
CS898 PROJECT
-- Actionable Alert Detection

Presented by: Xinye Tang

OUTLINE
▪ Background

▪ Automatic static analysis(ASA)
▪ Actionable alert(AA) & Unactionable alert(UA)

▪ Motivation

▪ Related Work

▪ Method

▪ Experiment

▪ Summary

PRESENTATION TITLE PAGE 2

Automatic Static Analysis
▪ Static analysis is the process of evaluating a system or component

based on its form, structure, content or documentation.

▪ ASA can identify common coding problems early in the
development process via a tool that automates the inspection of
source code.

▪ ASA tools: Findbugs, Lint, Checkstyle.

PRESENTATION TITLE PAGE 3

Alert
▪ Alerts: potential source code anomalies reported by ASA.

▪ Null pointer dereference

▪ Buffer overflows

▪ Style inconsistencies

PRESENTATION TITLE PAGE 4

Alert
▪ Actionable Alerts: if a developer determines the alert is an

important, fixable anomaly.

▪ Unactionable Alerts: When an alert is not an indication of an
actual code anomaly or the alert is deemed unimportant to the
developer.

PRESENTATION TITLE PAGE 5

Alert
▪

Alet
STCAL: Sharing a single instance across thread boundaries without
proper synchronization will result in erratic behaviour of the
application.

7 times in revision 1497967 of Tomcat.

PRESENTATION TITLE PAGE 6

Alert

Alert
This method might ignore an exception.

PRESENTATION TITLE PAGE 7

OUTLINE
▪ Background

▪ Motivation

▪ Related Work

▪ Method

▪ Experiment

▪ Summary

PRESENTATION TITLE PAGE 8

Motivation
Alert density: 40 alerts/KLOC
35 - 91 % of alerts are UA.
Lots of UAs may lead developers and managers to reject ASA due to
the overhead of alert inspection.

Suppose,
1000 alerts, 5 min/alert
need 10.4 workdays to inspect all alerts
identify UAs can save 3.6 - 9.5 days

PRESENTATION TITLE PAGE 9

Motivation
Actionable Alert Identification Techniques(AAIT):
use the alerts with other information to classify or prioritize alerts.

classification: divide alerts into two groups, UA and AA.
prioritization: order alerts by the likelihood an alert is AA.

PRESENTATION TITLE PAGE 10

OUTLINE
▪ Background

▪ Motivation

▪ Related Work

▪ Method

▪ Experiment

▪ Summary

PRESENTATION TITLE PAGE 11

Related Work
Heckman and Williams use alert characteristics and machine learning
to predict actionable FindBugs alerts. This is one of the most
comprehensive actionable alert prediction studies today.

Bodden, Lam and Hendren use static analysis to deduce run-time
properties of program. They use decision trees with code
characteristics to decrease false positives.

Quinn et al. use alert characteristics and machine learning to find
code patterns in static analysis alerts.

PRESENTATION TITLE PAGE 12

OUTLINE
▪ Background

▪ Motivation

▪ Related Work

▪ Method

▪ Revision History & Build Project

▪ Run ASA Tool

▪ Alert Statement Slice

▪ Tokenization

▪ Extract Features

▪ Model
PRESENTATION TITLE PAGE 13

Method

PRESENTATION TITLE PAGE 14

Revision
History

Run ASA
Tool

Alert
Statement
Slicer

Tokenization N-Gram
Features

Subversion
Information

Actionable
Alert
Detection
Model

Build
Project

Source
Code
Metrics

Alert
Information

Revision History

PRESENTATION TITLE PAGE 15

Generate subject revision history from source code repository, like
CVS or SVN

Build Project

PRESENTATION TITLE PAGE 16

Build subject project for each revision.
Delete the revisions which can not build successfully.

Run ASA Tool

PRESENTATION TITLE PAGE 17

Run Automatic Static Analysis Tool at each revision to get alert
information.
In our method, we use FindBug.

Alert Statement Slices

PRESENTATION TITLE PAGE 18

program slicer included in the IBM T.J. Watson Libraries for
Analysis (WALA)

▪ We select the SA alerts as seed statements
▪ The slicer use the source code and seed statements to build a call

graph and pointer analysis
▪ Construct backwards slices for each alert

Alert Statement Slices

PRESENTATION TITLE PAGE 19

Original:

int i;
int sum=0;
int product = 1;
for(i=1; i<N; ++i){

sum = sum +i;
product = product *i;

}
write(sum);
write(product);

After slicing:

int i;
int sum=0;

for(i=1; i<N; ++i){
sum = sum +i;

}
write(sum);

Tokenization
Control flow information is important

Granularity: High level. consider method, control flow as tokens

Tool: Eclipse JDT Core

PRESENTATION TITLE PAGE 20

Extract N-Gram Features
Create a dictionary of N-gram from the program slice.
Use information gain to reduce data dimensionality.
Identify 320 features with most information value.

PRESENTATION TITLE PAGE 21

Other Features
There are three potential features for static analysis actionable alerts:

▪ Alert Information
▪ Source code metrics
▪ Subversion Information

The characteristic for each alert may be different for each alert type,
so we need the alert information.
Alert Information is retrieved from FindBug for each revision.

PRESENTATION TITLE PAGE 22

Other Features

PRESENTATION TITLE PAGE 23

Group Features

Alert
Information(9)

Alert Category

Alert Type

Project Name

Package Name

File Name

Class Name

Method Signature

Priority

Total Alerts for Revision

Other Features
Code complexity metrics correlate with failure-prone modeules.
Previous work have used code size metrics to predict fault counts.

Use JavaNCSS to generate metrics at the file, package, and project
levels.

These tools provide information about the size of source code by
lines and the complexity of the programs.

Non commenting source statements (NCSS) counts the number of all
statements excluding comments, empty statements, empty blocks,
closing brackets or semicolons after closing brackets.

PRESENTATION TITLE PAGE 24

Other Features

PRESENTATION TITLE PAGE 25

Group Features

Software Metrics(7) Classes in Package

Functions in Package

Functions in Class

Cyclomatic complexity in Function

Class NCSS

Function NCSS

Package NCSS

Other Features
Source code repository help determine how the set of alerts generated
by static analysis and how the code base has changed over time.

We use the log files of the subversion repositories to analyze the
code history.

PRESENTATION TITLE PAGE 26

Other Features

PRESENTATION TITLE PAGE 27

Subversion
(15)

Alert Open Revision

Developers

File Creation Revision

File Last Modified Revision

File Age

Project Added Lines

Project Delete Lines

Project Growth

File Added Lines

File Deleted Lines

File Growth

Package Total Modified Lines

Package Percent Modified Lines

File Total Modified Lines

File Percent Modified Lines

Model
Take input from the 351 features
Add two fully-connected layer
one dropout layer
Final Layer is Sigmoid layer

Grid Search to tune hyperparameter

PRESENTATION TITLE PAGE 28

OUTLINE
▪ Related Work

▪ Method

▪ Experiment

▪ Dataset

▪ Configuration

▪ Ground Truth

▪ Baseline

▪ Evaluation

▪ Results

▪ SummaryPRESENTATION TITLE PAGE 29

Data Set

PRESENTATION TITLE PAGE 30

JDOM Log4j
Domain Data Format Logging Library

Size(KLOC) 9-13 12-19

Time Frame 05/2000-12/2008 08/2001-06/2007

Built Revisions 30 11

Total Alerts 489 237

Actionable Alerts 200 97

Unactionable Alerts 254 112

Deleted Alerts 35 28

Configuration
• Gram Size - The size of an n-gram model. 3-gram model
• Minimum Token Occurrence - The minimum number of times a
token must occur in the software to be included in an n-gram model.
3

PRESENTATION TITLE PAGE 31

Ground Truth
By definition, AA is an alert that a developer resolves by modifying
the program. It will disappear from static analysis at some point.

If it is UA, the alert will never disappear. If an alert is removed
because the file containing the alert is deleted, we consider the alert
status as unknown and remove it from the list.

PRESENTATION TITLE PAGE 32

Ground Truth
FaultBench method by Heckman and Williams to accurately classify
alerts as AA or UA.

▪ Generate revision history through the source code repository log.
▪ Data collection for each project. download all files associated

with a revision.
▪ Run ASA at each revision and determine which alerts were

closed during the alert history.
▪ Create features for each alert.

PRESENTATION TITLE PAGE 33

Baseline
FindBugs assigns a priority measure to each alert.
We assume high priority alerts are more actionable than low priority
alerts.

Default FindBugs priority ranking:
Sort alerts according to the priority measure and randomize the order
of alerts with the same priority.

PRESENTATION TITLE PAGE 34

Evaluation
Ten-fold cross validation to evaluate models.

randomly separate alerts into ten equal sets.
nine of the sets train the model and test the model use the last set.
repeat the process ten times.

PRESENTATION TITLE PAGE 35

Evaluation Metrics
Precision and Recall to evaluate how well our method performs.

Precision is the percentage of alerts classified as actionable that were
actionable.

Recall is the percentage of alerts classified as actionable out of all
actual actionable alerts.

PRESENTATION TITLE PAGE 36

Results

PRESENTATION TITLE PAGE 37

Project Average
Precision

Average Recall

JDOM 90.3% 86.2%

Log4j 91.4% 85.0%

Results

PRESENTATION TITLE PAGE 38

Example
In Log4j, when x=25, it means from the top 25% of the alerts, 74%
of actionable alerts are found in our method, while 26% of
actionable alerts are found using FindBugs priority ranking.

Results

PRESENTATION TITLE PAGE 39

Our method outperforms FindBugs priority ranking,
it can help enhance alert ranking.

OUTLINE
▪ Background

▪ Motivation

▪ Related Work

▪ Method

▪ Experiment

▪ Summary

PRESENTATION TITLE PAGE 40

Summary
After introducing different methods of actionable alert detection, this
project presents the following contributions:
1) present a deep learning method to detect actionable alerts.
2) use N-Gram feature combining with other alert features.
3) apply our method to JDOM and Log4j projects.

In our experiment, our method reach precision up to 91.4% and recall
up to 86.2%.
Our method outperforms FindBugs priority ranking in alert ranking.

PRESENTATION TITLE PAGE 41

THANKS FOR YOUR TIME!

PAGE 42

