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I. INTRODUCTION

Under the general heading of ‘‘protein folding’’ there is an ever-increasing body

of methodology that has been rapidly evolving over the past few years. The

simply stated objective of computationally determining the three-dimensional

atomic coordinates of a protein starting from knowledge of the amino acid

sequence remains a somewhat idealistic academic challenge, but it has led to the

development of a technology base that is gaining in practical applicability. This

corresponds to some extent to a shift in philosophy in which a fundamental

understanding of the folding process is of less immediate interest than obtaining

the best model possible with whatever means are available. Fundamental

questions are of course still important and are being actively pursued [1–5], but

the field is being driven more and more by the pragmatic approach [6,7]. This is

highlighted by the effort being devoted to the CASP experiments, where the

emphasis is placed squarely on the bottom line [8]. In this context, the methods

used must be tailored to the particular problem at hand, and no available

information can be left unused. Much work therefore has been devoted to

making use of prior information and accumulated knowledge in the generation
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of computer models of proteins. This review will describe some of the ways in

which such methods are being incorporated within the traditional ab initio

framework.

A. The Knowledge-Based Approach

The label of ‘‘knowledge-based’’ is to some extent artificial, in that there is a

spectrum of methodologies and it is not always easy to draw a clear distinction.

The intended contrast is with a purist’s ab initio approach in which one seeks a

numerical solution to the fundamental laws of physics (as one would like to do

in quantum chemistry) with no theoretical limit on the problems that can be

addressed. A knowledge-based method, on the other hand, requires some form

of a priori knowledge and is therefore limited in its applicability by the data that

are available. If the term is used in its broadest sense, referring to methods that

make explicit use of the Protein Data Bank (PDB) of known structures, this

would still cover a range extending from methods which require there to be a

similar structure in the PDB to those that apply observed patterns in a more

general way. In principle, this includes virtually all methods because even the

most determined ab initio practitioner still has recourse to an empirical force

field that typically uses the PDB in its parameterization [9]. Even though such

force fields are as general as possible, the reliance on the PDB does represent a

real limitation, as anyone who has ever tried to use one to fold a membrane

protein can attest.

In the context of the CASP experiments [8], the distinction is drawn between

ab initio and ‘‘fold recognition’’ predictions, but there as well some overlap

occurs [7]. Fold recognition often involves some refinement to model parts of

the structure not found by homology, and conversely many ab initio methods

make some use of structural fragments from the PDB. It is precisely this middle

ground where the different categories are converging that is of interest and

where much recent success can be found. It has become clear that there is a

great deal of information to be had in the PDB and that progress is being made

by extending the ways in which it can be used. The knowledge-based approach

is therefore to develop methods to take advantage of what is there, even if the

underlying physical principles are not fully understood.

B. Recent Trends

One of the patterns that has emerged from the CASP experiments is the relative

success of the fold-recognition methods in identifying distant homologies, even

in some cases where none was originally thought to exist [8]. Until recently, ab

initio methods lagged far behind, but significant progress is now being made [7].

As mentioned above, however, this is coming from knowledge-based methods

that have incorporated some of the methods that have proven successful in

comparative modeling and fold recognition. It has been shown that so-called
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‘‘hybrid’’ methods can outperform more traditional fold-recognition and

ab initio techniques [10]. The more general methods of fold-recognition have

also been shown to outperform direct homology modeling in cases of weak

homology [11], suggesting that a flexible approach has the potential to cover a

broad spectrum of possible targets.

Another pattern that is emerging is an increased recognition that the PDB can

be used to identify structural motifs at different scales, not just individual

residues (as used to derive contact potentials) or entire domains (as used in

traditional fold recognition). Much recent work has gone into using the PDB to

develop databases of smaller fragments which can be used to construct protein

models [12], and an approach based on using local homology with a fragment

library has been shown to be quite successful at generating new folds [13]. This

building-block approach has also been used to generate improved sensitivity and

more accurate alignments when applied to fold recognition [14].

The trend toward a more generalized approach is also reflected in recent work

on scoring functions. It has been shown that traditional empirical potentials

perform poorly at discriminating the correct structure [15] and that the

functional form of pairwise contact energies is not even sufficient in principle

[16]. The importance of evolutionary relationships has also been established,

and information from multiple sequences can be used to improve recognition of

misfolded structures [17]. This idea has led to the use of conformational

tendencies and contact predictions from multiple sequence alignments [18]

and the development of scoring functions which take into account sequence

homology [19]. Scoring functions can therefore be constructed as a set of

complementary components: contributions that are unique to a given sequence,

those that depend on a family or class of sequences, and those that apply to all

proteins.

C. Practical Considerations

The bottom line in structure prediction is to provide a useful answer to a

question that is actually being posed. Ab initio predictions alone are rarely

accurate enough to be useful; however, as NMR spectroscopy is being used to

obtain structures for larger and larger proteins, there is a great practical benefit

in using computational methods to aid in this process. Structure prediction

methods, when coupled with experimental data, can be used to obtain higher-

quality structures [20] and even to help in interpreting and assigning the spectra

[21]. For this reason there is a great interest in developing methods that can

make the best use of various types of experimental data (often in the form of

constraints) in addition to that gleaned from the PDB.

The enormous progress that has been made in genome sequencing has also

led to increased efforts in functional genomics; that is, it has enabled the use

of prediction techniques to assign probable functions to newly discovered
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sequences [22]. In this case, the emphasis is less on obtaining accurate

coordinates and more on being able to detect weak homologies in distantly

related families of structures. Improved prediction methods therefore have an

important role in improving the sensitivity of fold-recognition techniques,

providing better alignments, and ultimately allowing weaker relationships to

be detected thereby classifying more of the genome. Even though the protein

folding problem may still be a long way from being fully solved, there is a great

opportunity for knowledge-based methods to have a significant impact in

improving structure prediction’s bottom line.

II. PROTEIN MODELING

The most direct approach to modeling protein folding would be to carry out a

simulation that replicates the actual folding process as it occurs in nature.

Although some progress has been made in pursuing that approach [23–25], it

remains impractical in most cases for two reasons: The time scale of the folding

transition for moderately sized proteins exceeds that which can be attained in

simulations, and the physical forces involved are not modeled with sufficient

accuracy to ensure the desired outcome. Because highly simplified models are

unsuitable for predicting structural details, a different point of view is needed to

carry out tractable simulations of realistic models. If one is not interested in the

thermodynamics of folding and wishes only to produce the folded structure, any

number of nonphysical buildup or pattern-generation techniques could be

imagined; however, many methods retain the basic model of a molecular

simulation, albeit with a number of simplifying approximations.

A. The Computational Model

The principal simulation paradigm is based on the thermodynamic hypothesis,

namely that the equilibrium structure corresponds to the global minimum of the

thermodynamic free energy. Whether or not this is strictly true for a given

sequence is not known; however, for the purposes of the simulation it is

generally assumed that some sort of energy-like function can in principle be

constructed for which the native structure is a minimum. This can be thought of

as some sort of modified free energy or as a purely empirical scoring function;

either way the mathematical problem is the same, namely to find the global

minimum. The general problem of global minimization is nontrivially difficult,

and therefore additional approximations are required in order to obtain a

solution in a reasonable time. The thermodynamic analogy is often used to

model this as an annealing process; however, in general any minimization

method can be applied.

In its general formulation, a simulation within the framework of global

function minimization consists of three basic elements. As mentioned above, the
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target function of the minimization must be defined so as to allow comparison of

different possible structures. Secondly, there must be a procedure to search

through the possible conformations in order to find the global minimum (or

other acceptable solution). Finally, the conformational space—that is, the range

of conformations that can be constructed and the means to transform one

conformation into another—must be specified in order to constrain the search.

Clearly, these elements are not independent and must fit together in order to

form a coherent model. For example, an energy function need not evaluate a

conformation that is not part of the allowable space. Nonetheless, each of the

three components offers a different means to incorporate empirical information

into the simulation.

B. Geometrical Representations

In order to reduce the number of degrees of freedom, most simulations use a

reduced model description of the protein in which only a subset of the atoms are

present. There are many variations on this theme, most of which have been

previously reviewed [26]. The most common approach is to represent the main-

chain N–Ca–C0 atoms explicitly, with the side chain either being represented by

the Cb atom or by an extended model atom corresponding to the approximate

center of mass of the side chain. The bond distances and bond angles are usually

fixed to standard values, thereby leaving the backbone dihedral angles f and c
as the only degrees of freedom (with the conjugated peptide dihedral angle fixed

at 180�, in some cases allowing 0� as well for proline residues). The dihedral

angles can either be restricted to a limited number of allowable conformations

or be allowed to continuously vary within a specified region, and both of these

approaches have been explored in our group and others.

Another method we are currently developing divides the molecule into

segments based on the assigned secondary structure. The relative positions of

the segments and the positions of the residues within each segment are optimized

in distinct steps, thereby allowing the overall topology to evolve using a long-

range potential with the detailed atomic coordinates to be adapted accordingly.

The protein backbone is initially not required to be continuous from one

segment to the next; and each segment can be deformed as the topology changes,

creating unnatural bond lengths and angles. The correct covalent connectivity,

rather than being rigid from the start, is gradually annealed in using a special

constraint potential during the course of the simulation.

The details of side-chain conformation are generally determined by local

interactions and have relatively little influence on the overall topology of the

fold. Methods have been developed to assign probable side-chain conformations

based on backbone dihedral angles and observed preferences in the PDB, and

this technique has been shown quite effective in correctly placing side-chain

atoms on a fixed backbone [27]. The task becomes more difficult if there are
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significant deviations in the backbone, because the details of the side-chain

contacts will no longer be the same [28]. In a recent approach, the side-chain

conformations are represented by specifying a distribution of discrete rotamer

states without actually including any additional coordinates. The ability of the

backbone conformation to adequately accomodate the side chains can be eva-

luated using a rotamer-dependent mean-field energy and a conformational

entropy [29].

C. Search Algorithms

The most common minimization technique is based on the principle of

simulated annealing, which involves generating an ensemble of structures which

is slowly converged toward the lowest-energy region of the conformational

space. This method requires that the conformational sampling be able to avoid

becoming trapped in a local minimum, and a number of techniques have been

developed to overcome this problem [9,30]. Other successful approaches

include using a branch-and-bound algorithm to limit the scope of local searches

[31], as well as combining discrete Monte Carlo trial moves with local gradient

minimizations [32].

Lattice models have also been used in order to discretize the conformational

space in three dimensions. A relatively fine-grained model can be searched

using methods similar to those described above [33], or a coarser model can

be used to generate a set of possible topologies which can then be further refined

using a more detailed model [34]. Further refinement can be carried out by using

consensus inter-residue contacts from simulations to generate new structures

that attempt to reproduce as many as possible [35,36]. Searches can even be

carried out directly in terms of inter-residue contacts and then used to generate

three-dimensional coordinates [37]. Another means to simplify the conforma-

tional search is to increase the range of the potential interactions during the

simulation in order to build up larger-scale features of the structure [38].

Our approach is the hierarchical algorithm [39,40], in which trial moves are

generated and evaluated in three different steps. At the simplest level, segments

of three residues (triplets) are generated by choosing three sets of ðf;cÞ values

at random from an allowed list. Each triplet is immediately accepted or rejected

according to whether or not the orientation of its endpoints falls into an allowed

region of triplet conformational space. The second level consists of complete

loop segments as determined by the secondary structure. These loops are

evolved from previously existing structures by using the set of triplets from

the first level as trial moves and by evaluating new loops based on the difference

in overall geometry from the starting loop. The final level then corresponds to

the entire molecule, for which the trial moves consist of substituting entire loops

with the new loops generated in the second level. It is only at this final level that

the structure is evaluated by calculating the full scoring function, which is then
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minimized using a genetic algorithm consisting of separate mutation, hybridiza-

tion, and selection steps.

D. Scoring Functions

In most current prediction methods, the objective of the scoring function is not

to reproduce the physical properties of the system, but to provide the best possi-

ble recognition of the native structure. These functions can be parameterized

strictly on a statistical basis to optimize their performance [41]. Although there

is some correlation between statistical potentials and those developed from

physical principles [42], the former generally provide better results for

predictions [43]. The energetic point of view is often used to motivate the

development of a scoring function, but in practice the goal is simply to evaluate

the relative probability that a given structure corresponds to a real protein. A

typical energy can be defined as

E ¼
X

ij

Eij

where the pairwise residue–residue energy is

Eij ¼ �kT0 ln PijðrijÞ

and Pij is the relative probability of finding residue pair i–j at a distance rij. If one

then uses the Metropolis test to accept or reject a trial move from initial energy Ei

to final energy Ef according to the value of expð�ðEf � EiÞ=kTÞ, the same

algorithm could be equivalently formulated in terms of accepting moves with a

probability of ðPf =PiÞa, where a ¼ T=T0 and

P ¼
Y

ij

PijðrijÞ

In principle, one could try to maximize the probability, its logarithm, or for that

matter any other monotonic function of it.

Empirical scoring functions generally consist of multiple components, both

sequence-independent and sequence-dependent [44,45]. The former include

terms to control the overall size and shape of the molecule, as well as charac-

teristic features of local structure depending on the geometrical model being

used, whereas the latter take into account the specific interactions among

residues. Some scoring functions are based on physical principles, such as

electrostatic interactions [38] and van der Waals forces [46], with additional

parameterization based on the PDB. The most common type of scoring function,

however, is based directly on observed distances between different amino acid
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pairs in the PDB, and it is formulated as a table of (possibly distance-dependent)

pairwise contact probabilities between amino acid types [47,48]. They differ

mainly in the functional form to which they are fit, as well as in the details of the

normalization of the probabilities, which is a nontrivial task for a heterogeneous

data set like the PDB [48,49]. The scoring functions used in our group are of this

type, the details of which have been published elsewhere [32,39].

Additional specificity can be built into the scoring function in several ways.

Specialized pattern-recognition and multibody terms can be included to generate

more realistic secondary and supersecondary structural motifs [45,50]. The

secondary structure can also be explicitly taken into account when calculating

residue contact probabilities, in order to distinguish interactions between amino

acids in different secondary-structure units [51]. In a more sophisticated

approach, the local sequence homology is used to adjust the statistics for a

particular target sequence [19]. The trend toward more explicit pattern recogni-

tion and sequence specificity in the generation of scoring functions allows more

of the subtle homologies in the PDB to be exploited, although some chemical

insight is still required to express it in an appropriate functional form.

III. CONSTRAINT METHODS

Constraints provide a very direct means to add information to a simulation—

simply requiring all generated structures to satisfy certain additional conditions.

This approach has been used extensively to generate three-dimensional

structures from NMR spectra [52], which provide data in the form of inter-

atomic distances. In principle, if one had enough distance constraints, the

problem would be overdetermined and could be solved mathematically with no

further information required. It has been shown, however, that the use of

knowledge-based simulations based on homologous structures or fragment

libraries from the PDB provides more accurate models than constraint-based

methods alone [20,53].

In the case where the constraints alone are insufficient to determine the

structure, they can still be used to supplement energy-based simulations. The

goal in this case is to make the most effective use of the constraint information

and to obtain good results with a minimum of additional information required.

Because the source of the constraints is typically experimental spectra that must

be assigned and interpreted, or theoretical methods (such as multiple sequence

alignments) that may be incorrect, it is also important to take into account errors

especially in difficult cases where the input data is incomplete or uncertain.

Under these conditions, the constraints can be regarded as an additional

component of the scoring function, expressing the probabilities of different

structures, rather than as a rigid requirement. In many implementations, these

interpretations are in fact equivalent.
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A. Types of Constraints

Constraints can in principle be applied to any property of the structure where

some sort of prefered value can be determined; however, the most common

are those that correspond to experimental information. Some common types are

outlined in the following sections.

1. Distance Constraints

Although the use of distance constraints to determine structures from NMR

spectroscopy is well-established [52], these are experimentally determined

structures rather than predictions in the sense used here. Applying a limited

number of distance constraints to the simulation of an unknown structure in

order to determine the gross topology rather than the detailed coordinates is a

more recent approach [54]. This work showed, however, that the number of

distances required for this purpose was at least an order of magnitude less than

that needed for a complete structure determination. The emphasis in recent

years has therefore been to reduce this number even further and to increase the

size of protein that can be studied, with the goal of obtaining better

structural information while requiring fewer experiments. In practice, tests are

usually carried out on known structures where a given number of distances can

be chosen at random to simulate such data.

2. Angle Constraints

There are currently experimental techniques to extract dihedral angles from

NMR chemical shifts and coupling constants [55,56]. There is, however, a

considerable margin of error on the order of �45� in the actual values, which

varies according to secondary structure [57]. These values are therefore

insufficient for purposes of constructing the backbone by a sequential buildup;

however, the target values and corresponding uncertainties can be applied as

constraints in a torsional scoring function. The same applies to local backbone

distance constraints, which in a reduced model are more conveniently expressed

as limits on the dihedral angles rather than as specific interatomic distances.

Although the dihedral angles in principle determine the structure directly, it is

possible to have significant local variations in f and c without appreciably

changing the overall fold. The goal is therefore to use local dihedral constraints

to bias the simulation toward the native structure while maintaining sufficient

flexibility to avoid propagating errors due to incorrect values. Angle constraints

can also be effectively combined with distance constraints to obtain greater

precision from experimental data [58].

3. Other Types of Constraint

Data from NMR experiments which measure residual dipolar coupling [59] and

paramagnetic relaxation [60] can be used to derive long-range geometrical
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constraints and global features of the structure. These methods allow one to

determine the relative orientation of N–H bonds relative to a common

(unknown) reference frame, although not directly to one another. Although it

is difficult to extract detailed information from this type of data due to the

inherent degeneracy of the relative orientations, it is complementary to the types

of constraints mentioned above and therefore can be very useful in folding

simulations to screen out incorrect structures. This type of constraint lends itself

well to a scoring-function approach, because it is easier to calculate the values

that would be produced by a predicted structure and compare them with the

experimental data than to impose a priori constraints in generating the structure.

Although this type of constraint shows considerable promise, its use in

simulating larger proteins is still less well developed than the more traditional

distance and angle constraints.

B. Deriving Constraints from Predictions

Although the emphasis so far has been mostly on experimentally determined

constraints, the same techniques that have been developed, especially in the case

of uncertain or ambiguous constraints, can be just as well applied to

theoretically predicted data. In cases where this is derived from sequence

homology and/or multiple sequence alignments, the use of predicted constraints

effectively generates a sequence-specific scoring function where any additional

information is added to the generic scoring function already in place. Probable

contacts can be derived from correlated mutations in a family of aligned

sequences [18,61]. If a structure is known for at least one member of the family,

contacts that are observed in the known structure which are likely to be

conserved can be identified by looking at correlated mutations across the

sequences, using the hypothesis that pairs of sites which have an increased

probability of changing in concert are more likely to be in physical contact.

Because there is a large number of possible pairs in a given sequence, as well as

a relatively low signal-to-noise ratio in evaluating correlations, this method is

less effective when based solely on sequence data without a reference to identify

pairs that are likely to be in contact at all. On the other hand, extracting probable

contact pairs can provide better results than direct homology modeling when the

homology is weak and the structural alignment is uncertain.

Probable backbone dihedral angles can be predicted using sequence-based

methods similar to those used in predicting secondary structure [62,63].

Although this could be considered a simple torsional potential, it is included

in this section because it nonetheless incorporates sequence-specificity into the

potential and can be implemented using the techniques of flexible angle

constraints. In another method, contact distances between residues in different

helices were determined by first selecting likely hydrophobic residues to form

helix–helix contacts and then using a distance range typical of observed helix
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pairs in the PDB [36]. Distance constraints can also be generated directly from

the simulation results themselves [35]. In an ensemble of predicted structures,

the frequencies of inter-residue contacts can be analyzed to identify those that

are observed across a range of structures. These ‘‘consensus’’ contacts can then

be imposed as constraints and used to generate structures that are better than any

of those used to derive the constraints. A similar approach has been used in our

group to correctly identify inter-residue contacts using an ensemble of structures

in which no structure individually had the correct topology.

C. Constraint Implementation

Constraints are typically applied as a penalty function that is added as an extra

term in the scoring function, often as some simple function (e.g., harmonic) of

the difference between the actual and target values. Other strategies are possible,

however, and constraints have also been used systematically in the construction

of model structures. This can be applied to distance constraints, where a buildup

procedure is used to generate structures that satisfy all constraints [64]. Angle

constraints can also be used to systematically search the conformational space,

both using a branch-and-bound procedure [65] or in a tree-search algorithm in

combination with distance constraints [66].

In the case of sparse constraints, however, it has been shown that there is an

advantage to using more flexible, or ‘‘floppy’’ constraints that allow for a more

effective conformational search [67]. In our work, we apply inter-residue cons-

traints to the Cb–Cb distances, regardless of the atoms involved in the original

data. This is partly due to the practical problem of not representing side-chain

atoms, but it also serves to simplify the calculation. The range of possible Cb–

Cb distances consistent with the data is accounted for by using generous limits

on the constraints. Rather than corresponding to a loss of precision, this actually

improves the efficiency of the minimization.

We have studied a variety of functional forms for the constraint penalty

functions and have found that a flat-bottom well with an exponential tail

provides the best results. This penalty function has the form

UðrÞ ¼ �1; r < c

�expð�r=dÞ; r > c

�

where c is the maximum constraint distance and d is the width of the tail. The

best results are obtained with a square-well width of 8 Å and a tail width of 3 Å.

The width is held constant independent of the actual constraint distance, because

this allows greater flexibility and gives better scores to nearly correct structures.

In fact, even for distances known to be less than 6 Å, setting c to 8 Å gave better

results than a c of 6 Å, due to the fact that correct contacts are better recognized
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despite local errors in the structure. For the same reason, no inner cutoff was used

other than the usual excluded volume term.

In cases where the constraints are known to be accurate, good results can also

be obtained for penalty functions that become large at long distances, such as

linear or quadratic tails. This gives a large energy for any structure that severely

violates any constraint. This is fatal, however, in cases where some constraints

are incorrect or even contradictory. It is therefore important to ensure that while

there is a favorable score for satisfied constraints and an attractive force in their

vicinity, in the limit of grossly violated constraints the corresponding score goes

to zero and is simply ignored.

1. Ambiguous Constraints

Ambiguous constraints arise in working with NMR NOE data that haven’t been

completely assigned [68]. In cases where similar residues have virtually the

same chemical shifts, it can be difficult to identify which sites in the sequence

are responsible for an observed contact. The same principle also applies to

cysteine (S–S) linkages where several different pairings of cysteine residues

may be possible. In such cases, carrying out a simulation with simultaneous

constraints corresponding to each possibility can be used to determine the cor-

rect pairings [69]. The results of simulations with conflicting distance constraints

have even been used to eliminate incorrect assignments for subsequent simula-

tions and eventually deduce the correct contacts [21,70]. Another approach that

gives rise to ambiguous constraints is the simulation of predicted secondary

structure, where the different possible assignments can be expressed as a

weighted combination of short-range distance constraints [71].

In our implementation, ambiguous distance constraints are simply expressed

as a linear combination of all possibilities; in other words, all constraints are

treated equally. As the penalty function goes to zero for violated constraints, the

score is essentially the same for a residue that satisfies any one of the possible

constraints, and the structure as a whole is optimized to satisfy as many as

possible. An optional weighting factor can be included to represent the relative

probabilities associated with different assignments.

D. Results

In order to test some of the ideas discussed above, we have carried out a number

of experiments on known structures by artifically generating constraints from

the PDB coordinates. Although this is far removed from real-world applications,

having precise control over the quantity and quality of the supplemental data

allows the methods to be carefully evaluated and allows their limits to be better

determined. In the following sections, some representative examples are pre-

sented to illustrate the progress that has been made, and comparisons are shown

with similar work from other groups.
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1. Distance Constraints

The implementation of distance constraints was tested using two small globular

proteins that have been previously studied in the literature: calcium-binding

protein (3ICB), an a protein with 72 residues, and tendamistat (3AIT), a

b protein with 62 residues [72]. In each case, a total of 10 constraints were

chosen at random from among the eligible pairs of residues in the crystal

structure. This was repeated for 20 simulations, each using a different set of

constraints, and compared with earlier literature results [73]. The results are

summarized in Tables I and II. For 3ICB, 10 constraints are sufficient to find as

good a structure as was found using all of the constraints. Because of the use of

ideal b-strands without any sort of strand-pairing potential, 3AIT proved to be

much more difficult, although the addition of 10 constraints does also lead to a

significant improvement. Other published simulations [74] show better results

when all of the constraints are used, but fail completely for small numbers of

constraints. A test was also carried out with a larger molecule, myoglobin

(1MBA), an a protein with 140 residues, the results of which are shown in

Table III. Using 20 constraints in this case, a structure with an RMS deviation of

4.5 Å was obtained, comparable to 4.9 Å reported elsewhere for the same set

TABLE I

Results of Simulations with Constraints for 3ICB

Standard

Constraints Low RMS Average RMS Deviation

Present work 0 4.6 9.8 1.9

10 3.0 4.9 1.3

89 3.0 3.3 0.2

Aszódi et al. 0 10.0 1.5

10 6.3 2.0

86 2.9 0.2

TABLE II

Results of Simulations with Constraints for 3AIT

Standard

Constraints Low RMS Average RMS Deviation

Present work 0 8.4 9.7 0.4

10 4.8 8.4 1.3

116 3.6 6.8 1.6

Aszódi et al. 0 9.4 0.7

10 5.8 0.6

120 3.7 0.2
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of constraints [75]. This result improved to 3.2 Å with a random selection of 30

constraints, which was essentially equivalent to results obtained with larger

numbers of constraints.

2. Angle Constraints

Within our hierarchical model, it is more convenient to implement angle

constraints in a different manner. Instead of using a scoring-function approach,

we introduce the constraint information at the level of the list of allowed f–c
pairs. Because the pairs are selected randomly, the number of values in each

region will determine the corresponding bias in the simulation. Test calculations

were carried out for myoglobin (1MBO) in which part of the dihedral list

corresponded to the usual distribution and the other part was limited to a region

with a width of 30� around the target values. Clearly, if the weight of the latter

region is 100%, this represents a rigid constraint, however, in order to maintain

the flexibility of the simulation and allow for the possibility of incorrect data, it

is useful to retain some of the original distribution. Simulation results are

summarized in Table IV as a function of the relative weight of the constraint

region. Good results are obtained with a 50% weighting, indicating that there is

TABLE III

Results with Constraints for 1MBO

Low Average Standard

Constraints RMS RMS Deviation

Present work 0 7.1 12.3 1.8

20 4.5 10.3 1.8

30 3.2 5.7 1.2

50 3.6 5.3 1.6

100 2.9 4.5 1.0

Skolnick et al. 20 4.9 5.6

TABLE IV

Results of Simulations of 1MBO Using Angle Constraints with Different Relative Weights

Constraint Weight (%) Low RMS Average RMS Average Score

0 8.1 11.1 �172

6 7.4 11.7 �172

20 4.9 9.8 �173

30 5.1 6.5 �218

50 2.5 4.1 �226

100 1.7 2.7 �226
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a strong cooperative selection. On the other hand, a control experiment was

carried out also with 50% weighting, in which the target values were chosen at

random, thus giving a nonsensical structure if taken together. The results in this

case were essentially the same as those with no constraints at all, showing that

the simulation is nonetheless able to ignore incorrect data.

3. Ambiguous Constraints

In order to test the sensitivity of the simulation with respect to incorrect data, a

series of experiments was carried out in which the total number of distance

constraints was held fixed, but the number of which were correct was varied. In

a first trial, again with myoglobin (1MBO), 100 constraints were used. The

correct constraints were derived by randomly selecting from among the possible

contacts observed in the PDB structure, and the remaining number were ran-

domly selected from pairs of residues known to be at least 20 Å apart in the

correct structure. This was repeated with several different sets of constraints, to

avoid any bias due to a lucky choice of correct constraints. The results are

shown in Table V. Compared with the results in Table III, there is clearly a loss

in performance due to the presence of incorrect constraints; however, reasonable

results can still be obtained in cases where the nonsensical constraints actually

outnumber the real ones. A similar experiment using flavodoxin (2FX2), a

mixed a=b protein with 143 residues, is shown in Table VI. Although there is an

increasing number of misfolded structures, as indicated by the average RMS

TABLE V

Results for 1MBO with 100 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 0 2.6 4.7

75 25 3.7 5.2

50 50 4.0 6.8

30 70 5.3 8.9

20 80 6.0 10.8

TABLE VI

Results for 2FX2 with 100 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 0 4.6 7.2

75 25 5.2 9.4

50 50 5.2 11.9
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deviation, the simulation is still able to find reasonable structures with only half

of the constraints correct. A further experiment on myoglobin with 150

constraints, shown in Table VII, shows that the constraints remain useful with as

few as 20% correct. Values in parentheses are actually higher than in a

comparable simulation with no constraints at all. These results support the idea

that, up to a certain limit, more data is better even if it becomes less reliable.

4. Predicting Constraints

The most promising method for predicting distance constraints is based on

correlated mutations in multiply aligned sequences. This approach has been

used in folding simulations with on average about 25% of tertiary contacts

predicted to within �1 residue in the sequence, and it was shown that this is

sufficient to generate reasonable fold predictions [18,61]. In experiments carried

out in our group, summarized in Table VIII, the predicted constraints were

found to be more than sufficient to generate reasonable structures. Predictions in

this case are considered correct if the two Cb atoms are in fact within the 8 Å

TABLE VII

Results for 1MBO with 150 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 50 4.0 5.9

50 100 3.7 7.7

30 120 6.1 10.7

20 130 (9.2) (13.2)

TABLE VIII

Contact Prediction Accuracy

Target: 1CCR 2LHB 1MIL

Sequence length: 107 134 84

Aligned sequences: 10 7 6

Maximum indentity: 62 31 29

Low Sensitivity

Predicted contacts: 88 81 84

Percent accurcy: 93 89 88

High Sensitivity

Predicted contacts: 33 47 45

Percent accuracy: 100 89 87
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well used in the simulation. Results are shown for both low and high sensitivity,

meaning that the criterion used to predict contacts based on the statistical

significance of the sequence correlations was more strict in the latter case.

Although this improves slightly the accuracy of the predictions, the larger

number of total contacts provides a clear advantage for the low sensitivity

predictions. In particular, in the case of 1MIL where there are relatively few

aligned sequences with low homology, the selection criterion was of little use

and yet the overall quality of the predictions was quite good.

IV. LIMITING THE SEARCH SPACE

Generic information about protein structure can be incorporated in a simulation

by restricting a priori the conformations that can be generated. If the simulation

is only capable of producing structures with certain realistic properties, the odds

of finding the correct fold are greatly enhanced. In the extreme case, the choices

would consist of a limited number of compact folded structures for the entire

sequence. In such a ‘‘simulation’’ the global minimization problem is trivial

(exhaustive enumeration becomes feasible) and the scoring function need only

distinguish among topologicaly different structures without reproducing any of

the interactions that stabilize such structures in the first place. Clearly, all the

work is being done in the initial definition of possible trial structures, which

therefore becomes the determining element of the algorithm. There is a

necessary tradeoff between using the characteristics of known folds to limit the

search and running the risk of incorrectly excluding a structure that had not been

previously seen.

A trivial application of this principle, however, is the use in the hierarchical

algorithm of a list of allowed f–c pairs in generating new segments. This

eliminates the need for a scoring function to penalize unfavorable regions of the

Ramachandran map, as well as the need to sample such unlikely regions of the

conformational space. Although the definition of this list is entirely empirical,

based on observation of the PDB, it still represents real interactions that a new

structure would be very unlikely to violate.

A. The Principle of Threading

The most obvious way to select realistic structures is to simply use those that are

already known in the PDB, and this is the basis of what is commonly known as

threading. Threading is normally associated with the problem of fold

recognition—that is, identifying homologous structures in the PDB—rather

than in the context of simulation. It is included here as the limiting case of a

restricted search in order to establish a relationship between the ab initio and

fold-recognition approaches and also to provide a framework for describing

various intermediate methods that have been developed.
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In its simplest incarnation, threading consists of attempting to map the target

sequence onto the backbone coordinates of all structures in the PDB of equal or

greater length. This can be visualized as stringing a flexible chain of amino

acids along the fixed scaffold of a known structure—hence the name threading.

In this simple approach, the number of possible alignments (mappings of the

target sequence onto the corresponding residues of a known structure) is limited,

and most empirical scoring functions are capable of recognizing truly homo-

logous structures. The method fails, however, to identify distant structural

homologs and is obviously incapable of generating any new folds. More realistic

methods allow the connectivity of the template structures to be modified [76]

and allow gaps and insertions to be introduced in the alignments. This, however,

greatly increases the number of possible alignments and makes the problem of

recognizing homologous structures that much more difficult [77].

B. Local Threading and Fragment Lists

One way to overcome the combinatorial problem is to divide the problem into

smaller local alignments. This can be done as a first step in generating a global

alignment to a single known structure [14], or alternatively to identify shorter

segments that align to parts of different structures. The structure of a known fold

can be described by specifying the local environment of each residue: secondary

structure, polarity, and solvent exposure [78]. This allows the threading to be

carried out locally, aligning a linear sequence to a series of profiles by the same

methods used for sequence–sequence alignments, independently of the rest of

the molecule.

The resulting local alignments lead to a large number of possible combina-

tions that must still be reassembled into a single structure. In this situation,

rather than attempting to either select the best local homologs or carry out an

exhaustive enumeration, it is more effective to return to a stochastic simulation

where the local templates act as lists of trial structures for each segment. In this

way, the principle of using a restricted set of conformations can be extended

across various levels of structure: from individual amino acids (as in a typical

simulation) to multiresidue fragments, loop and secondary structure elements,

supersecondary motifs, and ultimately entire domains (as in a typical threading

calculation).

1. Using a Motif Library

A set of commonly occurring structural motifs, along with their associated

sequence profiles (the probability for each amino acid to occupy each site in the

structure), have been extracted from the PDB using local sequence and structure

alignments [13]. Experimental evidence has even shown that some peptides do

in fact adopt the corresponding motif structure in isolation and that strong fits to

the sequence profile can possibly be used to identify sites of folding initiation
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[79]. These motifs have been successfully used in a simulation algorithm to

predict new folds, providing one of the more impressive achievements in the

CASP-3 experiment (see Simons et al. in Ref. 8). This motif library has now

been united into a global prediction scheme using a hidden Markov model to

encode extended sequence profiles [63]. A similar library of loop motifs has

also been used to model loop regions in homology models using the flanking

secondary structure as a guide [80].

2. Mapping Conformational Space

Rather than attempt to identify common motifs, another approach is to try to

identify a minimal set of building blocks that can be used to represent any

known structure [12]. This essentially corresponds to a redefinition of the

geometrical model in which the smallest unit of structure becomes a five- or six-

residue fragment. The result of using this model is a greatly reduced number of

degrees of freedom and a more efficient exploration of conformational space.

C. Fragment Screening and Enrichment

As an alternative to using preselected fragment lists to build up a model

structure, a more general approach is to use the characteristics of homologous

structures to screen possible conformations. The idea is still to allow arbitrary

conformations, as in a traditional simulation, but to increase selectively the

proportion of generated structures with the desired protein-like qualities. By

using homologous motifs from the PDB to define the selection criteria,

sequence-dependent conformational preferences can be introduced into the

simulation without reducing the flexibility of the model.

1. The Hierarchical Approach

In the hierarchical algorithm [40], the structures of the residue triplets are

generated from independent residue conformations which are determined by the

three amino acid types. These triplets are then screened according to the relative

orientations of the end residues, which determine the positions of the flanking

segments. For a given target sequence, the distribution of triplet geometries is

calculated for segments in the PDB which have a local sequence homology

greater than a specified cutoff. This distribution is used to accept or reject

randomly generated triplets so as to reproduce the observed probabilities of

finding a triplet with a given geometry. This generates a sequence-specific list of

triplet conformations which can then be used to generate larger fragments. In

preliminary tests using this method on a set of test proteins, both the average

energy and deviation from the native structures was found to decrease as the

selectivity of the screening (the homology threshold) was increased. In these

tests, any structure with significant global homology to the target sequence was

excluded from the fragment database.
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Loop segments of varying lengths are then built up by randomly selecting

from the lists of triplet conformations. Loops are again selected by comparing

the end-to-end distances and rotations with homologous loops in the PDB.

Although the internal structure of the loops is free to vary, the goal is to generate

structures that are more likely to produce a favorable positioning of the flanking

segments. Because this type of selection is applied successively at three

different levels of structure, the overall process is quite efficient and the cutoff

parameters can be freely adjusted to give the desired level of structural

similarity and sequence homology at various stages of the simulation.

D. Modeling Secondary Structure

Due to its well-characterized regular motifs, secondary structure is an obvious

candidate for fragment-based modeling. Indeed, a common approach, and the

one traditionally used in our group, is to simply hold the secondary structure

fixed during the calculation, which is an extreme application of the principles

described in this section. In cases where the secondary structure is predicted

from the sequence, this is a crude application of fragment selection by sequence

profile. This effectively removes a large number of degrees of freedom and

eliminates the need to use the scoring function to stabilize a-helix and b-sheet

conformations.

This approach can be generalized, and some flexibility reintroduced into the

structure, by developing specific models to reproduce the observed variability

within the regular structures. A list of strand or helix structures can be

assembled from the PDB, with associated error tolerances on the dihedral

angles to account for kinks and imperfections, and this can be used to define the

possible conformations of an arbitrary helix as a single unit. Sheets are in

general more complex and show more natural variability; however, the possible

collective structures have been extensively studied and characterized [81,82].

Using the generic properties of b-sheets, a library of conformations with varying

twist and curvature can be constructed for an arbitrary sequence.

As a preliminary test, we have carried out a series of simulations with a range

of possible helix and strand geometries to determine if the tertiary contacts

would be sufficient to identify the native structure. The list of trial structures

consisted of a continuous deformation from an ideal geometry to the (known)

native geometry, with the same deformation vector extended to also generate

even more deformed structures. The results for a set of test sequences are shown

in Figs. 1 and 2 for helices and sheets, respectively. The deformations are

grouped into discrete bins, and in each case the corresponding native structure

falls into bin number six. For helices, which have a smaller average deforma-

tion, the distribution is relatively smooth with a maximum at the native

geometry. In the case of b-strands, the distribution is more-or-less flat with a
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more pronounced peak at the native geometry, suggesting that the correct

deformation does in some sense better ‘‘fit together’’ and is energetically favored.

V. HOMOLOGY AND STRUCTURAL TEMPLATES

For homologous proteins, a threading alignment as described in the previous

section can be used to provide a template for the entire structure. In the absence

of global homology, however, local alignments can still be used to extract
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Figure 1. Helix selection frequency as a function of relative deformation for a set of test

proteins. In each case, bin 1 corresponds to an ideal structure, bin 6 corresponds to the native

structure, and the other bins correspond to a linear extrapolation.
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Figure 2. Strand selection frequency as a function of relative deformation for a set of test

proteins. The bin deformations are as in Fig. 1.
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localized structural constraints. This approach, unfortunately, results in the loss

of any information about the overall topology of the tertiary structure, which is

the most difficult part of the folding problem. An alternative is try to identify a

smaller number of aligned residues, possibly with significant gaps, in order to

provide key reference points for determining the overall structure. In this case,

much local information will be missing, and local structure must still be

determined using standard simulation methods; however, the relative three-

dimensional positions of different parts of the structure can be controlled. This

is consistent with the chemical interpretation of a relatively small number of

conserved residues playing an important role in both fold stability and function

(although of course there are many exceptions to this picture.) When the

homology is weak, it may be more effective to try to identify the most probable

conserved residues than to rely on a global alignment that is likely incorrect.

A. Identifying Structural Templates

The most straightforward approach is to carry out a standard threading

calculation and exclude regions with a poor alignment score. Template residues

can also be excluded in regions where the target is not predicted to have a

regular secondary structure, or where the template secondary structure differs

from that predicted for the target. In this way, the parts of the alignment most

likely to correspond to a stable core can be identified and the simulation can be

used to fill in the gaps. In our implementation, the superposition of the selected

residues with their corresponding coordinates in the aligned template structure

is then used as an additional contribution to the scoring function. Another

approach is to constrain the simulation to follow the template structure, but to

allow the specific alignment to change during the simulation [83].

Positions likely to be conserved in a sequence can also be identified by

searching through a database of known sequence patterns such as PROSITE

[84]. In our approach, patterns identified in the target sequence were then used

to search the PDB for structures containing the same patterns. The coordinates

of the conserved residues were then averaged over all matching structures to

generate a composite template that was then used in the simulation. An experi-

ment was carried out for the myoglobin sequence (1MBO) using coordinates

from seven structures in the PDB having less than 20% sequence identity with

1MBO to obtain the template coordinates. The results of the simulation are

shown in Table IX as a function of the number of template sites used. Good

structures were obtained using a template with a relatively small number of

aligned residues.

B. Multiple Templates

In many cases there may be more than one possible template for a given target

sequence. This can arise from different choices of reference structure, or for the
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same reference structure different alignments and choices of predicted secondary

structure. In addition, different parts of the target sequence might align well to

different structures in the PDB. In such cases, the simulation can be used to

choose among conflicting alignments and to combine different templates.

1. Template Competition

In our implementation, the same philosophy is used as in the case of distance

constraints. The scoring function is a spline-fit switching function of the actual

superposition RMS deviation with the template coordinates. This function is

equal to �1 below a lower cutoff value, equal to zero above an upper cutoff

value, and varies smoothly in between the two. Conflicting templates can there-

fore be used simultaneously, and a favorable score will be obtained for structures

that superpose well on any one or more of them and no penalty is assessed for

distant templates. The simulation can therefore be used to identify which of the

possible templates gives the best fit consistent with the connectivity of the

sequence and the generic scoring function.

2. Results

This methodology was used in the most recent CASP experiment, from which

two representative examples will be described which illustrate how the methodo-

logy was applied. For sequence T0089, threading results suggested eight

possible templates for the N-terminal region, four possible templates for the

C-terminal region, and three or four different alignments and secondary-

structure assignments in each case. None of the alignments had a sequence

identity greater than 15%, and in addition there was a gap of about 120 residues

between the two templates. Simulations were run using all possible combi-

nations of two templates, and the final prediction was selected based on the fit

to the templates, the overall energy, and the ability of the connecting segment

to fold.

The situation was reversed in the case of sequence T0087, where instead of a

gap there was an overlap of over 100 residues between the two proposed

templates. In this case, 11 choices for the N-terminal region and six choices for

TABLE IX

Performance as a Function of Template Size for 1MBO

Size of Template Low RMS Average RMS

0 9.5 13.8

11 4.7 9.4

25 3.0 4.2

50 2.4 3.3

146 2.1 3.0
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the C-terminal region were identified, all with about 10–15% sequence identity.

For each possible combination the two templates were used simultaneously,

thereby generating a conflicting set of constraints for the region in which the

two overlapped. The final prediction was selected as that which provided the

best simultaneous fit for both templates, thus hopefully giving a relative

orientation of the two domains consistent with the context of each.

Unfortunately, the preliminary results indicate that none of the proposed

templates was correctly aligned to the native structure, so it is difficult to judge

the performance of the simulation methodology. In each case, however, the

submitted structures were correctly ranked, with the best one selected as the first

choice.

C. Local Templates

The use of multiple simultaneous templates can also be extended to model

generic structural motifs. In contrast to the method of segment libraries dis-

cussed earlier, these are structural relationships which are nonlocal in sequence;

rather than describing the local backbone conformation, the goal is to describe

the relative spatial orientations of different structural elements. The use of

multiple templates allows different possibilities to be considered, thereby provi-

ding a library of three-dimensional relationships. This use of generic structural

templates provides a general alternative to local multibody scoring functions

that recognize specific structural motifs.

1. b-Strand Pairing

Generating realistic b-sheet structures is a notoriously difficult problem due

to the specific relative orientation of noncontiguous backbone segments

produced by the H-bonding pattern. The H-bonds themselves, however, are

short-range interactions that are difficult to simulate and often fail to produce

the desired overall structure. Specific multibody interactions that take into

account strand orientation are therefore often used to overcome this problem

[45,85–87].

An alternative approach for correctly aligning two b-strands is to extract a

template of a similar strand pair from the PDB, which can then be used to

superimpose the target strands. A library of possible pairings can be generated

based on sequence homology, and the technique of multiple templates described

above can be used to select a suitable candidate for each interacting strand pair.

To determine whether or not templates derived from unrelated structures could

provide correct strand-pairing geometries, the closest structural homologs in the

PDB were identified for a number of strand pairs, along with the best super-

position in a list of the top 10 sequence homologs. Shown in Table X are the

results of this experiment for the mixed a=b protein ribonuclease A (2RAT).

(Sequences with more than 20% overall similarity to the target were excluded
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from the calculation.) Reasonable models can be obtained for each pair, despite

the lack of global homology.

2. Hydrophobic Contacts

A similar approach can also be applied to helix pairs, which, despite being

linked only by hydrophobic contacts, tend to pack in well-defined relative

orientations. It has been shown that by identifying conserved hydrophobic

contacts between different helices, a model can be found in the PDB which

reproduces the correct helix–helix packing and can be used to reconstruct the

tertiary structure [88]. Because the helix structure is very regular, a single

contact geometry is sufficient to generate a helix template of arbitrary length

using a standard backbone conformation.

VI. NEW DIRECTIONS

The next logical step in the evolution of structure prediction is to generalize

further the knowledge-based methods described so far in order to make

maximum use of the motifs in the PDB, even in the absence of any detectable a

priori homology, and to eventually replace the physically motivated idea of a

universal energy function. Local structure will be modeled using fragment

libraries, inter-residue interactions through generalized distance constraints, and

multibody correlations through localized motif templates. The scoring function

will become a moving target that adapts itself to the results of the simulation,

adding a knowledge-based component to the already sophisticated search

methods currently in use.

A. Sequence-Specific Potentials

Flexible distance constraints can be used to express the probability of forming

different specific contacts in the structure, based on the context of each residue.

Conceptually, if contact probabilities were to be predicted solely on the basis of

amino acid type (hydrophobic residues are more likely to be in contact with

other hydrophobic residues), this simply reduces to a traditional generic energy

TABLE X

Strand-Pairing Templates for 2RAT

Strand Pair Length Best Possible Homologous

1–4 5, 8 0.64 Å (1BIA.1) 0.99 Å (1ZXQ)

4–5 8, 8 0.82 Å (1BYT) 1.93 Å (2MEV.2)

2–3 3, 3 0.08 Å (8FABA.A) 0.16 Å (2ENG)

3–6 3, 6 0.34 Å (1EFT) 0.81 Å (1BLI.A)

6–7 6, 8 0.91 Å (1A62) 2.56 Å (1CBJ.A)
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function. Pair potentials have already been developed which derive contact

probabilities based on local sequence [19], local secondary structure [51], and

b-strand pairing [50]; any other observed correlation can be combined and

expressed in the same way. Generalized sequence-based methods (such as in

Ref. 63) can also be used to derive sequence-specific scoring functions for local

conformation and structural context, allowing for a customized selection of

fragments and templates.

B. Constraint Refinement

The results of the simulation itself can also be used to improve the prediction of

inter-residue contacts, thus allowing an iterative series of simulations to

generate successively more specific scoring functions. This is analogous to the

use of iterative simulations in assigning NOE signals in NMR spectroscopy

[21], except with purely theoretical input. It has been shown, however, that the

statistical analysis of an ensemble of predicted structures can be used to derive

more accurate contact information than any of the structures individually [35].

Preliminary experiments in our group have shown that it is possible to start with

a large number of possible contacts and, by successively eliminating those that

are observed less frequently in the ensemble, to eventually identify the correct

native contacts.

VII. CONCLUSION

Considerable progress has been made over the past few years in developing

practical tools for structure prediction. Geometrical models, empirical scoring

functions, and global minimization algorithms have all evolved together to

increase the efficiency and selectivity of simulation-based methods. Different

techniques have advantages and disadvantages: Discretized models gain in

sampling efficiency at the expense of resolution, template models carry more

three-dimensional information, constraint-based methods are less sensitive to

alignments, and so on. The result, however, is an increasingly complete

spectrum of methods that are beginning to achieve meaningful results in a

variety of real-world applications. As more and more information is being

added to sequence and structure databases, there is every reason to expect this

trend to continue.
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