts of the polypeptide chains with segments from
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Figure 4. The distribution of energy gaps from the native for the 3icb data set of the Park and

Levitt decoys using various energy functions.
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known crystal structures. The proteins in the Holm and Sander set cover a wide

range of sizes, from 36 residues for the smallest protein to over 300 residues for

the largest protein. Figure 5 reports the energy gaps from the native of the

misfolded proteins using the vacuum OPLS-AA energy and the OPLS-AA/SGB

energy. The misfolded conformations are compact and have RMSDs from the

native of 8 Å or more. Both the vacuum OPLS-AA and the OPLS-AA/SGB

models are successful in ranking the native structures higher then the corres-

ponding misfolded decoys; the only exception is for the avian pancreatic

polypeptide (1ppt), a small 36 residue polypeptide, using the vacuum OPLS-AA

model. Although smaller energy differences are generally correlated with higher

structural similarity (see Fig. 5), the smallest (
8 Å) RMSD structure in this

data set is well above the RMSD threshold of 
4 Å, above which energy and

structural similarity were no longer correlated for the proteins in the Park and

Levitt set.

The apparent correlation between RMSD and energy gap visible in Fig. 5 is

mostly due to the fact that the RMSDs and the energy gaps increase with

increasing protein size. As shown in Fig. 6, the energy gaps grow roughly

linearly with the sequence length of the protein (a slightly better correlation is

observed when using the OPLS-AA/SGB model). The energy gaps calculated

using the OPLS-AA/SGB model are generally of the same relative magnitude,

when normalized by size, as the energy gaps calculated for the Park and Levitt

set. This confirms that the energy function used here can discriminate between

native and misfolded structures over a wide range of protein sizes.
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C. CASP3 Targets

We have also analyzed some of the structures submitted to the CASP3 competi-

tion [67]. The target proteins are listed in Table IV. Our results are shown in

Fig. 7, which shows the differences between the energy of each predicted

structure and the energy of the corresponding native conformation. The targets

can be divided into two groups: the ‘‘easy’’ targets for which the majority of the

predicted models have an RMS deviation from the native of 3 Å or less, and the
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Figure 6. Protein size dependence of the energy gaps from the native of the misfolded protein

structures from the Holm and Sander [17] data set.

TABLE IV

A Summary of the CASP3 Target Evaluated in this Studya

Target Nres Resolution (Å) Nres Predicted Models Class RMS (Å) PDB

T0043 158 1.5 158 8 a/b 14.2–16.8 1hka

T0047 162 2.5 158 14 mostly b 1.3–1.9 1a2u

T0052 101 NMR 101 8 all b 13.7–17.1 2ezm

T0055 125 2.0 123 17 mostly b 2.8–7.4 1byf a

T0058 229 1.6 225 10 a/b 1.6–3.3 1eug

T0060 117 1.54 117 17 a/b 1.3–5.2 1dpt

T0064 111 1.9 103 22 All a 7.8–19.1 1b0n a

T0065 57 1.9 31 49 All a 2.7–10.1 1b0n b

T0068 376 1.9 376 4 Mainly b 8.9–18.5 1bhe

T0082 190 1.75 190 12 aþ b 4.6–19.3 1bk7

T0085 211 2.6 211 6 Mostly a 17.8–22.9 1bvb

aOut of the structures predicted by the participants in CASP, we have selected those that have near-

or full-length predictions only and whose PDB coordinates were available at the time of this study.
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difficult targets in which none of the predicted models is native-like (RMS

deviations from the native of 10 Å or more). For a few of the targets the

predictions ranged from near-native (<3 Å) to non-native (>3 Å).

As shown in Fig. 7, the OPLS-AA/SGB model achieves nearly 100%

discrimination of the native conformations. Only a few predictions, structurally

similar to the native, score slightly better than the native. The vacuum OPLS-

AA energy function does not perform as well as the OPLS-AA/SGB energy

function; several high-RMS predictions for the T0055, T0058, T0064, and

T0065 targets have scores significantly lower than the native. As observed for

the Park and Levitt [60] decoy set, neither the vacuum OPLS-AA nor OPLS-

AA/SGB energy functions are able to differentiate between models with large

RMS deviations from the native; that is, a 15 Å structure can easily score better

than a 10 Å structure.

D. Energy Components

The ability of a scoring function to discriminate between native and non-native

conformations depends on the delicate balance between the components of the

scoring function [1,20,60,66,62]. As described in this section, we find that,

although some combinations of energy components show improvement over
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each individual component, the total OPLS-AA/SGB energy is the best scoring

function overall.

An analysis of the energy components of Eqs. (1) and (2) presented in Fig. 8

shows that for the Park and Levitt data set (Table I), containing only well-

packed structures, the van der Waals energy difference with respect to the native

is positive for most of the decoys. The van der Waals energy, however, does not

strongly correlate with structural similarity to the native. This point is illustrated

in Fig. 9, which shows the distribution of energy gaps from the native of both

the native-like (RMSD <3 Å) and misfolded (RMSD >3 Å) 3icb decoys. In

contrast, the discriminating power of the total OPLS-AA/SGB energy is

indicated by the relatively small overlap between the native-like and misfolded

distributions of energy gaps (see Fig. 9). A similar separation is not achieved

with the van der Waals energy, indicating that the van der Waals energy alone

does not provide good discrimination when used as a scoring function.

The electrostatic energy components, the intramolecular Coulomb energy,

and the solvation energy, taken individually, are not effective scoring functions;

the sum of the two, however, is significantly better as indicated in Figs. 10

and 11 (Ew ¼ 1 distribution). As shown in Fig. 10, the solvation energy is

strongly anticorrelated with the electrostatic energy. A positive intramolecular

electrostatic energy gap from the native is counteracted by a negative solvation

energy gap, and vice versa. Because the solvation energy does not completely

offset the intramolecular electrostatic energy, decoys having an intramolecular

electrostatic energy less favorable than the native will generally continue to
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have a less favorable total electrostatic energy (intramolecular þ solvation)

with respect to the native. The contribution of the solvation energy term,

however, is large enough to reverse the sign of the energy gap for those decoys

having an intramolecular energy more favorable than the native, for which there

are many examples in the Park and Levitt set (see Fig. 11). The native state
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corresponds to a balance between optimizing the intramolecular Coulomb

interactions and the intermolecular protein–solvent interactions.

Monge et al. [20] have also studied various energy decompositions of an all-

atom force field supplemented by a continuum solvation model. They analyzed

a decoy data set generated by a simplified model employing a fixed, known

secondary structure. The authors observe that the relative differences of both

van der Waals and Coulomb energies are about 1–2% above the native values,

but the total electrostatic component is the dominant factor in distinguishing

non-native states from the native ones. They found that a fraction of the decoys

had vdW energies lower than that of the native. Their model performed

reasonably well, though some non-native conformations had better scores

than the native state. This was not observed in the data sets we studied using

the OPLS-AA/SGB scoring function.

E. Approximate Effective Dielectric Models

1. Screened Coulomb Approximation

As shown in Fig. 10, the solvation energy gaps with respect to the native are

strongly correlated with the intramolecular Coulomb energy gaps. The equation

�USGB ¼ aþ b�UCoulomb ð9Þ

can be fitted obtaining b ¼ �0:82 with a regression coefficient of 0:94. If we

collate the total electrostatic interaction energy �Uele as the sum of the Coulomb

−500
0.000

0.002

0.004

0.006

0.008

0.010

−250 0 250 500 750

P
 (∆

U
 )

∆U (kcal/mol)

∈w = 1
∈w = 2
∈w = 4
∈w = 10
∈w = 80

Figure 11. The distributions of the screened Coulomb OPLS-AA energy gaps from the native

for the 3icb decoys as a function of dielectric constant.

478 anders wallqvist et al.



and solvation energies, we find

�Uele � �UCoulomb þ�USGB ffi 0:18�UCoulomb ð10Þ

This suggests that it might be possible to employ a screened Coulomb model to

account for solvation effects.

The screened Coulomb effective electrostatic interaction between two

charges q a distance r apart is

UCoulombðrÞ
Ew

¼ q2

Ewr
ð11Þ

The effect of the surrounding medium is accounted for by the value of Ew, usually

taken as 80 for water. Figure 11 shows the energy distributions for the 3icb decoy

set relative to the native state for the vacuum case and for various values of the

effective dielectric constant. A good energy function should only produce energy

gap values in the positive range. It is clear that for this decoy set, a simple

electrostatic energy evaluation in vacuum (Ew ¼ 1) results in many decoy

structures with energies substantially below the native values. Moreover, no

correlation between the RMSD from the native and the energy is observed.

Increasing the value of the effective dielectric constant removes some of the

negative energy gaps and increases the propensity for the low-energy decoy

structures to have low RMSD (not shown). None of the effective dielectric

constants used, however, was able to differentiate all of the decoys from the

native structure. This point is also illustrated in Fig. 2, which depicts the fraction

of native-like structures with energy gaps from the native less than �U using

Ew ¼ 5:5 as suggested by the relation in Eq. (10). It is clear that the screened

Coulomb scoring function provides less discrimination between decoys and

native structures than does the SGB solvation model.

If a simple relationship between the reaction field energy calculated via the

SGB model and the Coulomb energy as in Eq. (11) could be found, there would

be no need to employ more complicated continuum models. Although the bulk

of the correlation between these two terms can be explained by a screened

Coulomb interaction, the discrimination between native and non-native states is

degraded by such an approximation. The dispersion in the reaction field energy

versus the Coulomb energy, which is not contained in the screened Coulomb

model, provides a more detailed description of solvation effects which aids the

discrimination of native-like conformations from misfolded ones.

Although the SGB solvation energy is correlated with the intramolecular

Coulomb energy, it is not clear that the best values to use for an effective

dielectric constant is given by Eq. (10). The fraction of native-like structures

with energy gap less than a given energy difference calculated over all the data
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sets in Table I, reported in Fig. 12, shows the efficiency achieved using different

values of Ew. None of the effective dielectric models achieves 100% discrimina-

tion for energy values within 20 kcal/mol of the native state energy. Using

Ew ¼ 1 yields a broad range of energies for both native-like and non-native

states as discussed above. In comparison, using a value of Ew either 5:5 or 80:0
yields distributions of energies that are like those given in Fig. 11 for the

calbindin data set. The fraction of native-like structures with energies similar to

the native state is around 60% for an effective dielectric constant of 80.0. This

fraction increases to about 75% for an Ew value of 5.5.

2. Distance-Dependent Dielectric Approximation

An alternative to the simple screened Coulomb interaction in protein modeling is

the distance-dependent dielectric function [51]. In this approximation the

effective electrostatic interaction between two partial charges q at distance r is

written as

UCoulombðrÞ
Ewr

¼ q2

Ewr2
ð12Þ

Although unphysical in nature, it has been suggested that the extra screening

afforded by the 1=r2 function can capture some of the additional polarization

effects contained in higher-level implicit solvent models [51]. By calculating
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the energies of the decoy conformers in Table I using the distance-dependent

dielectric approximation, we obtain energy distributions similar to those

obtained using the simple screened Coulomb model. Moreover, as shown in

Fig. 2, both effective dielectric models produce qualitatively similar results.

For both values of Ew studied, 1.0 and 5.5, the fraction of native-like structures

with energy similar to the native energy, is significantly less than 100%.

Comparison between the distance-dependent dielectric and the non-distance-

dependent dielectric function in Figs. 12 and 2 demonstrate that the distance-

dependent function is less discriminatory for the decoy data sets studied here.

While the distance-dependent dielectric constant has been successfully

employed in some cases [77], we find that, though it is better than the vacuum

Coulomb potential, a simple non-distance-dependent screened Coulomb model

is more effective (Fig. 12). None of the screened Coulomb models are as

effective as the SGB solvation potential for the protein decoy data sets investi-

gated here.

F. Dependence on the Interior Dielectric Constant

The SGB solvent model requires the separation of space into an exterior region

containing the solvent medium and an interior region containing the protein

charge distribution. In the current implementation of the SGB model, the van der

Waals surface of the protein is used to define the dividing surface. The default

value for the dielectric constant of the solvent is 80, corresponding to pure water

at room temperature. Up to this point, the dielectric constant of the interior

region, Ein, has been set at the value of 1, corresponding to the vacuum dielectric

constant. We have also examined the cases Ein ¼ 2 and 5.5 to see whether the

OPLS-AA/SGB results can be further improved. The energy components

obtained for the native conformations contained in the Park and Levitt set are

given in Table V. A larger interior dielectric constant results in a lower total

energy of the system due to the increase of the dielectric shielding inside the

protein. The Coulomb energy and the reaction field contributions are both

reduced in an amount roughly proportional to the interior dielectric constant. The

van der Waals energy partly compensates for the reduction in electrostatic

energy, but the variation in Unative
vdW is relatively small.

The fraction of native-like decoys of the Park and Levitt set as a function

of energy gap is shown in Fig. 13 for the values of Ein examined. The number

of native-like conformations (RMSD <3 Å) with an energy score similar to

the native increases as we decrease the dielectric constant of the interior

region. It is only with an interior dielectric of 1.0 that all misfolded conforma-

tions can be eliminated based on energy alone. The discriminatory power of the

OPLS-AA/SGB energy model in this fold recognition test is optimal for this

choice of the internal dielectric, though it may not be optimal in other modeling

contexts.
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TABLE V

Selected Energy Components from Eqs. (1) and (2) for the Native State Using the Continuum Model

ðEw ¼ 80:0Þ as a Function of Interior Dielectric Constant, Ein

Unative
total Unative

vdW Unative
Coulomb Unative

SGB Unative
cav

PDB Ein (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

1ctf 1.0 �4213.9 �475.5 �5340.3 �1367.6 þ37.9

2.0 �2065.9 �519.7 �2595.2 �688.3 þ38.4

5.5 �730.6 �532.8 �925.5 �244.0 þ38.7

1r69 1.0 �3499.5 �497.2 �3722.9 �1168.9 þ37.2

2.0 �1709.9 �539.0 �1781.7 �593.3 þ37.7

5.5 �599.5 �554.3 �627.9 �210.8 þ38.1

1sn3 1.0 �3467.5 �465.1 �4784.2 �972.8 þ36.3

2.0 �1688.1 �499.8 �2315.2 �500.3 þ36.8

5.5 �585.3 �511.8 �821.5 �180.1 þ37.1

2cro 1.0 �3628.3 �522.4 �3514.8 �1462.2 þ40.4

2.0 �1763.1 �567.2 �1662.8 �749.7 þ41.0

5.5 �604.8 �578.9 �585.2 �264.8 þ41.4

3icb 1.0 �4694.5 �587.3 �5163.5 �2350.6 þ45.4

2.0 �2271.4 �641.0 �2466.5 �1195.6 þ46.1

5.5 �766.8 �656.8 �865.7 �427.2 þ46.4

4pti 1.0 �3055.0 �423.9 �2542.0 �1366.9 þ34.1

2.0 �1464.2 �448.4 �1208.6 �686.6 þ34.6

5.5 �473.2 �455.1 �425.0 �240.9 þ34.8

4rxn 1.0 �3363.5 �373.6 �2496.6 �2791.5 þ31.3

2.0 �1598.8 �399.3 �1190.1 �1389.9 þ31.6

5.5 �498.1 �407.6 �410.9 �489.1 þ31.8
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IV. CONCLUSIONS

The OPLS-AA molecular mechanics energy function coupled with the surface

generalized Born solvation model is found to be able to discriminate the native

structures of several proteins from their decoys. The results show that for a

number of cleverly constructed decoys the OPLS-AA/SGB scoring function

correctly singles out native-like states from the bulk of the non-native confor-

mations. Not all of the native-like structures were clearly separated in the data

sets; indeed some distant non-native conformations score better than some native-

like (RMSD <3 Å) conformations. This suggests that if the current scoring

method is to be applied to a set of ab initio generated structures, it is critical that

the algorithm for constructing native-like structures be such that a broad range of

the relevant parts of the native-like conformational space are sampled.

The ability of the OPLS-AA/SGB model to recognize native conformations

is found to be comparable, and in many cases superior, to the best knowledge-

based scoring functions. Other studies have shown the usefulness of molecular

mechanics force fields augmented by implicit solvation models in this area [6].

Lazaridis and Karplus [22] have shown that the CHARMM protein force field

combined with their EEF1 effective solvation free energy model [78] is able to

achieve 100% discrimination of the native conformations in a large decoy data

set and in the single decoy data set they examined. They also observe, in

agreement with our findings, that significantly poorer results are obtained by

omitting the solvation free energy term. They obtain these results despite the use

of a computationally fast solvation model which has the form of an effective

pair potential and is simpler than the SGB solvation model. Recently, Petrey and

Honig [79] have applied the CHARMM protein force field, together with a

dielectric continuum model based on the Poisson–Boltzmann equation, to the

problem of native fold recognition in the single decoy data set [17] (also

examined in this work) achieving a discrimination level close to 100%. They

also applied a simplified solvation model containing only the intramolecular

electrostatic energy and a hydrophobic residue burial estimator to evaluate the

Park and Levitt decoy sets. In two cases (3icb and 4rxn) their method does not

clearly rank the X-ray conformation favorably. Petrey and Honig observe that

the solvation energy often favors the misfolded conformation in the single-

decoy sets, concluding that the solvation energy is not useful in recognizing the

native conformation. However, even though the solvation energy generally

favors misfolded conformations, these structures tend to be disfavored relative

to the native conformation when the total electrostatic energy (sum of the direct

Coulomb and solvation term) is considered. In contrast, the SGB solvation term

is essential for destabilizing the relatively large number of Park and Levitt

decoys for which the direct Coulomb energy is more favorable than the

corresponding value for the native.
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The OPLS-AA/SGB scoring function was also compared with the screened

Coulomb OPLS-AA scoring function. Whereas a significant fraction of the

decoys with scores within 100 kcal/mol from the native are misfolded using a

screened Coulomb potential, essentially all of the decoys within 100 kcal/mol

from the native are native-like using the OPLS-AA/SGB scoring function.

The ability to discriminate native-like protein conformations from non-native

conformations is one of the fundamental problems in theoretical protein

structure prediction. The use of knowledge-based scoring potentials, derived

from a combination of structural and thermodynamic data, is currently the most

widely used method. It is often assumed that such models are inherently better

than all-atom force fields. This work shows the importance of correctly

modeling the physical forces underlying protein folding. Thanks to their

simplicity, knowledge-based scoring schemes are less costly to evaluate com-

pared to all-atom models. In the future it should be possible to combine the best

features of the two approaches to rapidly generate plausible protein conforma-

tions using knowledge-based potentials more reliably, and then discriminate

between conformers using all-atom scoring functions.
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