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I. INTRODUCTION

Experimental and theoretical studies have led to the emergence of a unified

general mechanism for protein folding that serves as a framework for the design

and interpretation of research in this area [1]. This is not to suggest that the

details of the folding process are the same for all proteins. Indeed, one of the

most striking computational results is that a single model can yield qualitatively

different behavior depending on the choice of parameters [1–3]. Consequently, it

remains to determine the behavior of individual sequences under given

environmental conditions and to identify the specific factors that lead to the

manifestation of one folding scenario rather than another. Although doing so

requires investigation of the kinetics of particular proteins at the level of

individual residues, for which protein engineering [4] and nuclear magnetic

resonance (NMR) [5] experiments are very useful, complementary information

about the roles played by the sequence and the structure can also be obtained by a

statistical analysis of the folding rates of a series of proteins.

Statistical methods have been applied for many years in attempts to predict

the structures of proteins (for a review of progress in this area, see the chapter

by Meller and Elber, this volume), but their use in the analysis of folding kinetics

is relatively recent. The first such investigations focused on ‘‘toy’’ protein models

in which the polypeptide chain is represented by a string of beads restricted to

sites on a lattice. It was found that the ability of a sequence to fold correlates

strongly with measures of the stability of its native (ground) state (such as the

Z-score or the gap between the ground and first excited compact states) [6–9],

but the native structure also plays an important role for longer chains [10,11].

While lattice models are limited in their ability to capture the structural features

of proteins, they have the important advantage that the results of statistical

analyses can be compared with calculated folding trajectories to determine the

physical bases of observed correlations. Consequently, studies based on such

models are particularly useful for the quantitation of observed effects, the

generalization from individual sequences, the identification of subtle relation-

ships, and ultimately the design of additional sequences that fold at a given rate.

Analogous statistical analyses of experimentally measured folding kinetics

of proteins were hindered by the fact that complex multiphasic behavior was

exhibited by most of the proteins for which data were available (e.g., barnase

and lysozyme). In recent years, an increasing number of proteins that lack
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significantly populated folding intermediates and thus exhibit two-state folding

kinetics have been identified, and a range of data have been tabulated for them

[12–14]. The initial linear analyses of such proteins indicated that their folding

rates are determined primarily by their native structures [12,14]. More recently,

a nonlinear, multiple-descriptor approach revealed that there is a significant

dependence on the stability as well [15]. These and related studies are discussed

in Section IV.A, after an overview of the statistical methods employed in this

area (Section II) and a review of the results from lattice models (Section III).

An in-depth analysis of a database of 33 proteins that fold with two- or

weakly three-state kinetics is presented in Sections IV.B through V. We explore

one-, two-, and three-descriptor nonlinear models. A structurally based cross-

validation scheme is introduced. Its use in conjunction with tests of statistical

significance is important, particularly for multiple-descriptor models, due to the

limited size of the database. Consistent with the initial linear studies [12,14], it

is found that the contact order and several other measures of the native structure

are most strongly related to the folding rate. However, the analysis makes clear

that the folding rate depends significantly on the size and stability as well. Due

to the importance ascribed to the stability by analytic [16–18] and simulation

[2,3,6–11] studies, as well as its recent use in one-dimensional models for fitting

and interpreting experimental data [19,20], we examine its connection to the

folding rate in more detail. The unfolding rate, which correlates more strongly

with stability, is considered briefly. The relation of the statistical results to

experiments and the model studies is discussed in Sections VI and VII.

II. STATISTICAL METHODS

Before reviewing the results for specific systems, we introduce the statistical

methods that have been used to analyze folding kinetics. Perhaps the simplest

such method is to group sequences; here, one categorizes each sequence in a

database according to one or more of its native properties (‘‘descriptors’’) and its

folding behavior. Visualization can be used to identify patterns, and averages and

higher moments of the distributions of descriptors can be used to quantitate

differences between groups. For properties on which the folding kinetics depend

strongly, such as the energy gap in lattice models, this type of analysis has proven

effective [6].

However, simple grouping is often insufficient to identify weaker but still

significant trends and makes it difficult to determine the relative importance of

relationships. Consequently, more quantitative methods are necessary. One stati-

stic that is employed widely is the Pearson linear correlation coefficient (rx;yÞ:

rx;y ¼
s2

xy

sxsy

¼
P

i xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i xi � �xð Þ2P

iðyi � �yÞ2
q ð1Þ
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Typically, the xi are a set of values of a particular descriptor, such as the sequence

length, and the yi are a set of values for a measure of the folding kinetics, such as

the logarithm of the folding rate constant (log kf ) [9,10,12]. The magnitude of rx;y

determines its significance, and its sign indicates whether xi and yi vary in the

same or opposite manner: rx;y ¼ 1 corresponds to a perfect correlation, rx;y ¼ �1

to a perfect anticorrelation, and rx;y ¼ 0 to no correlation. In spite of its

popularity, this statistic has several shortcomings when used by itself. It is

limited to the identification of linear relationships between pairs of properties; it

is not straightforward to test or cross-validate those relationships, which is

important, as discussed below; and it cannot be used directly to predict the

behavior of additional sequences.

These limitations can be overcome by constructing models to predict folding

behavior and then quantifying their accuracy. For the latter step, the Pearson

linear correlation coefficient can be used with xi as the observed values and yi as

the predicted ones (for which we introduce the shorthand notations rtrn, rjck, and

rcv, described below). Alternatively, one can calculate the root-mean-square

error or the closely related fraction of unexplained variance:

q2 ¼ 1 �
P

i yi � xið Þ2

P
i xi � �xð Þ2

ð2Þ

Again, xi (yi) are the observed (predicted) values. Typically, r and q2 behave

consistently. The latter is useful for quantitating the improvement obtained upon

extending a model with N descriptors to one with N þ 1 with Wold’s statistic:

E ¼ ð1 � q2
Nþ1Þ=ð1 � q2

NÞ [21,22]. A value of less than 1.0 for the latter shows

that q2 increases upon adding a descriptor. The statistical significance of a

particular value of E depends on the specific data, but E ¼ 0:4 has been

suggested to correspond typically to the 95% confidence interval [23].

For constructing the models themselves, linear regression (on one or more

descriptors) is attractive in that the best fit for a set of data can be determined

analytically, but, as its name implies, it is limited to detecting linear relation-

ships. While fits with higher-order polynomials are possible, a general and

flexible alternative is to use neural networks (NNs). The latter are computational

tools for model-free mapping that take their name from the fact that they are

based on simple models of learning in biological systems [24,25]. Neural

networks have been used extensively to derive quantitative structure–property

relationships in medicinal chemistry (for a review, see Ref. 26) and were first

used to analyze folding kinetics in Ref. 11. A schematic diagram of a neural

network is shown in Fig. 1. In this example, there are three inputs (indicated by

the rectangles on the left); in the present study these would each contain the

value of a descriptor, such as the free energy of unfolding or the fraction of
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helical contacts. The circles represent sigmoidal functions (nodes). There are

many possible choices for the specific form of these functions; we use

f ¼ 1

1 þ exp �y�
P

i wi pi

� � ð3Þ

where the sum ranges over the previous layer (to the left in the diagram), pi

are the values of the elements of that layer, wi are the weights for each of

those elements (represented by the connecting lines in the diagram), y is an

arbitrary constant, and the data are assumed to be normalized for clarity. Thus, to

‘‘fire’’ the network in Fig. 1, a weighted sum over the three inputs to each hidden

node is made, the resulting sums are used to calculate the values of the sigmoidal

functions associated with those nodes, a weighted sum of those values is then

made, and the final sigmoidal function of the output node is calculated. To fit

data, the wi are initialized to random values and adjusted with standard

optimization techniques to maximize the accuracy of the output for the (training)

set. In the present study, we varied the weights with the scaled conjugate gradient

method [27].

When one wishes to test many different possible descriptors, the number of

possible NN input combinations can be very large. One can avoid making an

exhaustive search by using a genetic algorithm (GA) to select the descriptors to

test. This tool is also biologically motivated—in this case, by evolution. A

population is created in which each individual consists of a particular set of

descriptors. Repeatedly, each such set (a ‘‘parent’’) is duplicated (‘‘asexual repro-

duction’’), the new copy (a ‘‘child’’) is changed by one descriptor (‘‘mutated’’),

and then only the best (‘‘fittest’’) individuals in the combined pool of parents

and children are kept. Here, ‘‘best’’ means that a linear regression or NN model

employing those descriptors yields the greatest accuracy for the training set.

Alternative schemes that involve combining features from different individuals

(‘‘sexual reproduction’’) also exist but are not employed here; for a compre-

hensive review of the use of GAs in medicinal chemistry see Ref. 28. In the

present study, we used 40 individuals with 20 genetic cycles; a few trials with

200 individuals and 50 cycles did not yield significantly different results.

predicted log kf

descriptor 1

descriptor 2

descriptor 3

output layerinput layer hidden layer

Figure 1. Schematic of a neural network.
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An important point concerning neural networks, and indeed any multiple

parameter model, is that it is possible to overfit the data. For small sample sizes

(here, a small number of proteins), even relatively simple neural networks can

memorize the examples in the training set at the expense of learning more

general rules. Thus, it is important to test a model on novel data not used during

the fitting process. One approach is cross-validation, in which one partitions the

existing data into a series of training and test sets. In the special case of

jackknife cross-validation, all possible combinations are formed in which a

single protein is used to test the network and the remainder are used to train it.

While jackknife cross-validation is straightforward to automate, it is not

appropriate if any members of the database are significantly related (e.g.,

homologous proteins) because the inclusion of the similar data in the training

set can bias the test. A structurally based partitioning scheme is presented in

Section IV.B. Throughout, care is taken to distinguish statistics (r and q2) for fits

of the entire (training) set (denoted ‘‘trn’’) from those for predictions obtained

with either jackknife or structurally based cross-validation (denoted ‘‘jck’’ and

‘‘cv,’’ respectively).

III. LATTICE MODELS

The first study in which a large number of unrelated sequences were analyzed to

identify the factors that determine their folding kinetics was based on a 27-

residue chain of beads subject to Monte Carlo dynamics on a simple cubic lattice

[6]. In this and the subsequent studies of 125-residue sequences [10,11], folding

rate constants were calculated for only a few sequences due to the large number

of trajectories required to obtain accurate results. Folding ‘‘ability’’ was

measured by either (a) the fraction of Monte Carlo trials that reached the native

state within the allotted simulation time or (b) the average fraction of native

contacts in the lowest energy states sampled. When the results for the 27-residue

sequences were grouped according to the former, it was found that the stability of

the native (ground) state is the only feature that distinguishes those that folded

repeatedly within the simulation time from those that did not. If the native state is

maximally compact, the stability criterion can be simplified to a consideration of

the difference in energy between the ground state and the first fully compact

(3 � 3 � 3) excited state [6]. These criteria have been used in the design of fast

folding sequences [29] and are consistent with similar studies which focus on

exhaustive enumeration of folding paths for two-dimensional chains [7,30] or on

the ratio of the folding and the ‘‘glass’’ transition temperatures for the (three-

dimensional) 27-residue model [8].

In a number of subsequent studies of the 27-residue model, it was argued that

the kinetic folding behavior is determined by factors other than the energy gap

6 aaron r. dinner et al.



[31–33]. Unger and Moult [31] suggested that the dependence on the energy gap

derived from the variation in the simulation temperature in Ref. 6 and identified

the structure of the ground state as the primary determinant of the folding

kinetics of this system. However, in a study of 15- and 27-residue three-dimensional

chains that employed the Pearson linear correlation coefficient to quantitate the

relationships between various sequence factors and the logarithm of the mean

first passage time, the correlation with the Z-score was robust to use of a single

temperature [9]. Examination of Ref. 31 showed that sequences were designed

to have strong short-range contacts without mandating a certain fraction of long-

range contacts, so that the resulting ground states were more appropriate for

modeling a helix-coil transition than protein folding. Nevertheless, as will be

discussed below, native structure does play a role for certain lattice models

[10,11] as it does for proteins [12,14,15]. Klimov and Thirumalai [32,33]

introduced the parameter s ¼ 1 � Tf =Ty, where Tf is the temperature at which

the fluctuation of the order parameter is at its maximum and Ty is the

temperature at which the specific heat is at its maximum. They found that s
is positively correlated with the logarithm of the mean first passage time (i.e.,

small sigma gives fast folding). However, the interpretation of Ty as the collapse

transition temperature is not correct in general, and the correlation described

above arises from the fact that s is related to the energy gap [9]. These

statistical studies of short chains are discussed in detail in Ref. 9.

The correlation of the folding time with the energy gap can be understood in

terms of its effect on the energy surface. For random 27-residue sequences,

folding proceeds by a fast collapse to a semicompact disordered globule,

followed by a slow, nondirected search through the relatively small number

of semicompact structures for one of the many transition states that lead rapidly

to the native conformation [2]. A large energy gap results in a native-like

transition state that is stable at a temperature high enough for the folding

polypeptide chain to overcome barriers between random semicompact states. As

the energy gap increases to the levels obtainable in designed sequences, the

model exhibits Hammond behavior [34] in that there is a decrease in the fraction

of native contacts required in the transition state from which the chain folds

rapidly to the native state. Random sequences with relatively small gaps must

form about 80% of the native contacts [2], whereas designed sequences with

large gaps need form only about 20% [35]. This shift increases the ratio of the

number of transition states to the number of semicompact states and results in a

nucleation mechanism [35].

The first study to employ the Pearson linear correlation coefficients between

various individual sequence properties and measures of folding ability concerned

the analysis of 125-residue lattice model simulations [10]. It revealed that, in

addition to the stability, the native structure plays an important role in determining

statistical analysis of protein folding kinetics 7



folding ability for chain lengths comparable to that typical of certain well-

studied proteins (e.g., barnase and lysozyme); that is, a strong correlation was

observed between the frequency of reaching the native state within the

simulation time and the number of native contacts in tight turns or antiparallel

sheets. On the lattice, these are the cooperative secondary structural elements

that have the shortest sequential separations between contacts; lattice ‘‘helices,’’

which typically consist only of i; i þ 3 contacts, are noncooperative and thus do

not accelerate folding. The physical basis of the relation between structure and

kinetics in lattice models and in proteins is discussed in Section IV.E.

The initial linear analysis of the 125-residue model also made clear that one

descriptor can compensate for others, so that it is necessary to consider more

than one simultaneously [10]. Accordingly, the functional dependence of the

folding ability on sets of sequence properties was derived with an artificial

neural network, and a genetic algorithm was used to select the sets that

maximize the accuracy of the predictions. Not only did the nonlinear, multi-

ple-descriptor method increase the correlation coefficients between the observed

folding abilities and the cross-validated predictions from about 0.5 to greater

than 0.8, but it revealed (in addition to the strong dependences on the stability

and structure of the native state) a role for the spatial distribution of strong and

weak pairwise interactions within the native structure. Sequences with native

structures that have more labile contacts between surface residues were found to

fold faster in general because misfolded subdomains are less likely to form and

lead to off-pathway traps [10,11,36]. This observation indicates that, as one goes

to longer sequences, the relationship between the folding rate and the native

state descriptors becomes more complex.

The genetic neural network (GNN) method was further validated by use of

one of the resulting quantitative structure–property relationships (QSPRs) to

design additional fast-folding 125-residue sequences [37]. The target native

structure and the pairwise interaction energies were varied to maximize the

output of a network trained on the original set of sequences to predict the aver-

age fraction of native contacts in the lowest energy structure sampled in each of

10 Monte Carlo simulations [10,11]. The specific descriptors employed were the

number of contacts in antiparallel sheets, the estimated gap in energy between

the native state and the lower limit of the quasi-continuous spectrum [38], and

the total energy of the contacts between surface residues. On average, the

designed sequences folded more rapidly than those for which only the stability

of the native state was optimized [29,39]. The studies of the 125-residue lattice

models thus make clear that simultaneous consideration of multiple descriptors

can improve our understanding of protein folding and our ability to extrapolate

from the analysis to predict the behavior of novel sequences. The utility of the

statistical approach for obtaining a better understanding of the folding rates of

proteins is described in the following section.

8 aaron r. dinner et al.



IV. FOLDING RATES OF PROTEINS

In this section we describe statistical analyses of measured rates of protein

folding. Earlier studies are reviewed and an analysis of currently available experi-

mental data is presented. The physical bases of the results are then discussed.

A. Review

As mentioned in the Introduction, statistical analyses of the folding kinetics of

proteins were delayed until a sufficient number of proteins that fold with two-

state kinetics overall were identified [12,13]. Plaxco et al. [12] carried out an

analysis much like the initial 125-mer lattice model study mentioned above [10]

for a set of 12 two-state proteins (extended to 24 proteins in Ref. 14); that is, they

calculated linear correlation coefficients between several individual sequence

properties and the logarithm of the measured folding rate constants (log kf ). The

only descriptor examined that exhibited a high correlation (rc=n;log kf
¼ 0:81) was

the structure of the native state as measured by the normalized contact order

(c=n), the average sequential residue separation of atoms in contact divided by

the length of the sequence (see the footnote to Table III for the exact definition of

c=n employed here). It is important to note that the contact order does not include

any information about the energies of the interactions in the native state; it is only

a measure of the structure (we use the term ‘‘structure’’ rather than ‘‘topology’’

[12,14] because, according to the standard mathematical meaning of the latter,

all proteins that lack disulfide bonds have the same topology).

We used a neural network to carry out a nonlinear, two-descriptor analysis of

the database of 33 proteins described in Section IV.B [15] and demonstrated that

the stability contributes significantly to determining folding rates for a given

contact order. Moreover, for 14 slow-folding proteins with high contact orders

(mixed-a/b and b-sheet proteins), the free energy of unfolding can be used by

itself to predict folding rates. By contrast, the folding rates of a-helical proteins

show essentially no dependence on the stability. The variation in behavior

observed for the structural classes suggests that, although there is a general

mechanism of folding (see the Introduction), its expression for individual

proteins can lead to very different behavior.

A number of simple physically motivated one-dimensional models have been

introduced recently to fit and interpret data on peptide and protein folding [19,

20,40–42]. These models, which use only native state data, have elements in

common with earlier theoretical treatments by Zwanzig, Wolynes, and their co-

workers [16,17,43]. The conformation of a protein is represented by a series of

binary variables (based on one or two residues), each of which can be either

native or random coil. Pairwise interactions (which are assumed to be entirely

favorable, as in a G�o model [44,45]) are counted if and only if both the sequence

positions involved are native. Often, an additional approximation is made in

statistical analysis of protein folding kinetics 9



which the formation of the native structure is limited to one or two sequential

segments [46]. Independent of this assumption, the one-dimensional character

of these models and the choice of energy functions typically force the native

structure to propagate in an essentially sequential manner. By adjusting

parameters, one of these models was shown to fit log kf with an accuracy of

0:83 � rtrn � 0:87 for 18 proteins [20]. The fact that this correlation is some-

what higher than that obtained using only the contact order (Table I and Refs.

12,14, and 20) has been used as evidence for the physical basis of the model;

that is, it provides an ‘‘explanation’’ of the empirical relationship between the

folding rate and the contact order. However, the improvement appears to be due

to the incorporation of the protein stabilities into the model. These were

introduced by adjusting the pairwise interactions separately for each protein

such that the model yielded free energies for folding that matched experimental

�G values. Using the methods described in Section II and applied in

Section IV.B, we were able to obtain rtrn ¼ 0.93 with two descriptors (�G

and qa, described in Table I) and rtrn ¼ 0:98 with three (�G, c, and b) for the

same set of 18 proteins; for c=n, and �G=n, rtrn ¼ 0:85, which is very similar to

the correlations reported in Ref. 20 (0:83 � rtrn � 0:87). Thus, further work is

required to show that such simple phenomenological models can predict aspects

of the folding reaction that go beyond the experimental data used in the fitting

procedures. Although these model studies consider the prediction of f values

[4], it appears from the published results and statements in the text of Ref. 20

that the correlation is poor. This suggests that quantitative comparisons of

predicted f-values with the observed ones could serve as a meaningful test of

such phenomenological models.

An alternative phenomenological model was developed by Debe and God-

dard [47]. In essence, they assumed a sequence of events which is, in a certain

sense, the reverse of the diffusion–collision model [48,49]: the correct overall

(tertiary) structure is formed at low-resolution first by a random search and then

local (secondary) refinement takes place within the manifold of states in that

fold. Thus, the factor that determines the relative rate of folding for a series of

proteins is the probability of randomly sampling a structure with the known

native contacts (estimated by a Monte Carlo procedure); the distance at which a

contact was counted was adjusted to optimize the fit. For mixed-a/b and b-sheet

proteins, an accuracy of rtrn ¼ 0:78 was obtained. This statistic is comparable to

the correlation coefficients associated with the contact order (Table I and Refs.

12 and 14), which could suggest that this model is a rather complex procedure

for reproducing the simple (essentially linear) dependence of log kf on that

descriptor. For a-helical proteins, the folding rates were considerably under-

estimated, which led Debe and Goddard to conclude that hose proteins must

instead fold by a diffusion–collision mechanism [48,49]. The discussion in the

present section shows that phenomenological models can be useful for

10 aaron r. dinner et al.



interpreting the observed statistical correlations. However, it is important to

keep in mind that the ability to fit a particular set of data is not sufficient to

demonstrate that the folding mechanism on which the model is based is correct.

B. Database

To illustrate the methods described in Section II and to show that simultaneous

consideration of multiple descriptors improves prediction of protein folding

kinetics, we describe a detailed analysis of the available data for the folding rates

of two- and weakly three-state proteins. The descriptors tested are listed in Table I

and can be divided into several categories: native state stability (0 and 1), size (2

to 5), native structure (8 to 15), and the propensity for a given structure (16 to 23).

Definitions and sources for the descriptors as well as the data themselves are

given in Tables II and III. Although certain descriptors are significantly

TABLE I

Descriptors Tested as Inputs to the GNN and Their Correlationsa

Index Symbol Description rx;log kf
rtrn rcv q2

cv

0 �G Stability 0.29 0.40 0.06 �0.16

1 �G=n Normalized stability 0.37 0.42 �0.00 �0.13

2 m Buried surface area �0.04 0.38 �0.16 �0.40

3 m=n Normalized surface area �0.04 0.24 �0.29 �0.21

4 n Sequence length �0.10 0.35 �0.52 �0.19

5 nc Number of atomic contacts �0.08 0.34 �0.32 �0.18

6 c Contact order �0.73 0.74 0.67 0.45

7 c=n Normalized contact order �0.79 0.83 0.74 0.54

8 h a-Helix content 0.63 0.64 0.39 0.11

9 e b-Sheet content �0.67 0.71 0.59 0.34

10 t H-bonded turn content 0.04 0.34 �0.07 �0.21

11 s Bend content �0.11 0.31 �0.25 �0.26

12 g 310-Helix content �0.01 0.35 �0.47 �0.28

13 b b-Bridge content �0.15 0.30 �0.36 �0.32

14 o Other 2� structure �0.05 0.27 �0.32 �0.44

15 a Total helix content (h þ g) 0.63 0.67 0.28 �0.04

16 Ph Predicted a-helix 0.47 0.49 0.05 �0.10

17 Pe Predicted b-sheet �0.48 0.57 0.29 0.01

18 Po Predicted other 2� �0.27 0.43 �0.39 �0.32

19 ph a-Helix propensity 0.51 0.55 0.21 �0.03

20 pe b-Sheet propensity �0.47 0.64 0.42 0.14

21 po Other 2� propensity �0.40 0.50 �0.20 �0.16

22 qe Expected 2� prediction accuracy 0.21 0.42 0.07 �0.14

23 qa Actual 2� prediction accuracy 0.40 0.45 �0.14 �0.45

aHere rtrn and rcv are correlation coefficients between observed and calculated values of log kf for

training set fits and cross-validated predictions, respectively. Correlations are the maximum ones

observed for 10 independent trials, each with a different random number generator seed. Statistics

for linear regression are available in Table V.

statistical analysis of protein folding kinetics 11
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correlated with others (Table IV), consideration of all of them is useful because

exhaustive enumeration or a genetic algorithm (GA) is employed to determine

which to include for optimal fitting and prediction.

The database consists of 33 proteins. Twenty-four of these fall into six struc-

turally related groups, and nine are structurally unique. The former are SH3

domains [1NYF (82 to 148), 1PKS, 1SHG, and 1SRL], Ig-like b-sandwiches

[1FNF (1326 to 1415), 1FNF (1416 to 1509), 1HNG, 1TEN (802 to 891), 1TIT,

and 1WIT], members of the acylphosphatase family (1APS, 1HDN, 1PBA,

1URN, and 2HQI), cytochromes (1HRC, 1HRC-oxidized, 1YCC), cold shock

proteins [1CSP and 1MJC (2 to 70)], l-repressor variants (1LMB wild type and

G46A/G48A), and ubiquitin variants (1UBQ wild type and V26A). The remain-

der of the proteins are 1COA (20 to 83), 1DIV (1 to 56), 1FKB, 1IMQ, 2ABD,

2AIT, 2PDD, 2PTL (94 to 155), and 2VIK. Numbers in parentheses indicate the

residue numbers of the domain or fragment studied.

To cross-validate the results, each group of structurally related proteins is left

out of the training set in turn and used to test the network. Such a partitioning

scheme (in contrast to a jackknife one, for example) minimizes the likelihood of

biasing the results in favor of structural descriptors (see Section II). Its use

yields true predictions (denoted ‘‘cv’’) in contrast to fits of the data, in which all

the proteins are included during the training (denoted ‘‘trn’’). The latter tend to

yield inflated accuracy statistics, but we describe them here as well for

comparison with earlier studies [12,13,20,47], which failed to cross-validate

their results [however, it should be noted that the relationship in Ref. 12 has been

used successfully for blind predictions (K. W. Plaxco and D. Baker, personal

communication)].

C. Single-Descriptor Models

We begin by examining the relationship between log kf and each individual

descriptor.
1. Linear Correlations

The first column of statistics given in Table I contains the Pearson linear

correlation coefficients between the descriptor values (x) and log kf ðrx;log kf
Þ. This

is the statistical measure used by Plaxco et al. in their analysis of a subset of the

descriptors considered here [12,14]. Consistent with their results, the two

coefficients with the largest magnitudes are associated with the contact order

(c and c=n). Several descriptors not examined by Plaxco et al. [12,14] exhibit

jrx;log kf
j > 0:5 as well: the a-helix content and propensity (h and ph), total helix

content (a), and b-sheet content (e). Additional linear statistics are provided in

Table V. Physical interpretations of the results are given in Section IV.E.

2. Neural Network Predictions

The second and third columns of statistics in Table I measure the ability of a

single-input neural network to predict the folding rate. They contain Pearson

16 aaron r. dinner et al.



T
A

B
L

E
IV

D
es

cr
ip

to
r–

D
es

cr
ip

to
r

P
ea

rs
o

n
L

in
ea

r
C

o
rr

el
at

io
n

C
o

ef
fi

ci
en

ts
a

�
G

�
G
=

n
m

m
=

n
n

n
c

c
c=

n
h

e
t

s
g

b
o

a
P

h
P

e
P

o
p

h
p

e
p

o
q

e
q

a

0
�

G
0

.9
4

0
.5

0
0

.3
8

0
.5

0
0

.3
7

�
0

.0
2

�
0

.2
9

0
.2

4
�

0
.4

1
0

.2
6

�
0

.0
5

�
0

.3
4

0
.0

2
0

.2
8

0
.2

0
0

.0
1

�
0

.1
7

0
.1

6
0

.0
6

�
0
.1

8
0

.1
0

�
0

.0
4

�
0

.1
7

1
�

G
=

n
0

.9
3

0
.4

3
0

.4
0

0
.2

0
0

.1
6

�
0

.1
6

�
0

.2
5

0
.2

0
�

0
.3

9
0

.1
9

0
.0

3
�

0
.2

5
0

.2
2

0
.3

0
0

.1
6

�
0

.0
1

�
0

.0
7

0
.0

9
0

.0
5

�
0
.0

8
0

.0
0

�
0

.0
2

�
0

.0
2

2
m

0
.2

8
0

.2
7

0
.9

5
0

.3
9

0
.3

1
0

.1
2

�
0

.0
9

0
.0

2
�

0
.0

6
�

0
.0

5
�

0
.0

1
�

0
.2

7
�

0
.0

8
0

.2
2

�
0

.0
1

�
0

.1
1

0
.0

4
0

.1
4

�
0

.1
3

0
.0

8
0

.1
4

0
.2

0
0

.0
6

3
m
=n

0
.2

1
0

.2
6

0
.9

8
0

.1
2

0
.1

3
0

.0
1

�
0

.0
4

�
0

.0
3

�
0

.0
2

�
0

.1
2

0
.0

6
�

0
.1

6
0

.0
6

0
.2

0
�

0
.0

5
�

0
.1

2
0

.1
3

0
.0

6
�

0
.1

3
0

.1
6

0
.0

4
0

.2
1

0
.2

1

4
n

0
.2

1
�

0
.1

4
�

0
.1

0
�

0
.2

7
0

.7
3

0
.4

8
�

0
.1

0
0

.1
7

�
0

.1
5

0
.2

7
�

0
.1

7
�

0
.4

0
�

0
.4

7
0

.0
7

0
.1

2
0

.0
2

�
0

.2
6

0
.2

3
0

.0
2

�
0
.2

7
0

.2
8

�
0

.1
2

�
0

.4
1

5
n

c
�

0
.1

9
�

0
.3

8
�

0
.2

0
�

0
.2

8
0

.6
0

0
.1

7
�

0
.2

8
0

.5
0

�
0

.4
4

0
.1

4
�

0
.1

5
�

0
.3

4
�

0
.4

2
�

0
.1

2
0

.4
6

0
.3

4
�

0
.5

2
�

0
.0

3
0

.3
4

�
0
.5

5
0

.0
2

0
.0

0
�

0
.1

9

6
c

0
.1

1
0

.0
0

�
0

.3
4

�
0

.4
3

�
0

.3
4
�

0
.0

2
0

.8
1

�
0

.6
3

0
.6

6
�

0
.0

3
0

.2
9

�
0

.2
8

�
0

.2
2

0
.1

8
�

0
.6

7
�

0
.4

9
0

.5
1

0
.2

8
�

0
.5

6
0

.5
0

0
.4

4
�

0
.2

6
�

0
.4

6

7
c=

n
�

0
.0

8
0

.1
8

�
0

.2
3

�
0

.1
2

�
0

.6
8
�

0
.5

4
0

.4
3

�
0

.8
4

0
.8

3
�

0
.2

2
0

.4
7

�
0

.1
0

0
.0

8
0

.2
4

�
0

.8
6

�
0

.6
1

0
.7

7
0

.2
0

�
0

.6
8

0
.7

7
0

.3
5

�
0

.1
8

�
0

.2
6

8
h

�
0

.0
1

�
0

.0
6

�
0

.1
0

�
0

.0
8

0
.0

8
0

.3
9

�
0

.3
9

�
0

.3
9

�
0

.8
9

�
0

.0
1

�
0

.2
2

�
0

.1
1

�
0

.3
4

�
0

.4
1

0
.9

9
0

.8
3

�
0

.8
2
�

0
.5

1
0

.8
8

�
0
.8

8
�

0
.6

0
0

.2
3

0
.2

4

9
e

�
0

.1
8

�
0

.1
2

0
.1

3
0

.1
2

�
0

.1
5
�

0
.3

9
0

.4
4

0
.4

5
�

0
.7

5
0

.0
0

0
.0

7
0

.0
2

0
.1

2
0

.0
0

�
0

.8
9

�
0

.6
4

0
.7

7
0

.2
6

�
0

.7
1

0
.8

0
0

.3
8

�
0

.1
1

�
0

.1
8

1
0

t
�

0
.1

5
�

0
.2

6
�

0
.3

5
�

0
.3

6
0

.2
9

0
.3

4
0

.0
2

�
0

.2
7

0
.0

8
�

0
.1

7
�

0
.7

0
0

.2
0

0
.3

2
�

0
.2

7
0

.0
1

�
0

.1
7

0
.0

1
0

.2
6

�
0

.1
1

0
.0

0
0

.2
1

�
0

.2
3

�
0

.1
4

1
1

s
0

.3
0

0
.3

4
0

.0
1

0
.0

1
0

.0
4

0
.0

2
�

0
.0

5
0

.0
4

0
.2

0
�

0
.3

5
�

0
.5

2
�

0
.3

8
�

0
.2

5
0

.4
5

�
0

.2
7

�
0

.2
0

0
.3

2
0

.0
0

�
0

.2
3

0
.3

1
0

.0
6

0
.0

1
0

.0
2

1
2

g
�

0
.0

5
�

0
.1

5
�

0
.1

4
�

0
.1

6
0

.1
7

0
.1

9
�

0
.1

1
�

0
.2

8
�

0
.0

1
�

0
.3

1
0

.3
6

�
0

.5
5

0
.4

2
�

0
.0

9
0

.0
2

0
.0

7
�

0
.0

9
�

0
.0

3
0

.0
9

�
0
.0

6
�

0
.1

0
�

0
.2

9
0

.1
5

1
3

b
�

0
.0

4
0

.0
8

�
0

.0
5

�
0

.0
2

�
0

.2
6

0
.0

0
0

.0
3

0
.3

0
�

0
.4

7
0

.0
9

0
.1

5
�

0
.3

4
0

.4
9

0
.2

6
�

0
.2

9
�

0
.3

2
0

.3
1

0
.2

0
�

0
.2

7
0

.3
2

0
.1

3
�

0
.2

2
�

0
.0

3

1
4

o
0

.2
6

0
.3

3
0

.2
9

0
.2

8
�

0
.1

3
�

0
.4

2
0

.0
8

0
.2

3
�

0
.7

3
0

.2
4

�
0

.4
1

0
.2

3
0

.0
8

0
.4

3
�

0
.4

2
�

0
.5

0
0

.2
2

0
.5

9
�

0
.5

0
0

.3
1

0
.5

9
�

0
.1

0
�

0
.2

3

1
5

a
�

0
.0

2
�

0
.1

0
�

0
.1

3
�

0
.1

2
0

.1
1

0
.4

3
�

0
.4

1
�

0
.4

5
0

.9
7

�
0

.8
1

0
.1

6
0

.0
7

0
.2

2
�

0
.3

4
�

0
.7

0
0

.8
4

�
0

.8
4
�

0
.5

1
0

.8
9

�
0
.8

9
�

0
.6

2
0

.1
9

0
.2

7

1
6

P
h

0
.2

3
0

.1
9

�
0

.2
0

�
0

.1
9

0
.0

4
0

.1
3

�
0

.4
5

�
0

.3
8

0
.6

8
�

0
.6

6
0

.0
5

0
.1

1
0

.3
3

�
0

.1
9

�
0

.4
1

0
.7

4
�

0
.8

0
�

0
.8

0
0

.9
9

�
0
.8

6
�

0
.8

3
0

.2
7

0
.2

3

1
7

P
e

0
.2

2
0

.3
2

0
.3

1
0

.3
3

�
0

.1
7
�

0
.0

8
0

.3
1

0
.4

3
�

0
.3

3
0

.3
3

�
0

.1
3

0
.2

5
�

0
.6

2
0

.1
6

0
.2

6
�

0
.4

6
�

0
.6

9
0

.2
9

�
0

.8
3

0
.9

8
0

.3
8

�
0

.1
8

�
0

.0
3

1
8

P
o

�
0

.5
1

�
0

.5
3

0
.0

1
�

0
.0

1
0

.0
8
�

0
.1

2
0

.3
5

0
.1

6
�

0
.6

6
0

.6
3

0
.0

3
�

0
.3

6
0

.0
7

0
.1

3
0

.3
5

�
0

.6
2

�
0

.7
9

0
.1

0
�

0
.7

6
0

.4
1

0
.9

6
�

0
.2

5
�

0
.3

4

1
9

p
h

0
.2

1
0

.1
6

�
0

.2
9

�
0

.2
8

0
.0

6
0

.1
5

�
0

.3
6

�
0

.3
3

0
.7

4
�

0
.6

7
0

.0
7

0
.1

0
0

.3
2

�
0

.2
4

�
0

.5
1

0
.7

9
0

.9
8

�
0

.6
8
�

0
.7

7
�

0
.8

9
�

0
.8

2
0

.2
1

0
.2

2

2
0

p
e

0
.1

2
0

.2
2

0
.4

2
0

.4
3

�
0

.1
6
�

0
.1

9
0

.2
4

0
.3

7
�

0
.5

5
0

.4
8

�
0

.2
2

0
.2

5
�

0
.6

0
0

.1
9

0
.4

7
�

0
.6

7
�

0
.8

0
0

.9
3

0
.3

1
�

0
.8

3
0

.4
8

�
0

.1
5

�
0

.0
6

2
1

p
o

�
0

.4
7

�
0

.4
8

0
.0

6
0

.0
4

0
.0

5
�

0
.0

8
0

.3
5

0
.1

9
�

0
.6

9
0

.6
3

0
.0

9
�

0
.4

1
0

.0
6

0
.2

1
0

.3
8

�
0

.6
5

�
0

.8
4

0
.2

1
0

.9
7

�
0

.8
4

0
.3

9
�

0
.2

1
�

0
.3

6

2
2

q
e

0
.1

8
0

.2
6

0
.5

3
0

.5
3

�
0

.2
1
�

0
.3

4
�

0
.4

2
�

0
.1

4
0

.0
8

0
.0

6
�

0
.4

8
0

.1
4

�
0

.2
2

�
0

.1
3

0
.1

2
0

.0
3

0
.0

3
�

0
.0

2
�

0
.0

2
0

.0
0

0
.0

6
�

0
.0

6
0

.3
7

2
3

q
a

0
.2

0
0

.1
5

0
.4

2
0

.3
9

0
.1

8
0

.2
1

�
0

.5
5

�
0

.5
8

0
.2

9
�

0
.2

0
0

.1
2

0
.0

9
�

0
.3

0
�

0
.1

5
�

0
.1

9
0

.2
1

0
.1

1
0

.1
7
�

0
.3

0
0

.0
5

0
.1

6
�

0
.2

4
0

.5
4

a
D

at
a

fo
r

al
l

3
3

p
ro

te
in

s
ar

e
ab

o
v
e

th
e

d
ia

g
o

n
al

,
an

d
d

at
a

fo
r

th
e

1
4

p
ro

te
in

s
w

it
h

c
>

2
1

ar
e

b
el

ow
th

e
d

ia
g

o
n

al
.

17



linear correlation coefficients (rtrn and rcv) between observed and calculated

values of log kf ; thus, only positive values of r are significant. Because there are

only 24 different input possibilities, it is feasible to consider each one in turn, so

that use of a genetic algorithm is not necessary at this stage. However, the NN

weights depend on the random number generator seed through the training pro-

cedure. Consequently, for each descriptor, the network was trained indepen-

dently with ten different seeds. The maximum correlation coefficient for each set

of 10 networks corresponding to a particular descriptor is listed in Table I; the

average standard deviation for a given descriptor was 0.03 for rtrn and 0.06 for rcv.

As stated above, the coefficients denoted ‘‘trn’’ are for results obtained with

networks trained on all 33 proteins; in other words, they are not true predictions

since all the data are included in the training set. For descriptors that are linearly

related to log kf ; rtrn is expected to be comparable in magnitude to rx;log kf

(in fact, for linear regression, rtrn ¼ jrx;log kf
j), whereas, for ones that are

non-linearly related, it should be higher. Thus, rtrn can be viewed as essentially

a nonlinear version of the statistic employed in Ref. 12. Accordingly, most of

the descriptors that exhibit high rtrn were included in the analysis of rx;log kf
.

TABLE V

Linear Regression Statistics for log kf

Index Symbol rtrn rcv q2
cv

0 �G 0.29 �0.02 �0.09

1 �G=n 0.37 0.13 �0.05

2 m 0.04 �0.65 �0.19

3 m=n 0.04 �0.52 �0.20

4 n 0.10 �0.53 �0.27

5 nc 0.08 �0.60 �0.24

6 c 0.73 0.70 0.48

7 c=n 0.79 0.77 0.59

8 h 0.63 0.55 0.30

9 e 0.67 0.59 0.34

10 t 0.04 �0.76 �0.23

11 s 0.11 �0.52 �0.19

12 g 0.01 �0.75 �0.41

13 b 0.15 �0.43 �0.26

14 o 0.05 �0.74 �0.31

15 a 0.63 0.57 0.32

16 Ph 0.47 0.29 0.06

17 Pe 0.48 0.31 0.08

18 Po 0.27 �0.27 �0.28

19 ph 0.51 0.37 0.13

20 pe 0.47 0.28 0.05

21 po 0.40 0.07 �0.09

22 qe 0.21 �0.21 �0.14

23 qa 0.40 0.12 �0.07
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The coefficients denoted ‘‘cv’’ are for the predictions obtained with the

structurally based cross-validation scheme. Negative values of rcv indicate that

the accuracy of the network is lower than that which would be obtained from

random guesses. If a network fails in this way when confronted with novel test

data, it has derived a spurious relationship by memorizing the information in the

training set at the expense of learning more general rules. The highest rcv do

correspond to the highest rtrn, but overall the cross-validated coefficients are

much lower. The large differences between rtrn and rcv in many cases (Table I)

make clear that the former is a relatively indiscriminate statistic for such a small

database. If linear regression is used, rtrn and rcv are often closer due to the

decreased flexibility of the fitting method (Table V). However, such an approach

fails to identify nonlinear relationships and can hide complexities in the results.

In summary, the contact order yields relatively good prediction of log kf but

is not alone in doing so. Several measures of the propensity of the sequence for

a given structure also exhibit significant relationships with the folding rate.

Although rcv values for the various descriptors obtained from the secondary

structure prediction program (indices 16 to 21 in Table I) are lower than those

for measures of the known native structure (indices 6 to 15), the former

correlations may be sufficiently high that the calculated descriptors could be

used to identify particularly fast or slow proteins without the need for high-

resolution structures. The stability, which has been suggested to be of im-

portance based on model studies, exhibits no clear relation to the folding rate.

An essential additional point of the single-descriptor analysis is that large

differences are observed between most of the values obtained with and without

cross-validation. This highlights the need for care in assessing the significance

of correlations when working with small numbers of sequences.

D. Multiple-Descriptor Models

We present results for two- and three-descriptor models; addition of a fourth

descriptor yielded no significant improvement in predictive accuracy. In the two-

descriptor case there are only 276 possible input combinations, so we examine

each explicitly, whereas, in the three-descriptor case there are 2024, so we use the

genetic algorithm (GA) to optimize the descriptor selection. Use of the GA in the

two-descriptor case gives models of comparable quality to the exhaustive search,

but this test of the algorithm is not very stringent because the space of input

combinations is small. Because both the GA and the NN depend on the random

number generator seed, several trials were performed in each case (as detailed in

Section IV.D.2).

1. Two Descriptors

The best five two-descriptor models are shown in Table VI, and selected

examples to illustrate the types of behavior that are observed are shown in Fig. 2.
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There is a significant increase in fitting ability (training) and, more importantly,

in predictive accuracy (cross-validation) upon adding a second descriptor. In

Figure 2, we see that the squares (&) tend to be closer to the ideal line than the

circles (
), particularly for lower log kf (slower-folding proteins). To quantitate

the improvement, we calculated Wold’s E statistic from the q2
cv values (Table VI).

While these figures suggested to us that the additional descriptors significantly

improve the accuracies of the cross-validated predictions, general confidence

limits are not straightforward to calculate. Consequently, we did the following.

We shuffled the values of each secondary descriptor (other than c=n) 10 times

and then trained neural networks to predict log kf as for the actual data. Averages

and standard deviations of the correlation coefficients are reported in Table VII.

We see that, even though the rtrn values are comparable to those in Table VI, the
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Figure 2. Comparison of observed and calculated values of log kf for selected models. (a and

b) c=nð
Þ; c=n and �G=n (&); and c=n;�G=n and peð4Þ. (c and d) c=nð
Þ; c=n and nc (&); and

c=n; nc; and �Gð4Þ. (a and c) Training set fits. (b and d) Cross-validated predictions.
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rcv values are close to that for c=n by itself (Table I); the NN ignores the

randomized descriptor. The fact that the rcv values for the actual data are two to

four standard deviations above the average rcv values for the randomized data

demonstrates that the improvement is significant and is not due to the increase in

the number of fitting parameters.

The best predictions are obtained with �G=n paired with c=n (�G with c is

the sixth best set of inputs with rcv¼ 0.77 and E ¼ 0.76) This combination of

input descriptors was investigated previously [15], but it is of interest that it

ranks first in the exhaustive search performed here. To better understand the

physical basis for the correlations, we show the dependence of log kf on c=n and

�G=n in Fig. 3a. When c=n is small (c=n � 19; mainly a-helical proteins),

folding is always fast (kf > 400 s�1), whereas when c=n is large (c=n � 25;

either mixed-a/b or b-sheet proteins), the rate spans over three orders of

magnitude. Thus, proteins with lower contact orders fold fast regardless of

their stabilities, whereas for those with higher contact orders, the rate increases

with �G=n. As described in Ref. 15, a single-input neural network can be

trained to predict log kf from �G for the 14 proteins with c > 21 (Fig. 4);

rtrn ¼ 0:81, and rcv ¼ 0:64, which confirms that stability plays a significant role

in determining the folding rates of mixed-a/b and b-sheet proteins. For these 14

TABLE VI

The Best (as Measured by rcv) Five Two-Descriptor Models Obtained by Examining All Possible

Combinations for Ten Different Random Number Generator Seedsa

Descriptors rtrn rcv q2
cv E

c=n �G=n 0.89 0.81 0.66 0.74

c=n Ph 0.87 0.80 0.63 0.81

c=n nc 0.89 0.79 0.62 0.82

c=n ph 0.86 0.77 0.57 0.93

c=n qa 0.84 0.77 0.59 0.89

aFor the calculation of E, q2
cv was compared with that for c=n. Statistics for linear regression and

additional measures of the predictive accuracy are available in Tables VII and VIII.

TABLE VII

Randomization Tests for the Models in Table VIa

Descriptors rtrn rcv q2
cv

c=n �G=n 0:83 
 0:01 0:71 
 0:03 0:49 
 0:04

c=n Ph 0:84 
 0:03 0:68 
 0:07 0:43 
 0:12

c=n nc 0:87 
 0:02 0:69 
 0:04 0:46 
 0:05

c=n ph 0:84 
 0:02 0:68 
 0:06 0:42 
 0:10

c=n qa 0:84 
 0:00 0:68 
 0:07 0:44 
 0:11

aIn each case, the second descriptor listed was shuffled 10 times, and the networks were trained as

for the original data. Values shown are averages for the 10 trials; ranges indicate standard deviations.
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proteins, r�G;log kf
¼ 0:80 while rc;log kf

¼ �0:22;E ¼ ð1 � q2
c;�GÞ=ð1 � q2

cÞ
¼ 0:23.

Two of the other models in Table VI combine the contact order with a

measure of the a-helical propensity: c=n with either Ph or ph: These pairings

essentially reflect the results of the previous section. The remaining model

couples c=n with nc, which reveals a secondary dependence on protein size.

Consistent with the sign of rnc;log kf
(Table I), the functional dependences of

log kf on these descriptors for the models in Table VI indicate that shorter

proteins fold faster than longer ones (Fig. 3b).

2. Three Descriptors

As mentioned above, there are 2024 possible combinations of three descriptors,

so we use a GA to identify the inputs that are likely to yield the greatest

predictive accuracy. Use of the GA requires selection of a particular measure of

predictive accuracy to decide which models to keep at each cycle. Because we

are interested primarily in cross-validated predictions, rcv is a natural choice.

However, the structurally based partitioning scheme is less straightforward to

automate than a jackknife one. Consequently, for the GNN, we used the Pearson

linear correlation coefficient for the jackknife cross-validated outputs (rjck) and

subsequently tested each selected combination of descriptors with the

structurally based cross-validation scheme (rcv). We performed five GNN trials,

from each of which we saved the best 20 models. Of these 100 models, 46 were

unique, and each of these was subjected to 10 trials with the structurally based

cross-validation scheme.

In general, the GA combines the descriptors that were identified above by the

two-dimensional exhaustive search (c; c=n;�G;�G=n; and nc) to further refine

the predictions (Tables IX to XI and Fig. 2). The propensity for sheet structure

ðpeÞ appears in two of the five models; not surprisingly, it is strongly anti-

correlated with the propensity for helical structure, which appeared in Table VI

(rpe;ph
¼ �0:89). In considering these results, it is necessary to keep in mind that

the database is small, so that there is a danger of overfitting (but see Table X).

Nevertheless, given this disclaimer, we see that simultaneous consideration of

multiple descriptors improves prediction of the folding rate and that both the

TABLE VIII

Linear Regression Statistics for the Models in Table VI

Descriptors rtrn rcv q2
cv E

c=n �G=n 0.81 0.72 0.47 1.27

c=n Ph 0.79 0.75 0.57 1.04

c=n nc 0.82 0.79 0.62 0.92

c=n ph 0.79 0.75 0.56 1.05

c=n qa 0.80 0.77 0.60 0.97
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Figure 3. Functional dependence of calculated folding rate (kf , in s�1) on the normalized

contact order (c=n) and either (a) the normalized stability (�G=n in kcal/mol) or (b) the total number

of atomic contacts ðncÞ.
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size and the stability play significant secondary roles that could not have been

anticipated from the single-descriptor analyses.

E. Physical Bases of the Observed Correlations

Consistent with earlier, single-descriptor linear analyses of protein folding

[12,13,50], the primary determinants of the folding rate are measures that

characterize the native structure; that is, proteins with more sequentially local

interactions tend to fold faster. As discussed below, the equilibrium structure and

the kinetics are connected by the fact that the structure of the transition state

resembles that of the native state in many small proteins [50]. Thus, the kinetics

and the underlying thermodynamics of the reaction are affected in a similar way,

in accord with linear free energy relations.

The microscopic origin for the statistical dependence of the folding kinetics

on the structure is the stochastic diffusive search that is required to find the
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Figure 4. Observed (points)

and calculated (line) log kf as a

function of the stability in kcal/

mol for the 14 proteins in the

database with c > 21:

TABLE IX

The Best (as Measured by rcv) Five Unique Three-Descriptor Models Obtained from the GNN

Protocol for Ten Different Random Number Generator Seedsa

Descriptors rtrn rjck rcv q2
cv E

c=n �G=n pe 0.92 0.84 0.86 0.74 0.76

c=n �G nc 0.93 0.84 0.84 0.70 0.80

c=n �G=n nc 0.92 0.81 0.83 0.67 0.97

c=n �G c 0.90 0.83 0.83 0.66 0.81

c=n �G pe 0.91 0.80 0.83 0.67 0.72

aFor the calculation of E, q2
cv was compared with the highest observed q2

cv of the six possible two-

descriptor models that could be formed from the three selected inputs (corresponding to the

unshuffled pair in Table X). Statistics for linear regression and additional measures of the predictive

accuracy are available in Table X and XI.
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transition state. As described in the formulation of the ‘‘hydrophobic zipper

hypothesis’’ [51,52] and in the statistical analyses of 125-residue lattice models

[10,11], having sequentially short-range contacts in the transition state should

increase the folding rate for two reasons. First, such contacts are found more

readily because there are fewer conformations to search (the number grows ex-

ponentially with loop length). Second, making sequentially long-range contacts

costs more entropy because they constrain the chain to a greater degree. These

advantages correspond to different components of the macroscopic rate law

[kf ¼ AðTÞexp ��G=kBTð Þ]. In this regard, it is necessary to keep in mind that

the preexponential factor can be nontrivial for protein folding [53,54]. If AðTÞ is

sufficiently large, there is a separation of time scales; the protein reaches an

effective equilibrium within the unfolded state rapidly, and the rate is dominated

by the time required to surmount the barrier [55]. In this case, the observed

statistical dependence on the structure implies that the barrier is entropic (as in

Fig. 3a of Ref. 1 and Figs. 6 and 7 of Ref. 36). Based on these ideas, Fersht

recently derived a simple relationship to show that changes in contact order are

directly proportional to changes in log kf [50]. On the other hand, if AðTÞ is

small, there is no separation of time scales. Because a dependence on the

structure enters through the preexponential factor in this case, the barrier, if

there is one, could be either entropic or energetic (as in Fig. 3b of Ref. 1).

Free energy surfaces for folding have now been determined for high-

resolution (all-atom) models of several peptides and proteins [72–77]. For

both a-helical and b-hairpin peptides, decomposition of the surfaces into

contributions from the effective energies (which include the full solvent free

TABLE X

Randomization Tests for the Models in Table IX

Descriptors Randomized rtrn rcv q2
cv

c=n �G=n pe pe 0:89 
 0:02 0:80 
 0:03 0:61 
 0:07

c=n �G nc �G 0:88 
 0:02 0:72 
 0:05 0:48 
 0:10

c=n �G=n nc nc 0:89 
 0:01 0:74 
 0:04 0:49 
 0:09

c=n �G c c=n 0:89 
 0:01 0:71 
 0:04 0:46 
 0:08

c=n �G pe �G 0:88 
 0:01 0:69 
 0:06 0:41 
 0:10

TABLE XI

Linear Regression Statistics for the Models in Table IX

Descriptors rtrn rcv q2
cv E

c=n �G=n pe 0.83 0.71 0.46 1.57

c=n �G nc 0.84 0.73 0.46 1.42

c=n �G=n nc 0.84 0.76 0.55 1.29

c=n �G c 0.83 0.71 0.41 1.40

c=n �G pe 0.82 0.69 0.38 1.34
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energies) and configurational entropies indicated that the free energy barriers

derive primarily from the fact that the entropy decreases more rapidly than the

energy [75–77], as in Ref. 36 discussed above. However, consistent with the

statistical analyses of proteins, differences in secondary structure content

correspond to differences in the general shapes of the free energy surfaces.

For a-helical sequences, the transition states tend to be less folded, and

secondary and tertiary structure form concurrently [72,77]. For peptides and

proteins which contain b-hairpins and b-sheets, a collapse to a native-like radius

of gyration occurs first, and rearrangement to the native state follows wihout

significant expansion [73–75]. At least for peptides at elevated temperatures

[76,77], determination of the rate of diffusion on the free energy surfaces, which

relates directly to the pre-exponential factor in the rate law [53], should now be

possible but has not been done and would be of interest.

In connecting these ideas with earlier phenomenological models, it is not

obvious how to reconcile the dependence of the rate on the structure with a

nucleation mechanism, as in Ref. 50. The statistical relationship suggests that

the transition state contains a considerable amount of native structure, while a

nucleus, in the classic sense of the word, is a small part of the structure.

However, it could be that a limited number of native contacts (i.e., those in the

nucleus) are sufficient to confine the transition state ensemble to a native-like

fold. This idea is supported by a recent analysis of the folding transition state of

acylphosphatase in which key residues, as determined by a f value analysis,

play a critical role [56].

V. UNFOLDING RATES OF PROTEINS

To function, a protein must not only fold (kinetic criterion) but populate its native

state for a significant fraction of the time (thermodynamic criterion). The

unfolding rate (ku) as well as kf contribute to the equilibrium constant, which

determines to what degree the latter condition is satisfied. To find the factors that

affect the unfolding rate, we carried out an analysis for log ku. Rate data for

unfolding in water were not available for three of the proteins (2HQI, 1YCC, and

1HRC-oxidized), so these were excluded from the analysis; the choice of

descriptors was the same.

For single-descriptor models, the best cross-validated predictions are ob-

tained with the contact order (c and c=n ), the free energy of unfolding (�G and

�G=n), and the buried surface area (m) (Table XII). The strong dependence of

the unfolding rate on the contact order for these proteins is somewhat surprising

because no significant correlation was observed in a previous study of a

database of 24 proteins [14], 19 of which are included here. For those 19 proteins

we have r�G;logku
¼ �0:61, rc;logku

¼ �0:56 and rc=n;logku
¼ �0:45, whereas for

the 11 additional proteins included in the present analysis of the unfolding rate

we have r�G;logku
¼ �0:64, rc;logku

¼ �0:85, and rc=n;logku
¼ �0:83. The proteins
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that appear to be primarily responsible for decreasing the correlation with the

free energy of unfolding and increasing the correlation with the contact order

are the helical proteins—in particular, 2PDD and 1LMB. Because for the 30

proteins considered in this section there is no significant correlation between the

contact order and either the free energy of unfolding (r�G;c ¼ 0:28) or the

amount of buried surface area (rm;c ¼ 0:23), higher predictive accuracy is

obtained by combining these descriptors (Table XIII). Only a slight improve-

ment was observed upon adding a third descriptor.

We end this section by noting that, for these 30 proteins, there is a significant

correlation between the folding and unfolding rates (rlog kf ;log ku
¼ 0:59). At least

in the case that kf and ku are determined by an entropic barrier (Section IV.E),

this relationship can be understood in the following way. Because all the

proteins are roughly the same size, the stability of the native state does not

depend on contact order (for the overall reaction, �S / n). Changes to c that

raise or lower the free energy of the transition state (TS) relative to the fixed

endpoints (U and F) will change �U�TS and �GF�TS in the same manner. This

dependence of the activation free energies is the basis not only for the correlation

of log ku with log kf but also that with c.

TABLE XII

Single-Input Correlations for Unfolding Rates

Index Symbol rx;log ku
rtrn rcv q2

cv

0 �G �0.64 0.69 0.53 0.21

1 �G=n �0.45 0.55 0.40 0.12

2 m �0.41 0.61 0.45 0.14

3 m=n �0.31 0.36 0.08 �0.11

4 n �0.43 0.58 0.09 �0.09

5 nc �0.40 0.53 0.09 �0.05

6 c �0.68 0.77 0.67 0.44

7 c=n �0.58 0.69 0.52 0.20

8 h 0.40 0.49 �0.57 �0.86

9 e �0.34 0.53 0.16 �0.06

10 t �0.01 0.39 �0.25 �0.12

11 s �0.08 0.26 �0.19 �0.24

12 g 0.03 0.36 �0.16 �0.32

13 b �0.27 0.27 �0.19 �0.23

14 o �0.20 0.55 0.15 �0.08

15 a 0.40 0.50 �0.27 �0.27

16 Ph 0.29 0.53 �0.64 �0.32

17 Pe �0.28 0.30 �0.38 �0.47

18 Po �0.20 0.52 �0.22 �0.20

19 ph 0.29 0.50 �0.31 �0.42

20 pe �0.23 0.50 �0.38 �0.40

21 po �0.27 0.49 �0.56 �0.11

22 qe 0.14 0.35 �0.11 �0.14

23 qa 0.24 0.48 0.19 �0.06
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VI. HOMOLOGOUS PROTEINS

Information about the transition state of a protein can be obtained from protein

engineering experiments in which one compares the effects of mutations on the

folding rate to their effects on the overall stability (f values). Several proteins

have been mutated extensively, and their kinetics have been measured. The fact

that proteins with related structures but low sequence homologies are found to

have similar transition states has been taken to support the relation between

native structure and folding behavior; this is the case for the transition states of

the src [57] and a-spectrin [58] SH3 domains, which have 36% sequence homo-

logy. A particularly interesting transition state comparison involves acylphos-

phatase (AcP) [59] and procarboxypeptidase A2 [60]. These two proteins fold to

sandwich structures with two a-helices packed against a five- or four-stranded

antiparallel sheet, respectively. Although their sequences have only 13% identity,

the average f values for all elements of secondary structure (except one, b-strand

4) are almost the same. Moreover, it has been suggested that the reason

that procarboxypeptidase A2 folds about 4000 times faster than AcP is that the

transition state of the latter involves longer loops and secondary structure

elements; consistent with this observation, there is a strong correlation between

log kf and the contact order for proteins with this fold [59].

The dependence of the folding rate on the stability can be evaluated by

measuring the kinetics of a family of proteins with native states that have

similar structures but different �G values. Such an analysis was made recently

for a set of six immunoglobulin-like b-sandwich domains [61]. They have

stabilities that are distributed relatively uniformly over the range 1:2 � �G �
9:4 kcal/mol (in contrast to the AcP family discussed above, for which four of

the five members have 3:8 � �G � 5:4 kcal/mol). Although there is some

variation in the detailed structures of these six proteins, using the definition of

the contact order given in Section II, all of them have c=n > 28 (for these six,

28:22 � c=n � 32:53; for the five members of the AcP family, 25:83 � c=n �
35:08; for all 33 proteins, 12:21 � c=n � 37:32). In accord with the functional

dependence on �G shown in Figs. 3a and 4, a strong positive correlation

between log kf and �G was observed for this family (r�G;log kf
¼ 0:99). The data

TABLE XIII

The Best (as Measured by rcv) Five Two-Descriptor Models for the Unfolding Rates

Descriptors rtrn rcv q2
cv E

c �G=n 0.90 0.85 0.71 0.53

c �G 0.88 0.81 0.66 0.62

c=n �G 0.89 0.80 0.61 0.49

c m 0.83 0.73 0.53 0.85

c m=n 0.90 0.71 0.49 0.92
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suggest that for a given structural family with significant variation in �G, the

folding rates of individual sequences are determined by their stabilities.

This conclusion is consistent with the fact that both log kf and log ku typically

vary linearly with the stability of the native state as a protein is mutated. Such

Brønsted behavior has been used in protein engineering studies to argue that

fractional f values derive from partial structure formation rather than multiple

parallel folding pathways [62]. Correlation coefficients for published folding

rates of mutants of six two-state proteins are given in Table XIV. For the most

part, there is a strong, essentially linear relation that is reasonably robust to

jackknife cross-validation. For all the sequences, increases in stability tend to

accelerate folding. Similar behavior is obtained simply by varying the condi-

tions to affect the stability of a protein (for example, see Fig. 2a of Ref. 14).

This analysis thus confirms that the stability is an important secondary factor in

determining folding rate. As described in Ref. 9, in accord with the Hammond

postulate [34], stabilizing the native state of a protein in most cases also lowers

the energy of its transition state relative to the unfolded state and thus increases

the folding rate.

VII. RELATING PROTEIN AND LATTICE MODEL STUDIES

The fact that the folding (and unfolding) kinetics of relatively small, two-state

proteins can be predicted with reasonable accuracy from global features of the

native state like the contact order, stability, and number of contacts supports the

idea that the details of protein structure are not required to capture the key

features of protein folding, so that reduced representations should be adequate.

However, the most widely used simple heteropolymer models, those restricted to

a simple cubic lattice, predict that stability is more important than native

structure, in contrast to the experimental data for proteins. In this section we seek

to understand why lattice models differ from proteins in this regard. Doing so is

of importance because complete details of the folding trajectories of such models

TABLE XIV

Relation Between Stability and Folding Rate for Six Two-State Proteins That

Have Been Mutated Extensivelya

Protein Reference c Number of Mutants r�G;log kf
rtrn rjck

Acylphosphatase 59 34.4 25 0.614 0.667 0.386

Procarboxypeptidase A2 60 20.7 19 0.531 0.712 0.464

src SH3 57 20.5 58 0.552 0.556 0.408

a-Spectrin SH3 58 18.0 18 0.481 0.476 0.099

CI2 71 16.1 86 0.554 0.606 0.519

l-Repressor 64 9.8 9 0.720 0.760 0.307

aThe coefficients rtrn and rjck are for single-input (�G) neural networks. The a-spectrin SH3 domain

values are those for pH 7; the src SH3 domain values are for pH 6. The l-repressor values are for

2 M urea.
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can be obtained and used to test phenomenological models like those described

in Section IV.A.

In the case of the 27-residue model described in Section III [6,9], it is likely

that the chain length is too short for there to be contacts that are sufficiently long

range to slow-folding. In the case of the 125-residue model, which is larger than

all but one (2VIK) of the proteins considered in the present study, significant

correlations between various measures that characterize the native structure and

the folding behavior were observed [10,11] (it should be mentioned that, in

contrast to the number of antiparallel sheet contacts discussed in Section III, the

contact order is a poor measure for characterizing lattice model structure;

18:7 � c � 31:0 for the 100 helical proteins in Refs. 10 and 11, whereas

17:2 � c � 32:0 for the 100 sheet proteins). However, in the lattice model, the

functional dependence of the folding stability is essentially the same regardless

of the native structure; at a particular threshold value of the stability (which

varies only slightly with the number of antiparallel sheet contacts), the folding

ability rises rapidly and then levels off [11,37]. There are two likely reasons that

the functional dependence is much simpler than that for proteins (Fig. 3a). First,

the 125-residue sequences were energetically optimized to observe folding on

the time scale of feasible simulations and are thus expected to correspond to the

more stable region in Fig. 3a. Second, due to the highly restricted confor-

mational space of the lattice and the choice of move set, helices that form in

isolation cannot diffuse as semirigid units [49]; as a result, lattice models cannot

correctly capture the lower contact order region of Fig. 3a. Once one restricts

oneself to the remaining part of Fig. 3a, the behaviors observed in the lattice

models and proteins are consistent; in both, the folding ability increases

sigmoidally with the stability [compare Fig. 4 with Fig. 16 of Ref. 11 and

Fig. 1 of Ref. 37]. It should be noted, however, that an exact correspondence is

not expected because, in the lattice model [2,6–11] and related analytic [16–18]

studies, the stability descriptors are calculated from effective energies that

include solvent effects implicitly rather than from full free energies, while the

experimental �G values include the protein configurational entropy as well. It

would be useful in this regard to have experimental enthalpies of folding for the

proteins considered.

VIII. CONCLUSIONS

In the present study a nonlinear, multiple-descriptor method was applied to the

prediction of the logarithm of the folding rate constant for a set of 33 two- and

weakly three-state proteins. With two (three) descriptors, the Pearson linear

correlation coefficient between the observed values and the training set and

cross-validated predictions reach 0.89 (0.93) and 0.81 (0.86), respectively. These

results are to be compared with those obtained by using the contact order by

itself: rtrn ¼ 0:83 and rcv ¼ 0:74. In addition to the contact order, some measures
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of the propensity of the sequence for a given structure also exhibited significant

relationships with the folding rate; for example, rcv ¼ 0:42 for pe. Although the

propensity correlations are somewhat lower than those for measures obtained

from the observed native structure, the sequence-based predictions may be

sufficient to identify fast- or slow-folding proteins without the need for high-

resolution structures. For example, using n and pe, the folding rates for all 33

proteins, which range over almost six orders of magnitude, are predicted within a

factor of 200; these (cross-validated) predictions are to be compared with those

based on nc and c=n, which are accurate within a factor of 60. In addition to the

contact order, the size and stability play significant roles and are selected

frequently for two- and three-descriptor models. Of particular interest is the

finding that, for mixed-a/b and b-sheet proteins with higher contact orders

(c> 21), the stability not only significantly improves the accuracy of multiple-

descriptor models but gives excellent predictions by itself. The explicit or

implicit inclusion of the stability in phenomenological models accounts for

recent improvements in fitting experimental kinetic data [19,20,42]. Given the

high quality of predictions that are obtained with the present analysis, further

investigation of such correlations and their physical origins appear worthwhile,

as has been suggested elsewhere [50].
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