Self-Adaptive Hierarchical Sentence Model

Han Zhao, Zhengdong Lu and Pascal Poupart

WATERLOO

han.zhao@uwaterloo.ca

July 22, 2015

Outline

Background

Machine Learning Representation Learning

AdaSent

Motivation

Architecture

Learning

Experiments

Machine Learning - Definition

Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

— Tom M. Mitchell

Machine Learning - Definition

Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Tom M. Mitchell

► F - data

Machine Learning - Definition

Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

— Tom M. Mitchell

- ► E data
- ► T task of interests

Machine Learning - Definition

Definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

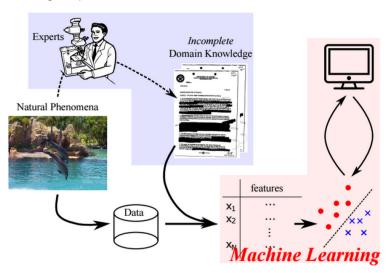
— Tom M. Mitchell

- ► E data
- ► T task of interests
- ▶ P objective function

Machine Learning - Application

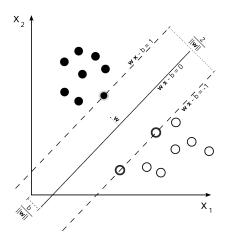
SCIENCE

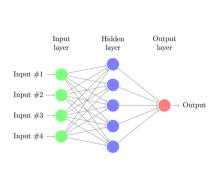
Machine Learning - Pipeline



Machine Learning - Components

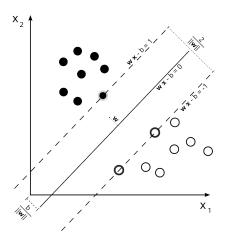
${\sf Machine\ Learning} \approx {\sf Representation} + {\sf Objective} + {\sf Optimization}$

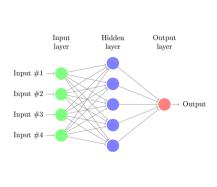




Machine Learning - Components

Machine Learning \approx Representation + Objective + Optimization





Deep Learning

Introduction The 10 Technologies Pa

Past Years

Deep Learning

With massive amounts of computational power, machines can now recognize objects and translate speech in real time. Artificial intelligence is finally getting smart.

SCIENCE

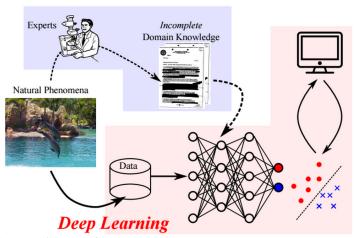
Deep Learning - Application

- ► Object Recognition (Krizhevsky et al. 2012)
- ► Speech Recognition (Graves et al. 2013)
- ▶ Neural Machine Translation (Sutskever et al. 2014)
- ► Face Recognition (Schroff et al. 2015)
- ▶ Deep Reinforcement Learning (Mnih et al. 2013)
- ► Image Caption Generation (Vinyals et al. 2014)
- ► Text Matching (Hu et al. 2014)
- ► Text Parsing (Chen et al. 2014)

And etc.

Deep Learning - Representation Learning

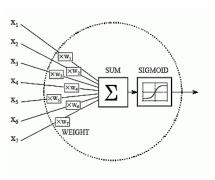
Deep Learning: Learning multiple levels of representation directly from massive data

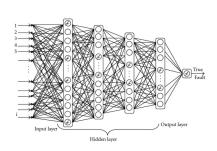


Slide courtesy of Kyunghyun Cho

Deep Learning - Representation Learning

Deep Learning: Learning multiple levels of representation directly from massive data

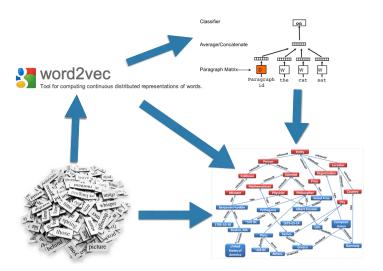




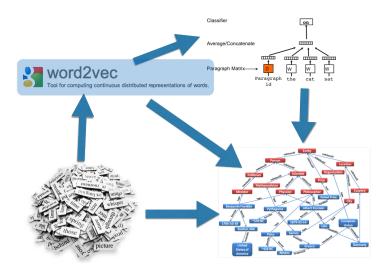
$$a_i^l = \sigma(z_i^l), \quad z_i^l = \sum_i w_{ij} a_j^{l-1}, \quad \sigma(t) = \frac{1}{1 + \exp^{-t}}$$

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

Deep Learning - Natural Language Processing



Deep Learning - Natural Language Processing



Deep Learning - Word Embedding

Traditional representation of words: One-hot representation.

$$\begin{aligned} \text{cat} &= [0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, \dots] \\ \text{dog} &= [0, \frac{1}{1}, 0, 0, 0, 0, 0, 0, \dots] \end{aligned}$$

Deep Learning - Word Embedding

Traditional representation of words: One-hot representation.

```
 \begin{aligned} \text{cat} &= [0, 0, 0, 0, 0, \frac{1}{1}, 0, 0, \dots] \\ \text{dog} &= [0, \frac{1}{1}, 0, 0, 0, 0, 0, 0, \dots] \end{aligned}
```

Pros:

- Simple, intuitive
- Basis of bag-of-words model for document representation

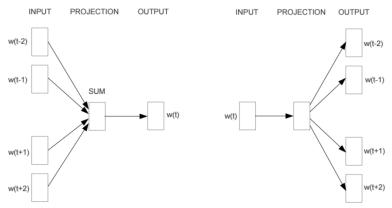
Cons:

- ► High-dimensional
- No semantic meaning

Deep Learning - Word Embedding

Word2Vec (Minkolov et al)

Distributed word representation: Unsupervised technique to map each word into a dense and real-valued low dimensional vector.

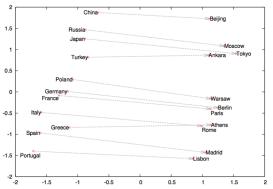


Skip-gram

Deep Learning - Word Embedding

Word2Vec (Minkolov et al)

Distributed word representation: Unsupervised technique to map each word into a dense and real-valued low dimensional vector.



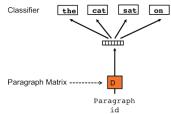
 $w({\sf China}) - w({\sf Beijing}) \approx w({\sf Russia}) - w({\sf Moscow}) \approx w({\sf Italy}) - w({\sf Rome})$ waterloo | Cheriton School of Computer Science

Deep Learning - Sentence Modeling

Paragraph Vector (Le et al)

Distributed paragraph representation: Unsupervised technique to map each paragraph into a dense and real-valued low dimensional vector.





Deep Learning - Sentence Modeling

Phrase/Sentence/Document Modeling

- Recursive auto-encoder/Matrix-vector recursive neural network (Socher et al. 2011, 2012)
- Convolutional neural network (Kim 2014)
- Dynamic convolutional neural network (Kalchbrenner et al. 2014)
- Recurrent neural network/Bi-directional recurrent neural network (Lai et al. 2015)
- ► Gated recursive convolutional neural network (Cho et al. 2014)

Motivation

AdaSent: Self-Adaptive Hierarchical Sentence Model

► Is vector representation with fixed-length enough to represent different granularities of phrases/sentences/documents?

Motivation

AdaSent: Self-Adaptive Hierarchical Sentence Model

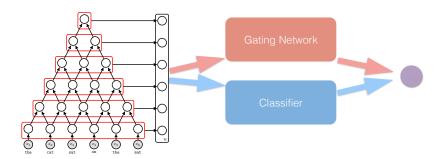
- ► Is vector representation with fixed-length enough to represent different granularities of phrases/sentences/documents?
- ► Can we model the composition behaviour using algebraic operations with enough flexibility ?

Motivation

AdaSent: Self-Adaptive Hierarchical Sentence Model

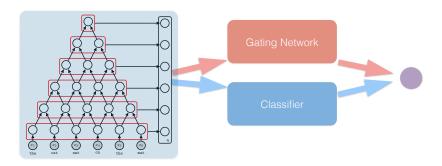
- Is vector representation with fixed-length enough to represent different granularities of phrases/sentences/documents?
- Can we model the composition behaviour using algebraic operations with enough flexibility?
- ► Can we design a model which can decide the representation of phrases/sentences on the fly based on the current task at hand ?

Architecture



Three components:

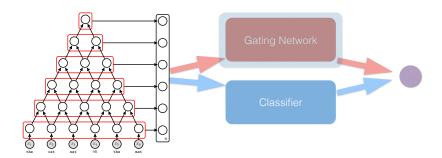
Architecture



Three components:

Composition hierarchy

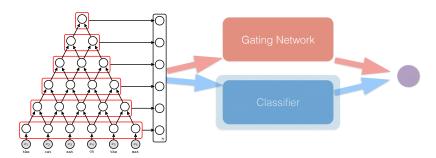
Architecture



Three components:

- Composition hierarchy
- ► Gating network

Architecture



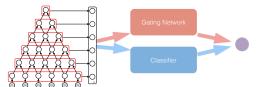
Three components:

- Composition hierarchy
- ► Gating network
- Classifier

Architecture

Properties of AdaSent

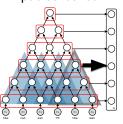
- ► Maintains a hierarchy of abstractions from the raw input, rather than a fixed length vector representation
- ▶ Implements *N*-gram model where *N* ranges from 1 to the length of the sentence
- Implements and extends the mixture-of-experts idea
- Final decision is based on an ensemble of different level of abstractions



Architecture

Composition Pyramid

Directed acyclic graph whose height depends on the length of input sentence.



$$softmax (\mathbf{v}) = \begin{cases} \exp(v_1) \\ \end{cases}$$

$$softmax (\mathbf{v}) = rac{1}{\sum_{i=1}^{l} \exp(v_i)} egin{pmatrix} \exp(v_1) \\ dots \\ \exp(v_l) \end{pmatrix}$$

Composition dynamics:

$$\begin{cases} h_{j}^{t} = \omega_{I} h_{j}^{t-1} + \omega_{r} h_{j+1}^{t-1} + \omega_{c} \tilde{h}_{j}^{t} \\ \tilde{h}_{j}^{t} = f(W_{L} h_{j}^{t-1} + W_{R} h_{j+1}^{t-1} + b_{W}) \end{cases}$$

Local combination parametrizations:

Architecture

Composition Pyramid

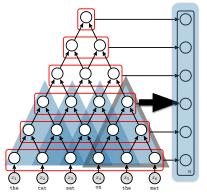
Intuitive interpretation:

$$= \omega_l^2 \left(\omega_l^{11} + \omega_r^{11} + \omega_r^{11} \right) + \omega_c^{12} + \omega_c^{1$$

Architecture

Level Pooling

Global (average/max) pooling applied to each level of the pyramid to build the abstraction in the hierarchy.



Average pooling:

$$\bar{h} = \frac{1}{T} \sum_{t=1}^{T} h_t$$

Max pooling:

$$\bar{h}_j = \max_{t \in 1:T} h_{t_j}, \quad \forall j \in 1:D$$

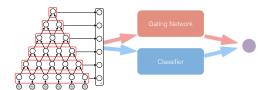
Architecture

Gating Network and Classifier

Gating network: $\omega: \mathbb{R}^D \mapsto \mathbb{R}_+$. Let $\gamma_t \triangleq \omega(\bar{h}_t)$. Constraint: $\sum_{t=1}^T \omega(\bar{h}_t) = 1$. Let $g: \mathbb{R}^D \mapsto \Delta_+$ be the classification function.

Classification consensus

$$p(C = c|\mathbf{x}_{1:T}) = \sum_{t=1}^{T} p(c|\mathcal{H}_{\mathbf{x}} = t) \cdot p(\mathcal{H}_{\mathbf{x}} = t|\mathbf{x}) = \sum_{t=1}^{T} g_c(\bar{h}_t) \cdot \omega(\bar{h}_t)$$



Backpropagation through Structure (BPTS)

Partial derivative of objective function $\mathcal L$ with respect to model parameters:

$$\frac{\partial \mathcal{L}}{\partial W_{L}} = \sum_{t=1}^{T} \sum_{j=1}^{T-t+1} \frac{\partial \mathcal{L}}{\partial h_{j}^{t}} \frac{\partial h_{j}^{t}}{\partial W_{L}}, \frac{\partial \mathcal{L}}{\partial W_{R}} = \sum_{t=1}^{T} \sum_{j=1}^{T-t+1} \frac{\partial \mathcal{L}}{\partial h_{j}^{t}} \frac{\partial h_{j}^{t}}{\partial W_{R}}$$

where

$$\frac{\partial \mathcal{L}}{\partial h_j^t} = \frac{\partial \mathcal{L}}{\partial h_j^{t+1}} \frac{\partial h_j^{t+1}}{\partial h_j^t} + \frac{\partial \mathcal{L}}{\partial h_{j-1}^{t+1}} \frac{\partial h_{j-1}^{t+1}}{\partial h_j^t}$$

$$\frac{\partial h_{j-1}^{t+1}}{\partial h_{i}^{t}} = \omega_{r}I + \omega_{c}\operatorname{diag}(f')W_{R}, \frac{\partial h_{j}^{t+1}}{\partial h_{i}^{t}} = \omega_{l}I + \omega_{c}\operatorname{diag}(f')W_{L}$$

Experiments

Data Sets

- ► MR. Movie reviews data set where each instance is a sentence. The objective is to classify each review by its overall sentiment polarity, either positive or negative.
- ► **CR**. Annotated customer reviews of 14 products obtained from Amazon. The task is to classify each customer review into positive and negative categories.
- ▶ **SUBJ**. Subjectivity data set where the goal is to classify each instance (snippet) as being subjective or objective.
- MPQA. Phrase level opinion polarity detection subtask of the MPQA data set.
- ► TREC. Question data set, in which the goal is to classify an instance (question) into 6 different types.

Experiments

Data Sets

Data	N	dist(+,-)	K	w	test
MR	10662	(0.5, 0.5)	2	18	CV
CR	3788	(0.64, 0.36)	2	17	CV
SUBJ	10000	(0.5, 0.5)	2	21	CV
MPQA	10099	(0.31, 0.69)	2	3	CV
TREC	5952	(0.1,0.2,0.2,0.1,0.2,0.2)	6	10	500

Table: N counts the number of instances and **dist** lists the class distribution in the data set. K represents the number of target classes. $|\mathbf{w}|$ measures the average number of words in each instance. **test** is the size of the test set.

Experiments

Classification Accuracy

Model	MR	CR	SUBJ	MPQA	TREC
NB-SVM	79.4	81.8	93.2	86.3	-
MNB	79.0	80.0	93.6	86.3	-
RAE	77.7	_	_	86.4	-
MV-RecNN	79.0	-	-	-	-
CNN	81.5	85.0	93.4	89.6	93.6
DCNN	_	_	-	-	93.0
P.V.	74.8	78.1	90.5	74.2	91.8
cBoW	77.2	79.9	91.3	86.4	87.3
RNN	77.2	82.3	93.7	90.1	90.2
BRNN	82.3	82.6	94.2	90.3	91.0
GrConv	76.3	81.3	89.5	84.5	88.4
AdaSent	83.1	86.3	95.5	93.3	92.4

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

Experiments

Model Variance

Model	MR	CR	SUBJ
P.V.	71.11 ± 0.80	71.22 ± 1.04	90.22 ± 0.21
cBoW	72.74 ± 1.03	71.86 ± 2.00	90.58 ± 0.52
RNN	74.39 ± 1.70	73.81 ± 3.52	89.97 ± 2.88
BRNN	75.25 ± 1.33	76.72 ± 2.78	90.93 ± 1.00
GrConv	71.64 ± 2.09	71.52 ± 4.18	86.53 ± 1.33
AdaSent	$\textbf{79.84} \pm \textbf{1.26}$	$\textbf{83.61} \pm \textbf{1.60}$	$\textbf{92.19} \pm \textbf{1.19}$
Model	MPQA	TREC	
P.V.	67.93 ± 0.57	86.30 ± 1.10	
cBoW	84.04 ± 1.20	85.16 ± 1.76	
RNN	84.52 ± 1.17	84.24 ± 2.61	
BRNN	85.36 ± 1.13	86.28 ± 0.90	
GrConv	82.00 ± 0.88	82.04 ± 2.23	
AdaSent	90.42 ± 0.71	91.10 ± 1.04	

Experiments

Belief Score Distribution

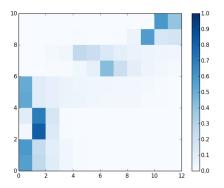
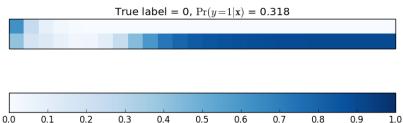


Figure: Each row corresponds to the belief score of a sentence of length 12 sampled from one of the data sets. From top to bottom, the 10 sentences are sampled from MR, CR, SUBJ, MPQA and TREC respectively.

Experiments

Concrete Example



Sentence: If the movie were all comedy it might work better but it has an ambition to say something about its subjects but not willingness.

Experiments

Representation Learning - SUBJ

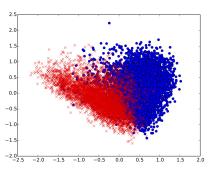


Figure: AdaSent

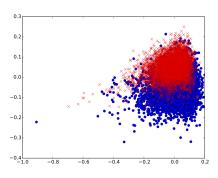


Figure: Original

Experiments

Representation Learning - MPQA

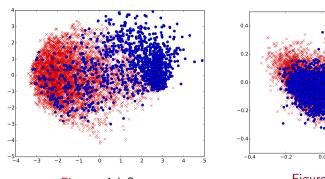


Figure: AdaSent

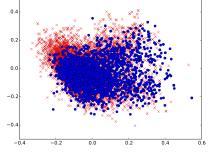


Figure: Original

Experiments

Representation Learning - TREC

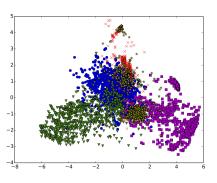


Figure: AdaSent

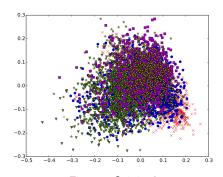


Figure: Original

Thanks

Thanks Question and Answering

Online Version: arXiv:1504.05070

International Joint Conference on Artificial Intelligence 2015