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ABSTRACT 
The analysis of texture is an important subroutine in 

application areas as diverse as biology, medicine, 

robotics and forensic science. While the last three 

decades have seen extensive research in algorithms to 

measure texture similarity, almost all existing methods 

require the careful setting of many parameters. There 

are many problems associated with a surfeit of 

parameters, the most obvious of which is that with 

many parameters to fit, it is exceptionally difficult to 

avoid overfitting. In this work we propose to extended 

recent advances in Kolmogorov complexity-based 

similarity measures to texture matching problems.  

These Kolmogorov based methods have been shown to 

be very useful in intrinsically discrete domains such as 

DNA, protein sequences, MIDI music and natural 

languages; however they are not well defined for real-

valued data. We show that by approximating the 

Kolmogorov complexity with state-of-the-art image 

compressors such as MPEG, we can create an efficient 

and robust parameter-free texture similarity measure. 

We demonstrate the utility of our ideas with an 

extensive empirical evaluation on real-world case 

studies drawn from nematology, arachnology, 

entomology, medicine, forensics, ecology, and several 

well known texture analysis benchmarks. 

Keywords 
Image Similarity, Classification, Clustering, Video 

Compression 

1. INTRODUCTION 
Texture analysis is used in classification, clustering, 

segmentation and anomaly detection in images culled 

from domains as diverse as biology, medicine, 

robotics, biometrics, forensic science and the study of 

historical texts. Texture recognition systems can have 

surprising uses; for example in Malaysia, a leading 

exporter of hardwoods, texture recognition is used to 

check against the logging of protected wood species, 

and against attempts to pass off inferior strength 

species as stronger wood species, for strength critical 

tasks [22]. 

In the Content-Based Information Retrieval (CBIR) 

community, there has been extensive research in 

algorithms to measure texture similarity; however 

virtually all existing methods require the careful setting 

of many domain-specific parameters. For example, the 

commonly used Gabor filter requires the setting of 

scales, orientations, filter mask size, and filter mask 

size parameters [39][42]. As researchers have recently 

noted ―Gabor filters show a strong dependence on a 

certain number of parameters, the values of which may 

significantly affect the outcome of the classification 

procedures‖ [3]. 

Of the many problems associated with an abundance of 

parameters, the most obvious is simply that with many 

parameters to fit, it is exceptionally difficult to avoid 

over fitting [12]. An additional problem of parameter-

laden algorithms is that they make it exceptionally 

difficult to reproduce published experimental results, 

and to truly understand the contribution of a proposed 

algorithm [15]. 

In this work we propose to extended recent advances in 

Kolmogorov complexity-based similarity measures 

[9][15][27][28] to texture matching problems.  These 

Kolmogorov based methods have been shown to be 

very useful in intrinsically discrete domains such as 

DNA, natural languages, protein sequences and 

symbolic music sequences such as MIDI or Parsons 

code; however they are not defined for real-valued data 

such as textures. We show that by approximating the 

Kolmogorov complexity with state-of-the-art 

image/video compressors such as MPEG, we can 

create an efficient and robust texture similarity 

measure. To give our ideas a concrete grounding, we 

will discuss in detail two motivating examples. 

Nematodes are a diverse phylum of ―wormlike‖ 

animals, and one of the most diverse of all animal 

groups. Nematode species are very difficult to 

distinguish; over 80,000 have been described, however 

the true number may be closer to 500,000. As shown in 

Figure 1, nematode bodies are semi-transparent 

structures, mostly consisting of digested foods and fat 

cells.  



 
Figure 1: Examples of nematode diversity as seen 

under magnification 

Understanding the biodiversity of nematodes is critical 

for several applications such as pest control, human 

health, and agriculture. For example, millions of people 

are infected by nematodes worldwide with a quarter of 

the world’s population infected by a single genus of 

nematodes, Ascaris [2].  

Because of their diversity and abundance, finding 

distinct characteristics of a nematode species for 

classification is a non-trivial task. Identification by 

experts requires three to five days to accomplish [13]. 

While the shape of the head and tail can be a useful 

feature in some cases, it is not enough to distinguish 

down to even the genus level. However, as we can see 

in Figure 1, nematodes are often richly textured, both 

externally and (given that they are semi-transparent) 

internally. As we shall show, our simple texture 

measure is extremely effective in classifying 

nematodes, without the need for careful parameter 

tuning or human-guided feature extraction.  

Breast cancer results in about 500,000 deaths each 

year [16]. The survival rate of breast cancer patients 

greatly depends on an early diagnosis. In the US, 

survival rates of early diagnosed patients are 98%, 

where the survival rate of a regionally spread cancer is 

84% and those in a late stage where distant organs are 

effected have a survival rate of 28% [20]. Figure 2 

displays an annotated image from the Mammographic 

Image Analysis Society mammogram database [44] 

with a malignant mass inscribed. 

 
Figure 2: left) A mammogram image with a malignant 

mass encircled. right) Cancerous lesions tend to 

invade the surround tissue and exhibit a radiating 

pattern of linear spicules, resulting in unusual 

textures 

Numerous trials and evaluations have shown that 

mammography is the single most effective method for 

early detection of breast cancer and greatly increases 

chances of survival and treatment options[14][19][45]. 

Radiologists analyze mammograms for the existence of 

microcalcifactions, masses, asymmetries, and 

distortions which are hidden in a noisy texture of breast 

tissue, glands, and fat. Along with the noisy data, they 

must analyze large amounts of mammograms yearly 

[1], with only about 0.5% containing cancerous 

structures [17].  Because of the large amount of 

negative mammograms, radiologist may become less 

acclimated to detecting subtle signs of breast cancer. 

Computer aided diagnosis (CAD) provides a second 

look in the mammogram screen process. The 

radiologist is prompted with regions of interest which 

can increase classification accuracy and screening 

efficiency. Because the anomalies exist within highly 

homogenous fatty tissue and glands, it is a non-trivial 

task to detect and locate them. Texture analysis in this 

field allows for a detection method that does not 

depend on a distinctively shaped growth. 

As we shall show in the experimental section, our 

simple compression-based measure allows us to 

classify and cluster nematodes and other datasets with 

great accuracy and speed, without the need (indeed, 

without the ability) to fine tune many parameters. We 

further show the generality of our ideas with a 

comprehensive set of experiments.  

The rest of this paper is organized as follows. Section 2 

contains a discussion of related and background work. 

In Section 3 we introduce our novel method. In Section 

4 we give details of the most obvious rival methods 

before we consider the most extensive set of 

experiments every attempted for texture measures in 

Section 5. In section 6, we provide a speed 

performance evaluation for the presented methods. 

Finally, in Section 7 and 8 we offer conclusions and a 

discussion of avenues for future research.  

2. RELATED WORK / BACKGROUND  

2.1 A Brief Review of Texture Measures 
The measurement of texture similarity has a three-

decade history and is still the subject of active research, 

see [32] and the references therein for an excellent 

overview. In essence, most methods reduce to some 

method to extract features combined with some 

measure to compare features. 

These features can be global scalars such as energy, 

entropy, autocorrelation, standard deviation etc, global 

vectors such as wavelet coefficients, Fourier 

coefficients etc, or local vectors/sets such as SIFT 

descriptors, textons, etc. 

The distance measures between the features are also 

highly variable, and include Euclidean distance, 

Kullback distance, Dynamic Time (histogram) 



Warping and the Earth Movers Distance [41]. Note that 

if the feature vectors/feature sets can be of different 

lengths, then we are forced to use an ―elastic‖ distance 

measure that allows non-linear mappings for 

comparison of features. Note that such measures 

invariably have at least quadratic time complexity [41], 

often with high constant factors. 

Beyond computer science lead research efforts, we 

have noted that many real-world practitioners in 

biological domains simply extract many features, feed 

them into a neural network and hope for the best 

[21][30][42]. Our informal survey suggests that this 

use of neural networks is often a last resort effort that 

comes at the end of frustrated attempts to deal with the 

huge combination of features/measures. As we shall 

later show, our proposed method typically outperforms 

these efforts with a technique that is much simpler and 

orders of magnitude faster.  

2.2 Kolmogorov Complexity Inspired 

Distance Measures 
Our proposed method is based on recent pragmatic 

work which exploits the theoretical concepts of 

Kolmogorov complexity. Kolmogorov complexity is a 

measure of randomness of strings based on their 

information content. It was proposed by A.N. 

Kolmogorov in 1965 to quantify the randomness of 

strings and other discrete objects in an objective 

manner. 

The Kolmogorov complexity K(x) of a string x is 

defined as the length of the shortest program capable of 

producing x on a universal computer — such as a 

Turing machine. Different programming languages will 

give rise to distinct values of K(x), but one can prove 

that the differences are only up to a fixed additive 

constant. Intuitively, K(x) is the minimal quantity of 

information required to generate the string x by a 

program. 

In order to define a distance based on the Kolmogorov 

complexity, the notion of conditional complexity is 

introduced. The conditional Kolmogorov complexity 

K(x|y) of x to y is defined as the length of the shortest 

program that computes x when y is given as an 

auxiliary input to the program. In [27], a distance is 

defined by comparing the conditional complexities 

K(x|y) and K(y|x) to  K(xy), the latter of which is the 

length of the shortest program that outputs y 

concatenated to x. More precisely, the authors define 

the distance dk between two strings x and y as: 
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The distance measure is completely parameter-free (it 

is independent of the computer language used) and has 

been show to be optimal [28] in the sense that it 

subsumes other measures. Unfortunately the 

Kolmogorov complexity is incomputable for virtually 

all strings, and thus must be approximated.  

It is easy to see that universal compression algorithms 

give approximations to the Kolmogorov complexity. In 

fact, K(x) is the best compression that one could 

possibly achieve for the text string x. Given a data 

compression algorithm, we define C(x) as the size of 

the compressed size of x and C(x|y) as the compression 

achieved by first training the compression on y, and 

then compressing x. For example, if the compressor is 

based on a textual substitution method, one could build 

the dictionary on y, and then use that dictionary to 

compress x. 

We can approximate the distance dk by the following 

distance measure: 
( | ) ( | )

( , )
( )

c

C x y C y x
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                (2) 

The better the compression algorithm, the better the 

approximation of dc is for dk. In recent years this idea 

has been apply to domains as diverse as discovering the 

evolutionary histories of chain letters, spam 

classification, alignment-free comparison of biological 

sequences, protein structure classification [23], 

plagiarism detection [4], music genre classification   

and a host of other problems [28].  

Unfortunately, we cannot leverage directly leverage on 

this body of work for two reasons. The first is that 

these ideas are only defined for discrete data, such as 

DNA strings or natural language. In these domains a 

lossless compressor can really take advantage of 

repeated structure, which is exactly what we want to 

find to measure similarity. However, with the trivial 

exceptions such as cartoons/clip art, etc., most 

interesting images are real-valued. This difference is 

telling because lossless compression of discrete data is 

well defined and trivial to measure. In contrast, lossless 

compression of real-value images typically does reduce 

the sizes of the files greatly, and not in a way that finds 

repeated structure that is indicative of similarity. 

The second reason we cannot directly use these ideas is 

more pragmatic.  Calculating C(x|y) requires a detailed 

understanding of the compression algorithm C, and 

actually ―hacking‖ into it. While such work would not 

be beyond a reasonable attempt, it is not within the 

scope of effort for us in conducting this research. It 

would limit the adoption of our ideas, especially among 

domain experts that are not computer scientists.  

To solve these two problems we propose a 

modification of the dc (and therefore dk) distance 

measure which treats a lossy compression algorithm as 

a complete black box, and which works for large, real-

valued image data. In the Section 3 we expound these 

ideas. 



2.3 Other Kolmogorov-Based Measures 
To the best of our knowledge, this is the first work to 

consider compression-based distance measures for 

texture matching. A recent work considers a 

compression-based distance measure for color 

distributions in images [31], a paper by Li1 and Zhu 

attempts image classification based on a kernel LZ78-

based string kernel [37], and a recent work by Cerra 

and Datcu use a compression based measure for 

classifying satellite photographs [9].  

However, beyond not explicitly considering texture, 

one thing all these works have in common is that they 

linearize the images into strings, and define distance 

measures based on strings. An obvious problem with 

converting a two-dimensional image into a one-

dimensional string is that all spatial localization is lost. 

This may make no difference for color, however the 

very definition of texture is tied up with spatial 

patterns. 

A recent paper proposes a compression based measure 

for similarity retrieval of ornamental letters in 

historical manuscripts (although compression-based, 

the authors do not make the connection to Kolmogorov 

inspired methods) [10]. The distance measure is based 

on the similarity of the run-length-encoding 

representations of the data. While the idea is 

interesting, the measure requires careful alignment of 

the two objects being compared, and is only defined for 

binary images. Either restriction would prevent us 

using the measure on 90% of the datasets we consider 

in this work. 

3. OUR NOVEL MEASURE  
In this section we give the high-level intuition behind 

our distance measure, before giving the concrete 

algorithmic details. We conclude with concrete 

implementation details. 

3.1 Intuition behind our Method 
Recall that our basic goal, motivated by the successful 

use of compression-based distance measures in 

discrete-valued data mining domains [15][27][28], is to 

somehow exploit compression for measuring texture 

similarity in real-value images. Whatever solution we 

come up with, we are very hesitant to deeply ―hack‖ 

into image compression code. This reluctance here is 

not mere sloth on our part, it is simply the case that 

difficult to implement ideas are rarely widely adopted. 

We feel that is particularly true in this case, because 

much of our intended audience is biologists, 

nematologists, arachnologists, entomologists, etc. That 

                                                                 

1 This Ming Li [37] should not be confused with the Ming Li 

[27][28][29] who is a pioneer of Kolmogorov inspired distance 

measures. 

is to say, people who may be comfortable using 

computer tools but are unlikely to have the time or the 

skills to write a complex image compression code.    

With this is mind we are motivated to use existing tools 

if possible. This leads us to consider measuring image 

similarity by exploiting video compression. Video is 

simply a three-dimensional array of images. Two 

dimensions serve as spatial image information 

(horizontal and vertical) directions of the moving 

pictures, and one dimension represents what is 

normally the time domain. 

Virtually all video data contains significant amounts of 

spatial and temporal redundancy. Thus most video 

representations exploit these redundancies to reduce 

the files size. Similarities are encoded by merely 

registering differences within a frame (intraframe 

compression), and/or between frames (interframe 

compression). Our idea then is to exploit video 

compression for measuring the similarity of two 

images, simply by creating a synthetic ―video‖ is which 

comprised of the two images to be compare. If those 

two images are indeed similar, the interframe 

compression step should be able to exploit that to 

produce a smaller file size, which we will interpret as 

significant similarity. 

While there are dozens of video formats in existence, 

we choose MPEG-1 encoding because of widespread 

availability and the fact that all implementations of it 

tend to be highly optimized. In the next section we will 

review the necessary details of MPEG-1 encoding. 

 

3.2 MPEG-1 Encoding 
Because the MPEG-1 specification allows application 

based implementation of the methods for spatial 

redundancy reduction and motion vector calculation for 

temporal redundancy reduction [11][25], we choose to 

utilize the MPEG-1 encoder provided by MathWorks 

in Matlab for its simplicity and availability. We use a 

consistent set of encoder parameters based on the 

following intuitions: A logarithmic search algorithm is 

utilized for the interframe block matching process for 

its speed and consistency. Original images for intra-

picture reference frames are used to bypass their 

decoding step. The resulting full quality reference 

frame also allows for more detailed texture matching. 

Since we are only interested in the compression ratios 

of the images rather than their visual presentation, large 

quantization scales for reference(I) and predicted(P) 

frames are selected to prefer compressibility over 

image quality. This down samples the images and 

removes subtle differences between textures that may 

simply be attributed to noise. Since there are no 

bidirectional (B) frames in our usage, their quantization 

factor is ignored. The default Matlab search radius of 



10 pixels is maintained. The bits used to specify block 

matched motion vectors have been limited to two. This 

modification is to allow for the possibility an 

exhaustive block match search and global references 

which may be too distant from the query block (would 

require more bits to reference than to store the original 

data), but has no affect on our reported results. The 

utility of global motion compensation is further 

discussed in section 7. 

3.3 Video Creation 
In our function, mpegSize, we use the mpeg encoder to 

construct a video of two images. This function requires 

two images, both are converted to grayscale for color 

invariance. Each image is then converted to a Matlab 

movie frame, then an ordered Matlab movie is 

constructed with the two frames. This Matlab movie is 

subsequently passed to the encoder. For speedup, we 

modify the encoder to bypass disk writes and simply 

return the resulting size of the MPEG movie. The first 

image supplied to mpegSize is assigned as an I frame 

and the second becomes a P frame. Because the second 

image is compressed to references of the first, this 

function is not symmetric. 

3.4 MPEG Distance Measure 
As hinted at in Section 3.1, in order to measure the 

distance between two images we analyze compression 

ratios. Our measure is accomplished with a simple 

equation: 

( | ) ( | )
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            (3) 

As shown in Table 1, this is executed by just a single 

line of Matlab code: 

function distance = mpegDistance(imageA,imageB) 

 distance = ... 

((mpegSize(imageA,imageB) + mpegSize(imageB,imageA))/... 

(mpegSize(imageA,imageA) + mpegSize(imageB,imageB))) - 1; 

Table 1: Our proposed distance measure 

Our MPEG distance measure exhibits both positive 

definiteness and symmetry. 

3.4.1 Positive Definiteness 
The MPEG distance measure exhibits non-negativity. 

Given the consistency of our mpegSize function, the 

mpegDistance of an image to itself will be 0. This 

property is important because many clustering 

algorithms rely on it to prove convergence properties.    

3.4.2 Symmetry 
As stated, our mpegSize function is not symmetric. 

To build a distance measure with symmetry, the 

bidirectional sum of the distances is taken in the 

numerator of (3) and the sum of the lower bounding 

size is in the denominator. 

In addition, preprocessing techniques can be applied to 

the images to introduce several additional invariances 

to our approach. In our experiments we may utilize 

methods to achieve rotation, color, and illumination 

invariance.  

3.4.3 Rotation Invariance 
For rotation invariance we fix one image, and rotate 

the other to find the closest match between them. 

When an image is rotated to an angle between 90° a 

sampling method must be used due to the image’s 

new dimensions. In our experiments we utilize three 

processes: center cropping, cropping to original 

image dimensions, and cropping to a minimum 

bounding rectangle of the rotated image. Figure 3 

demonstrates examples of these methods. Though 

different rotation methods provide better accuracies 

in different datasets, to avoid over fitting, we only 

report the accuracy provided by a center crop with 

dimensions which maximize the image information 

but restricts zero padding. In reported results, we 

simply take the minimum distance from ten rotations 

of the image. 

 

Figure 3 - Sampling and padding methods. (a) 

Original image, (b) center crop, (c) zero padded with 

larger dimensions, and (d) mirrored with original 

dimensions 

3.4.4 Color Invariance 
For simplicity we remove color information and 

analyze the textures based on their gray scale 

intensity values. For datasets were color information 

is useful, we could combine our texture measure with 

color features [49].  

3.4.5 Illumination Invariance 
Illumination between images may vary between 

photographs of samples, with different cameras, 

locations, and photographers. To remove the 

inconsistencies due to lighting we normalize the 

intensity values of the images. For local illumination 

invariance due to shadows from edges and surface 

texture, we normalize the intensity values across an 

entire image. We can then normalize between two 

(b) (a) 

(c) (d) 



images for inter-image illumination invariance. For 

simplicity, our results presented in this paper refrain 

from exploiting any accuracy improvements provided 

by this invariance. 

4. RIVAL METHODS 
In this section we give concrete details of the most 

frequently used texture measures, as these will be the 

baseline to which we compare our ideas. 

4.1 Filter Banks 
The use of filter banks for feature extraction of textures 

has been motivated by their ability to be tuned to many 

diverse applications [21][35][42]. Their utility has 

allowed for a wide spread use in computer vision 

applications with many high-quality results. While 

there are many possible filter banks, the Gabor filter is 

by far the most commonly used. An overview of Gabor 

filters can be found in [3][33][34][39]. To generate our 

filters, a mother wavelet and generation function as 

presented in [34] is utilized. Filters of 6 orientations 

and 4 scales are generated, resulting in a filter bank of 

size N = 24 filters. High and low frequency parameters 

of the filters were set to the specifications found in 

[34], 0.5 and 0.04 respectively. 

Images are convolved with each filter. The standard 

deviation and mean of each response is then aggregated 

into a single 48 length vector. The distance between 

image descriptors can then be found through their 

Euclidean distance. 

4.2 Textons 
In order to fairly compare our method, we take the 

extra step of extending the previously described filter 

bank approach by classifying using a dictionary of 

representative filter responses, textons. Textons have 

been shown to be a great improvement over basic filter 

bank techniques [26][47]. Following the texton 

dictionary creation of [47], we represent each pixel of 

an image by a response vector of its corresponding 

outputs from each of the 24 filters. Response vectors 

from all images within a single class are then clustered 

into ten groups using the kmeans implementation, 

provided with Matlab, and the centroids of these 

clusters from each class are added to the texton 

dictionary. An image can then be represented by its 

histogram of response vectors binned to the nearest 

texton in the texton dictionary. The distance between 

two texton histograms is then found using the chi-

squared distance.  

5. EXPERIMENTAL EVALUATION  
We begin by stating our experimental philosophy. To 

ensure that our experiments are not just reproducible, 

but easily reproducible, we have built a website which 

contains all data and code, together with the raw 

spreadsheets for the results [6]. In addition this website 

contains additional experiments that are omitted here 

for brevity. 

5.1 Sanity Check 
We begin with a simple experiment on a domain where 

human intuition can directly judge the effectiveness of 

the proposed similarity measure. We clustered two sets 

of images, both of which have previously been used to 

test the utility of color and shape distance measures 

[49].  The two datasets are: Heraldic shields extracted 

from historical manuscripts from the 14
th

 to 16
th

 

century, and Insects extracted from various amateur 

entomologists websites (used with permission). In both 

cases we selected 12 images which could be 

objectively or subjectively sorted into 6 pairs, Figure 4 

shows the results. 

 
Figure 4: The Insect dataset and Heraldic shields 

datasets clustered with our proposed distance 

measured (single linkage clustering). While the images 

are shown in color for clarity, our distance measure 

had only access to the grayscale version of the images   

The results are unexpectedly good. In previous work 

we had clustered (supersets) of these datasets based on 

color (shields) and color/shape (insects), but ignored 

the texture because we assumed it would not be very 

useful [49]. To our surprise, right ―out of the box‖ the 



compression-based measure works much better than 

our carefully tuned color/shape measure [49]. 

5.2 Classification Experiments 
In order to demonstrate the generality of our methods 

we have assembled the largest and most diverse 

collection of datasets ever considered in a single work 

on texture matching. The descriptions below are 

necessary brief; we refer the interested reader to the 

supporting webpage [6] or the original papers for more 

details. Note that in every case we make these datasets 

publicly available (with the copyright remaining with 

the original creators were appropriate). The smaller 

datasets can be downloaded from [6], the entire dataset 

can be obtained on two free DVDs by emailing the 

second author. 

Arachnology (Spiders): This dataset consists of 

images of the Australasian ground spiders of the family 

Trochanteriidae. This is a diverse family – 121 species 

in fourteen genera, with high variance in inter- and 

intra-specific variation, thus it represents a very 

difficult problem for classification. Although some 

species in this family are relatively common, almost 80 

per cent were represented by less than ten individuals 

(of either sex); more than 50 per cent had fewer than 

five. Thirteen species had twenty or more individuals. 

The original images were grey scaled, cropped square, 

enhanced (for contrast/brightness) and resized by the 

original authors [42], we did no further pre-processing.  

Moths (Macrolepidoptera): This collection consisting 

of the images of 774 live moth individuals, each moth 

belonging to one of 35 different species found in the 

British Isles [35]. It is important to note that unlike 

most collections, which feature dead moths, carefully 

posed and photographed in ideal conditions in a lab, 

this datasets contains images of living moths 

photographed outdoors in a variety of conditions over a 

year. We consider three variants of this dataset; the 

original data, in which the moth occupies about 10% of 

the image area, center cropped, where an approximate 

bounding box was placed around the image, and a 

cleaned version where the background was deleted 

with a semi-automatic technique.  

Tire Treads: This dataset consists of idealized 

collection of tire imprints left on paper. Three well 

worn tires had paint applied to them and were rolled 

over paper. The tires are painted and rolled sixteen 

times each in varying directions and different painted 

sections of the tire. Discontinuities in the painted tracks 

resulting from dry or insufficient paint resemble the 

interruptions in earth tracks caused by a denser 

arrangement of materials in the ground and uneven 

weight distribution across the tire 

Nematodes: As noted in the introduction, nematodes 

are a diverse phylum of ―wormlike‖ animals, with great 

commercial and medical importance. The department 

of nematology at UCR, one of the leading institutions 

of in nematode research, has recently tasked us with 

creating a distance measure to help them sort through 

the largest archive of high-quality nematode images in 

the world [13]. For these experiments we consider a 

collection of fifty images of five species. Each 

nematode sample originally exists as a stack of images 

displaying over 100 focal planes of the organism. We 

prune the data by only selecting the focal plane image 

with highest variance in each sample stack (i.e., the 

most focused image). 

Brodatz Textures: This dataset consists of a diverse 

set of 112 images of man-made and natural textures 

(grass, straw, cloth etc), digitalized from images from a 

reference photographic album for artists and designers. 

While not a particularly interesting dataset, it is, a huge 

margin, the most studied dataset in texture research. 

Unfortunately, there are many variants of it. Our 

version was obtained mostly from a publicly available 

online image database [40]. This set was missing slate 

14, which we added directly from an original copy of 

the text held at our campus library [5]. For our 

experiments, we treat each image as a separate class 

and divide the image into sixteen non-overlapping, 

uniform images. 

CAIRO Wood Set: This dataset consists of 100 

images of 10 species of tropical wood provided by the 

Center for Artificial Intelligence and Robotics [7]. 

Each species is represented by 10 photographs taken at 

a microscopic level. The images are also evenly split 

into two families of wood, Leguminosae and 

Dipterocarpaceae. The dataset is classified in two 

approaches: a two-class problem across family 

designations and a ten-class problem across species 

classifications. 

Camouflage: This dataset consists of seventy images 

of nine varieties of modern US military camouflage. 

The images were created by photographing military t-

shirts and fabrics at random orientations.    

VVT Wood Set: This dataset consist of 839 samples 

of wood lumber used originally for color based 

inspection and grading for industrial usage [43]. Square 

tessellations of about 2.5x2.5cm of every image are 

annotated to be either sound or one about 40 types of 

wood defect (dry knot, small knot, bark pocket, core 

stripe, etc.). The annotated data is parsed and each 

tessellated region is cropped and label as either sound 

or defective. A subset consisting of 100 images from 

each class is then used for classification tests. 

UIUCTEX: The University of Illinois at Urbana-

Champaign Texture database features twenty-five 



texture classes with forty samples each [24]. All images 

are gray-scaled and are of size 640x480 pixels. Images 

captured are taken at varying orientations, 

illuminations, and subset locations on the sample 

texture. 

VisTex: The MIT Vision Texture database consists of 

167 images from nineteen classes [36]. Unlike many 

other texture datasets the VisTex dataset does not hold 

rigid rules for orientation or lighting, but rather 

provides images from real world conditions (such as 

flowers within a field or the water texture from an 

inland location). 

KTH-TIPS: The KTH-TIPS [18] (Textures under 

varying Illumination, Pose, and Scale) texture database 

exists as an extension of the CURet database [8] by 

adding variances in scale and by photographing from 

multiple samples in a single class. The dataset consists 

of 810 images from ten classes. 

In Figure 5 we show examples from each dataset.  

 

Figure 5: Samples of the datasets considered. A 

detailed key is omitted here for brevity, see [6] 

We test all algorithms by doing leaving-one-out 

classification with the one-nearest neighbor algorithm. 

For the relatively slow Texton approach (cf. Figure 8), 

these experiments would take years if we had to relearn 

the Texton dictionary on each fold. We therefore 

allowed the Texton method to ―cheat‖, by learning the 

dictionary on the entire datasets. As such, the results 

for the Texton method may be slightly optimistic. 

Table 2 presents the best experimental results for these 

data sets with our proposed measure, the rotation 

invariant version of our method, the Gabor filter bank 

method, and the texton procedure. Rotation invariance 

has been omitted on registered datasets. 

Because the sheer number of results makes it difficult 

to judge the relative performance of the distance 

measures, we produced a figure to help visualize the 

results. For each dataset, we created a variable X = 

max(MPEG, RI-MPEG)/100, and a variable Y = 

max(Gabor Filters, Textons)/100, and we used these 

values to plot a point for each dataset in Figure 6. 

 

 

Data Set 

 

MPEG 
 (%) 

RI 

MPEG  
 (%) 

Gabor 

Filters 
(%) 

 

Texton 
(%) 

Spider Subset 96.3 - 59.6 89.6 

Full Spider Set 93.1 - 39.1 74.1 

Tire Tracks 77.1 91.7 87.5 93.8 

Nematodes 56.0 - 38.0 52.0 

CAIRO Wood (F) 83.0 94.0 95.0 95.0 

CAIRO Wood (S) 77.0 90.0 93.0 94.0 

VTT Wood 81.5 92.0 88.0 89.5 

Original Moths 49.1 - 18.3 42.6 

Cropped Moths 63.4 - 27.5 48.8 

Cleaned Moths 71.0 - 24.0 58.2 

Brodatz 52.1 44.8  37.0 52.0 

KTH-TIPS 73.7 63.3 58.3 54.8 

Camouflage 87.5 - 85.0 92.5 

UIUCTex 51.0 50.5 45.3 55.8 

VisTex 32.9 26.3 36.5 47.9 

Table 2: Accuracy of the one-nearest-neighbor 

classifier using the four measures under 

consideration. Not that for datasets with fixed 

alignment, we did not consider the rotation-invariant 

version of our measure 

 

 
 

Figure 6: A visual summary of the relative strength 

effectiveness of our proposed distance measure  

Here we can see at a glance that our proposed measures 

are extremely effective (Recall that classifications are 

biased towards the texton measure due to its learning 

on the entire dataset). 

5.3 An Application to Web Mining 
We conclude our experiments with a simple example of 

a web mining application that can benefit from a robust 

texture measure. Our experiment is somewhat 

contrived, but demonstrates the robustness of our 

distance to general on unseen and unstructured data. 

In this region traditional 

methods are better   

0 1 0 

1 

In this region our 

method is better  



While gathering datasets for the classification 

experiments in the previous section, we noted we had a 

folder of moth images simply labeled munda (we know 

now the Genus name is Orthosia).  Suppose we wished 

to retrieve more images of these moths from web, we 

can simply issue a Google image search. We did this 

on October 4
th

 2009, and found that of the twenty-one 

images returned on the first page; none showed the 

correct moth. An image of the moth could not be found 

until the second page and the next image of the moth 

did not appear until the third page.  As shown in Figure 

7, the false positives include images of Munda Island 

and an unrelated insect that has the same specific name. 

 

Figure 7: A web query for munda did produce some 

images of the moth, Orthosia munda we expected 

(left), but it also returned images of the Munda tribes 

of India (top left), a map of Munda Island (top right), 

an unrelated insect Cycloneda munda (bottom left) 

and a military photo taken at Munda Island (bottom 

right) 

For simplicity, let us consider the first four pages, 

which consist of 84 images, as the entire universe of 

images. The there is a precision and recall of 0 on the 

first page. There is an obvious way we could increase 

the precision of the query in the first page of results. 

Since we have some images of the moth we are 

interested in we could issue the text query as before, 

then reorder the query results based on their distance to 

a representative of our training data. We select as the 

training representative as the training image having the 

lowest mean MPEG distance to all other training 

images. We then score each query image based on their 

MPEG distances to this training representative. This 

reordering brought about a precision of 0.19 and a 

recall of 1.0 on the first page. 

6. RUNTIME PERFORMANCE 
The speed of our MPEG based distance approach can 

be attributed to the simplicity of the MPEG-1 

compression algorithm. Since the reference image is 

not down sampled, there is no time required for its 

spatial redundancy reduction. The most time costly 

process, interframe block matching, is a logarithmic 

search process. Each block in the query image needs 

only be compared to its corresponding neighborhood in 

the reference image. This greatly limits the running 

time needed to block match an entire image to 

O(nlogn). Because the search can early abandon 

depending on the quality of a found match, this worst 

case runtime is usually avoided in empirical tests. 

Furthermore, since most uses of MPEG involve large 

movies in the commercially important entertainment 

industry, the MPEG compression algorithms are 

extraordinarily well optimized.  

In contrast, Gabor filters must convolve N filters for 

each image. The time performance of this operation is 

set by the dimension of the square filters D, where D 

>> N. The size of D depends on the scale and 

frequency parameters used in the filter generation and, 

in some cases, can be larger than the image itself. 

Gabor descriptor extraction is therefore an O(n
2
) 

operation. 

Textons add onto the running time of the original 

Gabor filters approach by requiring kmeans clustering 

within each class. Its runtime is bounded by O(n
2
) + 

(pixels per image) x (images per class) x (number of 

classes), where each element to be clustered is of N 

dimensions. Texton calculation speed performance is 

therefore heavily dependent on its application. Large 

numbers of classes, large images, and large collections 

of images can greatly increase the execution time. 

As a concrete example: the distance between two 

images from the VisTex dataset, grass and brick, are 

compared with each of the three methods. The 

distances of 10 scales of these images are then 

computed and the average execution times over several 

iterations are plotted in Figure 8. 

 

Figure 8: Time comparison of MPEG-1, Gabor Filter 

Banks (GFB), and Texton approaches 

As we can see, the time taken for our proposed distance 

measure is negligible relative to the other measures. 

7. DISCUSSION AND FUTURE WORK 
In general the results in the previous section speak for 

themselves. For the most part we have avoided 

comparisons to published results that consider the same 

datasets, since different experimental conditions make 
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direct comparisons difficult. However in some cases 

tentative comparisons can be instructive. 

In the Spider Subset problem we got an accuracy of 

96.3%, the original authors obtained accuracy in ―the 

range of 90–96%‖ [42]. Note that this range of 

accuracy was obtained at the end of a four-year project 

devoted to just this problem, and their algorithm 

required occasional human intervention ―it was 

important to review the log files of this process to pick 

out any potentially contaminating images and remove 

them from the training sets‖ [42]. 

Of the variants of the Moth dataset, we obtained a best 

accuracy of 71.0%. Using two variants of the Nearest 

Neighbor algorithm (as we did), the original authors 

obtained 65.7 and 7.16% respectively [35]. However it 

is important to note that we used only texture features, 

whereas the original work had access to both color and 

texture features. It is clear that color is very useful in 

discriminating at least some of the classes. For example 

Ourapteryx sambucaria is yellow, whereas Campaea 

margaritata gets it common name, the Light Emerald 

moth, from its distinctive green hue, and Cabera 

pusaria is aptly known as Common White Wave. 

It is important to note that in spite of the generally 

excellent performance of our distance measure in 

diverse domains, we are not claiming it is the best 

measure possible for all problems. For specialized 

application areas, better measures, which incorporate 

domain specific constraints and features may do better. 

However for true exploratory data mining our measure 

offers a powerful yet simple baseline measure.  

7.1  Future Work 
In this work we have not focused on the speed or 

indexability of our proposed distance measure. One 

reason for this is that we wanted to forcefully 

demonstrate its utility first. In addition, we feel that 

optimizing speed made be irrelevant in many domains. 

Theo Pavlidis, one of the founders of CBIR recently 

remarked ―In a medical application it may take well 

over an hour to produce an image, so waiting another 

hour to find matches in a database is not particularly 

onerous‖ [38]. Such remarks apply to many of our 

domains, the moth dataset took almost a year to collect 

and the nematode dataset took four years to collect 

[13][35]. 

Nevertheless, as we have shown in Figure 8, our 

methods is orders of magnitudes faster than (admittedly 

unoptimized) some obvious rivals.  

Nevertheless, there may be data mining applications for 

which we need to further improve efficiency. For 

example, within the next two years we expect to have 

terabytes of nematode images [13]. 

There are several possibilities we plan to pursue. One 

possibility is to modify the measure so that it becomes 

a metric. This would allow us to avail of a wealth of 

techniques that exploit the triangular inequality to 

index data.  

Further improvements in speed may come from 

exploiting several known ideas in image/video 

processing. For example multi-resolution analysis for 

scale invariance could improve our method’s 

performances in many domains. More advanced 

compression algorithms (i.e. H264 and MPEG-4) could 

be explored for their performance increases in speed 

(and possibly accuracy). Modifying the block matching 

search algorithm to allow for global motion vectors 

could allow for faster search procedures and batch 

processing of multiple images. For instance, an image 

containing the common textures within a class could be 

used for a single class distance calculation rather than 

measuring against every member of that class. Our 

implementation can use an exhaustive, brute force 

method global compensation. Results of global 

compensation have been promising, but the exponential 

runtimes associated with our hacked algorithm have 

made it infeasible. Possible options would be to create 

a block matching algorithm for the application of 

texture analysis, or explore the global compensation 

techniques implemented in newer compression 

methods such as MPEG-4 and H.264 [48]. 
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Appendix A: Dataset Details  

In Table 3 we numerically summarize the datasets. 

Image quality is a subjective measure of how ―clean‖ 

the images are, for example do they have occlusions on 

the subject or camera shake. 

Data Set Number 
of 

images 

Number 
of 

classes 

Image 
Size 

Image 
Quality 

Spider Subset 27 3 256x256 High 

Full Spider Set 955 14 256x256 High 

Tire Tracks 48 3 256x256 High 

Nematodes 50 5 1440x1080 High 

CAIRO Wood (F) 100 2 768x576 High 

CAIRO Wood (S) 100 10 768x576 High 

VTT Wood 200 2 ~61x61 Medium 

Original Moths 774 35 1280x960 Medium 

Cropped Moths 774 35 800x800 Medium 

Cleaned Moths 774 35 ~500x800 High 

Brodatz 1,792 112 128x128 High 

KTH-TIPS 810 10 200x200 High 

Camouflage 80 9 256x256 High 

UIUCTex 1000 25 640x480 High 

VisTex 334 19 512x512 High 

Table 3: Dataset Details 

Appendix A: Effects of Rotation 

As noted in the main text we achieve rotation invariance by 

holding one image fixed and rotating the other. Since our 

measure is so fast we can quickly do this 360 times (once per 

degree) if necessary, however as hinted at in Figure 9, a 

coarser (and therefore faster search) is possible.  

 
Figure 9: (Top) Measured distance from image 1 to rotations 

of image 2. (Bottom) Center cropped images of image 1 and 

optimal and poorest rotation degrees of image 2

 

50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

0.95

1

Rotation Degree

D
is

ta
n
c
e

Image 1 Image 2 @ 278(Min) Image 2 @ 48(Max)

http://vismod.media.mit.edu/vismod/
http://www.ux.uis.no/~tranden/brodatz.html
http://www.ee.oulu.fi/~olli/Projects/COSTE10.20.6.2000.pdf
http://www.ee.oulu.fi/~olli/Projects/COSTE10.20.6.2000.pdf
http://www.ee.oulu.fi/~olli/Projects/COSTE10.20.6.2000.pdf
http://www.ee.oulu.fi/~olli/Projects/COSTE10.20.6.2000.pdf

