
Average-case Analysis and Lower Bounds by
the Incompressibility Method

Tao Jiang
Dept of Computer Science

Univ. of California - Riverside

Joint work with Ming Li (Waterloo) and

Paul Vitanyi (CWI)

1

Outline

1. Overview of Kolmogorov complexity

2. The incompressibility method

3. Trivial example: lower bound for sorting

4. Average complexity of Shellsort

5. Average complexity of Heapsort

6. Average complexity of sorting with networks of stacks and
queues

7. Average complexity of boolean matrix multiplication

8. Average complexity of majority finding

9. Expected length of longest common subsequence

10. Expected size of Heilbronn’s triangles

11. String matching and one-way pointers (heads)

2

Kolmogorov Complexity

1. Introduced by R. Solomonoff (1960), A.N. Kolmogorov
(1965), P. Martin-Lof (1966), and G. Chaitin (1969).

2. Also known as descriptional complexity, algorith-
mic information complexity,
Solomonoff-Kolmogorov-Chaitin complexity.

3. It is concerned with the a priori probability, infor-
mation content and randomness of an individual
object.

010101010101...

011001010001...

A good introduction is:

M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity

and Its Application, Springer-Verlag.

3

Kolmogorov Complexity of an Object

Def. The Kolmogorov complexity of object � , denoted
��� ��� , is

the length of the shortest program that prints � .

What kind of programs?
Pascal, C, Java, or even some pseudo-language?

Invariance Theorem. (Solomonoff’60)
For any two languages ��� and �
	 ,� ������ ����� ������ ��� ��� �
for any � , where

�
is some constant depending only on ��� and� 	 .

I.e., the language does not matter as long as it’s fixed.

Def. The conditional Kolmogorov complexity of � relative to � ,
denoted

��� � � � � , is the length of the shortest program that prints� when given � as input.

Program � description/encoding

4

An Example —
������� �

Program 1:

 !#"%$'&)(+*-, ./.�.0,1 243 56 787:9<;

The length of description is = > ? (A@ 9
bits.

Program 2:
For BDCFE @

to = Print(“
,

”);

The length is GIH�J = > ? (A@ 9
bits.

Are there shorter programs?

Yes if, e.g., = E KML for some integer N .

In general, O (QP 9
is uncomputable.

5

Incompressibility of Objects

Let R be a finite set of objects and � S R .

Def. Object � is
�
-incompressible if

��� � � R �UT VXW�Y � R � � �
.�

-incompressible objects are also said to be Kolmogorov ran-
dom.

Incompressibility Lemma. There are at least�[Z � Z\^] � � R �`_ Z
�
-incompressible elements in R .

Proof. Let 6 a VbW�Y � R � . There are at most�dc] c �
egfih \ e a \ �dc] � Z a \ �\^] � Z a � R �\^] � Z

programs of lengths less than 6j� �
. Each program prints at most

one element of R . Q.E.D.

1. At least one element of R is
�

-incompressible.

2. More than half are
Z
-incompressible.

3. More than k<l[m are
\

-incompressible.

4. More than
� 6 � Z � l 6 are VXW�Yn6 -incompressible.

6

The Incompressibility Method

To prove a (lower or upper) bound:

1. Take an o � 6p� -incompressible object � to construct a “typi-
cal” instance/input.

2. Establish the bound for this fixed instance � .

Show that if the bound does not hold for � then we can
compress � by giving a clever, short encoding of � .

Remarks:

(a) Such a typical instanceq possesses all statistical properties;q makes a proof easy;q cannot be recursively constructed.

(b) The result usually holds in the average/expected case since
most objects are incompressible.

7

Success Stories of the Incompressibility Method

1. Solution of many longstanding open problems con-
cerning the complexity of various models of com-
putation.

2. Simpler proofs for many results in combinatorics,
parallel computation, VLSI, formal language/automata
theory, etc.

3. Average-case analysis of classical algorithms such
as Heapsort, Shellsort, Boolean matrix multiplica-
tion, etc.

8

Average-Case (Time) Complexity Analysis

Assume all instances of size = occur with equal prob-
ability.

C
o

m
p

le
x

it
y

Size n1 2 3

2
2
9
3
0
0

9
2
6

The Florida recount
Election 2000:

9

A Trivial Example: Lower Bound for Sorting

Theorem. Any comparison based sorting algorithm requiresr � 6sVbW�Yt6p� comparisons to sort 6 elements on the average.

Proof. Let u be any comparison based sorting algorithm. Fix aZ
-incompressible permutation v of w ZAxzy{y{y{x 6}| such that��� v � u x 6p�UT VXW�Yn6-~�� Z

Suppose u sorts v in L comparisons. We can describe v by
listing

q a description of this encoding scheme in � ��Z � bits,

q the binary outcomes of the L comparisons in L bits.

Since L _ � ��Z �UT ��� v � u x 6p� ,
L T ��� v � u x 6p�-� � �[Z ��T VXW�Yt6-~�� � ��Z ��a r � 6sVbW�Y�6��

Since more than half of the permutations areZ
-incompressible, the average number of comparisons required

by u is r � 6�VXW�Yn6p� l \ a r � 6DVXW�Yn6p�

10

Average Complexity of Shellsort

Algorithm p-pass Shellsort with increments� �n� y{y{y � �0� a Z
;

1. Input: list � a � � x{y{y{y{x � � ;
2. For � � a Z

to �
3. Divide list into

���
equally spaced sublists

(or chains), each of length 6 l ��� ;
4. Perform Insertion Sort within each sublist;

h1
= 6

h
4

= 1

h3 = 2

h2 = 3

11

Previous Results on Shellsort

Worst case:

1. � � 6 	 � time in VXW�Yn6 passes (Shell’59)

2. � � 6��4� 	 � time (Papernov-Stasevitch’65)

3. � � 6DVbW<Y 	 6p� time in VbW�Y 	 6 passes (Pratt’72)

4. � � 6 ���p� ��� ����� � � time in
��� l�� 	 � VbW�Y�6 passes

(Incerpi and Sedgewick’85 and Chazelle’??)

5.
r � 6 ���p� � � � � time for � passes
(Plaxton, Poonen and Suel’92)

Average case:

1. ¡ � 6�¢ �£� � time for
\

-pass (Knuth’73)

2. Complicated analysis for k -pass (Yao’80)

3. � � 6 	 �`� � ¢�� for k -pass (Janson and Knuth’96)

Open:

1. Average complexity of general � -pass Shellsort
(Plaxton, Poonen and Suel’92; Sedgewick’96,97)

2. Can Shellsort achieve � � 6�VXW�Yn6p� on the average? (Sedgewick’97)

12

An Average Lower Bound for Shellsort

Theorem. For any � � VXW�Yt6 , the average-case running time of
a � -pass Shellsort is

r � � 6 �¤�� � � � under uniform distribution of
input permutations.

1. � a Z
:
r � 6 	 � is tight for Insertion Sort.

2. � a \
:
r � 6��4� 	 � vs ¥ ��¦{§�¨ � 6 ¢ �:�©� of Knuth.

3. � a k :
r � 6)ª �£� � vs � � 6 	 �4� � ¢ � of Janson and Knuth.

4. � a VXW�Yn6 l0o � 6p� : r �Q� 6sVXW�Yt6p� \¬«z ��® l¯o � 6��Q� .
5. � � VXW�Yn6 :

r � � 6p� is a trivial lower bound.

Hence, in order for a � -pass Shellsort to achieve � � 6DVbW<Yn6p� time

on the average, � a ¡ � VbW<Yt6�� .

13

Proving the Average Lower Bound

Fix any
� � � x{y{y{y{x � � � Shellsort u . We prove

r � � 6 ���+� � � � is a
lower bound on the average number of inversions.

Def. For any
Z � °�� 6 and

Z � � � � , consider the
���

-chain
containing element

°
at the beginning of pass � . Let L ±³² � be the

number of elements that are to the left of
°

and larger than
°
.

1 2 3 4765 9 10 11 12

e.g. m

1 2 3 4 5 6 7 8 9 10 11 12

h3

8

8,3 = 2

Fact. The Insertion Sort in pass � makes precisely ´ �± f � L ±³² �
inversions (or ´ �± f � L ±³² � _ Z

comparisons).

Let µ denote the total number of inversions:

µ � a
�
� f �

�
± f � L ±³² �

14

Proving the Average Lower Bound – II

Fix a VXW�Yn6 -incompressible permutation � of w ZAxzy{y{y{x 6}| with��� � � 6 x u �jT VXW�Yt6-~�� VXW�Yn6
Fact. Given all the numbers L ±³² � ’s for the input permutation � ,
we can uniquely reconstruct � .

Proof. Reconstruct the initial permutation of each pass back-
ward.

Hence,��� L � ² � x{y{y{y{x L � ² � � 6 x u �jT ��� � � 6 x u �jT VXW�Yn6-~�� VXW�Yn6
Since there are ¶F· � � � c �� � c � ¸ possible divisions of µ into 6 � non-
negative integral summands L ±¹² � ’s,

VbW�Y µ _ VbW�Y º µ _ 6 � � Z6 � � Z » T ��� L � ² � xzy{y{y{x L � ² � � 6 x u �jT VXW�Yn6-~¼�½VXW�Yt6
Noting VbW<Y µ a � � VXW�Yn6p� , a careful calculation shows

µ a r � � 6 ��� �¾ �
The average number of inversions required is thus:6 � Z6 ¿ r � � 6 �¤� �¾ � _ Z6 ¿ � a r � � 6 �¤� �¾ �

15

The Average Complexity of Heapsort

Algorithm Heapsort(var À Á @ÃÂFÂ =�Ä);
1. Heapify À ;

2. For BÅCFE @
to =À Á¹B�ÄÆC%E DELETEMIN(À ÁÇB ÂFÂ =ÈÄ);

Fact. Heapify requires ? (= 9 time.

Fact. Heapsort runs in ? (= GIH�J = 9 time in the worst
case.

16

Two Implementations of DELETEMIN

Williams’ DELETEMIN(uDÉ ZAyÊy 6)ËÌ� ;
1. � � a uDÉ 6)Ë ; � � a Z

;
2. While � � Í Î8Ï � uDÉ \ � Ë x uDÉ \ � _ Z ËÌ�
3. uDÉÐ� Ë � a Í Î8Ï � uDÉ \ � Ë x uDÉ \ � _ Z ËÌ� ; //shift up//
4. � � a \ � or � � a \ � _ Z

; //move down//
5. uDÉÐ� Ë � a � ;

Floyd’s DELETEMIN(uDÉ ZAyÊy 6<ËÌ� :
1. Find the path leading to a leaf while shifting all

elements up;
2. Climb up the path and insert � at its correct

location.

a1

a2

al

a

a

a

2

al

x

x

3

l-1

DELETEMIN

Fact. Williams requires
\�Ñ

comparisons and Floyd
requires

\ VbW<Yn6 � Ñ
comparisons.

17

Avg Analysis of Williams and Floyd Heapsorts

Theorem. Both Williams and Floyd Heapsorts require
\ 6DVbW�Y�6

comparisons in the worst case.

Theorem. (Schaffer and Sedgewick’92)
On the average, Williams Heapsort requires

\ 6DVbW<Yn6 � � � 6p�
comparisons and Floyd Heapsort requires 6�VXW�Yn6 _ � � 6�� com-
parisons.

The following is a simple incompressibility proof due to Ian Munro.

Fix a VXW�Yn6 -incompressible input permutation � of w ZAx{y{y{y{x 6}| with��� � � 6���T VbW�Y�6+~�� VXW�Yt6
Denote the resulting heap of Heapify as Ò .

Fact.
��� � � 6 x Ò �na � � 6p�

Hence,
��� Ò � 6p�jT ��� � � 6p�-� ��� � � 6 x Ò �jT VXW�Yt6-~�� � � 6p� .

18

Insertion Depths are the Key!

1
2

3

x1

x1

x2

x2 x3

......

n

n-1 DELETEMIN

DELETEMIN
DELETEMIN

DELETEMIN

H = H H H H1 2 3 n-1

d(x d(x)=l1 2 2 d(xn-2)=ln-2

Hn

n

=0n-1l)=l1

Claim. Williams needs ´ �dc �± f � \ÓÑ ± comparisons.

Claim. The number of Floyd’s comparisons is�dc �
± f �

\ VXW�Y � 6 � ° ��� Ñ ± a \ VXW�Y � 6 � Z ��~�� �dc �
± f �

Ñ ±
Claim. ´ �dc �± f � Ñ ± T ��� Ò � 6p�
Proof. Given the location of � ± in Ò ± �� , we can recover Ò ± fromÒ ± �� . The location can be described by the path from the root
of Ò ± �+� to � ± , in

Ñ ± bits.

19

The Final Calculation

Therefore, Williams Heapsort requires at least\ ��� Ò � 6p��T \ VbW�Y�6+~�� � � 6p�nÔ \ 6DVXW�Yt6 � � � 6p�
comparisons and Floyd Heapsort requires at most\ VXW�Y � 6 � Z �Õ~�� �Å� Ò � 6p� � VXW�Yn6-~ _ � � 6p�tÔ 6DVbW�Y�6 _ � � 6��
comparisons on VXW�Yt6 -incompressible permutation � .

On the average, Williams and Floyd Heapsorts need

6 � Z6 ¿ � \ 6sVXW�Yn6 � � � 6p�#� _ Z6 ¿ 6 a \ 6sVXW�Yt6 � � � 6p�
6 � Z6 ¿ � 6DVXW�Yt6 _ � � 6p�#� _ Z6 ¿ � \ 6sVbW<Yt6���a 6�VXW�Yn6 _ � � 6p�
comparisons, respectively.

Theorem. Both Williams and Floyd Heapsorts require 6�VXW�Yn6 _� � 6p� data moves on the average.

20

Sorting with Networks of Stacks and Queues

Knuth and Tarjan studied the problem in the early 70s.

The main question is: assuming the stacks or queues are ar-
ranged sequentially or in parallel, how many stacks or queues
are needed to sort 6 elements with comparisons only?

Here, the input sequence is scanned from left to right and the
elements follow the arrows to go to the next stack or queue or
output.

Input Permutationoutput
Sorted

A sequence of stacks or queues

Input Permutationoutput
Sorted

stacks/queues

21

Sorting with Sequential Stacks

Fact. In the worst case, VXW�Yn6 stacks suffice, and �	 VXW�Yn6 stacks
are necessary (Tarjan’72).

Theorem. On the average, at least �	 VXW�Yn6 stacks are needed
for sequential stack sort.

Proof. Fix a VbW�Yt6 -incompressible permutation � . Assume �
stacks are sufficient to sort � . Since exactly 6 elements pass
through each stack, we can encode the sequence of pushes and
pops on a stack uniquely as a binary string of 6 �

’s and 6 Z
’s.

Hence, the input permutation is described by
\ � 6 bits. There-

fore, \ � 6 T VXW�Yn6-~�� VXW�Yn6 a 6DVbW<Yn6 � � � VbW�Y�6��
and approximately � T �	 VbW<Yn6 .

22

Sorting with Parallel Stacks

Fact. The permutation
\ x k x m x{y{y{y{x 6 x[Z requires 6 � Z

parallel
stacks.

We show that on the average, the number of parallel stacks
needed to sort 6 elements is ¡ ��Ö 6p� .
The bound is implied by the connection between sorting with
parallel stacks and longest increasing subsequences (Tarjan’72)
and the bounds on the length of longest increasing subsequences
of random permutations given in Kingman’73, Logan and Shepp’77,
and Kerov and Versik’77), using deep results from probability
theory (such as Kingman’s ergodic theorem).

23

An Average-Case Upper Bound

Theorem. On the average, � ��Ö 6p� parallel stacks are needed
to sort 6 elements.

Proof. Fix a VbW�Y�6 -incompressible permutation � a � � x{y{y{y{x � � .
The stacks are named R h x R×� x{y{y{y . We use the following triv-
ial algorithm (Tarjan’72) to sort � . Here, the stacks are namedR h x R � x{y{y{y .
Algorithm Parallel-Stack-Sort

1. For
° a Z

to 6 do

Scan the stacks from left to right, and push � ± on the the
first stack RÙØ whose top element is larger than � ± . If
such a stack doesn’t exist, put � ± on the first empty
stack.

2. Pop the stacks in the ascending order of their top elements.

24

An Average-Case Upper Bound

We need show that algorithm Parallel-Stack-Sort uses � �ÚÖ 6p�
stacks on the permutation � .

Claim. If the algorithm uses L stacks on � then we can identify
an increasing subsequence of � of length L (Tarjan’72).

Claim. The permutation � has no increasing subsequence of
length longer than

¦ Ö 6 , where
¦

is the natural constant.

Proof. Suppose that Û is a longest increasing subsequence of �
and L a � Û � . We can encode � by:

1. a description of this encoding scheme in � ��Z � bits;

2. the number L in VXW�Y L bits;

3. Û as a combination in VXW�Y ¶ �Ü ¸ bits;

4. the locations of the elements of Û in � in at most VXW�Y ¶ �Ü ¸
bits; and

5. the remaining � with the elements of Û deleted in VXW�Y � 6 �
L �Õ~ bits.

25

An Average-Case Upper Bound

This description takes a total of

VbW�Y � 6n� L �Õ~ _ \ VbW�Y 6+~
L ~ � 6 � L �Õ~ _ VXW�Y L _ � ��Z � _ \ VbW�YÝVbW�Y L

bits. Using Stirling approximation and the fact
Ö 6 � L a Þ � 6�� ,

we upper bound the above expression as:

VXW�Yn6-~ _ VXW�Y � 6 l ¦ � �� L l ¦ � 	 Ü �Q� 6 � L � l ¦ � �dc Ü_ � � VXW�Yn6p�Ô VXW�Yn6-~ _ L VXW�Y 6
L 	 _ � 6 � L �}VXW�Y 66 � L_ L VbW�Y ¦ _ � � VXW�Yn6p�Ô VXW�Yn6-~ _ L VXW�Y 6
L 	 _ \ L VXW�Y ¦ _ � � VbW<Yt6��

Since this must exceed VXW�Yn6-~�� VbW�Yß6 , we obtain (approximately)L � ¦ Ö 6 a � �ÚÖ 6�� .

26

An Average-Case Lower Bound

Theorem. On the average,
r ��Ö 6�� parallel stacks are required

to sort a permutation.

Proof. Let u be a sorting algorithm using parallel stacks. Again,
fix a VbW<Yt6 -incompressible permutation � . Suppose u uses ¥
parallel stacks to sort � . We encode the sequence of moves in
the sorting process as a sequence of the following terms:

q push to stack
°
,

q pop stack à ,

where the element to be pushed is the next unprocessed element
from the input sequence and the popped element is written as
the next output element.

Each of these terms requires VbW�Y ¥ bits, and totally we use pre-
cisely

\ 6 terms. Thus we have a (unique) description of � in\ 6�VXW�Y ¥ bits, which must exceed 6�VXW�Yn6 � � � VbW�Yt6p� . So, ¥ TÖ 6 a r ��Ö 6p� .

27

Sorting with Parallel Queues

Sorting cannot be done with a sequence of queues.

Fact. The permutation 6 x 6 � ZAx{y{y{y{x[Z
requires 6 queues to sort

(Tarjan’72).

Theorem. On the average, ¡ �ÚÖ 6p� parallel queues are needed
to sort 6 elements.

The bound is implied by the connection between sorting with par-

allel queues and longest decreasing subsequences (Tarjan’72)

and the bounds in Kingman’73, Logan and Shepp’77, and Kerov

and Versik’77, with sophisticated proofs. We can prove the above

result using simple incompressibility arguments similar to the

case of parallel stacks.

28

Average Complexity of Boolean Matrix Multiplication

Problem: Multiply two 6 á 6 boolean matrices u a � ¨ ±³² Ø � andâ a ��ã ±³² Ø � .
Previous results:

1. Best worst-case time complexity � � 6 	zä ��å4æ[� due to Copper-
smith and Winograd, 1987.

2. In 1973, O’Neil and O’Neil gave a simple algorithm de-
scribed in next slide that runs in � � 6���� time in the worst
case but achieves an average time complexity of � � 6 	 � .

Here we analyze the average-case complexity of the algorithm

using a simple incompressibility argument.

29

The Algorithm of O’Neil and O’Neil

Algorithm QuickMultiply(u x â
)

1. Let
� a � � ±³² Ø � denote the result of multiplying u and

â
.

2. For
° � a Z

to 6 do

3. Let à¯�nç ¿{¿{¿ ç à Ü be the indices with
¨ ±³² Øéè a Z

,Z � � � L .

4. For à � a Z
to 6 do

5. Search the list
ã Ø � ² Ø x{y{y{y{x�ã Øëê ² Ø sequentially for a bit

Z
.

6. Set
� ±³² Ø a Z

if a bit
Z

is found, or
� ±³² Ø a �

otherwise.

Theorem. Suppose that the elements of u and
â

are drawn uni-
formly and independently. Algorithm QuickMultiply runs in � � 6 	 �
time on the average.

30

The Average Complexity of QuickMultiply

Let 6 be a sufficiently large integer. The average time of Quick-
Multiply is trivially bounded between � � 6 	 � and � � 6��d� . Since� 6 � Z � \ 	 � � l 6 of the

\ 	 � � pairs of 6 á 6 boolean matrices areVbW�Y�6 -incompressible, it suffices to consider VbW�Y�6 -incompressible
boolean matrices.

Take a VXW�Yn6 -incompressible binary string � of length
\ 6 	 , and

form two 6 á 6 boolean matrices u and
â

straightforwardly. We
show that QuickMultiply spends � � 6 	 � time on u and

â
.

Consider an arbitrary
°
, where

Z � °Ã� 6 . It suffices to show that
the 6 sequential searches done in Steps 4 – 6 of QuickMultiply
take a total of � � 6�� time.

31

The Average Complexity of QuickMultiply

By the statistical properties of incompressible strings, we know
that at least

1. 6 l \ � � � Ö 6sVXW�Yt6p� of the searches find a
Z

in the first step,

2. 6 l[m � � � Ö 6DVbW�Y�6×� searches find a
Z

in two steps,

3. 6 l � � � � Ö 6DVbW<Yn6p� searches find a
Z

in three steps, and
so on.

Claim. Each of the searches takes at most m VXW�Yn6 steps.

Hence, the 6 searches take at most a total of

� �ì��� �� f � � 6 l \
� � � �Qí 6DVXW�Yn6p�#� ¿ � �_ � VXW�Yt6p� ¿ � � í 6sVXW�Yt6p� ¿ � m VbW<Yn6p�

ç � �ì��� �� f � � 6 l \
� _ � � VXW�Y 	 6 í 6DVbW�Y�6×�

a � � 6p� _ � � VbW<Y 	 6 í 6DVXW�Yn6p�a � � 6p�
steps.

32

The Average Complexity of QuickMultiply

Claim. Each of the searches takes at most m VXW�Yn6 steps.

Proof. Suppose that for some à ,
Z � à � 6 ,

ã Ø � ² Ø a ¿{¿{¿ aã Øéî%ï ðòñëó ² Ø a �
. Then we can encode � as

1. A description of the above discussion.

2. The value of
°
.

3. The value of à .

4. All bits of � except the bits
ã Ø � ² Ø x{y{y{y{x�ã Ø î%ï ðòñëó ² Ø .

This encoding takes at most� �[Z � _ \ VXW�Yn6 _ \ 6 	 � m VbW<Yt6 _ � � VbW�YÝVbW�Y�6��ç \ 6 	 � VXW�Yn6
bits for sufficiently large 6 , which contradicts the assumption that� is VXW�Yt6 -incompressible.

33

Average Complexity of Finding the Majority

Let � a � � ¿{¿{¿ � � be a binary string. The majority of � is the bit
(
�

or
Z
) that appears more than ô 6 l \Aõ times in � .

Previous results:

1. Saks,Werman’91; Alonso,Reingold,Schott’93:6 � ö � 6�� comparisons are necessary and sufficient in the
worst case.

2. Alonso,Reingold,Schott’97:
On the average, finding the majority requires at most\ 6 l©k � í � 6 l0÷A� _ � � VbW<Yn6p� comparisons and at least\ 6 l©k � í � 6 l0÷A� _ ¡ �[Z � comparisons.

Here we prove an average-case upper bound tight up to the first

major term, using a simple incompressibility argument.

34

Average-case Upper Bound

Algorithm Tournament(� a � � ¿{¿{¿ � �)
1. If 6 a Z

then return � � as the majority.

2. Elseif 6 a \
then

3. If � � a � 	 then return � � as the majority.

4. Else return “no majority”.

5. Elseif 6 a k then

6. If � � a � 	 then return � � as the majority.

7. Else return � � as the majority.

8. Let � a � .
9. For

° � a Z
to ô 6 l \^õ do

10. If � 	 ± c � a � 	 ± then append the bit � 	 ± to � .

11. If 6 is odd and ô 6 l \Aõ is even then append the bit � � to � .

12. Call Tournament(�).

Theorem. On the average, algorithm Tournament requires at

most
\ 6 l¯k _ � � Ö 6DVXW�Yn6p� comparisons.

35

Average Complexity of Algorithm Tournament

Fix a VXW�Yn6 -incompressible string � a � � ¿{¿{¿ � � :��� � � 6 x�ø W×ù�ú ÏAû¬Í ü^Ï�ý �jT 6 � VbW<Yn6
For any L � 6 , Û � L � denotes the complexity of Tournament on
any VXW�Yn6 -incompressible string of length L .

Lemma. (Li,Vitanyi’93)
Let þ a þ � ¿{¿{¿ þ Ü be a

�
-incompressible binary string. Among theL l \ pairs

� þ � x þ 	 � x{y{y{y{xQ� þ 	�ÿ Ü � 	�� c � x þ 	Õÿ Ü � 	�� � , L ldm � � ��Ö L � �
are complementary.

So, the new string � obtained in Tournament is at most6 ldm _ � � Ö 6�VXW�Yn6p� bits long.

Lemma. � is also VXW�Yn6 -incompressible.

Hence, we have recurrence relation:

Û � L � � ô L l \^õ _ Û � L ldm _ � � í L VXW�Yn6p�#�
A trivial expansion gives Û � 6p� � \ 6 l¯k _ � � Ö 6DVXW�Yn6p� .
The average complexity of Tournament is thus:� \ 6 l¯k _ � � í 6�VXW�Yn6��#� 6 � Z6 _ 6 Z6 a \ 6 l¯k _ � � í 6�VXW�Yn6p�

36

Expected Length of Longest Common Subsequence

Given two sequences (i.e. strings) þ a þ � y{y{y þ Ü and
§ a § � y#y{y § � ,þ is a subsequence of

§
if for some

° � ç y{y{y ç ° Ü , þ Ø a § ±�� .
A longest common subsequence (LCS) of þ and

§
is a longest

possible sequence � that is a subsequence of both þ and
§
.

For example, 0011 is an LCS of 010101 and 000111.

For simplicity, assume the alphabet � a w ��x[Z | .
Consider two random sequences drawn independently from the

uniformly distributed space of all binary strings of length 6 . Tight

bounds on the expected LCS length for such two random se-

quences is a well-known open question in string combinatorics.

The best bounds are
��y��
	 \ 6 and

��yg� k � 6 .

37

An Upper Bound on Expected Length of LCS

Theorem. The expected LCS length is at most
��yò��	�� 6 _ Þ � 6p� .

Proof. Let 6 be a sufficiently large integer. The expected length
of an LCS of two random sequences of length 6 is trivially bounded
between 6 l \ and 6 . By the Incompressibility Lemma, again it
suffices to consider VXW�Yn6 -incompressible sequences.

Take a VbW�Y�6 -incompressible string � of length
\ 6 , and let þ and§

be the first and second halves of � respectively. Suppose that
string � a �×���	 ¿{¿{¿ � Ü is an LCS of þ and

§
. We re-encode þ

and
§

with respect to � as follows. Writeþ a � ��×� � 	���	 ¿{¿{¿ � Ü � Ü þ��§ a � � � � � 	 � 	 ¿{¿{¿ � Ü � Ü § �
Encode þ � � �na � e �� � ® Z�� e �� � ® Z ¿{¿{¿ � e �� ê ® Z þ �§ � � ��a � e �� � ® Z�� e �� � ® Z ¿{¿{¿ � e �� ê ® Z § �

38

An Upper Bound on Expected Length of LCS

Hence, the string � can be described by the following information
in the self-delimiting form:

1. A description of the above discussion.

2. The LCS � .

3. The new encodings þ � � � and
§ � � � of þ and

§
.

Items 1 and 2 take L _ � ��Z � bits. Since þ � � � contains at leastL Z
’s, By simple counting and Stirling approximation

��� þ � � �Q� � VXW�Y �
± f Ü

� 6 ° � _ � ��Z �
� VXW�Y � 6 \ � 6

L ��� _ � �[Z �
� VXW�Yt6 _ VXW�Y � 6

L � _ � ��Z �� \ VXW�Yn6 _ 6�VXW�Yn6 � L VXW�Y L� � 6 � L �iVbW<Y � 6 � L � _ � ��Z �
The second step in the above derivation follows from the trivial

fact that L T 6 l \ .

39

An Upper Bound on Expected Length of LCS

Similarly, we have�Å� § � � �#� � \ VbW�Yt6 _ 6DVbW�Y�6 � L VXW�Y L� � 6 � L �}VXW�Y � 6 � L � _ � �[Z �
Hence, the above description requires a total size of� � VXW�Yn6p� _ L _ \ 6DVbW<Yn6Æ� \ L VXW�Y L � \ � 6Æ� L �iVbW<Y � 6Å� L � y
Let � a 6 l L . Since

��� ���UT \ 6 � VXW�Yn6 , we have\ 6 � VXW�Yn6 � � � VbW�Yt6p� _ L _ \ 6sVXW�Yn6 � \ L VXW�Y L� \ � 6 � L � VXW�Y � 6 � L �a � � VbW�Yt6p� _ � 6 � \ 6 � VXW�Y �� \ 6 ��Z � � �}VXW�Y �[Z � � �
Dividing both sides by 6 , we obtain\ � Þ �[Z � _ � � \ � VXW�Y � � \ ��Z � � �}VXW�Y ��Z � � �
Solving the inequality numerically, we get � � ��yg��	�� � Þ ��Z � .
Note: Baeza-Yates and Navarro improved the analysis and ob-

tained a slightly better upper of
��yg�
	��

.

40

A Lower Bound on Expected Length of LCS

Next we prove a lower bound on the expected length of an LCS
of two random sequences of length 6 . The proof uses the follow-
ing greedy algorithm for computing common subsequences (not
necessarily the longest ones).

Algorithm Zero-Major(þ a þ©� ¿{¿{¿ þ � x § a § � ¿{¿{¿ § �)
1. Let � � a � be the empty string.

2. Set
° � a Z

and à � a Z
;

3. Repeat steps 4–6 until
° � 6 or à � 6 :

4. If þ ± a § Ø then begin append bit þ ± to string � ;° � a °<_ Z
; à � a à _ Z

end

5. Elseif þ ± a �
then à � a à _ Z

6. Else
° � a ° _ Z

7. Return string � .

41

A Lower Bound on Expected Length of LCS

Theorem. Given two random sequences þ and
§

of length 6 , the
above algorithm Zero-Major produces a common subsequence� of length at least

��y�	�	�	�	�	 6 � � � Ö 6�VXW�Yn6p� .
Proof. Let 6 be a sufficiently large integer, and take a VXW�Yn6 -
incompressible string � of length

\ 6 . Let þ and
§

be the first and
second halves of � .

We encode þ and
§

using information from the computation of
Zero-Major on strings þ and

§
. Consider the comparisons made

by Zero-Major in the order that they were made, and create a
pair of strings � and as follows. For every comparison

� þ ± x § Ø � ,
1. If þ ± and

§ Ø are complementary, we append a
Z

to � .

2. Otherwise, append a bit
�

to � . Furthermore, if the preced-
ing comparison

� þ ±�! x § Ø ! � involves complementary bits, we
append a bit

�
to the string if

° � a ° � Z
or a bit

Z
ifà � a à � Z

.

When one string (þ or
§
) is exhausted, we append the remaining

part (say ") of the other string to .

42

An Example of Zero-Major Encoding

Consider strings þ a 1001101 and
§ a 0110100. Algorithm

Zero-Major produces a common subsequence � a 0010, by the
following comparisons:

s = 10 01101
comparisons *|**||*|*
t = 01101 0 0

The above encoding scheme yields � a 101100101 and a
01100. Here, " a 0.

43

Some Properties of the Coding Strings

It is easy to see that the strings � and uniquely encode þ and
§

and,
Ñ � � � _ Ñ � ��a \ 6 . Since�Å� �# �UT ��� ����� \ VXW�Yt6 T \ 6 � k VXW�Yt6 � � �[Z �

and
��� � � Ñ � � _ � ��Z � , we have

�Å� � �UT Ñ � � �+� k VbW<Yn6 � � �[Z �
Similarly, we can obtain

��� ��T Ñ � �-� k VXW�Yn6 � � ��Z �
and

��� " ��T Ñ � " �-� k VXW�Yn6 � � ��Z �
where " is the string appended to at the end of the above

encoding.

44

Proving the Lower Bound

Let us estimate the length of the common subsequence � . Let$ ¦�% Þ ¦ þ � þ � and
$ ¦�% Þ ¦ þ � § � be the number of

�
’s contained inþ and

§
. Clearly, � contains Í Î8Ï w $ ¦&% Þ ¦ þ � þ � x $ ¦&% Þ ¦ þ � § �Q| � ’s.

Since both þ and
§

are VXW�Yt6 -incompressible, we know6 l \ � � �#í 6sVbW�Yt6p� � $ ¦�% Þ ¦ þ � þ � � 6 l \ _ � �#í 6�VXW�Yn6p�
6 l \ � � � í 6DVXW�Yn6p� � $ ¦&% Þ ¦ þ � § � � 6 l \ _ � � í 6DVXW�Yn6p�

Hence, " has at most � � Ö 6DVbW<Yn6p� � ’s. Combining with the fact
that

��� " ��T Ñ � " �+� k VXW�Yn6 � � ��Z � , we claimÑ � " � � � � í 6DVXW�Yn6p� y
Hence, " has at most � � Ö 6DVbW<Yn6p� � ’s. Since

Ñ � ��� Ñ � " � aÑ � � � , we have a lower bound on
Ñ � � � :Ñ � � ��T Ñ � �+� � � í 6DVbW<Yn6p� y

45

Proving the Lower Bound

On the other hand, since every bit
�

in the string � corresponds
to a unique bit in the common subsequence � , we haveÑ � � ��T $ ¦�% Þ ¦ þ � � �
Since

��� � ��T Ñ � � �-� \ VXW�Yn6 � � ��Z � ,Ñ � � ��T $ ¦�% Þ ¦ þ � � ��T Ñ � � � l \ � � �Qí 6sVXW�Yt6p� y
Hence,

k Ñ � � ��T Ñ � � � _ Ñ � �-� � � í 6�VXW�Yn6p�jT \ 6 � � � í 6DVbW<Yn6p� y
That is,Ñ � � ��T \ 6 l©k � � � í 6sVXW�Yt6p�tÔ ��y'	�	�	�	�	 6 � � � í 6DVXW�Yn6��

46

Heilbronn’s Triangles

Consider = points
P Z)(Â/Â�Â (P 6 in the unit square in the

plane. Denote by * (QP Z+(Â�Â/Â (P 6 9 the smallest area of
any triangle formed by three points.

Define * E , -/.�10 xÊy³yÊyÐx �32 * (QP Z)(Â/Â/Â (P 6 9
Question: (Heilbronn’1950)
How large is * ?

47

History of Heilbronn’s Triangles

1. Heilbronn’50: � �[Z l 6 	 � ?

2. Erdős’50:
r �[Z l 6 	 �

3. Roth’51: � ��Z l � 6 Ö VbW�Y Ñ Þ54�6 �
4. Schmidt’72: � �[Z l � 6 Ö VXW�Yt6p�
5. Roth’72: � ��Z l 6 ��äX� h ¢ �
6. Roth’72: � ��Z l 6 ��äX�Ú� å©�
7. Komlós,Pintz,Szemerédi’81: � ��Z l 6 ��äX� ª 	 �
8. Komlós,Pintz,Szemerédi’82:

r � VXW�Yn6 l 6 	 �
9. Bertram-Kretzberg,Hofmeister,Lefmann’97:r � VXW�Yn6 l 6 	 �

Theorem. (Jiang,Li,Vitanyi’98)
Assuming uniform distribution of points w � � x{y{y{y{x � � | ,6 798 � 7];: 7=< a > � 6 � � � x{y{y{y{x � � �#��a ¡ �[Z l 6 � �

48

Proving the Lower Bound

Consider a ? á ? grid on the unit square, where ? @ 6 � , and
distribute points at grid intersections.

K

2
3

2 3 K
1

1

Each point is fully described by a pair of coordinates
� � x � � ,

where
Z � � x � � ? .

There are ¶BA �� ¸ ways to put 6 points.

Fix a C -incompressible distribution w � � x{y{y{y{x � � | .
��� � � x{y{y{y{x � � � 6 x ? ��T VXW�Y º ? 	6 » � C

49

Warm-up

Lemma. No three points can be collinear, and thus the smallest
triangle area is

r �[Z l � \ � ? � Z � 	 �#� .
Proof. Suppose points � ± , � Ø and � � are on a straight line. Ob-
serve that given � ± and � Ø , we can describe � � in just VXW�Y ? bits.
So we can encode � � x{y{y{y{x � � by specifying

q this encoding scheme in � ��Z � bits;

q the locations of � ± x � Ø x � � in D VXW�Y ? bits; and

q the distribution of the other 6 � k points in VXW�Y ¶ A ��dc � ¸ bits.

Altogether this description takes

VbW<Y º ? 	6 � k » _ D VbW�Y ? _ � ��Z �
a � 6 � k �}VXW�Y ? 	6 � k _ � 6 � k � VXW�Y ¦ � Z\ VXW�Y � 6 � k �_ D VbW�Y ? _ � ��Z �
a VbW<Y º ? 	6 » _ k VbW<Yn6 � VXW�Y ? _ � ��Z �
ç VbW<Y º ? 	6 » � C

Contradiction since � � x{y{y{y{x � � is C -incompressible.

50

Warm-up

Lemma. No two pebbles can be on the same (horizontal or ver-
tical) grid line.

Proof. Otherwise, we can form a description of the arrangement
using

VbW<Y º ? 	6 � \ » _ k VbW�Y ? _ � ��Z �
a � 6 � \ �}VXW�Y ? 	6 � \ _ � 6 � \ � VXW�Y ¦ � Z\ VXW�Y � 6 � \ �_ k VbW�Y ? _ � ��Z �
a VbW<Y º ? 	6 » _ \ VbW<Yn6 � VXW�Y ? _ � ��Z �
ç VbW<Y º ? 	6 » � C

With fixed 6 and ? E F , we obtain
\ VbW�Y�6 T VXW�Y ? � C _ � ��Z � ,

which is a contradiction.

51

Proving Lower Bound
r �[Z l 6 �©�

Lemma.
6 � � � x{y{y{y{x � � ��a r �[Z l 6 � � .

Proof sketch. Suppose
6 � � ± x � Ø x � � � a Z l¯o � 6p� a Þ ��Z l 6���� .

Let
� � ± x � Ø � be the longest edge. Given � ± x � Ø , we can describe� � in VXW�Y � � ? 	 l¯o � 6��Q� bits.

x

x

i

jx

k

Hence we can describe � � x{y{y{y#x � � by specifyingq this encoding scheme in � ��Z � bits;q the locations of � ± x � Ø x � � in
	 VXW�Y ? � VXW�Y o � 6�� bits;

q the distribution of the other 6 � k points in VXW�Y ¶ A ��dc � ¸ bits.

This description is shorter than VXW�Y ¶ A �� ¸ � C as in the previous
lemma since o � 6p� @ 6�� . Q.E.D.

Since most distributions are C -incompressible,6 798 � 7];: 7=< a r ��Z l 6 � �\ a r �[Z l 6 � �
52

Proving Upper Bound � ��Z l 6��d�
Let o � 6p� ç � \ � � �}VbW<Yn6 be a function. Fix an o � 6�� -incompressible
distribution w � � x{y{y{y{x � � | .��� � � x{y{y{y{x � � � 6 x ? ��T VXW�Y º ? 	6 » � o � 6��
Lemma.

6 � � � x{y{y{y{x � � ��a � � o � 6p� l 6���� .
Divide the unit square into upper and lower regions, each con-
taining 6 l \ � \

points.

Connect all 6 l \ points to form 6 � 6 � \ � l � upper lines.

Claim. Every horizontal grid line in the lower region intersectsr � 6 	 � upper lines.

53

Proving Upper Bound � ��Z l 6 � �
We can in fact strengthen the claim.

Claim. Every horizontal grid line in the lower region intersectsr � 6 	 � upper lines which are sufficiently far from each other.

Now let 4 � 6p� a 6 � � � x{y{yzy{x � � � . Then each intersection elimi-
nates

\ 4 � 6�� ? grid intersections that can be used to place the6 l \ points in the lower region.

no points in

2g(n)

This allows us to give a compact description of the lower 6 l \
points.

54

Proving Upper Bound � ��Z l 6��d�
We describe the points � � x{y{y{y{x � � by specifying their � - and � -
coordinates separately:G HJILK VbW<Y º ? 	6 » � VbW<Y º ? 6 » a 6�VXW�Y ? � � ��Z �

q a description of this encoding scheme in � ��Z � bits;

q a description of the � -coordinates in VXW�Y ¶ A � ¸ bits;

q a description of the � -coordinates of the points in the upper
region, each using VXW�Y ? bits, in ascending order of their� -coordinates; and

q a description of the � -coordinates in the lower region, each
using VXW�Y ? ��Z � r � 6 	 4 � 6p�Q�#� bits, in ascending order of
their � -coordinates.

Altogether this is at most

VXW�Y º ? 6 » _ 6�VXW�Y ? _ � 6 l \ �}VXW�Y �[Z � r � 6 	 4 � 6p�#�Q� _ � ��Z �
Since this must be at least VbW�Y ¶ A �� ¸ � o � 6p� , we obtain4 � 6���a � � o � 6p� l 6 � �

55

Proving Upper Bound � ��Z l 6��d�
Finally, the expected upper bound is computed as:

6 798 � 7];: 7=< a ��äNM �ì��� �
«z ��® f �

Z\ «z ��® � � o � 6p�6 � � _ Z6 ��äNM � � Z6 � äX� ª 	 �
a � � Z6 � � x

since * E ? (A@PO = ZAyëZ m \ 9 for all distributions.

Combining both lemmas,

* ¦ � � ¦ � § ¦RQ E S (A@PO = k 9
Note. The above constructions are only rough sketches. For

more detailed (and accurate) constructions, see our paper in

RSA.

56

k One-way Heads Cannot Do
String Matching

(A lower bound or impossibility result by the
incompressibility method.)

Joint work with M. Li.

57

String Matching (or Pattern Matching):
Given pattern

P
and text T , decide if

P
occurs in T .

Sometimes we also want to locate the occurrences ofP
in T .

1. One of the most important problems in computer
science.

2. Hundreds of papers written.

3. Many efficient algorithms found.
E.g., KMP, BM, KR.

58

Main features of the algorithms:

1. Linear time.

2. Constant space
(i.e., multihead finite automaton).

A two-way six-head finite automaton can do string
matching in linear time (Galil and Seiferas, 1981)

Note: KMP and BM are not constant-space.

3. No need to back up pointer in the text (e.g., KMP).

59

Question 1: Can we do string matching without back-
ing up the pointers at all?

Note that, the question makes sense only in comparison-
based model.

Question 2: (Galil and Seiferas, 1981)
Can a one-way U -head finite automaton do string match-
ing, for any U ?

Previous results. (Geréb-Graus, Li, Yesha)
Negative for U E K (WV .

Our result. Negative for any U .

60

Model of Computation

Fix a deterministic finite automatonX E Y Z , (@\[(^] (`_a(cb/�\(cd e with U one-way read-
only heads (U -DFA).

$ x # y $

Q

X
accepts an input f Phg Tif if

P
appears in T .

Assume the heads are non-sensing,
i.e.,

X
cannot detect if two heads meet.

61

A Bit of Kolmogorov Complexity

The Kolmogorov complexity (KC) of
P

, j (QP 9
, is the

size (in bits) of the smallest description of
P

.

A binary string
P

is random if

j (QP 9 k l P lnm ? (G H�J l P lÊ9
KC of

P
conditional to T , j (QP l T 9 , is the size of the

smallest description of
P

, given T .

P
is random relative to T if

j (QP l T 9 k l P lom ? (G H�J l P l89

62

Fact 1. Most strings of a fixed length are random.

Fact 2. If string
P E pJqsr is random, then

j (q l ptr 9 k l q lam ? (GIH�J l P lÊ9
Fact 3. (Symmetry of Information)
Up to a logarithmic additive term,

j (QP 9um j (QP l T 9 E j (T 9vm j (T l P 9

j (QP 9 > j (T l P 9 E j (T 9 > j (QP l T 9

63

Some Useful Lemmas

Def.
P (T are two segments of the input.

X
matches

P
and T if, at some time a head moves a step in

P
while

another head is in T and vice versa.

x y

Matching Lemma. (Li and Yesha)
Let

X
accept w E f Pxg Tyf . Suppose

j (QP l T m P 9 k l P lam GIH�J l w l
Then

X
must match the pattern

P
with some occur-

rence of
P

in T .

Otherwise
X

will accept a wrong input with all occur-
rences of

P
in T being replaced by some non-random

string.

64

Def. Let z be a set of heads, and f{T Z T \ f an input.
Suppose the leading head is at the last bit of T Z . X
is conscious of z if there exists a T \ that can make
some head in z move before any head reaches the
right endmarker $.

y y1 2

......
$$

G

Otherwise,
X

is unconscious of z . That is, some
heads will blindly move to the right.

65

Moving Lemma. Let | e ,
be any constant andf Pxg Tyf an input, where T is a sufficiently long random

string. If some heads move
l T l � steps in T while the

others remain completely stationary, these heads will
move unconsciously of the others until some reaches
the right endmarker $.

$$ y#x x

I.e., a random text is like a desert: if some heads move too much

in it, they will get lost and move blindly to the right.

66

Theorem.
X

cannot do string matching.

Input: f Pxg T Z P T \ f , where
P (T Z are random and

l T Z l el P l k .

Either all heads shift out of
P

in U l P l \ steps or Moving
Lemma will apply (with | E @}O V)!

The former case is prohibited by Matching Lemma.
Thus, some heads will move blindly to the right.

The head reaches f first becomes dead.

$$ #x y1 y2x

What if some moving heads are near the copy of
P

?

67

A More Sophisticated Construction.

Choose a large = and

~ E @ > � � Z
° a Z B E (U \ m U > K 9 O K

Fix a random string � E P T Z .�./. T Ñ , where
l P l E = ,l T ° l E = k ° m = k ° � k .

Let T E T Z P T \ P ./.�. T Ñ . Simulate
X

on input f Pxg Tyf
until a head dies. At most U m @

copies of
P

are near
some head.

Find an
P 7

relatively random to
P (T and, replace theU m @

copies of
P

with
P 7

to get T 7 . Make sure
X

ends
up in the same configuration on f Pxg T 7 f .

Repeat above until U m @
heads have died.

68

Proof of Moving Lemma

Want: If some heads move
� � � � steps in � consciously while the

others remain still, we can compress � by at least
� � � � bits, for� � �

depending only on � and µ .

Def. An
� % x þ � -grouping is a partition of heads into groups such

that

1. heads in each group are within
%

bits,

2. groups are separated by at least þ bits.

sr

69

Local Compression Lemma.
For every � Z , there is � \ validating next claim:

Claim. Suppose z E (z Z (Â�Â/Â (z 4 9 is a
(� Z (� \ 9 -

grouping of some heads at time � . Let p ° be the sub-
string of length � \ to the right of z ° . If the heads not
in z remain stationary till a head in some z ° finishesp ° , then p Z .�./. p 4 � �
for some � of size at most K 4��3� m @

, depending only
on the configuration of

X
at time � .

u

G 1

1 gu...
2γ 2γ

G g

|Q||Q|

...

Roughly, we can predict p������#�`p 4 and compress it by� �}� m �'�����W� 4�� � m �i�
bits.

If
l z � l+� �

for all � , � � � �
and � � � l] l

.

70

Great Compression Lemma.
Consider a grouping z � � z � (����#��(z 4 � . Suppose
the groups are at least

���
bits apart, for some

� k� � z �
. If the heads not in z remain stationary in the

next
�

steps, we can compress the portions of input
scanned by the heads in z during the

�
steps by at

least
������L�

bits, given initial positions of the heads.

G
...

2

...
G 1

2S 2S
...

The proof is by induction on �¡�L� , where

 ��L�£¢ ¤¥�¦¨§ª© � ¥ ©¬« � ¤¥�¦¨§© � ¥ ©¬«x® © � ¥ © �
Note, �¡�¯� decreases if some

� ¥ decreases in size or splits into

more smaller groups.

71

Claim. The lemma holds when ° �c± � � ²
.

2S
...

GG 1 2

2S 2S

g

...

G

Proof by induction on ³ ± ³ � � .

Case 1: During the next
�

steps, some head ´ µ ±
pauses for

� ��¶c� steps.

Consider the � · �
moving heads for

� �#¶^� steps.

Case 2: No head pause for
� �#¶^� steps.

Do local compression (with ¸�� � �ª¹ ¸}� � ³»º ³) � �#¶^�P¼ � � ³»º ³ �
times to disjoint sections.
(once every � ³'º ³ � �#¶^� steps)

72

Inductive Step.

Case 1: Some
± � pauses for

� ��¶c½ steps during the
next

�
steps.

Case 2: Some
± � splits, i.e., at a time two adjacent

heads in
± � are

�¾� �#¶^½ bits apart.

Case 3: Neither Case 1 nor Case 2.

73

Case 3: Every group moves at least once in every� �#¶^½ steps and no group split.

The heads in
± � are always within distance� ³ ± � ³ � �#¶^½ ¿ ��Ài� ��¶c½

Dynamically partition input into sections of at most� �#¶^½ bits, and compress each� -tuple of sections by at least
�

bit.

1

...

GG g

S 1/3

We can compress at least
� �#¶^½ � -tuples.

74

Two Subcases of A g-tuple

Subcase 1: Some
± � split by a large constant.

Record head positions and compress recursively for� � steps.

G 1 G 2

d 2S S1 2
...

How to compensate for the overhead�'��� � �ÂÁ �'�¾� Ã � Á �'�¾� � �}Ä
Subcase 2: Heads in each

± � are within a constant
distance.

75

Open problem: What if the heads are sensing?

The current Moving Lemma doesn’t hold since with Å
heads one can easily make some heads moving con-
sciously for a long time.

76

Concluding Remarks

1. We have demonstrated the usefulness and sim-
plicity of the incompressibility method.

2. It seems that the method has advantage over other
methods (such as the probabilistic method) espe-
cially when dealing with algorithmic problems.

3. We expect more applications to come.

4. Can Shellsort achieve Æ �ÈÇ �'�¾� Ç��
on the aver-

age?

5. Give a simple analysis of Quicksort by incompress-
ibility.

77

References

1. M. Li and P. Vitanyi. An Introduction to Kolmogorov Com-
plexity and its Applications. Springer-Verlag, New York, 2nd
Edition, 1997.

2. T. Jiang and M. Li. k one-way heads cannot do string-
matching. Journal of Computer and System Sciences, 1996.

3. T. Jiang, J. Seiferas and P. Vitanyi. Two heads are better
than two tapes. Journal of the ACM, 1997.

4. T. Jiang, M. Li, and P. Vitanyi. New applications of the in-
compressibility method. Computer Journal, 1999.

5. T. Jiang, M. Li and P. Vitanyi. A lower bound on the average-
case complexity of Shellsort. Journal of the ACM, 2000.

6. H. Buhrman, T. Jiang, M. Li, and P. Vitanyi. New applica-
tions of the incompressibility method: Part II. Theoretical
Computer Science, 2000.

7. T. Jiang, M. Li and P. Vitanyi. Average-case analysis of
algorithms using Kolmogorov complexity. Journal of Com-
puter Science and Technology, 2000.

8. T. Jiang, M. Li and P. Vitanyi. The average-case area of
Heilbronn-type triangles. Random Structures and Algorithms,
2002.

78

