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Automatic Static Analysis
▪ Static analysis is the process of evaluating a system or component 

based on its form, structure, content or documentation.

▪ ASA can identify common coding problems early in the 
development process via a tool that automates the inspection of 
source code.

▪ ASA tools: Findbugs, Lint, Checkstyle.
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Alert
▪ Alerts: potential source code anomalies reported by ASA.

▪ Null pointer dereference

▪ Buffer overflows

▪ Style inconsistencies
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Alert
▪ Actionable Alerts: if a developer determines the alert is an 

important, fixable anomaly.

▪ Unactionable Alerts: When an alert is not an indication of an 
actual code anomaly or the alert is deemed unimportant to the 
developer.
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Alert
▪

Alet
STCAL: Sharing a single instance across thread boundaries without 
proper synchronization will result in erratic behaviour of the 
application.

7 times in revision 1497967 of Tomcat.
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Alert

Alert
This method might ignore an exception.
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Motivation
Alert density: 40 alerts/KLOC
35 - 91 % of alerts are UA.
Lots of UAs may lead developers and managers to reject ASA due to 
the overhead of alert inspection.

Suppose,
1000 alerts, 5 min/alert
need 10.4 workdays to inspect all alerts
identify UAs can save 3.6 - 9.5 days
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Motivation
Actionable Alert Identification Techniques(AAIT):
use the alerts with other information to classify or prioritize alerts.

classification: divide alerts into two groups, UA and AA.
prioritization: order alerts by the likelihood an alert is AA.
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Related Work
Heckman and Williams use alert characteristics and machine learning 
to predict actionable FindBugs alerts. This is one of the most 
comprehensive actionable alert prediction studies today.

Bodden, Lam and Hendren use static analysis to deduce run-time 
properties of program. They use decision trees with code 
characteristics to decrease false positives.

Quinn et al. use alert characteristics and machine learning to find 
code patterns in static analysis alerts. 
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Method
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Revision History
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Generate subject revision history from source code repository, like 
CVS or SVN



Build Project
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Build subject project for each revision. 
Delete the revisions which can not build successfully. 



Run ASA Tool
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Run Automatic Static Analysis Tool at each revision to get alert 
information.
In our method, we use FindBug.



Alert Statement Slices
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program slicer included in the IBM T.J. Watson Libraries for 
Analysis (WALA)

▪ We select the SA alerts as seed statements
▪ The slicer use the source code and seed statements to build a call 

graph and pointer analysis
▪ Construct backwards slices for each alert



Alert Statement Slices
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Original:

int i;
int sum=0;
int product = 1;
for(i=1; i<N; ++i){

sum = sum +i;
product = product *i;

}
write(sum);
write(product);

After slicing:

int i;
int sum=0;

for(i=1; i<N; ++i){
sum = sum +i;

}
write(sum);



Tokenization
Control flow information is important

Granularity: High level. consider method, control flow as tokens 

Tool: Eclipse JDT Core
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Extract N-Gram Features
Create a dictionary of N-gram from the program slice.
Use information gain to reduce data dimensionality.
Identify 320 features with most information value.
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Other Features
There are three potential features for static analysis actionable alerts: 

▪ Alert Information
▪ Source code metrics
▪ Subversion Information 

The characteristic for each alert may be different for each alert type, 
so we need the alert information.
Alert Information is retrieved from FindBug for each revision.
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Other Features
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Other Features
Code complexity metrics correlate with failure-prone modeules. 
Previous work have used code size metrics to predict fault counts.

Use JavaNCSS to generate metrics at the file, package, and project 
levels.

These tools provide information about the size of source code by 
lines and the complexity of the programs.

Non commenting source statements (NCSS) counts the number of all 
statements excluding comments, empty statements, empty blocks, 
closing brackets or semicolons after closing brackets.
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Other Features
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Group Features

Software Metrics(7) Classes in Package
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Package NCSS



Other Features
Source code repository help determine how the set of alerts generated 
by static analysis and how the code base has changed over time.

We use the log files of the subversion repositories to analyze the 
code history.
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Other Features
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Model
Take input from the 351 features
Add two fully-connected layer
one dropout layer
Final Layer is Sigmoid layer

Grid Search to tune hyperparameter
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Data Set
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JDOM Log4j
Domain Data Format Logging Library

Size(KLOC) 9-13 12-19

Time Frame 05/2000-12/2008 08/2001-06/2007

# Built Revisions 30 11

Total Alerts 489 237

Actionable Alerts 200 97

Unactionable Alerts 254 112

Deleted Alerts 35 28



Configuration
• Gram Size - The size of an n-gram model.  3-gram model
• Minimum Token Occurrence - The minimum number of times a 
token must occur in the software to be included in an n-gram model. 
3
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Ground Truth
By definition, AA is an alert that a developer resolves by modifying 
the program. It will disappear from static analysis at some point.

If it is UA, the alert will never disappear. If an alert is removed 
because the file containing the alert is deleted, we consider the alert 
status as unknown and remove it from the list.
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Ground Truth
FaultBench method by Heckman and Williams to accurately classify 
alerts as AA or UA.

▪ Generate revision history through the source code repository log.
▪ Data collection for each project. download all files associated 

with a revision.
▪ Run ASA at each revision and determine which alerts were 

closed during the alert history.
▪ Create features for each alert.
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Baseline
FindBugs assigns a priority measure to each alert. 
We assume high priority alerts are more actionable than low priority 
alerts.

Default FindBugs priority ranking:
Sort alerts according to the priority measure and randomize the order 
of alerts with the same priority.
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Evaluation
Ten-fold cross validation to evaluate models.

randomly separate alerts into ten equal sets.
nine of the sets train the model and test the model use the last set.
repeat the process ten times.
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Evaluation Metrics
Precision and Recall to evaluate how well our method performs.

Precision is the percentage of alerts classified as actionable that were 
actionable.

Recall is the percentage of alerts classified as actionable out of all 
actual actionable alerts.
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Results
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Project Average 
Precision

Average Recall

JDOM 90.3% 86.2%

Log4j 91.4% 85.0%



Results
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Example
In Log4j, when x=25, it means from the top 25% of the alerts, 74% 
of actionable alerts are found in our method, while 26% of  
actionable alerts are found using FindBugs priority ranking.



Results
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Our method outperforms FindBugs priority ranking,
it can help enhance alert ranking.
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Summary
After introducing different methods of actionable alert detection, this 
project presents the following contributions:
1) present a deep learning method to detect actionable alerts.
2) use N-Gram feature combining with other alert features.
3) apply our method to JDOM and Log4j projects.

In our experiment, our method reach precision up to 91.4% and recall 
up to 86.2%.
Our method outperforms FindBugs priority ranking in alert ranking.
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THANKS FOR YOUR TIME!
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