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Background
Machine Learning – Definition

Definition
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves
with experience E .

— Tom M. Mitchell

I E – data

I T – task of interests

I P – objective function
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Background
Machine Learning – Application
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Background
Machine Learning – Pipeline

Slide courtesy of Kyunghyun Cho
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Background
Machine Learning – Components

Machine Learning ≈ Representation + Objective + Optimization
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Background
Deep Learning
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Background
Deep Learning – Application

I Object Recognition (Krizhevsky et al. 2012)

I Speech Recognition (Graves et al. 2013)

I Neural Machine Translation (Sutskever et al. 2014)

I Face Recognition (Schroff et al. 2015)

I Deep Reinforcement Learning (Mnih et al. 2013)

I Image Caption Generation (Vinyals et al. 2014)

I Text Matching (Hu et al. 2014)

I Text Parsing (Chen et al. 2014)

And etc.

Items highlighted in blue happen at Google.
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Background
Deep Learning – Representation Learning

Deep Learning: Learning multiple levels of representation directly
from massive data

Slide courtesy of Kyunghyun Cho
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Background
Deep Learning – Representation Learning

Deep Learning: Learning multiple levels of representation directly
from massive data

ali = σ(z li ), z li =
∑
j

wija
l−1
j , σ(t) =

1

1 + exp−t
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Background
Deep Learning – Natural Language Processing
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Background
Deep Learning – Word Embedding

Traditional representation of words: One-hot representation.
cat = [0, 0, 0, 0, 0, 1, 0, 0, . . .]
dog = [0, 1, 0, 0, 0, 0, 0, 0, . . .]

Pros:

I Simple, intuitive

I Basis of bag-of-words model for document representation

Cons:

I High-dimensional

I No semantic meaning
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Background
Deep Learning – Word Embedding

Word2Vec (Minkolov et al)

Distributed word representation: Unsupervised technique to map
each word into a dense and real-valued low dimensional vector.
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Word2Vec (Minkolov et al)

Distributed word representation: Unsupervised technique to map
each word into a dense and real-valued low dimensional vector.

w(China)−w(Beijing) ≈ w(Russia)−w(Moscow) ≈ w(Italy)−w(Rome)
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Background
Deep Learning – Sentence Modeling

Paragraph Vector (Le et al)

Distributed paragraph representation: Unsupervised technique to
map each paragraph into a dense and real-valued low dimensional
vector.
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Background
Deep Learning – Sentence Modeling

Phrase/Sentence/Document Modeling

I Recursive auto-encoder/Matrix-vector recursive neural
network (Socher et al. 2011, 2012)

I Convolutional neural network (Kim 2014)

I Dynamic convolutional neural network (Kalchbrenner et al.
2014)

I Recurrent neural network/Bi-directional recurrent neural
network (Lai et al. 2015)

I Gated recursive convolutional neural network (Cho et al.
2014)
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AdaSent
Motivation

AdaSent: Self-Adaptive Hierarchical Sentence Model

I Is vector representation with fixed-length enough to represent
different granularities of phrases/sentences/documents ?

I Can we model the composition behaviour using algebraic
operations with enough flexibility ?

I Can we design a model which can decide the representation of
phrases/sentences on the fly based on the current task at
hand ?
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AdaSent
Architecture
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AdaSent
Architecture

Properties of AdaSent

I Maintains a hierarchy of abstractions from the raw input,
rather than a fixed length vector representation

I Implements N-gram model where N ranges from 1 to the
length of the sentence

I Implements and extends the mixture-of-experts idea

I Final decision is based on an ensemble of different level of
abstractions
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AdaSent
Architecture

Composition Pyramid

Directed acyclic graph whose height depends on the length of
input sentence.

x1

the

x2

cat

x3

sat

x4

on

x5

the

x6

mat

H

softmax (v) =

1∑l
i=1 exp(vi )

exp(v1)
...

exp(vl)



Composition dynamics:{
htj = ωlh

t−1
j + ωrh

t−1
j+1 + ωc h̃

t
j

h̃tj = f (WLh
t−1
j + WRh

t−1
j+1 + bW )

Local combination parametrizations:ωl

ωr

ωc

 = softmax (GLh
t−1
j + GRh

t−1
j+1 + bG )

where WL,WR ∈ RD×D and GL,GR ∈ R3×D .
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AdaSent
Architecture

Composition Pyramid

Intuitive interpretation:

)= !2
l ( + +!11

l !11
r !11

c
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l !12
r !12

c

+ !2
c

on the mat on the mat on the mat on the mat

on the mat on the mat on the mat

on the mat
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AdaSent
Architecture

Level Pooling

Global (average/max) pooling applied to each level of the pyramid
to build the abstraction in the hierarchy.

x1

the

x2

cat

x3

sat

x4

on

x5

the

x6

mat

H

Average pooling:

h̄ =
1

T

T∑
t=1

ht

Max pooling:

h̄j = max
t∈1:T

htj , ∀j ∈ 1 : D
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AdaSent
Architecture

Gating Network and Classifier

Gating network: ω : RD 7→ R+. Let γt , ω(h̄t). Constraint:∑T
t=1 ω(h̄t) = 1. Let g : RD 7→ ∆+ be the classification function.

Classification consensus

p(C = c |x1:T ) =
T∑
t=1

p(c |Hx = t) ·p(Hx = t|x) =
T∑
t=1

gc(h̄t) ·ω(h̄t)
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AdaSent
Learning

Backpropagation through Structure (BPTS)

Partial derivative of objective function L with respect to model
parameters:

∂L
∂WL

=
T∑
t=1

T−t+1∑
j=1

∂L
∂htj

∂htj
∂WL

,
∂L
∂WR

=
T∑
t=1

T−t+1∑
j=1

∂L
∂htj

∂htj
∂WR

where
∂L
∂htj

=
∂L
∂ht+1

j

∂ht+1
j

∂htj
+

∂L
∂ht+1

j−1

∂ht+1
j−1
∂htj

∂ht+1
j−1
∂htj

= ωr I + ωcdiag(f ′)WR ,
∂ht+1

j

∂htj
= ωl I + ωcdiag(f ′)WL
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AdaSent
Experiments

Data Sets

I MR. Movie reviews data set where each instance is a
sentence. The objective is to classify each review by its overall
sentiment polarity, either positive or negative.

I CR. Annotated customer reviews of 14 products obtained
from Amazon. The task is to classify each customer review
into positive and negative categories.

I SUBJ. Subjectivity data set where the goal is to classify each
instance (snippet) as being subjective or objective.

I MPQA. Phrase level opinion polarity detection subtask of the
MPQA data set.

I TREC. Question data set, in which the goal is to classify an
instance (question) into 6 different types.

36 / 45



AdaSent
Experiments

Data Sets

Data N dist(+,-) K |w| test
MR 10662 (0.5, 0.5) 2 18 CV
CR 3788 (0.64, 0.36) 2 17 CV

SUBJ 10000 (0.5, 0.5) 2 21 CV
MPQA 10099 (0.31, 0.69) 2 3 CV
TREC 5952 (0.1,0.2,0.2,0.1,0.2,0.2) 6 10 500

Table: N counts the number of instances and dist lists the class
distribution in the data set. K represents the number of target classes.
|w| measures the average number of words in each instance. test is the
size of the test set.
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AdaSent
Experiments

Classification Accuracy

Model MR CR SUBJ MPQA TREC

NB-SVM 79.4 81.8 93.2 86.3 -
MNB 79.0 80.0 93.6 86.3 -
RAE 77.7 - - 86.4 -
MV-RecNN 79.0 - - - -
CNN 81.5 85.0 93.4 89.6 93.6
DCNN - - - - 93.0

P.V. 74.8 78.1 90.5 74.2 91.8

cBoW 77.2 79.9 91.3 86.4 87.3
RNN 77.2 82.3 93.7 90.1 90.2
BRNN 82.3 82.6 94.2 90.3 91.0
GrConv 76.3 81.3 89.5 84.5 88.4

AdaSent 83.1 86.3 95.5 93.3 92.4
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AdaSent
Experiments

Model Variance

Model MR CR SUBJ
P.V. 71.11± 0.80 71.22± 1.04 90.22± 0.21
cBoW 72.74± 1.03 71.86± 2.00 90.58± 0.52
RNN 74.39± 1.70 73.81± 3.52 89.97± 2.88
BRNN 75.25± 1.33 76.72± 2.78 90.93± 1.00
GrConv 71.64± 2.09 71.52± 4.18 86.53± 1.33
AdaSent 79.84± 1.26 83.61± 1.60 92.19± 1.19

Model MPQA TREC
P.V. 67.93± 0.57 86.30± 1.10
cBoW 84.04± 1.20 85.16± 1.76
RNN 84.52± 1.17 84.24± 2.61
BRNN 85.36± 1.13 86.28± 0.90
GrConv 82.00± 0.88 82.04± 2.23
AdaSent 90.42± 0.71 91.10± 1.04
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AdaSent
Experiments

Belief Score Distribution

Figure: Each row corresponds to the belief score of a sentence of length
12 sampled from one of the data sets. From top to bottom, the 10
sentences are sampled from MR, CR, SUBJ, MPQA and TREC
respectively.
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AdaSent
Experiments

Concrete Example

Sentence: If the movie were all comedy it might work better but it
has an ambition to say something about its subjects but not
willingness.
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AdaSent
Experiments

Representation Learning - SUBJ

Figure: AdaSent Figure: Original
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AdaSent
Experiments

Representation Learning - MPQA

Figure: AdaSent Figure: Original
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AdaSent
Experiments

Representation Learning - TREC

Figure: AdaSent Figure: Original
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Thanks

Thanks
Question and Answering

Online Version: arXiv:1504.05070
International Joint Conference on Artificial Intelligence 2015
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http://arxiv.org/abs/1504.05070
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